
A N A L I S T: A T O O L F O R I M P R O V E D S TAT I C
T Y P E A N A LY S I S F O R R U B Y

twan coenraad

Master’s Thesis

Master of Science
Formal Methods and Tools for Verification

Faculty of Electrical Engineering, Mathematics and Computer
Science

University of Twente

September 2017 – February 2018

Twan Coenraad: Analist: A Tool for Improved Static Type Analysis for
Ruby, Master’s Thesis, © September 2017 – February 2018

supervisors:
prof. dr. M. Huisman

dr. A. Fehnker

ir. I. van Hurne (Moneybird)
J.C.G. Weeink BSc (Moneybird)

location:
Enschede, the Netherlands

time frame:
September 2017 – February 2018

http://wwwhome.ewi.utwente.nl/~marieke/
http://wwwhome.ewi.utwente.nl/~fehnkera/

The best things happen by chance.

— Dory

A B S T R A C T

Dynamically typed languages pose both inherent advantages and dis-
advantages towards developers. The lack of a static typing system
results in having lots of freedom during development, at the cost of
having to deal with typical run-time errors, like type errors, argument
errors and no method errors. Earlier research has been conducted to
deal with this type uncertainty, e. g., by developing analytic tools that
can validate statically a dynamically typed code base. However, most
of the time these tools give many false positives, therefore, they are
not helpful for a developer to use in a real-world scenario. In this
research a tool named Analist is developed for the Ruby language,
focused on using a pragmatic approach. This means that wherever
assumptions (e. g., when derived from the database schema file) are
quite safe to be made, this is done. By design, this cannot be as com-
plete as previously developed tools, yet it turns out to be a promising
way of preventing programmer errors to occur as both synthetical
benchmarks and an experiment with developers confirm. This bal-
ance makes Analist a tool that is useful for developers. In future
work one can consider to add more Ruby type definitions to Analist

to make it even more useful, as for this research the span of what can
be analyzed correctly was clearly limited.

iv

I’ve never done that before, so I’m sure I can do it!

— Pippi Longstocking

A C K N O W L E D G M E N T S

I thank my supervisors from the University of Twente Marieke and
Ansgar for their time reading (and re-reading) my earlier versions of
this master’s thesis. In particular I thank Marieke for our countless
meetings, talking about both serious and light-hearted business.

Next, I thank both Ivo and Jeroen from Moneybird for their day
to day supervision at Moneybird, for their useful insights during our
meetings and in between. Furthermore, I thank all my colleagues, co-
graduates and fellow interns at Moneybird that made my graduation
project very pleasant to do. In particular I learned a lot from Thomas,
with whom I have tinkered a lot finding a good approach for Anal-
ist.

At last, I thank Thomas, Wietze and Jip for their proof reading and
other useful graduate advice. I thank my girlfriend Joyce for being
patient and understanding, even when working during late hours.

v

C O N T E N T S

i introducing analist

1 introduction 2

1.1 Problem statement . 2

1.1.1 Background . 2

1.1.2 The problem . 4

1.1.3 Requirements . 4

1.2 Ruby, the programming language 5

1.3 Ruby on Rails, the framework 6

1.4 Moneybird . 6

1.5 Contribution . 7

1.6 Research question . 7

1.7 Structure . 7

2 related work 9

2.1 Feature definitions . 9

2.1.1 Flow-sensitivity 9

2.1.2 Interprocedural support 10

2.1.3 Path-sensitivity 10

2.1.4 Supports object-oriented design 11

2.1.5 Evaluation patterns support 11

2.2 PHP . 12

2.2.1 Phantm . 12

2.2.2 Pixy . 14

2.2.3 WeVerca . 17

2.3 Python . 19

2.3.1 RPython . 19

2.4 Ruby . 21

2.4.1 DRuby . 21

2.5 Comparing past research 23

2.5.1 Experimental benchmark results 24

2.5.2 Limitations and points of improvement 25

2.5.3 Feature comparison 27

2.6 Lessons learnt . 28

ii implementing analist

3 abstract overview of analist 30

3.1 Naming and logo . 30

3.2 Program flow . 30

3.2.1 Preparation . 30

3.2.2 Annotating . 32

3.2.3 Checking . 33

4 implementation of analist 35

4.1 Choosing a programming language 35

vi

contents vii

4.1.1 Proof of concept 35

4.1.2 Requirements . 36

4.1.3 Ruby . 36

4.1.4 OCaml . 36

4.1.5 Comparison and evaluation 37

4.2 Implementation of Analist in Ruby 38

4.2.1 Code designing for Analist 38

4.2.2 Preparation . 38

4.2.3 Database schema 41

4.2.4 Annotating . 41

4.2.5 Checking . 43

4.3 Pre-defining annotations 43

4.4 An Atom plugin . 45

4.4.1 Needed changes 45

4.4.2 Show case . 46

iii reviewing analist

5 validation 48

5.1 Macro benchmark . 48

5.1.1 Needed changes 49

5.1.2 Results . 49

5.1.3 Threats to validity 50

5.2 Micro benchmark, the case study 50

5.2.1 Experiment . 50

5.2.2 Installation . 51

5.2.3 Results . 51

5.2.4 Threats to validity 52

5.3 Comparison with earlier research 52

5.4 Reviewing requirements 52

6 conclusion 55

6.1 Research question . 55

6.2 Future work . 56

6.2.1 Handle Parser exceptions correctly 56

6.2.2 Autoload files in Analist 56

6.2.3 Add more pre-defined annotations 56

6.2.4 Improve pre-defined annotations 56

6.2.5 Add more Rails and mutations support 57

6.2.6 Adapt to project environment 57

6.2.7 Become path-sensitive 57

6.2.8 Have fine-grained exclusion 57

6.2.9 Deal with business logic errors 57

iv appendix

a appendix 59

bibliography 63

A C R O N Y M S A N D D E F I N I T I O N S

AST Abstract Syntax Tree

DRuby Dynamic Ruby,
http://www.cs.umd.edu/projects/PL/druby/

ERB Embedded Ruby, https://apidock.com/ruby/ERB

gem Gems are the Ruby version of prepared libarires
that provide some specific functionality,
https://rubygems.org

HTML HyperText Markup Language

HTTP Hypertext Transfer Protocol

linter A plugin that gives feedback about the code that is
written, commonly inline and standalone

LOC Lines of Code

metaprogramming Metaprogramming is programming a (meta)
program that, when executed, results in a new
program that again can be executed

Rails Ruby on Rails, http://rubyonrails.org/

RPython Restricted Python,
https://rpython.readthedocs.io/

Rubocop Rubocop, https://github.com/bbatsov/rubocop/

Ruby Ruby, https://www.ruby-lang.org/

SQL Structured Query Language

XSS Cross-site scripting, https://www.owasp.org/index.
php/Cross-site_Scripting_(XSS)

viii

http://www.cs.umd.edu/projects/PL/druby/
https://apidock.com/ruby/ERB
https://rubygems.org
http://rubyonrails.org/
https://rpython.readthedocs.io/
https://github.com/bbatsov/rubocop/
https://www.ruby-lang.org/
https://www.owasp.org/index.php/Cross-site_Scripting_(XSS)
https://www.owasp.org/index.php/Cross-site_Scripting_(XSS)

Part I

I N T R O D U C I N G A N A L I S T

In this part, the research domain is explored, the problems
and solutions in similar research are explained and conclu-
sions are drawn with respect to what key features are for
Analist and what problems should be avoided.

1
I N T R O D U C T I O N

In this chapter, an introduction is given about the type checking prob-
lem Analist tries to solve. Section 1.1 tells what the high-level back-
ground is of the problem. Sections 1.2 and 1.3 introduce both the
programming language and the framework commonly used together.
Section 1.4 sets forth what the company Moneybird is, and why they
are interested in a solution for this problem. Then, Section 1.5 ex-
plains what contribution is given to the scientific world. At last, the
research question (Section 1.6) and structure of this thesis (Section 1.7)
are set out.

1.1 problem statement

1.1.1 Background

Programming languages can be roughly divided into two groups. On
one hand there exist dynamically typed languages in which every vari-
able is only bound to an object and can be re-assigned when desired.
On the other hand, there exist statically typed languages in which vari-
ables are bound to both a type and an object. Once declared, that
variable can only be assigned objects of the defined type.

Dynamically typed languages therefore offer large flexibility during
development since no type checks are performed before the code is
executed. Only at run-time these languages try to handle a method
call on an object and give errors when that turns out to be impossible.
This also makes it possible to have objects of different types with
a similar interface, sharing some methods, without having to hard-
code this behavior. These interfaces are only implicitly given and not
enforced in any way.

Statically typed languages instead, give more guarantees with regard
to types and as a result to their available methods. In statically typed
languages code is typically compiled or type inferred and afterward
type checked before it is executed, giving a developer type errors in
this phase of development. As a direct result, a developer is required
to define all types explicitly, or at least in a very strict manner.

The flexibility of having types that can be adapted without the for-
mal administration, is at the cost of having less certainty with regard
to the correct use of types, making type errors in dynamically typed
languages more likely to occur. This is what we want to address in
this research.

2

1.1 problem statement 3

20

3
age = 20

Dynamically typed

'twenty'

3
age = 'twenty'

Dynamically typed

20

Type=Number

3

Statically typed

Number age = 20

'twenty'

Type=Number

7

Statically typed

Number age = 'twenty'

Figure 1.1: Dynamically typed vs statically typed variables

1.1.1.1 An explanatory example

To better understand what the difference is between the two types of
languages, an example has been put forward below to illustrate its
working. Refer to Figure 1.1 for a visualization of the example below.

Imagine you want to save the age of someone who is 20 years old.
When you save it in a dynamically typed language into a variable like
age = 'banana', then this is valid syntax, although it is clear that
this is not what was intended. When putting it like age = 'twenty',
it is not at a glance visible that this is probably not what is intended,
although there is no way to check this. For instance, you cannot calcu-
late someone’s birth year with the word ’twenty’. However, you can
when saving it like a number, simply with age = 20. This also shows
an advantage of dynamically typed languages as it is easy to switch
types. In statically typed languages such a type error cannot occur, as
it is necessary to lock the type of a variable, e. g., Number age = 20.
Number age = 'twenty' is thereafter simply not allowed by the type
checker of the statically typed language. This restricts a developer to
have only one type for every variable and stick to it throughout the
program.

1.1 problem statement 4

1.1.2 The problem

This research is trying to bring the profits of having static types to
the dynamically typed language Ruby, used in conjunction with Ruby
on Rails (Rails). It introduces a type checking tool that can be used to
do static type checking similar to the work done by a type inference
system, commonly part of a compiler. The tool exploits all the knowl-
edge available, derived from the project environment. In that way, the
flexibility of Ruby can be kept, while also having more certainties that
on run-time no type errors occur.

The most important requirements to the analyzer are that it is rea-
sonably fast, works out-of-the-box and gives almost no false positives.
Ideally, a developers team should be able to add the tool as a step
of the build process. This research focuses on errors that are both a
result of the dynamic nature of Ruby and are commonly made by
developers. Default Ruby and Rails behavior is expected, therefore it
is explicitly not tried to have full coverage of all possible exceptions
that possible can be programmed. In other words, the tool allows
abnormal Ruby code to pass falsely.

1.1.3 Requirements

We want to build a static analysis tool with the properties as listed
below. The properties are based on the result of similar research as
can be found in Chapter 2.

• It must do a static analysis focusing on type checking for Ruby,
in particular on a project that uses Rails as its framework, both
for their latest released versions.

• It must show only relevant errors, thus only when it is almost
certain that it is a programmer’s mistake and will result in run-
time errors.

• It should be flow-sensitive, context-sensitive and interprocedu-
ral (see Section 2.5.3 for an explanation of these terms). It was
found in earlier research that this may improve results signifi-
cantly.

• It should take advantage of any supported gems that are available
within the project. For instance, Moneybird uses the mutations

gem, that enforces run-time validation for models and gives
an outline for what the data model should look like, includ-
ing semi-automatic coercion (implicit casting) from one value
type to another. The database schema as defined in source code
tells how the object’s fields are defined. Rails models tell what
relations they have and can be used as an anchor for what kind
of object is to be expected when referring to it.

1.2 ruby, the programming language 5

• It should be adapted to work with Rails out-of-the-box, as is
common for gems that support Rails. This means that simply
adding the program and running it would be enough to give
decent results with sane, yet opinionated default settings.

• It should be possible to use it within an automatic building pro-
cess.

• It should be possible to configure what kind of errors and warn-
ings are given, to make the tool as compatible to a developer’s
style as possible.

• It should be fast enough to be able to run the program on a Ruby
file after each save, or a shorter time frame.

• It could preferably have a way of saving an initialized run-time
state. This is suggested by DRuby and implemented in RPython.
This might make it easier to deal with variables that dependent
on the run-time environment.

1.2 ruby, the programming language

Ruby is a programming language that is dynamically typed. Although
the hype on Ruby is over [14], it is still widely used in conjunction
with the Rails web development framework. What developers like
about Ruby is its very simple, almost English-like syntax. A typical
example illustrating this is the following in which an operation is
performed repetitively:

1 35.times do

2 puts 'Hello world!'

3 end

4 # Hello world!

5 # Hello world!

6 # ...

Also, for most common operations on objects, a native Ruby
method is available, keeping Ruby code very clean and easy to
read. This makes Ruby a powerful language during development
and easy to learn, with a clean and concise syntax. Also, within the
Ruby community many gems exist that take care of most common
programmer challenges. Next to the disadvantages that are common
for dynamically typed languages (see Section 1.1.1.1), also the ability
to extend and overwrite anything at run-time is often considered a
weak spot.

1.3 ruby on rails , the framework 6

1.3 ruby on rails , the framework

Ruby is often used together with the Rails web development framework.
Noteworthy Rails applications include Airbnb (marketplace for ac-
commodation rent), DigiD (e-identity provider for the Dutch gov-
ernment) and Moneybird (accounting software). Rails is appreciated
for taking care of most common problems that occur in web devel-
opment, e. g., manipulating objects in a database, handling HTTP re-
quests and rendering templates. Rails’ philosophy is using convention
over configuration, meaning that Rails’ default values will probably be
sane with regard to what is commonly done when dealing with a
certain problem.

