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ABSTRACT
When using automated tools for explicit-state model check-
ing, a hash table containing all reachable states is created.
This table typically contains billions of states; therefore
it requires much memory. However, in a state transition
usually only a few variables in a program state change.
This causes much redundancy in states. To exploit this
redundancy, program states are stored in compressed tree
structures. Previous research has shown that a program
state can potentially be stored using only 8 bytes on av-
erage, yet this optimum is not always reached in practice.
Ordering the elements in a state vector differently can re-
duce the amount of space a compressed tree needs.
Two heuristics to determine a better ordering of elements
are introduced and implemented in the LTSmin tool. The
heuristics are validated using real-world data. Our exper-
iments demonstrate that on average, the heuristics do not
reduce the size of compressed state vectors. Nonetheless,
the heuristics provide good compression for some models
and can therefore be used to restart the state space explo-
ration using a better variable ordering when the tool has
run out of memory.

Keywords
Model checking; program state vector; tree compression.

1. INTRODUCTION
Model checking allows for automatic verification of whether
a model of a system satisfies a given set of properties.
Two types of properties are distinguished: safety and live-
ness properties [1]. Although reachability analysis can
only check deadlocks and invariants, which are both safety
properties, it is ‘a key component in model checking algo-
rithms and other verification methods’ [6].

Our research focusses on explicit-state reachability analy-
sis using exhaustive exploration. When this method is em-
ployed, all possible states a model can be in are searched,
by iteratively exploring all successor states starting from
the initial state [3]. To prevent exploring states which
have already been verified, a hash table is maintained in
which all states are stored. A model is often specified as
a computer program, which may consist of multiple pro-
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cesses that can be executed concurrently. This parallelism
results in many possible states the program can be in. A
state contains the values of both local and global variables
at the current program counter for each process of the
program being checked, and the current program counters
themselves. For example, consider the program below,
which consists of two parallel processes:

Program P1 Program P2

1 a = 0
2 b1 = 0
3 while b1 < 100:
4 b1 = b1 + 1

1 a = 1
2 b2 = 0
3 while b2 < 100:
4 b2 = b2 + 1

Note that variable a is shared between the two programs,
while variables b1 and b2 are both local variables.

Now the state of the parallel processes P1 and P2 can be
described using the vector below:

〈b1, b2, a, pc1, pc2〉 (1)

In this example, b1 is a variable in P1, b2 is a variable in P2

and a is shared in both programs. The program counters
of P1 and P2 are stored in pc1 and pc2, respectively. An
example state is:

〈12, 15, 1, 4, 4〉 (2)

Using this state, there are several possibilities for the next
state. If the program were executed, it is possible that
a statement in P1 will be executed first, but it is also
possible a statement in P2 will be executed first. However,
in model checking, the program is not actually executed.
Instead its semantics is interpreted to explore all possible
interleavings or non-deterministic execution steps. This
way, all possible next states are found and explored. We
call the transition of a previous state to a new state a state
transition. An example of a new state based on the state
in Equation (2) is given below:

〈13, 15, 1, 3, 4〉 (3)

In this case, variable b1 has been increased by 1, and the
program counter of P1 is moved to line 3.

In a real-world situation, many program states have to
be stored. This can be in the order of millions or even
billions. Each vector itself usually takes only a few hun-
dreds bytes of space. Because so many program states are
stored, memory is often the bottleneck for program verifi-
cation. This problem is known as the state space explosion
problem, and has been called ”the main challenge in model
checking” [4].
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1 type Tree = TreeTable(Tree left, Tree right, Table table, int k) | Nil
2 proc Tree tree create(k)
3 if (k = 1)
4 return Nil
5 return TreeTable(tree create(d k

2
e), tree create(b k

2
c), table create(2), k)

Algorithm 1. Tree data structure. Taken from [7].

