
GPU Computing at the

Netherlands eScience Center

Ben van Werkhoven

NIRICT – GPU Applications Workshop
Utrecht, June 8 2017

GPU Applications
Climate Modeling

Radio Astronomy

Super-resolution Microscopy

Astro-particle Physics

Life Sciences

Computational Linguistics

Digital Forensics

Yearly calls for proposals

Accepted projects receive:

- 250K to hire Postdoc or PhD student

- 2.5FTE eScience Research Engineers

How we work

Projects started in 2017
Data mining

tools for abrupt

climate change

DIRAC -

Distributed Radio

Astronomical

Computing

Accelerating

Astronomical

Applications 2

Methodology and

ecosystem for

many-core

programming

Real-time detection of neutrinos

from the distant Universe

KM3NeT – Neutrino Telescope
• Huge instrument at the bottom of the

Mediterranean Sea

• Pretty high data rate due to background noise

from bioluminescence and Potassium-40 decay

• Current event detection / reconstruction

happens on pre-filtered data (so called L1 hits)

• Our goal: Work towards event detection based

on unfiltered data (so called L0 hits)

Correlating hits
• Hits are correlated based on their time

and location

• Correlations can only occur in a small

window of time

• Density of the narrow band depends

on correlation criterion in use

Try-out two designs:

• Dense pipeline that stores the narrow

band as a table

• Sparse pipeline that stores the matrix

in compressed sparse row (CSR) form

Correlation matrix

hit no.

hit no.

Data representation

– Dense

– Sparse

N

N

N

N N

1500

correlation matrix
correlations

table
on the GPU

N

1500

N

N

correlation matrix

column indices

start of row

correlations

N

CSR format

Comparing performance

Super-resolution microscopy

Super-resolution microscopy
• Collect a large number of images from

fluorescence microscope

• Localize fluorophores using fitting code

• Create single super-resolution image

from all localized fluorophores

• Segment all individual molecules in the

image

• Create single reconstruction by

combining identical copies in the data

Fluorescence

microscope

Existing GPU code
• GPU code for maximum likelihood estimation developed in 2009-2010

– ”Fast, single-molecule localization that achieves theoretically minimum uncertainty”

Smith et al. Nature Methods (2010)

• Estimates the locations and several other parameters of points in noisy image

data for various fitting schemes and pixel area sizes

• State of the code:

– Each thread worked on exactly one fitting

– Pixel area analyzed by single thread is 7x7, 19x19, and expected to grow in future

– Requires many registers and a lot of shared memory per thread block

– Results in low utilization on modern GPUs

– Multiple fitting schemes implemented with lots of code duplication

New parallelization
• One fitting is now computed by a whole thread block cooperatively

• Used CUB library for thread block-wide reductions

• Code quality

– Used function templates to de-duplicate code between different fitting methods

– Wrote scripts for testing and tuning of device functions and kernels

• Results

– Currently, speedup of 5.8x to 6.6x over old GPU code on Nvidia GTX Titan X

– Code can handle arbitrary pixel area per fitting

– Makes it possible to do termination detection

– Easier to maintain and extend the code with new fitting schemes

Lessons Learned

Software Engineering Practice
“Throw all good practices out of the window for the sake of high performance”

• Examples:

– Thousands of code lines in a single function

– Only acronyms as variable names

– No comments or external documentation about the code

– Unnecessary optimization

• Recommendations:

– Start GPU code from simple code

– Write and use tests

– Write C++ and not C, whenever possible

– Trust the compiler to handle simple stuff

Evaluating results
Results from the CPU and GPU codes are not bit-for-bit the same

• GPUs today implement the IEEE standard just like CPUs

• CPU compilers sometimes more aggressive than GPU compilers

• Fused multiply-add rounds differently

• Floating-point arithmetic is not associative

Things to keep in mind

• It depends on the application whether bit-for-bit difference is a problem

• Testing with random input can give a false sense of correctness

Talking about performance

• Many computer scientists I know think

– The only way to properly way to discuss GPU performance is to fully optimize and tune

for both CPU and GPU

– Then (and only then) you are allowed to say anything about GPU performance

– Answering the question: “Which architecture performs the best for this application?”

• Many scientists from others fields that I work with just want to know:

– “How much faster is that Matlab/Python code I gave you on the GPU?”

• Choose your starting point carefully

• High-performance and high quality software can co-exist

• Application dependent if small differences in results is a problem

• When talking about performance, be very clear on what is compared to what

www.esciencecenter.nl

Ben van Werkhoven

b.vanwerkhoven@esciencecenter.nl

Summary

http://www.esciencecenter.nl/
mailto:b.vanwerkhoven@esciencecenter.nl

Project Partners