The main drawback of using Rails as web development framework
is that it does not scale that well under heavy use. This is mainly due
to Ruby, as it is considered not the best performing language. Next,
the convention over configuration philosophy also comes with a lot
of magic methods and configuration options that have no clear origin or
defined behavior.

1.4 moneybird

This research was commissioned by Moneybird. Moneybird was
founded in 2008 as an online software service for sending invoices
from entrepreneurs to their customers. Nowadays, that service has
evolved into a full-featured bookkeeping service. It is used by over
150.000

1 entrepreneurs, mainly in the Netherlands.
Moneybird’s main application and its corresponding microservices

are all built in Ruby using Rails, which was in 2008 a popular choice
for building web applications [16]. Nowadays, there is a large code
base for its main application (168K LOC in Ruby files, counted using
cloc2). In 2017, about 2.5K files were changed, with 36K insertions
and 100K deletions3.

The motivation for this research is that Moneybird is curious to
see whether type checking is possible on a reliable level in real-world
projects, which are written in dynamically typed languages, like their
own. At this moment it frequently happens that very similar types are
mixed or interchanged when refactoring (e. g., see Listing 1), which
results in run-time errors. When these simple errors can be prevented
by running Analist, less critical errors will remain in source code
when an application is eventually in production. It is known that for
an application like Moneybird, about 2-70 errors per 1K LOC can be
expected [13].

1 As stated on https://www.moneybird.nl/, accessed on January 23th, 2018

2 https://github.com/AlDanial/cloc,limitingtowardsapplicationcodesolely, ac-
cessed on January 23th, 2018

3 Measured using git diff --shortstat

https://www.moneybird.nl/
https://github.com/AlDanial/cloc, limiting towards application code solely

1.5 contribution 7

1 - <%=

administration.show_tax_number_icon %> ↪→

2 + <%=

administration.decorate.show_tax_number_icon %> ↪→

Listing 1: Example of a refactoring error (in red). It would be detected
(partially) by Analist. Note: without the call to decorate, the
administration object is missing methods, exactly what is causing a
bug here

During mid-December 2017 up until mid-January 2018 about 30

type errors, about 260 argument errors and about 1260 no method errors4

were raised in their main application5. These errors specifically are
subject of this research.

1.5 contribution

This research tries to build a static type checker for a dynamically
typed language with a pragmatic approach, in contrast to other re-
searchers that take a theoretical approach.

The contribution of this research is mainly the design of a type
checker, a proof of concept in a full-fledged implementation including
code editor tool support and an evaluation of this approach to show
to what extent such type checkers can be more helpful than those
with a true theoretical approach.

1.6 research question

The research question we want to answer is:
To what extent is it possible to create Analist, a static type analysis tool

for Ruby on type checking that conforms to the requirements as put forward
in Section 1.1.3?

Subquestions that arise are:

• To what extent is there benefit from using information that is
being exposed by some gems?

• To what extent do developers have benefit from using Analist?

1.7 structure

The report is structured as follows. In Chapter 2 related work is re-
viewed and compared exhaustively, to end with all lessons that were

4 No method errors were only counted when the object exists, yet the method called was
not – i. e., method calls for NilClass were ignored

5 All numbers originate from Moneybird’s error logging service

1.7 structure 8

learned from earlier research. Chapter 3 gives an abstract overview of
how Analist is built up and how it works. Chapter 4 explains how
the actual implementation was done, including all technical details.
Validation and performance of Analist are shown in Chapter 5. At
last, conclusions are drawn and future work is listed in Chapter 6.

2
R E L AT E D W O R K

In this chapter related work regarding type checking in dynamically
typed languages is discussed. Several research on the use of type
checkers for dynamically typed languages has been conducted, such
as for PHP with Phantm (Section 2.2.1), Pixy (Section 2.2.2) and
WeVerca (Section 2.2.3), Python with RPython (Section 2.3.1) and also
for Ruby, in a dialect language called DRuby (Section 2.4.1).

2.1 feature definitions

To start with, definitions of features type checkers typically have are
given.

2.1.1 Flow-sensitivity

Flow-sensitivity means that the order in which statements are exe-
cuted matters. This is of interest as it is possible to reuse a variable in
a dynamically typed language with a different type. All code exam-
ples are written in Ruby.

1 a = 1

2 a = a + 1 # 2

3

4 a = 'ab'

5 a + '1' # 'ab1'

Listing 2: Example of flow-sensitive code

With flow-sensitive analysis, it is possible to make this snippet pass,
because then the analyzer is aware of the dynamic type change on
line 4. Without, it could also be typed with number, string and give
warnings.

2.1.1.1 Context-sensitivity

Context-sensitivity means that when a method is analyzed, the specific
context in which it is called is taken into account within the method’s
body [3]. In contrast, when context-insensitive, it would be analyzed
as a method on its own, resulting in a less concise result.

9

2.1 feature definitions 10

1 def func(arg)

2 if arg

3 return 2

4 else

5 return false

6 end

7 end

Listing 3: Example of context-sensitive code

In the listing above, depending on the input func either returns a
number (2) or a boolean (false). A context-sensitive analysis takes
this into account, whereas a context-insensitive analysis would sug-
gest that either a number or a boolean is returned, losing precision.

2.1.2 Interprocedural support

Interprocedural support means that method invocation is handled in a
correct way. This is of great concern with regards to scoping of vari-
ables and whether nested calculations are visible to the outer world.

1 def func(b)

2 b = 2

3 end

4

5 b = 3

6 func(b)

7

8 b # 3

Listing 4: Example of code that requires support for handling procedures

The return value of the code in the listing above will depend on the
programming language: either it is still 3 (pass-by-value) or it becomes
2 (pass-by-reference). In case of Ruby the former is done.

2.1.3 Path-sensitivity

Path-sensitivity means that the branches a program takes depending
on a certain state at run-time matters. This is of interest, e. g., when a
method has multiple return types.

2.1 feature definitions 11

1 bool = true

2

3 if bool

4 value = 2

5 else

6 value = false

7 end

8

9 value + 3 # 5

10 value + 3 # NoMethodError: undefined method `+' for

false:FalseClass↪→

Listing 5: Example of code that is subject to support for multiple paths

With path-sensitive analysis handling it is possible to let pass the
snippet above. In that case, the analyzer is aware that the type of
value is number. Without, it can also be typed with boolean and give
warnings when an analyzer is uncertain.

2.1.4 Supports object-oriented design

Supporting object-oriented design simply means that support for
classes and objects is added. As most applications are built with this
or a similar principle, it is valuable when Analist supports it.

2.1.5 Evaluation patterns support

Supporting evaluation patterns means that dynamically generated
and evaluated code is supported.

1 def func(func_name)

2 eval "def #{func_name}(arg); 3 + arg; end"

3 end

4

5 func('abc')

6 abc(3) # 6

Listing 6: Example of an evaluation pattern

In the snippet above, func defines dynamically a method after giv-
ing it a method name. Therefore, after running func('abc') the
method :abc is created, that expects exactly 1 argument. When
this pattern is not supported, especially programs that depend on
metaprogramming are hard to analyze correctly.

2.2 php 12

2.2 php

PHP is a dynamically typed language with a focus on web devel-
opment, that was in the early internet days very popular for self-
learning web programmers. A reason for this is that it is very simple
to combine HTML with PHP, using PHP simply as templating engine
that could interact with a database, fetch and manipulate stored data
and return the rendered web page. A lot of programming tutorials
exist for PHP that are written by other self-learning programmers.
These tutorials were therefore mostly of poor quality and as a result
vulnerabilities in PHP websites were very common, including SQL

injections1 and XSS attacks. All research below focus mainly on this
last aspect: finding of tainted (unsafe) data in the source code of an
application.

2.2.1 Phantm

Phantm [12] tries to improve type analysis in PHP by focusing on
the gap that arises by the necessary approximation for keeping the
performance at a reasonable level and absence of environment-specific
information at run-time. It takes a hybrid approach to circumvent this
problem by running the program as usual and then capture the pro-
gram state at a point where most set-up configuration has finished.
This program state is then used to do a static analysis. An example
(in Ruby) is depicted below:

1 debug = ENV['DEBUG']

2 puts 'Starting program in debug mode' if debug

If Phantm captures program state after starting the program, the
value of ENV containing all environment variables will be known, in-
cluding what files are actually loaded. Then, it is possible to prune
code paths that depend on this. In the example above, the second line
can simply be ignored when it is known that the debug flag is not set
on production.

A library was created to enable developers to mark a certain point
in the code to collect the current state, which stores keys and values
into a state file. During this process, only simple values like scalar
values and arrays are taken into account.

A flow-sensitive approach is used, not only to deal with variable
type changes correctly but also to follow values of associative arrays,
which are commonly used as configuration options objects. Phantm
has detailed information about built-in functions available, which
can be extended with user-defined functions that can be annotated
using PHP’s documentation features to improve its results. Addi-

1 https://www.owasp.org/index.php/SQL_Injection, accessed on July 19th, 2017

https://www.owasp.org/index.php/SQL_Injection

2.2 php 13

tional warnings are emitted when uninitialized variables or unini-
tialized array entries are referred. This is done to take care of PHP’s
register_globals 2 that was enabled by default in earlier versions of
PHP, which resulted in a large source of vulnerabilities.

When the analysis is performed, the following steps are taken:

1. A concrete state is captured as a map of variable names to their
values and a heap that contains object references to object states.
These object states are mappings of fields to their values. This
concrete state is what is saved in the described state file.

2. An abstraction function is applied, putting the concrete state in
an abstracted form. It takes individual variables values and
abstracts them into certain classes, e. g., integers, strings, and
maps. When a value is known, for example when it is used as
the index of an array, that value is abstracted. When a concrete
value is unknown, it is marked as such. The set of concrete ob-
jects contains possible real-world memory locations in the heap,
whereas the set of abstract objects contains a set of program
points where objects can be created. Special care is taken of un-
defined references versus nullified variables. From a PHP per-
spective, they behave the same, however, the former is most
likely unintentional and should eventually be warned for.

3. When transforming the abstracted form by applying transfer
functions for each consecutive statement, the following features
are highlighted:

• Any time information can be derived from a variable’s
type, type refinement is applied. Types are refined by com-
puting the new lattice that is the meet of the current type
lattice and the expected variable types.

• With that type information available, conditional filtering
can be applied. This is an extension to type refinement
in which the value of a variable is used to predict which
branch of an if statement is taken. This makes it possible
to find methods returning false on errors and else some
value, which is a common pattern when querying for val-
ues in PHP. When it is found that a certain if statement is
impossible to fulfill, unreachable code is detected.

• Termination is enforced by setting hard limits on array depth
and by ensuring that any time a new type is introduced, it
is equally, or wider than any type that is known before. The
researchers state that this approach works well in practice.

2 register_globals turns any GET and POST field in an HTTP request into a variable,
making it very simple to inject user input into an application.

2.2 php 14

4. When the analysis reaches its fixed point, all types are extracted,
insofar possible. It will then make a final pass over the control
flow graph of the program and give all errors detected. All type
information that is available after type refinement is added to
the type mismatches. The level of detail in the report can be
configured.

2.2.1.1 Conclusion

Phantm found a useful new insight on type refinement by saving
run-time state. The path pruning that is made possible due to this re-
finement is also a good finding. Manually modeling the built-in func-
tions and supporting the expansion of this modeling to user-defined
classes is a great way of making a widely applicable analyzer. Their
choice to capture a state just after initialization seems to be a helpful
approach overcoming typical problems with static analysis on dynam-
ically typed languages. This resembles what RPython (see Section 2.3.1)
does in some way, namely the two-phase process of doing a code
analysis, by first performing dynamic processing and only then per-
forming an analysis. Alias analysis as Pixy supports is omitted, but
it is not considered to be any large flaw. Also dealing with executing
dynamically created code (using eval) is not mentioned, but also this
is not much of a great deal.

2.2.2 Pixy

Pixy [9] takes a flow-senstive, interprocedural and context-sensitive
data flow approach, focusing on finding taint-style (unsafe input) vul-
nerabilities. When given with a PHP program, an analysis looks like
this:

1. Constructing an abstraction is done by PhpParser3, a tool made
specially for Pixy. It is a combination of a lexical analyzer, parser
program, and specification files. The specification files are part
of the PHP interpreter. During this step, the source code is trans-
formed into objects that can easily be traversed through.

2. Deriving an intermediate representation afterwards gives a lin-
earized form of the plain PHP script, similar to three-address
codes 4. This linearized form flattens out all possible loop pat-
terns that exist, e. g., for and while and turn every function
into a simple control flow graph. Global scoped code that does
not belong to any function is put in a main function.

3 https://github.com/oliverklee/phpparser

4 A three-address code commonly consists of an assignment and a binary computa-
tion, e. g., a = true OR false.

https://github.com/oliverklee/phpparser

2.2 php 15

a) Variables, constants and literals are turned into place ab-
stractions. These abstractions are used to store more con-
cise information, when available.

b) Functions are turned into three control flow graph nodes,
namely a call preparation, a calling, and a returning call node.

3. During alias analysis so-called alias groups are created that have
identifiers all pointing to the same memory location, e. g., a =

&b, results in an alias group of (a, b). When no aliases have
been defined for a variable, the corresponding identifier is put
alone in an alias group. When it is uncertain what alias is built,
for example when two if branches result in different aliases,
so-called may-aliases are created. When certain what exact alias
is built, must-aliases are created. When resolving a lattice based
on these may-aliases and must-aliases, may-aliases are ordered
above must-aliases, which results in a loss of precision, as may-
aliases contain multiple alternatives. When defining transfer func-
tions5, most statements remain untouched, with the exception
of a few. E. g., reference assignments, a = &b are processed by
removing a from all alias groups and adding a everywhere b

already is. For interprocedural transfer function calls, a problem
mentioned specifically is that it can be hard to determine stat-
ically how deep a recursive function call will be, e. g., when
such a function ends conditionally. To scope variables correctly
when calling functions recursively, call preparation and call re-
turn nodes store and restore alias information and the value it
currently holds. To simplify function parameter handling with
regard to function calls, those values are treated the same way.