1 proc (int, bool) tree find or put(TreeTable(left,right,table,k), V )
2 assert (|V | = k)
3 (Rl, ) := tree find or put(left, lhalf(V ))
4 (Rr, ) := tree find or put(right, rhalf(V ))
5 return table find or put(table, 〈Rl, Rr〉)

7 proc (int, bool) tree find or put(Nil, V )
8 assert (|V | = 1)
9 return (V [0], )

Algorithm 2. Tree data structure algorithm for the tree find or put function. Taken from [7].
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Figure 1. Example of a state vector stored in a
compressed tree.

2. BACKGROUND
To reduce storage requirements for the program states,
the program states can be compressed. This is possible
because program states typically contain highly redundant
information; often, after a state transition, only a few vari-
ables are changed. For example, after the transition from
the vector in Equation 2 to the vector in Equation 3, only
the first and fourth element of the vector are modified. To
exploit the similarity between state vectors, the vectors
are stored in compressed tree structures [7, 2]. This tree
structure is defined in Algorithm 1. Every node in the
tree contains a hash table, and may contain left and right
children. The call to table_create(2) in the tree_create
method creates a hash table in which tuples can be stored.
The tree_create method creates a new tree by creating a
left and right subtree, and a hash table. In the hash table
of each node, tuples of two integers are stored. These inte-
gers may contain either the value of a variable, or pointers
to elements in the table of a child tree. If a node has a left
subtree, the left integer in each tuple will be a pointer to
an element in the table of the left subtree (and similarly
for a right subtree). Given a suitable implementation, it is
possible to use tree compression even for parallel (multi-
core) model checking [7]. This is for example possible with
the LTSmin tool.

Algorithm 2 shows how to put a new state vector V in the
tree. The method tree_find_or_put takes a compressed
tree and a vector V , and returns an integer representing
the index at which the vector is stored in the hash table of
the tree and a boolean indicating whether the vector was
contained by the tree already. First the left half of the
vector is looked up in the left subtree. It is inserted if it is
not yet contained in the left subtree. Then the right half
of the vector is looked up or inserted in the right subtree.
Finally, the two pointers to both halves of the vector in
the subtrees are stored in the table corresponding to the
current tree.

Consider the reachable state space of Program P , which
consists of the parallel processes P1 and P2 (that is, P =
P1||P2). For this simple example, a subset of the total
state space is given below:

{〈b1, b2, a, pc1, pc2〉
|b1, b2 ∈ 1 . . . 100 ∧ a ∈ {0, 1}
∧ pc1, pc2 ∈ {3, 4}}

(4)

This is not the complete state space; for clarity, the states
with 1 ≤ pc1 ≤ 2 or 1 ≤ pc2 ≤ 2 are omitted.

In Figure 1, an example of a compressed tree is shown.
The table on the left shows a subset of the set of vectors
representing the states of program P , as used in the ex-
ample above. The fourth vector in this table is the same
as the vector in Equation 2. The vectors contained in the
table are also stored in the tree on the right. In the tables
on the right, indices to child hash tables are indicated by
white boxes, whereas grey boxes are the leafs of the tree.
The grey boxes represent the values of the vector; when
read from left to right the original vector is reproduced.
Each entry in the root table (the table in the center, con-
taining only white boxes) represents a vector. By following
the indices to the child tables, the original vectors can be
recovered.

The main advantage of storing the vectors this way is that
if variables have the same values in different states, this
will automatically be shared. We can see this by cal-
culating the storage requirements for both the table on
the left and the tree on the right. We assume all boxes
have size b bits. In the table, 9 vectors are stored using
5 boxes. Together, this takes 9 × 5b = 45b. The tree
takes 9× 2b + 5× 2b + 4× 2b + 3× 2b = 42b. While this
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Figure 2. Tree structure corresponding to the
state vector of Equation 1.

may seem minimal, for larger state vectors the difference
is often much larger [7].

To gain some insight into how far state vectors can poten-
tially be compressed, consider the following example. If a
table d contains |d| tuples, and its sibling table e contains
|e| tuples, then their parent table may contain up to |d|×|e|
entries – all combinations of indices to table d and e. The
same principle can be applied to all parent and child tables
and their siblings. The root table contains one entry for
each vector, which costs 8 bytes. Because the root table
contains combinations of elements in its child tables, the
number of elements in the subtrees may be much smaller.
In the best case, the average number of bytes a state vec-
tor costs in a compressed tree will be a small constant
(approaching to 8 bytes), even for large vectors [7].

3. PROBLEM STATEMENT
Unfortunately, in practice it is highly unlikely that a par-
ent table contains all combinations of indices to its child
tables. This is because in most real-world programs, some
variables (e.g. loop counters) change often, whereas other
variables hardly ever change. In the example program
given in section 1, the variable a is changed only twice,
whereas the loop counters b1 and b2 will change 101 times
during the program’s execution. This difference results
in certain tables containing much more than the optimal
number of entries, and some tables containing fewer ele-
ments. This in turn results in a suboptimal compression
ratio.

To solve this problem, reordering the variables in the state
vector has been proposed [7, 2]. By storing variables that
often and independently change in different child tables,
the tree structure can be used more efficiently. For ex-
ample, by moving the often-changing variables b1 and b2
to different subtrees, the state vector in Equation (1) can
also be stored as:

〈a, pc1, b1, pc2, b2〉 (5)

The corresponding tree structure is shown in Figure 3.
Compare this to the organisation in Figure 2, which shows
the tree structure corresponding to the ordering of Equa-
tion 1.

To compare the storage requirements, the number of el-
ements the hash table in each tree contains is shown in
Table 1. The old ordering refers to the variable ordering
from Equation 1, and the new ordering refers to the vari-
able ordering from Equation 5. In this case, simply storing
variables in the state vectors using a different order saves
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Figure 3. Tree structure corresponding to the
state vector of Equation 5.

Table 1. Comparing the old and new ordering of
variables by the number of elements the hash ta-
bles of each tree contains.

Tree Old ordering New ordering
Tree 1 41616 41616
Tree 2 20403 410
Tree 3 10202 8
Tree 4 16 204

Total 72237 42238

over 41%.

The numbers of the tree refer to the tree numbering in
Figure 2 and Figure 3. For example, Tree 4 contained
16 elements using the old ordering, and 204 elements in
the new ordering. From Figure 2 and 3, we can decude
that this means there are 16 combinations of (pc1, pc2),
and 204 combinations of (pc2, b2). This is indeed the case:
the combinations of (pc1, pc2) are (1 · · · 4, 1 · · · 4), and the
combinations of (pc2, b2) are ({3, 4}, 0 · · · 100) ∪ ({1, 2},
0). The table also shows that Tree 1 contains 41616 ele-
ments in both the old and new ordering. This is because
the total number of vectors, and therefore the number of
elements in the root tree, remains the same after reorder-
ing.

The difference in memory requirements using a different
order in the state vector can make, brings us to the fol-
lowing research questions:

1. What heuristics are possible to find a better ordering
of variables?

2. Can these heuristics be validated and be shown to
reduce space usage for all real-world models?

4. RELATED WORK
For model checking, [3] provides a good overview of differ-
ent model checking techniques and their challenges. How-
ever, [3] does not discuss any state compression techniques.

A possible state vector compression method is the Col-
lapse method, as described by Holzmann [5]. The Col-
lapse method stores variables of specific processes in seper-
ate hash tables, so-called process tables. The elements in
the process tables are then referenced by a root hash table.

More recently, a better compression method called ‘tree
compression’ has been developed, and has been described
by Laarman et al. in [7]. Laarman et al. also mention the
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specific problem of changing the order of variables in the
context of model checking to achieve optimal compression
for state vectors, but solving that problem is left for future
research.

Blom et al. prove that on average, the size of a compressed
state vector will stay below a certain constant threshold,
regardless of the vector length [2]. Reordering the state
vector and changing the tree structure are mentioned as
possible ways for improving tree compression, and are ex-
plicitly mentioned as possibilities for future work.