4. During literal analysis it is determined at every program point
what all literals can hold. It is performed to make it possible to
make analysis more concise, e. g., by pruning unreachable code
paths, or making variable array indices fixed. Information gath-
ered during the alias analysis is incorporated here. For all vari-
ables and constants that exist in the analyzed program, a lattice
is defined, refined and then resolved. The top element of this
lattice refers to Ω, meaning absolutely nothing is known up until
this point. For the transfer function it is defined that on assign-
ments, depending on whether a variable is considered a simple
variable6, an array, or array element and whether it is a may-
alias or must-alias as determined in the alias analysis, strong or
weak updates or strong or weak overlaps are applied. Updates
are performed on simple variables, whereas overlaps are per-
formed on arrays and array elements. In a strong update, a vari-

5 A transfer function defines how data is transformed when it flows through a node.
6 Simple variables are in this paper considered any variable, not an array, nor an array

element.

2.2 php 16

able is just overwritten with the right-hand side’s value. In the
case of a weak update all aliases of the left-hand side are bound
to the least upper bound between the literal that such an alias
already holds and the right-hand side of the assignment. Strong
and weak overlaps are handled similarly, with the difference that
actions are performed on the array elements within. If an ar-
ray index contains a non-literal, like $a[$i], it is mapped to Ω.
When dealing with unary operations, e. g., $a = -1, or binary op-
erations, e. g., $a = 1 + 2, first such calculations are performed
and then the result is assigned as explained before. All built-
in functions are mapped to Ω, thus knowing nothing about its
internal behavior. Reference assignments nodes result in a bare
overwrite, as the authors restrict themselves to simple variables
with regards to reference assignments. It is assumed that ref-
erenced variables are not redirected to other variables within a
method call. All aforementioned actions result in loss of preci-
sion, although the authors report that actual analyses are not
really influenced by this.

5. At last, during taint analysis maps variables to be either tainted or
untainted. A conservative approach is used, meaning that only
when it is certain that a value is safe, it is considered untainted,
else it is tainted. This results in having array elements with non-
literal indices considered tainted, as they are mapped to Ω dur-
ing literal analysis. An exception for this pessimistic approach
is made for newly created arrays, that are explicitly flagged to
be clean. Within the transfer function it is defined that sanitiza-
tion can be achieved by both typecasting and using sanitizing
PHP functions. Where applicable, the clean array flag is passed
on. In contrast to what is done in the literal analysis, built-in
functions are in this analysis modeled more faithful to reduce
the appearances of false positives.

After that all analyzes have finished, for each sensitive sink, e. g., a
place that is shown to the user or used within an SQL statement, it is
considered whether that sink can have tainted input variables. When
that is the case, a warning is displayed.

2.2.2.1 Conclusion

Pixy focuses mainly on doing a correct alias analysis. Albeit a sophis-
ticated solution, most code programmed will not have many aliases,
if any, because it is considered bad practice. Moreover, associative ar-
rays7 and objects are not supported correctly when used in alias anal-
ysis according to [5]. Next, the lack of having support for classes is a
major flaw, given that most real-world applications will have classes

7 Associative arrays are known as hash maps, or dictionaries in other languages

2.2 php 17

and objects to separate concerns better. Type inference is not consid-
ered at all. An asset is the approach being flow-sensitive, interproce-
dural and context-sensitive, but altogether, Pixy cannot be considered
production-ready.

2.2.3 WeVerca

WeVerca [5][6] tries to bring a framework to do a full-featured analysis
on PHP. It captures the internal behavior as correct as possible, by re-
solving method calls, include statements and getting values out of an
object. WeVerca focuses on the difficult interplay between value anal-
ysis and heap analysis, which come into play when dealing with for
example associative arrays. When dealing with arrays, a variable can
point to a specific value within such an array, while that array can be
indexed by another variable as well. That variable and its (primitive)
value are captured by the value analysis, whereas the array is caught
during the heap analysis. By splitting the analysis into two parts and
first performing an abstract analysis followed by performing an end-
user analysis, it is thought that it is easier to extract any information
out of a dynamically typed language. As a proof of concept, a taint
analysis as end-user analysis is implemented.

WeVerca outlines the first phase as follows:

1. In the first step, the control flow is saved into an intermediate rep-
resentation. This representation is a graph, in which each node
contains a code statement. The graph consists of nodes with
value and non-value nodes and its edges are flow edges that
represent control flow between program instructions, in which
value edges are used to connect value-using nodes (e. g., oper-
ators) with value-containing nodes (e. g., operands). They are
connected when there is a mutual dependency. Each node be-
longs to an analysis state in the data representation. Nodes mu-
tate from one state into another as defined in the transfer func-
tion. Most transfer definitions do not change the analysis state
and just compute values or are value getters. Any information
gathered here is saved in the data representation. The informa-
tion is not added to the analysis state, so succeeding nodes do
not know anything regarding this data.

2. To build the intermediate representation, an entry script is built
for the program to be analyzed and then it is gradually ana-
lyzed. It processes caller nodes, e. g., functions, methods, and
constructors, that are expanded on the go, following the control
flow. When a caller node is evaluated, the analysis state that
is known up until that point is used to proceed with. Than ex-
tensions follow, that handle actual to formal parameter binding

2.2 php 18

and on returning to the calling method, extension-sinks nodes
are placed.

3. To begin with the analysis, a declaration analysis is performed
in which a declaration state is built. A declaration state is a set of
classes, functions, constants and operators.

4. Thereafter a heap analysis is done, in which arrays, array in-
dices, object fields and variables are approximated. The sum-
mary heap identifiers summarizes all heap identifiers that could
be updated by assignments that have statically no information
attached. When heap identifiers need to be made distinguish-
able, e. g., when a previously statically unknown target is stati-
cally known after processing a statement, a new heap identifier
is created and all states after this use this new so-called mate-
rialized heap identifier. As heap identifiers are tracked by the
value analysis, this forms an interplay with the heap analysis,
in which updates have to be sent back and forth.

5. This value analysis consists of a first and second phase, where
the first phase uses values that compute accessed control flow
and structures and the second phase deals with heap identifiers.
The first phase is therefore independent of the heap analysis. To
make the height of the lattice finite and guarantee termination
of analysis, the size of all sets is limited by a constant.

For the transfer functions both strong and weak updates are defined,
that respectively update a heap identifier to a new value, or update
the heap identifier to either contain the new value, or the original
one.

To make the taint analysis work, the WeVerca framework and its
results are used to follow tainted values from sources, e. g., user in-
put, to sinks, e. g., print statements. The researchers do not exactly
show what is done here, but show in their short evaluation that their
method works, albeit only based on a comparison on just 2 projects.
More on this is found in Section 2.5.1.1.

2.2.3.1 Conclusion

WeVerca shows a flexible approach on performing a static analysis, by
splitting the process in an abstract analysis and a concrete analysis. It
is hard to say whether the flexibility turns any end-user analysis into
a simple plug and play solution as suggested. Next, WeVerca seems
to cover any feature you can wish for, except for being flow-sensitive
(refer to Section 2.1 for a full list of type checker features). WeVerca
points out that this results in some extra false positives, albeit at a
low rate, especially with regards to the examples they show. Similar
to Phantm, no support is mentioned for aliases and eval’ed code, but
this is still not much of an issue.

2.3 python 19

2.3 python

Python is a general purpose dynamically typed language, that is
known to be very expressive. This means that most problems one
can think of, are in just a few lines of Python code solved. Python
tries to be a language that is applicable in functional, procedural and
object-oriented fields. Python is both used in desktop development
as for web development. According to the IEEE, it is the first top
programming language [7].

2.3.1 RPython

RPython [1] (Restricted Python) tries to be a more robust and interoper-
able alternative to Python while preserving the flexibility the Python
language brings. RPython tries to be interoperable by focussing on
being compatible with the Java and .NET run-times. This is a whole
different approach of doing a purely static analysis on a dynami-
cally typed language. It can nevertheless give good insights in what
one can do to take advantage of a more static typed dynamic lan-
guage. RPython is a strict subset of the Python language, therefore
any RPython program is also a valid Python program. RPython forces
some restrictions to make the transformation to a statically typed lan-
guage doable:

1. Python is a dynamic language in which type information is
bound to objects, not to methods, variables or return values.
RPython forbids that this type information results in incompati-
ble types, e. g., a method must always return a value of the same
type. In practice, they found this not much of a hurdle, as most
Python code already adheres to this.

2. Class definitions may not be altered dynamically by adding or
removing methods and fields. According to the researchers, this
is a serious limitation, though special care is taken to make typ-
ical Python patterns still possible, without exactly explaining
what this means.

3. Instead of being dynamically typed, only predefined primitive
types can be used, like integers, booleans, and strings, together
with container types like tuples, lists, and dictionaries. In user-
defined classes, it is not necessary to explicitly define types, as
they are automatically inferred. For example, the following is
supported:

1 class Example

2 def __init__(self, arg1, arg2)

3 self.var1 = arg1

4 self.var2 = arg2

2.3 python 20

5

6 def run

7 example = Example("String", 35)

In this example, it is derived automatically that var1 contains a
string type, and var2 a number.

4. RPython only supports single inheritance, whereas Python sup-
ports multiple inheritances. To compensate, they support mix-
ins, which can be seen as classes marked as mixin and that get
inlined when invoked. Mixins do not interfere with the inheri-
tance hierarchy and methods defined in classes take precedence
over mixed in methods. The order is relevant in this.

5. Just as in Python both classes and methods are treated as first-
order citizens, e. g., they can be passed around when invoking
methods.

Compiling and executing an RPython program is done in an atypi-
cal way by not parsing the source code alone, but by:

1. Initialization, the set-up process in which Python dynamic fea-
tures can extensively be used. It is this phase in which normal
Python can be used together with all Pythonic patterns that ex-
ist. For instance, this makes it possible to do metaprogramming

and evaluate dynamically created Python code.

2. Translation, the process in which an initialized program is ana-
lyzed. During this process, types are inferred and stored, and
types are checked to be not contradictory. After this, compiled
programs are generated, usable for the Java or .NET run-time
environment.

3. Run, running the output of the translation phase.

Note that a lot of Python powerful dynamic features are nowadays
also possible within the Java or .NET run-time. However, as Python
was built with this powerful expressiveness in mind, it performs far
better at it.

Currently, because the main entry point needs to be supplied and
depending on that a class or function can react differently, RPython
does not support type checking in a composable manner. For the
same reason, it is hard to have separate compilation. Also, generic
structures8 are not supported, though the authors think that this can
improve RPython expressive power in the future.

8 https://en.wikipedia.org/wiki/Generic_programming, accessed on 30 January
2018

https://en.wikipedia.org/wiki/Generic_programming

2.4 ruby 21

2.3.1.1 Conclusion

RPython is a whole different solution to mix dynamically typed lan-
guages with static types. They focus on making a statically typed
language, as a derivative from a popular dynamically typed one.

This approach has multiple advantages, such as letting running
project code on multiple run-time environments, to see which one per-
forms and adapts best to the specific tasks. This is all possible while
keeping commonly used Pythonic patterns intact. Also, the choice to
have an initialization phase that allows full dynamic Python is con-
sidered a good compromise between the expressiveness this results
in, versus the difficulty, this brings dynamic programming to do type
checking. Disadvantages are that an existing code base can be hard
to transform and that developers that use forbidden patterns exten-
sively, will have to adapt their code style and cannot use their favorite
Python packages at all time.

2.4 ruby

See Section 1.2 for a brief introduction to Ruby, a dynamically typed
language.

2.4.1 DRuby

2.4.1.1 Overview

DRuby [4] aims to bring static typing to the dynamic typed Ruby lan-
guage. It does this by trying to make programmer’s life as easy as pos-
sible, as is common in the Ruby community. In principle, static type
inference is automatically done wherever possible. However, when
this results in imprecise results, it is possible to add annotations to
give static types to dynamic code. These annotations then are also val-
idated at runtime. To make the result useful with not too many false
positives, the developers have carefully considered to what extent the
analysis should be strict. Therefore, they tolerate some lack of preci-
sion resulting in certain programs being marked erroneously as valid
or invalid. In particular, there is support for doing a flow-sensitive
analysis on local variables, thus reuse of local variables that are first
typed Array and later typed as String is supported. On the contrary,
Ruby’s metaprogramming capabilities are not fully supported as its be-
havior is hard to grasp correctly.

We now summarize DRuby’s main features:

• In Ruby, everything is an object. This is done internally in C,
which hides the actual internal type from Ruby source code.
Therefore, it is necessary to annotate built-in classes and their

2.4 ruby 22

methods with type definitions, consisting of the method name,
its input type and its returning type. DRuby provides this.

• Next to the basic types, also intersection types are created,
which are methods that can belong to multiple classes and de-
pending on the class they belong to, can even have different
returning types. It is noted that automated type inference for
intersection types is not working, although annotations work
fine. See Listing 7 for an example.

1 'a'.include?('a') # include?: (string) -> boolean

2 'a'.include?(1) # include?: (fixnum) -> boolean

Listing 7: Code example of intersection types

• When having a method that belongs possibly to multiple
classes, a union type, dual to the intersection type, is formed.
See Listing 8 for an example. A crucial difference between the
intersection and union type is that in case of an intersection
type a method must be defined with equivalent types in both
intersecting class types, whereas for a union type only one of
them must match the type. Both types exist to perform static
type checking.

1 ['a'].concat(['b']) # ['a', 'b']

2 'a'.concat('b') # 'ab'

3

4 chance = Random.new.rand > 0.5 # Random.new.rand gives a

float between 0 and 1↪→

5 x = chance ? ['a'] : 'a' # x and y are either both

6 y = chance ? ['b'] : 'b' # arrays or strings and therefore

concatable↪→

7 x.concat(y) # either ['a', 'b'] or 'ab'

Listing 8: Code example of concat as union type

• A common idiom in Ruby is the use of optional arguments and
varargs, a varying number of arguments. Both are supported in
DRuby.