This paper presents an approach to improve the results
of [7] and [2], by proposing heuristics to determine better
variable orderings and validating these heuristics.

5. RESEARCH METHOD
In order to automatically find an ordering that yields a
better compression ratio, we develop several heuristics.
We then analyse whether these heuristics fulfil the require-
ments outlined in Section 5.2.

5.1 Finding heuristics
Our task is to develop heuristics which can find an ordering
of the variables such as in Equation 5, such that state
vectors stored using the new ordering on average cost less
memory than when stored using ordering.

A trivial heuristic for finding a better variable ordering
is to simply count the number of insertions in each tree
table. After a fixed exploration depth it can then be cal-
culated how the variables could have been ordered in order
to achieve a more balanced tree. Finding the best variable
ordering is not trivial, given that the number of state vec-
tor permutations increases exponentially with the size of
the state vector. However, it is possible to obtain a bet-
ter variable ordering using some simple methods. It is
for example possible to put variables that change often in
different subtrees. Intuitively, this means these two vari-
ables are combined at a higher level, closer to the root
tree. The fact that the pairs of these two variables are
also only available close to the root tree means that the
combinations do not have to ‘propagate’ through several
other levels, saving many elements in the lower trees.

After a better variable ordering has been found, the tree
tables are emptied, and filled again using the newly discov-
ered ordering of variables. This trivial heuristic is devel-
oped first, and is be used as a starting point and reference
for other heuristics.

5.2 Validating heuristics
After developing heuristics, we validated them using real-
world data provided by the BEEM database. The BEEM
database is a database containing benchmarks for model
checking software [8]. The most important factor when
validating heuristics is space usage: does the heuristic ac-
tually decrease space usage for all models, or do specific
datasets exist that actually require more space than be-
fore?

The second validation criterium is execution time. A heuris-
tic is most useful if a trial run of only a few iterations pro-
vides enough information for the heuristic to find a better
ordering.

6. MATHEMATICAL DESCRIPTION
Given a set of vectors S and an order O such that |O| ≥
2, it is possible to calculate the total number of bytes
required to store the set of vectors in a tree. First, we
define S{O1,O2,···Om} as the set of all combinations of xO1 ,

xO2 , · · ·xOm . SO is the set S, projected on the elements
in the set O. More precisely, given the set S of all state
vectors 〈x1, · · ·xn〉, the subvector set SO1,O2,···Om (m ≤ n)
is given by the following definition:

SO1,O2,···Om = {〈xO1 , xO2 , · · ·xkm〉|〈x1, x2, · · ·xn〉 ∈ S}

The total number of bytes a tree takes up in memory can
now be determined by adding the size of the root tree,
and its subtrees. For any given order O and set of vectors
S, the total tree size nO(S) can be calculated using the
following equation:

nO(S) =


0 if |O| < 2

|S{o1,o2}| if O = (o1, o2)

nlhalf(O)(S) + |SO| if |O| > 3

+nrhalf(O)(S)

(6)

In this equation, lhalf(O) and rhalf(O) compute the left
and right half of the ordering vector O, respectively. The
function ‘lhalf’ also includes a middle element, if |O| is
odd. As an example, lhalf((1, 2, 3, 4, 5)) = (1, 2, 3) and
rhalf((1, 2, 3, 4, 5)) = (4, 5).

This is perhaps best explained using the example seen be-
fore. In the example shown in Figure 1, using the or-
der given in Equation 1, the root tree corresponds to the
set S{1,2,3,4,5} = S. The left subtree contains the ele-
ments in S{1,2,3}, whereas the right subtree corresponds
to S{4,5}. The leftmost tree contains the combinations of
b1 and b2, which are the first two elements in each state
vector. Therefore the leftmost tree contains S{1,2}. The
number of bytes this tree takes up in memory can be cal-
culated by adding the number of elements in the tree and
all subtrees, multiplied by the number of bytes a tuple of
two variables costs. In this example, this size n(1,2,3,4,5)(S)
amounts to:

n(1,2,3,4,5)(S) = 2(|S{1,2,3,4,5}|+ |S{1,2,3}|
+ |S{4,5}|+ |S{1,2}|)
= 2(9 + 5 + 3 + 4)

= 42 bytes

Now the problem of finding the ordering that results in an
optimal compression ratio is reducible to the problem of
finding the ordering vector O for which nO(S) is minimal.

Even when an optimal ordering has been found, it is pos-
sible that the tree does not yet have an optimal structure.
For example, we define the set of state vectors S as follows:

S = {〈i, 1, 1, 1〉|1 ≤ i ≤ 1000} (7)

If this set S is stored in a tree like in Figure 4a), this
will cost 2(1000 + 1000 + 1) = 4002 bytes. However, if
we change the structure of the tree to Figure 4b), this is
reduced to 2(1000 + 1 + 1) = 2004 bytes. This is not a
focus for our research, though.

6.1 Limitations
Although we have found a mathematical function to deter-
mine the memory requirements of a given set and ordering,
this function is of limited use so far. This is for three rea-
sons: firstly, calculating |Sk| is an expensive operation. In
practice, calculating |Sk| means all vectors in S need to
be projected on k and added to a new set.

Secondly, the number of orderings is too large to calculate
nO(S) for all orderings O. If this would be possible, we can
simply find which ordering O results in the smallest nO(S)
and use that ordering. However, for a vector of length l, l!
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Figure 4. Example of two different tree structures
for the vector 〈a, b, c, d〉. The numbers in gray rep-
resent the number of elements stored in the hash
tables at each level.

different orderings are possible. Even for relatively small
values of l, the number of different orderings is so large it
is infeasible to try them all.

Thirdly, in practice the set S is not known entirely when
the new ordering is determined. A limited trial run is
performed, which results in a partial vector set. This set
does not contain all vectors, but is a subset of the full set
S. Therefore, even if an optimal ordering O can be found
for this partial set, this ordering is not necessarily optimal
for the full set of vectors S.

A final limitation has to do with the specific implementa-
tion of the hash tables in LTSmin. The function nO does
not take maximal sharing within a hash table into account.
Maximal sharing allows a tuple which is used in the table
of multiple trees to be stored only once, in one table [7].
This reduces memory requirements, but this optimization
is not taken into account by the function above. The func-
tion simply counts duplicate tuples multiple times instead
of only one tuple.

7. HEURISTICS
In this section, first the implementation of heuristics in
general is described. After that, the implementation of
our two new heuristics is described in detail, as well as the
limitations for both heuristics.

7.1 Implementation
Each heuristic requires some data to be able to find a bet-
ter variable ordering. This data is produced by perform-
ing a limited trial exploration, in which the state space
exploration algorithm is run for a limited number of itera-
tions. This number of iterations as well as the exploration
strategy for the trial run can be varied. When the num-
ber of iterations is reached, the exploration algorithm is
stopped. Then a method is called that produces a better
ordering, given the information provided by the trial ex-
ploration. Then the state space exploration algorithm is
started again, now using the new ordering.

7.2 Counting distinct values
The first heuristic is described in Algorithm 3. The func-
tion get_variables returns a list of variables in the state
vector stored by the tree. For each variable, the number
of unique values in the tree are counted. In practice, this
could be determined by creating a hash table for each vari-
able before the exhaustive search is started. While storing
a state vector in the tree database, each variable is stored
in the corresponding hash table too. This allows for ef-
ficient retrieval of the number of distinct values of each
variable afterwards.

After a list of variables is obtained, the list is sorted by
the ‘count’-field the variables. This list is then passed as
an argument for ‘find_better_ordering’. This method
again returns a list of variables, but now in a potentially
better ordering. This list of variables is finally converted
to a list of numbers of variables, so the new order can be
used by the reordering algorithms.