• Parametric polymorphism is supported to make it simpler to ex-
press certain patterns, e.g. the Object.clone method that re-
turns its own type and referring to the identity object self.

• As mixins cannot be checked statically, run-time constraints are
added to make sure that any contract resulting from these mix-
ins is checked.

2.5 comparing past research 23

• In case a method returns a tuple with various types, a tuple type
is used.

• When methods take a parameter list as input and return that list
as output, a special notation is used, promoting it to a first-class
citizen in DRuby.

• Constants are resolved statically and used to construct the class
hierarchy.

When performing type inference, a structure called object type is used
to do bookkeeping on the collection of methods and their type defini-
tion. A constraint-based analysis is conducted. In the first stage, all mu-
tual dependencies are obtained and turned into constraints. This set
of constraints is then refined by applying rewriting rules repetitively.
On any inconsistencies detected, e. g., when looking for methods on
classes (taking superclasses and mixins into account) that turn out to
be undefined, errors are raised. When no errors occur, a valid typing
has been found. Tuple types are treated as arrays.

If union types occur on the right-hand side, for example type1 ≤
type2 or type3, then this resolves correctly when type1 is equal to ei-
ther type2 or type3. For intersection types a similar approach exists.
For this, run-time checks are added.

To verify any manually annotated method, its parameters and return
values must be checked on run-time. At this moment, many struc-
tures are supported. However, making it feature complete remains
future work.

DRuby can be used as a drop-in replacement for Ruby, that can be
enabled to verify these run-time checks. A file provided by DRuby
that contains all base types is sideloaded.

2.4.1.2 Conclusion

Like what is common in the Ruby community, DRuby is all about tak-
ing care of what is typical. It takes care of the most used features and
focuses on creating an analyzer that is usable in general. Also, the
fact that it tries to resolve most inference itself, but is given the op-
portunity to give annotations is very much Ruby-like. They note that
adding an initialization phase like RPython does, can overcome boot-
strapping issues that are the result of configuration and environment.
DRuby lacks tests on real-world sized applications, so it is unknown
how their solution would perform well when it is given such a code
base.

2.5 comparing past research

In the next sections all presented solutions are compared with each
other. Almost every study performed an experiment in which they

2.5 comparing past research 24

show their stronger and weaker points, or even compare themselves
to other similar solutions.

2.5.1 Experimental benchmark results

2.5.1.1 WeVerca

WeVerca shows in their own report that in comparison to Pixy and
Phantm they performs significantly better. For the small excerpt (648

LOC), taken from the myBloggie
9 application, WeVerca finds all er-

rors (according to themselves), where Pixy finds only 69% of the er-
rors and Phantm only 23%. Also, with regards to the false-positives
rate, WeVerca scores better, with only a rate of 19%, where Pixy and
Phantm score 44% and 93% respectively. They conclude that Phantm
cannot be considered useful, given that competing programs have
higher false-positive rates. When looking at the running time how-
ever, WeVerca is significantly slower, especially on larger projects. We
conclude that precision comes atthe price of time.

2.5.1.2 Pixy

Pixy shows in their report that they have found on modules (9k LOC
each) of the PhpNuke10 project a significant amount (24) known issues
with about as many false positives (30). On other smaller projects also
vulnerabilities are found, with one vulnerability per false positive as
well. Pixy also found some previously unknown vulnerabilities, with
about the same false positive rate. Nothing is reported on run time,
nor is there a comparison with other projects on the same code base.

2.5.1.3 Phantm

Phantm shows in their report that they find in the WebMail11 project
(4k LOC) 43 problems, ranging from bugs to annotation errors, with
about 11 seconds runtime. Nothing is said about false positives.
Larger projects, like DokuWiki12 (31k LOC) take 244s of run time. For
this, 76 errors are reported. They consider this a reasonable running
time. Using state information, gathered after the initial boot phase,
12% of all errors are dropped for DokuWiki and 12% of all errorsfor
WebMail. For the former, a few methods are highlighted, in which the
error reduction is over 50% of the cases. Increased runtime because of
the state information was about one second according to the report.

9 https://sourceforge.net/projects/mybloggie/, accessed on January 14th, 2018

10 https://www.phpnuke.org/, accessed on 15th January, 2018

11 This project is not publicly disclosed by the authors of Phantm
12 https://www.dokuwiki.org, accessed on 15th January, 2018

https://sourceforge.net/projects/mybloggie/
https://www.phpnuke.org/
https://www.dokuwiki.org

2.5 comparing past research 25

2.5.1.4 RPython

RPython writers’ claim that it is hard to say something about perfor-
mance with regards to benchmarks they ran. Besides that, they state
RPython performs on a scale between complete statically typed lan-
guages like C# and Java, and complete dynamically typed languages
like IronPython and Jython. This means that a performance gain on
Python can be achieved by implementing RPython, while Python fea-
tures are partly retained.

2.5.1.5 DRuby

DRuby was run on 18 benchmark Ruby programs, with all programs
under a thousand lines of code. In these small programs, it turned
out that the number of errors found in comparison to the number of
false positives is quite high. In most cases the amount of false posi-
tives is as high or even higher than the error count. The run time of
most benchmarks was below 7 seconds, which is reasonably quick, al-
beit that all benchmarks were performed on a small code base. Some
warnings were given on a code inspection level. This was in particu-
lar for unused variables and when omitting parenthesis. Both could
lead to unintended code behaviour and were therefore warned for.

2.5.2 Limitations and points of improvement

Based on experiences by the researchers themselves, the following list
of limitations and points of improvement was composed.

• WeVerca

1. WeVerca is imprecise with regards to the definitions for
built-in functions.

2. Current analysis is done path-insensitively, which would
preferably be path-sensitive.

3. Due to the assumption of a non-relational value domain13,
false positives occur. When values are assumed to relate, it
is easier to come to a more tightened bound.

• Pixy

1. Pixy does not support object-oriented features, which is
nowadays a very common pattern when developing soft-
ware.

2. Pixy handles reference assignments only partially. When
dealing with simple variables it expects that reference pa-
rameters are not redirected to other variables inside the
function.

13 Values in a relational value domain are values that relate to each other, thus for
example for the age domain values between 0 and 150 will be viable alternatives.

2.5 comparing past research 26

3. include statements are not scanned automatically, as the
paths to be included are not necessarily known in static
analysis, e.g. when their paths are evaluated dynamically.

4. Input sanitization errors are reported sometimes falsely, e.g.
when the sanitized value itself is encapsulated in a safe
environment.

• Phantm does not report on any defects that their program has. It
does not show whether false positives occur, making it harder
to compare it to others. Also, nothing is said about the qual-
ity of the given warnings. Based on the results of WeVerca we
can conclude that the amount of false positives is large in one
example with a ratio of 93%.

• RPython

1. Independent compilation is not supported yet. At this mo-
ment a known entry point is needed to compile a RPython
program. This gives probably less accurate results than a
full static analysis, as paths are likely to differ through a
program depending on their origin.

2. Interoperability with regards to mixing C# or Java and
RPython programs is not completed yet. This is partially
done for RPython accessing C# or Java, but not the other
way around.

3. Instead of making a method copy for every type that is
found, expressive power can be increased by making meth-
ods generic and as a result more compact.

• DRuby

1. Some standard library functions are not supported in DRuby
due to their nature. This is for example the case for
Array.flatten, for which no finite intersection type can
be defined, as any n-dimensional array is transformed into
a 1-dimensional array.

2. Special Ruby language behaviour makes it hard to cover
all its behaviour during static analysis. This is a problem
when classes are re-opened at run-time, which can lead
to changed or removal of methods, the so-called monkey
patching. DRuby assumes that no dynamic changes are made.

3. It is possible to give objects more methods than the class
describes by adding at run-time methods to the so-called
eigenclass of an object. DRuby is unable to handle this be-
haviour.

4. Ruby supports reflection and dynamic evaluation that makes
it possible to metaprogram in Ruby. This is not supported

2.5 comparing past research 27

by DRuby. It is suggested that an approach as taken by
RPython by precomputing this metaprogramming be-
haviour would be a solution, but is left as future work.
During evaluation this was done manually as workaround.

5. Simpler types are now checked on run-time, e.g. when run
through a test. However, object types and individual ex-
pressions are not checked yet. Also static verification of
these annotations is seen as future work.

6. There is no support for dynamically composed file names, e.g.
when including such file names. During experiments this
was solved by replacing filenames by hand. Also, as the
checks are only run when methods are actually invoked,
it was necessary to build a custom script that invoked all
test methods that depend on the assumption that that was
done by the test runner.

7. At this moment only local variables are analyzed flow-sensitive.

2.5.3 Feature comparison

A feature comparison table is made to compare all features and can
be found in Table 2.1.

Table 2.1: Comparing features of type checker on dynamically typed lan-
guages

feature WeVerca Pixy Phantm RPython DRuby

flow-sensitive 3 3 3 3 7 1

path-sensitive 7 3 3 2 3 3 3 4

interprocedural 3 3 3 3 3

supports object-
oriented design

3 7 3 3 3

supports evalua-
tion patterns

3 7 3 5 3 6 7 7

1 DRuby only considers local variables flow-sensitively
2 Phantm supports this partially as Conditional filtering, meaning that implied
statements that come from control structures are used
3 RPython forbids the use of multiple return types
4 DRuby uses run-time checks when its uncertain about what different path may
result in
5 Phantm supports evaluation patterns partially, by being able to collect a (dynamic)
program state as a starting point
6 RPython supports evaluation patterns partially, as it has a full dynamic Python
initialization phase, after which the allowed syntactic correct structures way more
restricted
7 DRuby accepts type hinting as a manual, though useful alternative

2.6 lessons learnt 28

2.6 lessons learnt

Based on own experiences and what others have researched, we have
compiled a list of properties we would like our code analyzer to have,
as can be found in Section 1.1.3. The common pitfall for all solutions
already researched is that they focus on a solution for general pur-
pose, resulting in a static analyzer with limited usability. This due to
of the unlimited possibilities of programming languages.

By limiting our scope to Ruby applications used in cooperation with
commonly used gems, like Rails, we think that we have found a com-
promise with wide usability, but gives better and faster results with
regard to the limitations named above.

Part II

I M P L E M E N T I N G A N A L I S T

In this part, it is explained how Analist’s was designed
on a high level and implemented in detail. We also show
how a plugin for the Atom editor was developed.

3
A B S T R A C T O V E RV I E W O F A N A L I S T

In this chapter an abstract overview of Analist is given. Section 3.1
explains where the name comes from. Next, the program flow of
Analist is explained in Section 3.2, from preparation to checking.
In Chapter 4 the technical details are given.

3.1 naming and logo

The tool that is built during this research is named Analist. Its name
is a derivative of the English word for analyst, or simply the Dutch
word analist with the same meaning. The logo is a flask in which a
red liquid bottles, indicating the experimental state of Analist. It is
designed by Freepik1.

3.2 program flow

The program takes a Rails or Ruby project folder as input and trans-
forms it multiple times, extracting and adding type information dur-
ing these passes, ultimately returning in errors and warnings to dis-
play to a developer. See Figure 3.1 for an overview.

3.2.1 Preparation

First, some preparation is done to make the annotating and checking
pass easier to perform. During the initialization, the project-specific
configuration for Analist is read and applied, giving the possibility
to declare global types and exclude files.

Next, when exploring the project, all Ruby files are transformed
into a recursively defined manipulable and explorable structure, the
Abstract Syntax Tree (AST). Where applicable, this structure is ex-
tended with Ruby code originating from HTML template files that are
implicitly loaded by Rails. This is necessary, as it is also possible to
execute Ruby code from HTML template files.

Thereafter an indexing pass is performed in which both classes and
method mappings from the identifier to the corresponding AST are de-
rived from project code and database schema. All mappings are put
into a single resources object. This object is used for lookups during
the annotating pass. Note that all maps are based on the project code

1 https://www.freepik.com/free-vector/scientist-boy-with-lab-objects_

849316.htm

30

https://www.freepik.com/free-vector/scientist-boy-with-lab-objects_849316.htm
https://www.freepik.com/free-vector/scientist-boy-with-lab-objects_849316.htm

3.2 program flow 31

in
it

ia
liz

at
io

n
ex

pl
or

in
g

in
de

xi
ng

an
no

ta
ti

ng
ch

ec
ki

ng

ar
gu

m
en

t
er

ro
rs

ty
pe

er
ro

rs
w

ar
ni

ng
s

Pr
ep

ar
at

io
n

lo
ad

co
nfi

g
fil

es
R

ub
y

fil
es

in
cl

ud
e

H
TM

L

te
m

pl
at

es

In
pu

t

pr
oj

ec
t

co
de

da
ta

ba
se

sc
he

m
a

R
es

ou
rc

es

st
an

da
rd

R
ub

y

va
ri

ab
le

lo
ok

up

pr
oj

ec
t

co
de

da
ta

ba
se

sc
he

m
a

R
es

ol
ut

io
n

st
ra

te
gi

es

O
ut

pu
t

[1
]

[2
]

[3
]

[4
]

fa
llb

ac
k

to

fa
llb

ac
k

to

fa
llb

ac
k

to

Fi
gu

re
3

.1
:F

lo
w

ch
ar

t
fo

r
A

n
a

l
i
s
t

Le
ge

nd
:[

1]
:fi

le
na

m
es

,[
2]

:e
xt

en
de

d
A

ST
s,

[3
]:

ex
te

nd
ed

A
ST

s
w

ith
re

so
ur

ce
s,

[4
]:

an
no

ta
te

d
A

ST
s

3.2 program flow 32

and not auto loaded2, making this approach work even when not all
Rails conventions are followed.

3.2.2 Annotating

The most important pass of Analist is the annotating pass. During
this, any node in the AST is (recursively) transformed into an annotated
node. That annotated node signals what types are expected based on a
statement, possibly with multiple valid alternatives. In the next pass
it is compared to its actual annotation.

3.2.2.1 Resolution strategies

For most types of nodes, e. g., primitive types, blocks or variable as-
signments the annotating strategy is defined in code. Variable assign-
ments are saved into a symbol table as a tuple of a variable and the
corresponding annotation for later reference. As developers can cre-
ate their own methods and classes, there is a need to handle method
and object calls more carefully. There are multiple resolving strategies
to find an appropriate annotation format for a node. In resolution or-
der:

1. Standard Ruby, use a pre-defined annotation as supplied with
Analist, based on the standard library of Ruby.

2. Variable lookup, copy the annotation from the symbol table if the
annotation is known already.

3. Project code, try to obtain a type based on the class and method
that is called and retrieve it using the resources object. This
method is resolved on its own and its returning type is used.

4. Database schema, try to obtain a type based on the schema that
is used by Rails.

Note that that support for variable assignments is available and
(nested) scopes are taken into account. Also object initialization and
method calls on objects are supported. Therefore Analist supports
both flow-sensitive and interprocedural analysis. Furthermore Analist

supports object-oriented design in the sense of Section 2.5.3. However,
it is not supporting path-sensitive analysis, neither is there support for
evaluation patterns.

3.2.2.2 Unknown types

In case a node cannot be resolved using the strategy above, it is an-
notated with a special unknown annotation type. This is used in the
checking pass to ignore that node when presenting any errors.

2 Auto loading within Ruby means loading files only when asked for it, often used for
keeping loading time small

3.2 program flow 33

3.2.2.3 Annotation format

Annotations are stored as a tuple, consisting of three parts. All three
parts contain signatures, a tuple of a class type and an indicator
whether they refer to an instance or a collection.

• receiver type, the signature of the receiving object. For example,
when looking at puts "lorem", the receiver will be nil, as puts

is called on no object. In case of User.first, User will be the
receiver, as first is called on it.

• argument types, the signature of the arguments. When multiple
argument types are valid, they can be given as a set containing
all possible valid alternatives. It is possible to give a special any
arguments type, when the argument types can vary much. This
makes it possible to deal with methods that support many types
of input.

• return type, the signature that is returned after the statement is
executed.

Note that both argument types and return type can depend on
the receiver. Therefore, it is possible to use the receiver type and give
different argument types and return type depending on the receiver.
This can be compared to the intersection type that is defined in DRuby,
see Section 2.4.1.1.

3.2.3 Checking

During the checking pass, all annotated nodes are recursively checked
if their annotations comply with the derivative of the nested chil-
dren’s annotations. Any mismatch, when not marked to be ignored,
is presented to the developer. An example of how this comparison is
done can be found in Figure 3.2.

3.2 program flow 34

’abc’.reverse(true)

return

String

b
y

R
S

1

args

∅

b
y

R
S

1

receiver

String

b
y

R
S

1

Expected annotation de-
rived from annotation
definition on reverse

'abc'.reverse(true)

return

String

b
y

d
e
f
R

args

Boolean

t
r
u
e

receiver

String

'
a
b
c
'

Actual annotation de-
rived from node’s chil-
dren 'abc' and true

6=

Figure 3.2: Expected versus actual annotations on 'abc'.reverse(true)

- RS1: Resolution strategy 1 as described in Section 3.2.2.1
- defR: the actual return type is only for symmetrical reasons
defined to be equal to the expected return type.

4
I M P L E M E N TAT I O N O F A N A L I S T

In this chapter it is explained how Analist was actually developed.
Section 4.1 starts with the choice of the programming language Anal-
ist is built in. Thereafter, when the language is chosen, Section 4.2
explains how every pass as described in Chapter 3 is implemented.

4.1 choosing a programming language

Implementing Analist starts with the choice for a programming lan-
guage. Two languages are compared to this end. Ruby, which is the
language that is analyzed, and OCaml a language that is commonly
used for static analyzes.

To make a decision based on hands-on experience, multiple exam-
ple programs were crafted to perform type checking. The bare min-
imum was put together to check for both type and argument errors.
The examples themselves are simple to quickly build a proof of con-
cept for. Nevertheless, they give a good feeling whether the tested
approach is sufficiently and extendable enough.

4.1.1 Proof of concept

1 100 + 'word' # TypeError: String can't be coerced into

Integer↪→

Listing 9: Type error example. A number cannot be concatenated with a string
without any proper conversion, thus this line of code results in a type
coercing error.

1 def method(arg1)

2 # ...

3 end

4

5 method(arg1, arg2) # ArgumentError: wrong number of

arguments (given 2, expected 1)↪→

Listing 10: Argument error example. A method invoked in Ruby has to have
as many arguments as its method definition tells, thus the method call
above results in a argument error.

35

4.1 choosing a programming language 36

4.1.2 Requirements

Beforehand, some requirements were put with regards to developing
the proof of concept. For parsing a language, an existing parser has to
be used. This research does not focus on parsing Ruby and because it
is a complex language, it would simply cost too much time to build
one. Next, it is easy for developers to run the type checker, moreover, it
should be easy for other developers to extend the type checker.

4.1.3 Ruby

Ruby was chosen as the possible language of choice as it is the lan-
guage we are building a static analyzer for and it has a large develop-
ment toolset, making development way more convenient. However, it
is also known to be a slow performing language in the past, while
some say this is no longer significant from Ruby 2.0 and onwards, es-
pecially when comparing it to for example Python or Node.js [2][8].

4.1.3.1 Parsers

For Ruby, multiple parsers exist. For example, Parser1, ruby_parser2,
Ruby’s built-in Ripper3 and others were developed. We choose Parser
as they announce themselves to be the best compatible with the Ruby
language, even over several Ruby versions. They claim that a lot of the
existing Ruby gems were processable by Parser, which is on its own a
good benchmark proving its parsing capacities. Moreover, it is spon-
sored, yet an open-source project and currently actively maintained.
It is tested for a 100% on grammars and it is used in popular gems4,
like a popular community-driven Ruby A plugin that gives feedback
about the code that is written, commonly inline and standalone (linter),
called Rubocop. Altogether, this makes it a reliable choice at this mo-
ment, but also for the future.

4.1.4 OCaml

OCaml is a typed and functional language. Both parsing Ruby and
type checking are typically tasks that do not require state and can
be performed in a functional environment. In contrast to Haskell, it
is not completely strictly functional, making it more suitable for real-
world applications compared to Haskell. It was chosen as possible
language as multiple similar code analysis projects were built using

1 https://github.com/whitequark/parser

2 https://github.com/seattlerb/ruby_parser

3 https://ruby-doc.org/stdlib-2.4.2/libdoc/ripper/rdoc/Ripper.html

4 All gems that depend on Parser can be found in https://rubygems.org/gems/

parser/reverse_dependencies

https://github.com/whitequark/parser
https://github.com/seattlerb/ruby_parser
https://ruby-doc.org/stdlib-2.4.2/libdoc/ripper/rdoc/Ripper.html
https://rubygems.org/gems/parser/reverse_dependencies
https://rubygems.org/gems/parser/reverse_dependencies

4.1 choosing a programming language 37

OCaml. For example, DRuby (see Section 2.4.1) and Flow5, a typed
Javascript dialect developed by Facebook, were both developed using
OCaml. OCaml is known to be a fast language, as its programs are
compiled and contain a very strong sense of type inferencing, result-
ing in more correct programs by design.

For OCaml no maintained Ruby parser projects exist. Within the
rubytt6 project some developers have tried to parse Ruby using
OCaml. Yet actually, it lets Ruby do the parsing job (by using the
built-in Ripper parser) and then transforms, also in Ruby, the parsed
Ruby into JSON. From there on, OCaml reads the JSON objects and
turns them into OCaml structures. A large test suite is available to
validate correct behavior on many Ruby structures. Using the rubytt

project as a start, it could be possible to perform a static analysis on
the examples above.

4.1.5 Comparison and evaluation

After building the proofs of concept for both Ruby and OCaml, we
favor Ruby over OCaml. This is mainly due to the fact that it is far
better documented, has better development tools and is more com-
monly used than OCaml is. This makes converting ideas into code
a lot more pleasant to do. For example, inspecting what is within
a self-constructed object is not supported by OCaml itself [10]. Al-
though some external development packages exist for this purpose,
it remains hard to inspect any value. Documentation is according
to Kevingray et al. [11] hard to read, on which we agree. This is
mainly because (simple) examples for standard libraries are absent,
and most of the time only type definitions are available.

In comparison to the Ruby development environment, there is also
a lack of version control. For any dependency used in OCaml devel-
opment, it is currently impossible to lock its version in a reliable way.
This was already a problem when trying to load rubytt as the latest
OCaml version available is already not compatible with all specific
packages rubytt uses. For Ruby the Bundler7 gem can be used to
lock every gem to a specific version which circumvents dependency
problems.

Also, it appeared difficult, even impossible, to encapsulate the Ruby
parser for OCaml from rubytt as a module, to make it not pollute the
global namespace. Also, from a more practical perspective, it would
be better for the future development of the static analyzer to write it
in a well-known language, close to the language that is analyzed.

Altogether we conclude that the development of a Ruby analyzer
is preferably done in Ruby.

5 https://flow.org/

6 https://github.com/chenyukang/rubytt, accessed on September 14th, 2017

7 https://bundler.io/, accessed on January 14th, 2018

https://flow.org/
https://github.com/chenyukang/rubytt
https://bundler.io/

4.2 implementation of analist in ruby 38

4.2 implementation of analist in ruby

In this section the actual implementation of the gem Analist, as dis-
cussed in Section 3 is explained. The code base for Analist is freely
available as open-source project8 licensed with MIT license. The ap-
plication is tested with RSpec, a test coverage of 92%9 is reached.

4.2.1 Code designing for Analist

The code is designed stateless to be as possible, effectively by trans-
forming the AST in each pass. The only exception to this design pat-
tern is the use of the symbol table to keep track of variables, which
is by design stateful. The stateless approach comes with multiple ad-
vantages: the AST is defined in a recursive way, for which it is very
natural to use a stateless approach. Next, it is possible to parallelize
execution in the future. By the modular nature of this design, adding
actions is quite easy. The latter was already experienced during devel-
opment since Analist started with only simple passes. The number
of passes expanded over time.

The tool that Analist is modeled after is Rubocop, a linter, that
checks for code style and other structures that are considered bad
practice and warns about them. It is widely used for guarding code
quality within gems and other Ruby projects.

In particular, the parts that handle configuration loading, perform
path globbing, and determine the final output format, are heavily
inspired by Rubocop’s (open) source code.

4.2.2 Preparation

This is the implementation of the preparation phase, as described in
Section 3.2.1.

4.2.2.1 Initialization

During the start of Analist’s type checking all configuration options
are read from .analist.yml:

• Exclude files - when given a globbing expression10, it will ig-
nore all matching files during Analist’s run. This comes use-
ful when only a few files give false positives, e. g., when they
highly interfere with Ruby’s standard library. All other Ruby

8 https://github.com/tcoenraad/analist

9 Analyzed using simplecov (https://github.com/colszowka/simplecov) on commit
8cfc5bb of Analist

10 https://en.wikipedia.org/wiki/Glob_(programming), accessed on 15th January,
2018

https://github.com/tcoenraad/analist
https://github.com/colszowka/simplecov
https://en.wikipedia.org/wiki/Glob_(programming)

4.2 implementation of analist in ruby 39

files within the analyzed folder and not excluded by this file
are added automatically.

• Define global variable return types - for global variables, it is
possible to set the return type of those manually. Ruby is some-
times inimitable, with respect to where variables actually origi-
nate from. Defining those variables manually helps Analist to
resolve their type, instead of giving up.

4.2.2.2 Exploring

At first Ruby code is parsed and normalized by putting it into an AST.
The parser gem is used for mapping Ruby (*.rb) source code files
into ASTs. An example of an AST can be found in Listing 4.1. Reasons
for picking parser over its competitors can be found in Section 4.1.3.1.

:send

:str

lorem ipsum

:+:send

:id:send

:first:const

:Usernil

Figure 4.1: AST example for User.first.id + 'lorem ipsum'

The parsing by Parser is flow-sensitive, meaning that the order of
statements is important and (simple) history is taken into account. A
statement will not always give the same interpretation. In the exam-
ples below, we focus on the (last) var statement.

Assign, then refer

1 def method

2 var = 35

3 var

4 end

When preceded by a local variable assignment, the representing ex-
pression looks like (:lvar, :var), being a lookup reference to a local
variable.

Refer only

1 def method

2 var

3 end

4.2 implementation of analist in ruby 40

When the expression does not contain a preceding local assignment,
the representing expression looks like (:send, nil, :var), which
represents a method call without arguments.

During this pass, all ASTs are marked with the filename they origi-
nate from. This makes it possible to have error messages with a source
location. At the same time, it inlines Embedded Ruby (ERB) template
files, where applicable. For example, when a Rails controller has an
edit action, the corresponding edit.html.erb template is filtered for
Ruby source and added. This ensures that Ruby source code that runs
as part of the template rendering process is also type checked within
the correct context.

4.2.2.3 Indexing

During the indexing pass all ASTs from the parsing pass are filtered. Any
class and method definition found is added to a look-up table. This
table consists of class definitions, including superclasses and method
definitions, with their namespace and corresponding indexed node.
External dependencies like gems are not taken into account in this
step. An example of a look-up table is found in Figure 4.3.

1 class User < ActiveRecord::Base

2 def full_name

3 "#{first_name} #{last_name}"

4 end

5 end

Figure 4.2: user.rb

1 classes: {

2 User: {

3 scope: [], super_class: 'ActiveRecord::Base'

4 }

5 },

6 methods: {

7 full_name: {

8 User: #<AST node for method full_name's body>

9 }

10 }

Figure 4.3: Look-up table (simplified), for user.rb

4.2 implementation of analist in ruby 41

4.2.3 Database schema

Independent from all passes, but before annotating in the next pass,
the Rails database schema is loaded. This makes it possible to resolve
object’s fields that come directly from the database. Within Rails, they
are never explicitly defined but are just assumed to exist when called.
These calls fail when this assumption is not met.

1 CREATE TABLE users (

2 id integer NOT NULL,

3 email character varying,

4 -- (...)

5);

Listing 11: SQL schema

1 users: {

2 id: 'int4'

3 }, # (...)

Listing 12: SQL schema (sim-
plified) in Ruby

Both look-up table and SQL schema are used in next passes when
resolving a method call. Mainly due to the existence of the classes
table, it is also possible taking inheritance into account.