Variables are ordered in ascending order by their frequency
of change. Next, consecutive variables are placed in differ-
ent subtrees, i.e. the first is placed in the left subtree, the
second in the right, and so on. This redistribution of vari-
ables over the tree is applied recursively for the subtrees.
This way, variables in the state vector that change often
will appear in different subtrees. The tree distance1 be-
tween two variables that change often (or change hardly)
is maximized.

It can be seen from Algorithm 1 that a tree is constructed
by splitting the state vector into two (approximately) equal
parts. This is why appending the optimized lists ensures
that each item in the first list will appear in the left sub-
tree, and each item in the second list will appear in the
right subtree.

Consider the program P , as defined in Section 1. First
the number of different values that are assigned for each
variable is determined. For the variables b1 and b2 this
number is 101 (0 · · · 100), a will be assigned 2 values (0,
1), and pc1 and pc2 will both be assigned 4 values (1 · · · 4).
Ordering them in ascending order yields:

a pc1 pc2 b1 b2 (8)

Now a is put leftmost in the left subtree, which is at po-
sition 0 in the state vector. Then pc1 is put leftmost in
the right subtree, which is at position 4. The variable pc2
is placed in the right subtree of the left subtree, and b1 is
put rightmost in the tree. Finally, b2 is put in the right
subtree of the left subtree of the left subtree. The new
ordering then becomes:

〈a, b2, pc2, pc1, b1〉 (9)

In Algorithm 3, is possible to eliminate the recursive call
to find_ordering. Algorithm 4 shows a non-recursive im-
plementation of this heuristic. It uses the index of each
variable in the sorted array to determine its position in
the state vector. It takes advantage of the binary repre-
sentation of each index in the sorted array of variables to
calculate each variable’s new path in the tree. From these
paths, the position in the state vector is derived.

The major drawback of this heuristic is that it fails to take
combinations of variables into account. Variables are only
ordered by how much distinct values each of them have.
This is only optimal if all variables are independent of each
other. In practice, this is hardly ever the case. Consider
for example the following set of state vectors:

S = {〈i, i, 1, 1〉|1 ≤ i ≤ 1000} (10)

Now the number of distinct values will be 1000 for both
the first and the second element in the vector. The first
variable is therefore put in another subtree than the sec-
ond variable. However, because both variables are equal in
each vector, |S{1,2}| is only 1000 (instead of 1000× 1000).
This means it would have cost less memory if both vari-
ables had been put in the same subtree.

1The minimum number of nodes passed when travelling
from the first to the second variable in the tree
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1 type Tree = TreeTable(Tree left, Tree right, Table table, int k) | Nil
2 type Variable = (int number, int count)

4 proc find better ordering(Tree tree)
5 return (
6 v.number for Variable v in
7 find variable ordering(
8 order by count(
9 get variables(tree) // get variables() returns a list of variables in the state vector stored by the tree

10 )
11 )
12 )

14 Variable[] find ordering(Variable[] variables)
15 if (|variables| ≤ 1) return variables // only one ordering possible

17 // Now we put the most changing variable in the left subtree,
18 // the variable changing second most in the right subtree,
19 // then the variable changing third most in the left subtree again,
20 // etc.
21 Variable[] left = (variables[i] for even i)
22 Variable[] right = (variables[i] for odd i)

24 return append(find ordering(left), find ordering(right))

Algorithm 3. First heuristic to find a better ordering of a state vector. See Section 7.2 for a detailed
description.