4.2.4 Annotating

This is the implementation of the annotating phase, as described in
Section 3.2.2.

During the annotation pass, all ASTs from the exploring pass are recur-
sively transformed into annotated nodes, while preserving the struc-
ture. Annotations are formatted as described in Section 3.2.2.3.

All information gathered (e. g., header table, SQL schema) in pre-
vious passes is used to give an inferred type as concise as possible.
The strategy as discussed in Section 3.2.2.1 is followed to infer a type.
When resolving a method during the Project code strategy, Analist

assumes that the last statement of the method is its return type. Mak-
ing this behave completely in accordance to Ruby’s behavior, thus
path-sensitive, it would take a significant part of the time available. As
it is in conventional in Ruby to have only one return type, this was
not considered a good investment in time.

Section 4.3 tells how the methods were chosen for which pre-
defined annotations were programmed.

4.2 implementation of analist in ruby 42

AnnotatedNode

children

...AnnotatedNode

children

...

Annotation

return

Integer

args

∅

receiver

on: :instance

type: User

Node

Annotation

return

Integer

args

[Integer]

receiver

Integer

Node

Listing 13: Tree view (simplified) of the annotated node for User.first.id

+ "lorem ipsum". On root-level the annotation (see dashed block)
of the derived receiver type is integer, because the left-hand side
User.first.id resolves (recursively) into an integer return type. To-
gether with the + operator, it is (by definition) expected to have an a
integer as argument type and integer as returning type

4.2.4.1 Symbol table

During the annotation pass, local variables and their annotation are
stored in the symbol table. Every time a new scope is entered a new,
higher, level is used. The level is lowered after leaving a scope. This
makes it possible to follow variables through a program in the cor-
rect scope. This object is also used to store globally defined variables.
Directly after the initialization, those variables are stored at the root
level of the symbol table.

4.2.4.2 Additional checks

Like mentioned in Section 4.2.1, it is easy to add modules, e. g., to
perform additional checks. One check is implemented in Analist,
for the Draper11 gem.

The decorator pattern is a common programming pattern to sepa-
rate model logic from viewing logic. For example, a user’s address
(the viewing part) is the composition of street, city and postal code
(altogether, the model part). Analist supports this pattern by warn-
ing developers for missing decorators12. When a method call cannot
be resolved by the above-mentioned resolution strategy, it looks up
whether the method could be resolved when the receiving object is
decorated first. When it is, it is marked as a decorator hint and turned
into a decoration warning in the checking pass.

11 https://github.com/drapergem/draper

12 Analist assumes that a decorator for Klass is called KlassDecorator, like what is
used in Draper

https://github.com/drapergem/draper

4.3 pre-defining annotations 43

4.2.5 Checking

This is the implementation of the checking phase, as described in
Section 3.2.3.

After the annotation pass, all annotated nodes are validated in the
checking pass. These nodes are now recursively mapped into expected
and actual annotations. The expected annotation is the annotation as
found in the annotation pass, whereas the actual annotation is composed
of the receiver’s annotation, the annotations of the arguments and
the node’s return value. When annotations are marked unknown type
or arguments any type, respectively the complete annotation or the
arguments part are skipped when evaluating the annotation.

Expected and actual annotations are compared afterward. Because
all nodes are checked in a recursive manner, any abnormality in any
chain can be detected. All deviations are collected.

All collected errors are finally returned to the user in a (human)
readable format.

4.3 pre-defining annotations

To have a good pre-defined annotation table the most used Ruby
methods were collected and annotated manually. To know which
methods are most used, we determined the most popular Ruby
projects as GitHub13 lists them:

1. Ruby on Rails, a web-application framework, see https://

github.com/rails/rails

2. Discourse, open discussion platform, see https://github.com/

discourse/discourse

3. GitLab, an end-to-end software development platform, see
https://github.com/gitlabhq/gitlabhq

4. Devise, a flexible authentication solution for Rails, see https:

//github.com/plataformatec/devise

5. Diaspora, a privacy-aware, distributed, open source social net-
work, see https://github.com/diaspora/diaspora

Next, we took a copy of their open-source code projects and ana-
lyzed it using CodeQuery and Starscope 14 to extract all method calls.
The results were put into an SQL database using a shell script (see
Listing 14) to perform queries on the gathered data. As it turns out,
the most used methods in these projects are test development related

13 https://github.com/topics/ruby, accessed on December 4th, 2017

14 https://github.com/ruben2020/codequery/blob/master/doc/HOWTO-LINUX.md#

how-to-use-codequery-with-ruby-go-and-javascript-code

https://github.com/rails/rails
https://github.com/rails/rails
https://github.com/discourse/discourse
https://github.com/discourse/discourse
https://github.com/gitlabhq/gitlabhq
https://github.com/plataformatec/devise
https://github.com/plataformatec/devise
https://github.com/diaspora/diaspora
https://github.com/topics/ruby
https://github.com/ruben2020/codequery/blob/master/doc/HOWTO-LINUX.md#how-to-use-codequery-with-ruby-go-and-javascript-code
https://github.com/ruben2020/codequery/blob/master/doc/HOWTO-LINUX.md#how-to-use-codequery-with-ruby-go-and-javascript-code

4.3 pre-defining annotations 44

(see Figure 4.4). As these methods most likely will be run by a con-
tinuous integration service, we filter any spec or test folder and focus
on the methods left and annotate the methods that are left. Based on
the percentages on the top 10 method calls in Figure 4.5, both Ruby
and Rails methods need to be annotated to get a coverage of about
75% of all method calls.

The aggregated list was used to perform a manual annotation of the
top 100 of all method calls, as far as possible. Ruby-Doc.org is used as
a guideline for the annotations. During manually annotating this top
100 it became apparent that the method definitions sometimes lack
detail or are even incomplete. E. g., one time it occurred that only
within the description exceptional behavior was defined, which was
only discovered by running Analist on a mid-size Ruby application.
This makes it therefore impossible to perform auto annotating, based
on the documentation. That should be improved first.

RSpec

81.1%

project-specific

12.4%
Rails

6.5%

Figure 4.4: Top 10 most used Ruby method calls for the top 5 Ruby on Rails
projects, based on Listing A.1. Note that RSpec is a test framework
for Ruby

https://ruby-doc.org/

4.4 an atom plugin 45

Ruby

63.0%

project-specific

8.3%

Rails

28.7%

Figure 4.5: Top 10 most used Ruby method calls for the top 5 Ruby on Rails
projects, without testing-related methods, based on Listing A.2

4.4 an atom plugin

As one of the subquestions of this research is about offering substan-
tial benefit for developers (see Section 1.6), it became apparent that
building an editor plugin could be very useful for Analist. One of
the easiest editors to do this for is Atom15, which is an open-source
editor with extensibility in mind. Given that Atom is used by about
20% web developers [15] in 2017, a large audience that can be reached
at once.

The editor plugin made for Analist is modelled as linter. For
Atom, already a large linter framework exist, named linter16. To
make a linting plugin for Analist for Atom, the existing ruby -wc17

linter-ruby18 was adapted to use Analist instead.

4.4.1 Needed changes

To achieve Atom support, a few changes had to be made to Analist

to make it work. E. g., the output format was not machine-readable
to convert into an Atom linter compatible format. Also, there was
no support yet for streaming files through standard input, which is
necessary for files that are not saved yet. It is future work to perform
autoloading here, to make sure that references can be resolved, in the
sense of resolution strategy Project code in Section 3.2.2.1.

15 https://atom.io/

16 https://atom.io/packages/linter

17 ruby -wc gives errors related to syntax errors, etc.
18 https://atom.io/packages/linter-ruby

https://atom.io/
https://atom.io/packages/linter
https://atom.io/packages/linter-ruby

4.4 an atom plugin 46

4.4.2 Show case

Like Analist, linter-analist is open-source with MIT license.
Therefore freely available on https://github.com/tcoenraad/linter-analist

and published as listed Atom plugin19. An example of the linter plu-
gin in action, can be found in Figure 4.6.

Figure 4.6: linter-analist in action within Atom

19 https://atom.io/packages/linter-analist

https://github.com/tcoenraad/linter-analist
https://atom.io/packages/linter-analist

Part III

R E V I E W I N G A N A L I S T

In this part, we validate Analist to see how it performs in
both macro and micro benchmarks. At last, we look back
on the research questions as stated in the introduction and
give advice on future work.

5
VA L I D AT I O N

In this chapter, Analist is tested to see how it performs in both
a macro and micro benchmark. In the macro benchmark, we focus
on performance and compatibility of Analist with real-world code,
while the micro benchmark gives a good idea how developers expe-
rience using Analist. After all this, the requirements as set in Chap-
ter 1 are reviewed.

5.1 macro benchmark

In this benchmark, the performance and compatibility of Analist

with big real-world projects is checked. In particular, the number of
changes needed for the projects for running Analist, and its running
time are of interest. Also, a quick look is thrown upon the results to
evaluate the quality of the warnings given. Altogether, this answers
the main research question:

To what extent is it possible to create Analist, a static type analysis tool
for Ruby on type checking that conforms to the requirements as put forward
in Section 1.1.3?

To find big real-world projects, Analist is run on a few popular
Rails projects, as listed by GitHub1. That list is filtered on projects that
use Rails as web framework, to exclude projects that solely extend
Rails.

1. Discourse, open discussion platform, see https://github.com/

discourse/discourse

2. GitLab, an end-to-end software development platform, see
https://github.com/gitlabhq/gitlabhq

3. Diaspora, a privacy-aware, distributed, open source social net-
work, see https://github.com/diaspora/diaspora

4. Spree, an open source ecommerce solution, see https://github.

com/spree/spree

Next, the Moneybird main application is considered. At last, Anal-
ist itself is tested.

1 https://github.com/topics/rails, accessed on 1 February 2018

48

https://github.com/discourse/discourse
https://github.com/discourse/discourse
https://github.com/gitlabhq/gitlabhq
https://github.com/diaspora/diaspora
https://github.com/spree/spree
https://github.com/spree/spree
https://github.com/topics/rails

5.1 macro benchmark 49

5.1.1 Needed changes

A few changes had to be made to make Analist compatible with the
abovementioned projects.

• Relaxing parser warnings to make them not fatal. The gem Parser
is unable to handle ambiguous Ruby code2 and throws an error
when it finds such code. Analist used to re-raise this error, but
for this macro benchmark, it ignores it.

• Exclude Ruby template files manually in .analist.yml. These tem-
plate files do not have valid Ruby syntax before being rendered
but nevertheless had a Ruby extension. Therefore, Analist tried
to parse these files erroneous. For this macro benchmark, these
files are ignored.

• Some incompatibilities with file encoding arose, again without
appropriate error handling. For this macro benchmark, these
files were just excluded.

All of these problems can easily be fixed for Analist. Therefore,
these are put into future work.

5.1.2 Results

project (commit) Ruby LOC running time warnings (unique)

Discourse (ce507b7957) 160K 78s 4941 (146)

GitLab (dfe9d49534) 367K 130s 4704 (158)

Diaspora (3121de795) 40K 13s 666 (42)

Spree (d7bf8ee47) 58K 19s 800 (53)

Moneybird (9e1c701ed) 168K 65s 1771 (178)

Analist (3150476) 2K 1s 0 (0)

Table 5.1: Performance of Analist v0.1.21.alpha

For all warnings found in Table 5.1, a look at the unique3 warning
reveals that mostly false positives are shown. As the total number of
warning is much larger than those unique, fixing these warnings is
probably a quick gain. These warnings can vanish by defining more
concise annotations within Analist. For example, 1.4K warnings (col-
lected on all mentioned project above) are related to the where method
that accepts a Hash as well, whereas Analist rejects this at the moment.
They would be removed all

2 An ambiguous statement is for example Object.method *x, which can be
Object.method(*x) or Object.method() * x

3 Unique warnings have an equal type signature, but possibly different values

5.2 micro benchmark , the case study 50

Positively, most annotations that give errors now there are (almost)
no new features for Analist required, which indicates that the proof
of concept is mostly feature complete.

A second result that stands out, is that the running time is quite lin-
ear to Ruby LOCs. It seems that parallelizing Analist could improve
its performance, especially after the indexing pass is over.

5.1.3 Threats to validity

• Only a limited amount of projects is reviewed. Although these
are popular according to GitHub, we can only assume that this
represents a typical Rails project.

• Software is only reviewed after being published online. Anal-
ist focuses on adding value to the developer’s cycle already
during writing code, not after publishing it. McConnell [13] con-
firms that the amount of published errors is smaller than when
developed.

Moreover, Ruby code is typically tested with extensive test
suites, resulting in less warnings by design. This makes it hard
to compare the results above with earlier research for different
programming languages.

• It is very hard to quantify the effectiveness of Analist. Al-
though this is tried by tracking running time and counting
warnings, it still gives only a feeling of how good the tool
performs.

5.2 micro benchmark , the case study

This section describes a micro benchmark in which the developer’s
experience is qualified. Both installation and usage experience are
of interest. A small group of developers is asked to install and use
Analist for about a week. Therefore, this section directly answers
the subquestion:

To what extent do developers have benefit from using Analist?

5.2.1 Experiment

During the period of one week, 5 developers at Moneybird tested
Analist during their day to day work within Atom. All (5) use Atom
as their daily editor and mainly develop for Ruby. Almost half (2)
of them is back-end developer, the rest (3) develops for both back-
and front-end. Although the group is small, we still can get a good
feeling how well Analist is experienced. To get extra data out of this
experiment, all warning messages that Analist gets were put into

5.2 micro benchmark , the case study 51

log files and analyzed afterward. These logs were written file change
by default, but 3 participants noted that they run linters only on file
save. The participants were also asked to log warnings themselves,
to see to what extent they experience the same as what actually is
registered.

5.2.2 Installation

The developers rate the installation of Analist at a scale of 7 rather
positive: 5 (1), 6 (3) and 7 (1). They comment that a few manual adjust-
ments were needed to make it work, but in the end, the installation
boils down to 1 single command. Some issues appeared regarding
earlier installed versions of Analist, and last-minute changes to the
Atom plugin, but they were resolved within one day.

5.2.3 Results

After one week, the participants were asked how they experienced
the use of Analist. The raw results can be found in Table A.3 and
Table A.4.

5.2.3.1 Caveats

One developer experienced unpredictable behavior of Analist after
one day. It looks like an isolated problem due to his working environ-
ment, although this was not completely ruled out.

The other (4) participants did not use Analist for the complete
week, due to several reasons. One of the participants got sick for a
week, another started after a few days, after being ill. Others said
they were mainly assisting engineer for Moneybird’s support desk
and did not develop much in a way Analist could assist.

5.2.3.2 Experiences

The responses after using Analist for a week were promising as de-
velopers mentioned that the tool has potential and could be useful,
but the results at this moment were disappointing. Most developers
report that only false positives were shown. In the end, after the experi-
ment one found a true positive. In the future, most expect that Analist

could help because it validates code already before execution.
Judging by the log files, a picture emerges that is similar to what

already was found in the macro benchmark and was reported by the
participants of this experiment. During one week 256 warnings were
logged, of which 40 were unique. Most warnings shown were false
positives and, according to our belief, are simple to fix.

5.3 comparison with earlier research 52

5.2.3.3 Suggestions

The developers gave two suggestions. One was to give helpful warn-
ing messages with a reference to the Ruby documentation for correct
usage. The other suggestion was to give also warnings on nil values.

5.2.4 Threats to validity

• Only 5 developers used Analist, which is an amount that low,
that some opinions must be missed.

• Most developers did not use Analist for the complete week,
but only for a few days.

• Due to the short timeframe, there was no room for improve-
ments to the Analist to see how much of difference improve-
ments could have.

• It is hard to tell whether Analist should have come into action
during the run-time of this experiment or that the errors de-
velopers made were of a different kind, e. g., errors in business
logic.

5.3 comparison with earlier research

It is hard to compare the validation results for Analist with earlier
research, due to the fact that the programming language analyzed
differ, projects checked were written in a different language and the
projects used to compare with were less mature and also significantly
smaller in LOC. Some earlier research gives true positives, which is
something we did not see for Analist in most cases. In that way,
those programs performed better, as they found errors in published
projects.

What should be noted is that within the Ruby world, it is far more
common to have an extensive test suite, than in other languages. That
makes it less likely that Analist will give true positives after a project
release is published. Earlier research did not do anything about type
checking while developing.

With regards to running time, Analist is much faster (in LOC/s)
than Phantm, Pixy, and WeVerca, according to the results of Hauzar
and Kofroň [6] and DRuby, according to the results of Furr et al. [4].
RPython did not run any benchmark that tells how fast it is per LOC
and is therefore incomparable on this part.

5.4 reviewing requirements

In this section, the requirements for Analist are reviewed, one by
one. This partially answers the main research question:

5.4 reviewing requirements 53

To what extent is it possible to create Analist, a static type analysis tool
for Ruby on type checking that conforms to the requirements as put forward
in Section 1.1.3?

• It must do a static analysis focusing on type checking for Ruby,
in particular on a project that uses Rails as its framework, both
for their latest released versions.

– 3- with a slight remark. For compatibility reasons with
the majority of Ruby applications, Ruby 2.3 syntax is the
default (whereas 2.5 is in February 2018 current), but Rails
5.2 is supported out of the box. It is not hard to change the
used Ruby syntax version, as Parser supports all versions
that still are maintained by the Ruby developers.

• It must show only relevant errors, thus only when it is almost
certain that it is a programmer’s mistake and will result in run-
time errors.

– 7- unfortunately, as was found in both the macro and mi-
cro benchmark there are many warnings for false positives.
It is expected that getting this right is only a matter of
time. Section 5.1.2 confirms this, as about 1.4K warnings
can vanish with probably one change.

• It should be flow-sensitive, context-sensitive and interprocedu-
ral (see Section 2.5.3 for an explanation of these terms). It was
found in earlier research that this may improve results signifi-
cantly.

– both 7 and 3- Analist is both flow-sensitive and sup-
porting interprocedural structures. However, support for
context-sensitivity is missing. As this is highly interwoven
with path-sensitivity, both should be added to make this
requirement pass.

• It should take advantage of any supported gems that are available
within the project. For instance, Moneybird uses the mutations

gem, that enforces run-time validation for models and gives
an outline for what the data model should look like, includ-
ing semi-automatic coercion (implicit casting) from one value
type to another. The database scheme as defined in source code
tells how the object’s fields are defined. Rails models tell what
relations they have and can be used as an anchor for what kind
of object is to be expected when referring to it.

– 3- gems for mutations and decorators are supported. The
Rails database schema is used. What is not used yet is the
defined relations within Rails models.

• It should be adapted to work with Rails out-of-the-box, as is
common for gems that support Rails. This means that simply

5.4 reviewing requirements 54

adding the program and running it would be enough to give
decent results with sane, yet opinionated default settings.

– 3- as part of the design. Also during the micro bench-
mark, developers confirmed that starting to use Analist

is quickly done.

• It should be possible to use it within an automatic building pro-
cess.

– 3- similar to the previous requirement. This is tested
within one project of Moneybird during Analist’s devel-
opment. It was experience equal to what the developers
experienced during the micro benchmark.

• It should be possible to configure what kind of errors and warn-
ings are given, to make the tool as compatible to a developer’s
style as possible.

– 7- it is not possible to configure the exact type of errors
a developer gets on a fine-grained scale. Already config-
urable is the exclusion of complete files. This configuration
can simply be extended with options for the specific error
type (e. g., type or argument errors) and this can even be-
come more fine-grained by excluding specific methods.

• It should be fast enough to be able to run the program on a Ruby
file after each save, or a shorter time frame.

– 3- the linter for Analist clearly shows that the run-time
of the checker is fairly acceptable.

• It could preferably have a way of saving an initialized run-time
state. This is suggested by DRuby and implemented in RPython.
This might make it easier to deal with variables that dependent
on the run-time environment

– 7- this is only partially implemented. It is possible to de-
fine manually global variables, but in no sense support for
specific instances is available. Also, with the lack of path-
sensitive analysis, this feature does not bring much profit
at this moment. With renewed insight, we think that this is
not a great concern within Rails projects, in which it is com-
mon to have differences between environments as small as
possible.

6
C O N C L U S I O N

In this chapter the research question and its subquestions are looked
back on and answered shortly. Finally, in Section 6.2 future work is
presented.

6.1 research question

The main research question that is answered in this research is:
To what extent is it possible to create Analist, a static type analysis tool

for Ruby on type checking that conforms to the requirements as put forward
in Section 1.1.3?

The answered subquestions are:

• To what extent is there benefit from using information that is
being exposed by some gems

• To what extent do developers have benefit from using Analist?

After reviewing all requirements in Section 5.4, we conclude that
creating a static type for Ruby analysis tool is possible, but with se-
rious remarks. The tool Analist is created and works for every im-
plemented aspect correctly, according to the passing tests, with 92%1

code coverage2. Moreover, the pragmatic approach of type checking
seems to give performance benefits (see Section 5.1) and makes Anal-
ist much more predictable towards a developer than a type checker
that performs automatic type inferring.

All types are now derived from configuration files that are part of
gems, being either Rails for the database schema, mutations for types
for user input or draper for decorator (see Section 4.2.4.2 for a com-
prehensive explanation of decorators). Without support for the gems
mentioned above, a type checker could only guess by observation
what the type is, which is less reliable and precise.

However, when used in the work field as described in Section 5.2,
we get a view that is less positive. Many false positives with only one
true positive make that the added value at this moment is too low to
make use of Analist on a day-to-day basis. This is the result of the
trade-off between a fully automatic typing system which adapts to
any project-specific code or having an approach in which the types

1 The 8% missed coverage mostly concerns run-time initialization and some method
annotations, but this does not concern the annotation patterns themselves

2 This code coverage was measured using simplecov, see https://github.com/

colszowka/simplecov

55

https://github.com/colszowka/simplecov
https://github.com/colszowka/simplecov

6.2 future work 56

are determined by hand. The former is what is usually done in this
research area, but often with giving noisy, dubious feedback. In con-
trast, Analist follows the latter approach, in which the method’s
behavior is manually stored resulting in clear feedback, but with
the chance that wrong annotations are crafted, and project-specific
changes are missed.

Altogether, developers see the potential advantages of having a
type checker like Analist, but they note that at this moment the lack
of any useful feedback lowers the benefits of using one.

6.2 future work

In the future, there are different directions the development of Anal-
ist could head to. In order, what we think the most impactful changes
to least impactful changes are described.

6.2.1 Handle Parser exceptions correctly

As mentioned in Section 5.1.1, many errors that come into play when
adding Analist to a real-world project were due to missing exception
handling. This can easily be added.

6.2.2 Autoload files in Analist

As mentioned in Section 4.4.1, to have equal results when running
Analist in a full project and when running it on one single file
through the linter plugin, it is needed to perform autoloading. This
means that any project code references in that single file are loaded
as well.

6.2.3 Add more pre-defined annotations

The list of pre-defined annotations is not complete at this moment,
only the top 100 was picked, and annotate to best effort. We think
that this list can be extended within the framework as it is already
available.

6.2.4 Improve pre-defined annotations

The list of pre-defined annotations is not always as concise as possible
according to the Ruby docs. Some annotations are at this moment not
picky on their arguments, or result in an unknown return type. This
could be improved.

6.2 future work 57

6.2.5 Add more Rails and mutations support

At the moment, support for both Rails and mutations is mainly lim-
ited to basic types. By extending support, also relations and deeper
nested structures can be followed and used during annotating.

6.2.6 Adapt to project environment

Within Ruby, there is nothing that prevents a developer from redefin-
ing a method, extending an existing class, etc. However, Analist ex-
pects that only default behavior is respected. Analist could have a
mechanism to extend and alter the functionality of its annotations to
adapt its behavior within every project. An important remark is that
extending a class is harmless, but redefining a method is considered
bad practice.

6.2.7 Become path-sensitive

As mentioned in Section 2.1.3, path-sensitivity can improve the re-
sults. By better predicting the return type of a method, Analist can
become smarter. For example, when dealing with code that uses often
early return statements, predicting which code path is taken, makes
the checking thereafter more precise.

6.2.8 Have fine-grained exclusion

At this moment only complete Ruby files can be excluded, e. g., when
they result into false warnings. It would be better when this could be
done on a fine-grained level to let Analist analyze and use as much
code as possible.

6.2.9 Deal with business logic errors

Analist at present, will not protect the developer from programming
business logic errors. These errors cannot be prevented using any
type system. Usually, this is dealt with by having tests, which is very
common to the Ruby ecosystem. In other languages, there are some-
times possibilities to make a formal definition that can be validated,
e.g. with OpenJML3 for Java. These definitions could also be derived
from the Rails models as they also supply validations4. It is expected
that this requires a large overhaul in Analist’s design.

3 http://www.openjml.org/

4 http://guides.rubyonrails.org/active_record_validations.html

http://www.openjml.org/
http://guides.rubyonrails.org/active_record_validations.html

Part IV

A P P E N D I X

A
A P P E N D I X

1 #!/bin/bash

2 find . -iname "*.rb" > ./cscope.files

3 starscope --verbose -e cscope --exclude '*.js' --exclude

'**/test/**/*' --exclude 'test/**/*' --exclude

'**/*_test.rb' --exclude '**/spec/**/*' --exclude

'spec/**/*' --exclude '**/specs/**/*' --exclude

'specs/**/*' --exclude '**/*_spec.rb' --exclude

'**/features/**/*' --exclude 'features/**/*' --exclude

'**/*.feature'

↪→

↪→

↪→

↪→

↪→

↪→

4 # to analyze with specs, toggle comment with line above

5 # starscope -e cscope --exclude '*.js'

6 ctags --fields=+i -n -R -L ./cscope.files

7 cqmakedb -s ./myproject.db -c ./cscope.out -t ./tags -p

8 cqsearch -p 8 -s ./myproject.db -t '*' >

./ruby-method-calls.txt↪→

9 iconv -f utf-8 -t utf-8 ./ruby-method-calls.txt >

./ruby-method-calls↪→

10 psql analyze_ruby_method_calls -c "\copy

method_calls_no_specs(method_call, source_file,

source_statement) FROM './ruby-method-calls' CSV

DELIMITER E'\t' QUOTE E'\b';"

↪→

↪→

↪→

11 psql analyze_ruby_method_calls -c "UPDATE

method_calls_no_specs SET project='`basename "$PWD"`'

WHERE project IS NULL;"

↪→

↪→

12 # to analyze with specs, toggle comment with line above

13 # psql analyze_ruby_method_calls -c "\copy

method_calls_full(method_call, source_file,

source_statement) FROM './ruby-method-calls' CSV

DELIMITER E'\t' QUOTE E'\b';"

↪→

↪→

↪→

14 # psql analyze_ruby_method_calls -c "UPDATE

method_calls_full SET project='`basename "$PWD"`' WHERE

project IS NULL;"

↪→

↪→

Listing 14: Shell script for finding method calls within Rails projects using
CodeQuery

59

appendix 60

method call count origin

to 38009 RSpec

expect 36557 RSpec

it 25977 RSpec

let 15786 RSpec

project 14238 project-specific

eq 12687 RSpec

create 12134 Rails

context 11315 RSpec

describe 9513 RSpec

user 8604 project-specific

...

total 559780 Rails top 5 projects

Table A.1: Top 10 most used Ruby method calls for the top 5 Ruby on Rails
projects

method call count origin

new 5059 Ruby

params 3747 Rails

include 3357 Ruby

require 2483 Ruby

current_user 2129 project-specific

each 1835 Ruby

present 1796 Rails

id 1786 Rails

private 1728 Ruby

to_s 1623 Ruby

...

total 169313 Rails top 5 projects

Table A.2: Top 10 most used Ruby method calls for the top 5 Ruby on Rails
projects, without testing-related methods

appendix 61

[1] [2] [3] [4] [5] [6] [7] [8] [9]

Back-
end

analist
0.1.21.al-
pha

6 I just had to run
bundle update

to downgrade
RuboCop (I al-
ready needed a
higher version of
parser than for
Analist)

Yes 6 Clear! Yes! Yes!