1 type Tree = TreeTable(Tree left, Tree right, Table table, int k) | Nil
2 type Variable = (int number, int count)

4 proc find better ordering(Tree tree)
5 Variable[] ordered variables
6 ordered variables = order by count(
7 get variables(tree)
8 )

10 depth = dlog2 |ordered variables| e

12 result = (0 · · ·n− 1)
13 for v ∈ (0 · · · |ordered variables| −1):
14 pos = 0 // The current position in the state vector
15 rightOffset = 2depth−1 // The offset which will be added to pos if the variable should be added to the right subtree
16 for d ∈ (0 · · · depth− 1):
17 // If bit set(v, d) = 0, then this variable should be added to the left subtree
18 // Otherwise, it should be added to the right subtree
19 leftOrRight = bit set(v, d)
20 if (leftOrRight = 0)
21 // Add variable to the left subtree
22 // Don’t need to adjust pos, just descend into the left subtree
23 else
24 // Add variable to the right subtree
25 pos = pos + rightOffset

26 rightOffset =
rightOffset

2
27 result[v] = ordered variables[pos].number

29 return result

31 // Checks if bit bit is set in number number.
32 // Bit 0 is the least significant bit.
33 // An example implementation of bit set is given below:
34 proc bit set(int number, int bit)
35 return (number & (1 << bit)) >> bit

Algorithm 4. Non-recursive variant of Algorithm 3
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7.3 Swapping paths
A way to improve an existing ordering is to walk the tree,
taking the largest subtree at each node. The element in
the state vector that is reached this way, is the element
that is ‘responsible’ for most combinations of all elements.
Now we walk the tree again, but now taking the smallest
subtree at each node. By swapping the variable found this
way with the variable that is found by each time taking
the largest subtree, a new tree can be created that likely
has a higher compression factor. By repeating this process
for all subtrees, an even better reordering can be found.
This algorithm is described in Algorithm 5.

The main idea for this heuristic is to use the information
about combinations of variables found by the the trial ex-
ploration. The cardinality of the following sets can be
deduced from the tree yielded by the trial exploration:

• S{1,2}, |S{3,4}|, |S{5,6}|, · · · . These sets are stored in
hash tables in the lowest level of the tree.

• S{1,2,3,4}, |S{5,6,7,8}|, · · · . These sets are stored in
hash tables in the second lowest level of the tree.

• S{1,2,3,4,5,6,7,8}, |S{9,10,11,12,13,14,15,16}|, · · · . These
sets are stored in hash tables in the third lowest level
of the tree.

•
...

• S, which is stored in the highest level of the tree, in
the root table.

The algorithm uses this information in the tree by finding
paths in which many large nodes2 are passed and paths in
which many small nodes are passed. The variables these
two paths point to are then swapped. Intuitively, this
‘spreads the load’ of the tree better. Nevertheless, due
to the fact that the information contained by the tree is
only partial, this does not necessarily result in the optimal
ordering.

8. EXPERIMENTAL RESULTS
In order to validate the heuristics presented in Section
7.2 and 7.3, a benchmark was performed. For a number
of models, the original memory requirements were mea-
sured, and compared to the memory requirements of the
new heuristics. The memory requirements were measured
in terms of average number of bytes per stored state vec-
tor. The results of this benchmark are shown in Figure 5.
The benchmark was executed for a total of 238 models in
the BEEM-database. For reasons of clarity, only a small
sample of these benchmarks are shown in Figure 5. The
average has been calculated over all 238 models, though.

In this figure, it is clear that the heuristics does not reduce
memory requirements much for most models. On average,
the heuristics make hardly any difference. Compared to
the original variable ordering, the first heuristic saves on
average 0.63 bytes per state, and the second heuristic saves
on average 0.06 bytes per state. Still, for some models a
significant improvement has been achieved. For example
the elevator.2 model required 19 bytes per state using
the original ordering of the state vector, but when using
the ordering found by the second heuristic this is reduced
by almost 40% to 11.8 bytes per state. This is much closer
to the theoretical limit of 8 bytes per state.

Figure 5. Benchmarking memory requirements of
both heuristics, compared to original memory re-
quirements.

Figure 6. Diagram showing the average size per
state vector over the ‘final size’ on the vertical axis,
and the maximum exploration depth during the
trial exploration on the horizontal axis.
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1 type Tree = TreeTable(Tree left, Tree right, Table table, int k) | Nil
2 proc find better ordering(Tree tree)
3 sorted combinations = sort combinations(tree, 0)
4 better ordering = (0 · · ·n− 1)

6 n = |sorted combinations|
7 for i ∈ (0 · · · bn

2
c − 1):

8 swap(
9 better ordering[sorted combinations[i]],

10 better ordering[sorted combinations[n − i + 1]]
11 )

13 return better ordering

15 proc sort combinations(TreeTable(Tree left, Tree right, Table table, int k), int leftmost)
16 if (left = Nil)
17 return leftmost

19 if (right = Nil)
20 return sort combinations(left, leftmost)

22 if (|left.table| < |right.table|)
23 return append(
24 sort combinations(left, leftmost),
25 sort combinations(right, leftmost + d k

2
e)

26 )
27 else
28 return append(
29 sort combinations(right, leftmost + d k

2
e),

30 sort combinations(left, leftmost)
31 )

Algorithm 5. Second heuristic to find a better ordering of a state vector. See Section 7.3 for a detailed
description.
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8.1 Trial exploration depth and strategy
For the benchmark above, first a complete trial exploration
was performed. After all vectors were added to the tree
database, the heuristics were executed and a new explo-
ration was started using the new ordering. In practice, this
undermines the goal of the heuristics to reduce memory
requirements without increasing execution time too much.
When a complete trial exploration is run first, memory for
at least the complete old tree database is needed, and the
execution time is doubled. Therefore, in a real-world situ-
ation it is better to perform a limited trial run. The trial
run is limited in exploration depth. This raises the ques-
tion what the minimal exploration depth is for which the
heuristics can generate a better ordering. The ordering
should not just be better for the limited trial run, but for
the full run. This means that ideally, the trial exploration
should yield a small set of vectors that is representative
for the full set of vectors. Essentially, this is a trade-off
between performance and memory usage. A more exten-
sive takes more time, but may result in a better ordering
of variables, which may result in less memory usage.

In LTSmin, multiple exploration strategies are implemented.
The major strategies are breadth-first search (which is the
default strategy) and depth-first search. Selecting a dif-
ferent exploration strategy will change the order in which
the state space is explored. Therefore, experiments were
performed for both the breadth-first search and the depth-
first search strategies.

See Figure 6 for the results of the experiments. We show
the size per state vector over the final size, as a function
of the maximum exploration depth during the trial explo-
ration. The ‘final size’ is the average size of a state vector
after a full trial run, without limits on the depth. All
data points are averaged over 193 models from the BEEM
database. In this figure, bfs refers to breadth-first search,
dfs refers to depth-first search. The heuristics ‘heuristic 1’
and ‘heuristic 2’ refer to the heuristics described in Section
7.2 and 7.3, respectively.

A good heuristic does not require many iterations in the
trial run to be able to find a better ordering. Our exper-
iments indicate that when the trial exploration depth is
set to 16, on average the final memory usage deviates less
than 0.5% from the memory usage when a full trial explo-
ration would have been performed. For a trial exploration
depth of 128, this is reduced to 0.1%.

9. CONCLUSION
Our first research question is what heuristics can be used
to find a better ordering of variables. We developed two
heuristics which try to find a better variable ordering,
given the results of a trial run.

2A large node is a node of which the hash table contains
many elements.

Our second research question is whether these heuristics
can be experimentally shown to reduce memory usage for
all real-world models. In general, our heuristics do not re-
duce memory requirements significantly. In fact, applying
our heuristics often results in increased memory usage. On
average, memory usage remains approximately the same
when using our heuristics.

However, for some models memory requirements were re-
duced significantly when using our heuristics. Our heuris-
tics can still be useful for these models. A possible way
to use the heuristics is to run the state space exploration
algorithm first without our heuristics, and when the ma-
chine - or machines - running the exploration algorithm
runs out of memory, offer an option to the user to use
our heuristic to find a better variable ordering, and try
again. The algorithm can then be started again, possibly
using less memory and completing the exploration process
successfully.
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