Back-
end

analist
0.1.21.al-
pha

7 1 command Yes 6 cmd+, I found
a unclear com-
mand, otherwise
very easy

Yes! Yes!

Both analist
0.1.21.al-
pha

6 Yes 6 Yes! Yes!

Both analist
0.1.21.al-
pha

5 On its own, in-
stalling of Anal-
ist was not diffi-
cult, but the envi-
ronments made it
a bit troublesome

Yes 5 Yes! Yes!

Both analist
0.1.21.al-
pha

6 I got pry as miss-
ing dependency,
but that could
be due to my
own Ruby envi-
ronment.

Yes 7 I already had an
existing version
of the linter, but
in that time the
installation was
also easily done.

Yes! Yes!

Table A.3: Questionnaire on Analist’s installation (questions and answers
are translated)
[1]: Usually I develop for: (back-end, front-end or both), [2]: What out-
puts do you get if you run ‘analist -v‘?, [3]: Altogether, how difficult or
easy did you find the installation of Analist? (scale 1-7), [4]: Can you
explain this? [5]: Do you use Atom als daily editor?, [6]: Altogether,
how difficult or easy did you find the installation of the linter for Anal-
ist in Atom? (scale 1-7), [7]: Can you explain this?, [8]: Do you see a
warning of Analist?, [9]: Do you see a warning of the linter?

appendix 62

[1] [2] [3] [4] [5] [6] [7] [8] [9]

3 Wednesday, I
used it partially.

3 Unfortunately,
Analist

did not
find any
real er-
rors, but
it found
a false
positive :-(

1, 0, 1 It is nice that
Analist works
automatically
and as a result
considers ev-
erything. For
me, I’m very
attentive to linter
warnings.

6 If it can search
more extensively
in files and there-
fore know more
about the types
it can enhance
the flow during
day-to-day pro-
gramming. You
are immediately
alerted about
possible error,
even before auto-
matic tests get to
run.

1 After this an
inexplicable error
occurred and the
extension was
disabled

1 Limited re-
sults due to
the crash

4 I see a future, but
I did not have
a genuine experi-
ence.

1 As support engi-
neer I did not
program much.

1 Only seen
1 false posi-
tive

Discovered
1, was
a false
positive

Saw only 1 false
positive

Seen too little 4 Seen too little

3 Unfortunately,
due to illness I
missed a week
and could not
test ’good’ with
it

3 Probably
because of
little use
also found
less ’er-
rors’. And
the error
were then
often false
positives

real errors
0, false
postive
something
like 5

integration
within Atom is
handy.

I like in other
linters that you
can click an ’er-
ror’ and then are
sent to a website
with comprehen-
sive explanation,
and good/bad
examples.

5 if errors would
be discovered
during the devel-
opment process
that would save a
lot of time during
programming.

-

6 4 I still got a
lot of false
positives.

5, of which
4 false posi-
tives.

Immediate feed-
back in the edi-
tor.

Check whether
something is nil.

6 If the tool would
find less unfair
errors, than it
would be useful
in the future to
prevent errors
during develop-
ment.

Table A.4: Questionnaire on experiences with Analist after one week (ques-
tions and answers are translated)
[1]: How many days did you use Analist in the end?, [2]: Can you
explain this?, [3]: How helpful has Analist been to you? (scale 1-7),
[4]: Can you explain this?, [5]: How many errors did Analist find to
your knowledge? How many were real errors? How many were false pos-
itives?, [6]: What feature did you really like?, [7]: What feature would
you have like to have, but was now missing?, [8]: Do you think that
Analist could help you in the future during development?, [9]: Can
you explain this?, [10]: Is there something else you would like to tell?

B I B L I O G R A P H Y

[1] Davide Ancona, Massimo Ancona, Antonio Cuni, and Nicholas
D. Matsakis. “RPython: A Step Towards Reconciling Dynam-
ically and Statically Typed OO Languages.” In: Proceedings of
the 2007 Symposium on Dynamic Languages. DLS ’07. Montreal,
Quebec, Canada: ACM, 2007, pp. 53–64. isbn: 978-1-59593-868-
8. doi: 10.1145/1297081.1297091. url: http://doi.acm.org/
10.1145/1297081.1297091.

[2] Nate Berkopec. Is Ruby Too Slow For Web-Scale? Sept. 2017. url:
https://www.speedshop.co/2017/07/11/is-ruby-too-slow-

for-web-scale.html.

[3] Cuoq. What exactly does “context” mean in context-(in)sensitive
analysis? Nov. 2012. url: https://stackoverflow.com/questions/
13397180/what- exactly- does- context- mean- in- context-

insensitive-analysis.

[4] Michael Furr, Jong-hoon (David) An, Jeffrey S. Foster, and
Michael Hicks. “Static Type Inference for Ruby.” In: Proceed-
ings of the 2009 ACM Symposium on Applied Computing. SAC
’09. Honolulu, Hawaii: ACM, 2009, pp. 1859–1866. isbn: 978-
1-60558-166-8. doi: 10 . 1145 / 1529282 . 1529700. url: http :

//doi.acm.org/10.1145/1529282.1529700.

[5] David Hauzar and Jan Kofron. “Framework for Static Anal-
ysis of PHP Applications.” In: 29th European Conference on
Object-Oriented Programming (ECOOP 2015). Ed. by John Tang
Boyland. Vol. 37. Leibniz International Proceedings in Infor-
matics (LIPIcs). Dagstuhl, Germany: Schloss Dagstuhl–Leibniz-
Zentrum fuer Informatik, 2015, pp. 689–711. isbn: 978-3-939897-
86-6. doi: 10 . 4230 / LIPIcs . ECOOP . 2015 . 689. url: http :

//drops.dagstuhl.de/opus/volltexte/2015/5243.

[6] David Hauzar and Jan Kofroň. “WeVerca: Web Applications
Verification for PHP.” In: Software Engineering and Formal Meth-
ods. Ed. by Dimitra Giannakopoulou and Gwen Salaün. Cham:
Springer International Publishing, 2014, pp. 296–301. isbn: 978-
3-319-10431-7. doi: 10.1007/978-3-319-10431-7_24.

[7] IEEE. The Top Programming Languages 2017. July 2017. url:
http://spectrum.ieee.org/static/interactive-the-top-

programming-languages-2017 (visited on 07/19/2017).

[8] Daniel Iwaniuk. Why do people say that Ruby is slow? May 2016.
url: https://www.hawatel.com/blog/why-do-people-say-
that-ruby-is-slow/.

63

https://doi.org/10.1145/1297081.1297091
http://doi.acm.org/10.1145/1297081.1297091
http://doi.acm.org/10.1145/1297081.1297091
https://www.speedshop.co/2017/07/11/is-ruby-too-slow-for-web-scale.html
https://www.speedshop.co/2017/07/11/is-ruby-too-slow-for-web-scale.html
https://stackoverflow.com/questions/13397180/what-exactly-does-context-mean-in-context-insensitive-analysis
https://stackoverflow.com/questions/13397180/what-exactly-does-context-mean-in-context-insensitive-analysis
https://stackoverflow.com/questions/13397180/what-exactly-does-context-mean-in-context-insensitive-analysis
https://doi.org/10.1145/1529282.1529700
http://doi.acm.org/10.1145/1529282.1529700
http://doi.acm.org/10.1145/1529282.1529700
https://doi.org/10.4230/LIPIcs.ECOOP.2015.689
http://drops.dagstuhl.de/opus/volltexte/2015/5243
http://drops.dagstuhl.de/opus/volltexte/2015/5243
https://doi.org/10.1007/978-3-319-10431-7_24
http://spectrum.ieee.org/static/interactive-the-top-programming-languages-2017
http://spectrum.ieee.org/static/interactive-the-top-programming-languages-2017
https://www.hawatel.com/blog/why-do-people-say-that-ruby-is-slow/
https://www.hawatel.com/blog/why-do-people-say-that-ruby-is-slow/

bibliography 64

[9] Nenad Jovanovic, Christopher Kruegel, and Engin Kirda. “Pixy:
A Static Analysis Tool for Detecting Web Application Vulner-
abilities (Short Paper).” In: Proceedings of the 2006 IEEE Sympo-
sium on Security and Privacy. SP ’06. Washington, DC, USA: IEEE
Computer Society, 2006, pp. 258–263. isbn: 0-7695-2574-1. doi:
10.1109/SP.2006.29. url: https://doi.org/10.1109/SP.2006.
29.

[10] Rafe Kettler. Is there a way to print user-defined datatypes in ocaml?
Oct. 2011. url: https : / / stackoverflow . com / questions /

7518752/is-there-a-way-to-print-user-defined-datatypes-

in-ocaml.

[11] Kevingray et al. Making OCaml Accessible and Learnable for More
People. June 2017. url: https://discuss.ocaml.org/t/making-
ocaml-accessible-and-learnable-for-more-people/381.

[12] Etienne Kneuss, Philippe Suter, and Viktor Kuncak. “Runtime
Instrumentation for Precise Flow-Sensitive Type Analysis.” In:
Runtime Verification. Ed. by Howard Barringer, Ylies Falcone,
Bernd Finkbeiner, Klaus Havelund, Insup Lee, Gordon Pace,
Grigore Roşu, Oleg Sokolsky, and Nikolai Tillmann. Berlin, Hei-
delberg: Springer Berlin Heidelberg, 2010, pp. 300–314. isbn:
978-3-642-16612-9.

[13] Steve McConnell. Code Complete, Second Edition. Redmond, WA,
USA: Microsoft Press, 2004. isbn: 9780735619678.

[14] Stack Overflow. Developer Survey 2017. 2017. url: https : / /

insights . stackoverflow . com / survey / 2017 # technology -

languages-over-time (visited on 07/17/2017).

[15] Stack Overflow. Developer Survey 2017. 2017. url: https : / /

insights.stackoverflow.com/survey/2017#technology-most-

popular-developer-environments-by-occupation (visited on
07/17/2017).

[16] TIOBE. Ruby. Jan. 2018. url: https://www.tiobe.com/tiobe-
index/ruby/.

https://doi.org/10.1109/SP.2006.29
https://doi.org/10.1109/SP.2006.29
https://doi.org/10.1109/SP.2006.29
https://stackoverflow.com/questions/7518752/is-there-a-way-to-print-user-defined-datatypes-in-ocaml
https://stackoverflow.com/questions/7518752/is-there-a-way-to-print-user-defined-datatypes-in-ocaml
https://stackoverflow.com/questions/7518752/is-there-a-way-to-print-user-defined-datatypes-in-ocaml
https://discuss.ocaml.org/t/making-ocaml-accessible-and-learnable-for-more-people/381
https://discuss.ocaml.org/t/making-ocaml-accessible-and-learnable-for-more-people/381
https://insights.stackoverflow.com/survey/2017#technology-languages-over-time
https://insights.stackoverflow.com/survey/2017#technology-languages-over-time
https://insights.stackoverflow.com/survey/2017#technology-languages-over-time
https://insights.stackoverflow.com/survey/2017#technology-most-popular-developer-environments-by-occupation
https://insights.stackoverflow.com/survey/2017#technology-most-popular-developer-environments-by-occupation
https://insights.stackoverflow.com/survey/2017#technology-most-popular-developer-environments-by-occupation
https://www.tiobe.com/tiobe-index/ruby/
https://www.tiobe.com/tiobe-index/ruby/

	Dedication
	Abstract
	Acknowledgments
	Contents
	Acronyms and definitions
	 Introducing Analist
	1 Introduction
	1.1 Problem statement
	1.1.1 Background
	1.1.2 The problem
	1.1.3 Requirements

	1.2 Ruby, the programming language
	1.3 Ruby on Rails, the framework
	1.4 Moneybird
	1.5 Contribution
	1.6 Research question
	1.7 Structure

	2 Related work
	2.1 Feature definitions
	2.1.1 Flow-sensitivity
	2.1.2 Interprocedural support
	2.1.3 Path-sensitivity
	2.1.4 Supports object-oriented design
	2.1.5 Evaluation patterns support

	2.2 PHP
	2.2.1 Phantm
	2.2.2 Pixy
	2.2.3 WeVerca

	2.3 Python
	2.3.1 RPython

	2.4 Ruby
	2.4.1 DRuby

	2.5 Comparing past research
	2.5.1 Experimental benchmark results
	2.5.2 Limitations and points of improvement
	2.5.3 Feature comparison

	2.6 Lessons learnt

	 Implementing Analist
	3 Abstract overview of Analist
	3.1 Naming and logo
	3.2 Program flow
	3.2.1 Preparation
	3.2.2 Annotating
	3.2.3 Checking

	4 Implementation of Analist
	4.1 Choosing a programming language
	4.1.1 Proof of concept
	4.1.2 Requirements
	4.1.3 Ruby
	4.1.4 OCaml
	4.1.5 Comparison and evaluation

	4.2 Implementation of Analist in Ruby
	4.2.1 Code designing for Analist
	4.2.2 Preparation
	4.2.3 Database schema
	4.2.4 Annotating
	4.2.5 Checking

	4.3 Pre-defining annotations
	4.4 An Atom plugin
	4.4.1 Needed changes
	4.4.2 Show case

	 Reviewing Analist
	5 Validation
	5.1 Macro benchmark
	5.1.1 Needed changes
	5.1.2 Results
	5.1.3 Threats to validity

	5.2 Micro benchmark, the case study
	5.2.1 Experiment
	5.2.2 Installation
	5.2.3 Results
	5.2.4 Threats to validity

	5.3 Comparison with earlier research
	5.4 Reviewing requirements

	6 Conclusion
	6.1 Research question
	6.2 Future work
	6.2.1 Handle Parser exceptions correctly
	6.2.2 Autoload files in Analist
	6.2.3 Add more pre-defined annotations
	6.2.4 Improve pre-defined annotations
	6.2.5 Add more Rails and mutations support
	6.2.6 Adapt to project environment
	6.2.7 Become path-sensitive
	6.2.8 Have fine-grained exclusion
	6.2.9 Deal with business logic errors

	 Appendix
	A Appendix
	 Bibliography

