Multi-Level Debugging for Cython

Mark Florisson
University of Twente
P.O. Box 217, 7500AE Enschede
The Netherlands

markflorisson88@gmail.com

ABSTRACT

Programs may be written in multiple languages and may
be observed at multiple levels of abstraction. When de-
bugging it is often preferable to use a single debugger that
can provide a single debug session that allows the user to
observe the program at all the levels of abstraction that are
deemed important. This paper will cover such debuggers,
design patterns which may be useful when implementing
them and will then focus on a reification in the form of a
Python and Cython debugger written as an extension to
GDB, the GNU Debugger.

Keywords

Multi-Level Debugging, Mixed-Mode Debugging, Debug-
ging Cython Code, Debugging Python with GDB

1. INTRODUCTION

Debugging is an important part of software development
and much developer time is spent figuring out why code
behaves the way it does. A debugger is an advanced and
powerful tool used to debug programs. Features include
execution control, code execution, data inspection and
data modification. Multi-level abstraction debuggers can
provide one single coherent debug session for any program
that may need to be inspected and controlled at several
levels of abstraction. Such a debugger may be useful to
debug a multi-language program, i.e. one that consists of
components written in different languages that call each
other. In this case it is useful to use the debugger at the
source level. Another case where a multi-level debugger
may appear especially useful is when debugging virtual
machines or code running in a virtual machine. Usually
debuggers that work at that source level of the interpreted
code are used, but when the need arises to debug the in-
terpreter itself (or misbehaving extensions to such an in-
terpreter), it is useful to look at the different levels simul-
taneously.

As part of the paper a debugger for Python and Cython
was written as an extension to GDB. GDB is a debugger
that can already debug at the C/C++, assembly or ma-
chine code level. This is particularly useful as Cython com-
piles Cython code to C in terms of the Python API, which

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy oth-
erwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

14”” Twente Student Conference on IT January 21“, 2011, Enschede,
The Netherlands.

Copyright 2011, University of Twente, Faculty of Electrical Engineer-
ing, Mathematics and Computer Science.

means Cython code cannot be debugged with a Python
debugger as it does not allocate Python frames and exe-
cute bytecode therein. Using a C debugger to debug both
Python and Cython code is bothersome as symbols are
mangled and tons of lines of C are generated for a modest
amount of Cython lines.

The incentive for this research is to establish the usefulness
and implementation possibilities of multi-level debuggers,
with a focus on both interpreted and “compiled-down*
higher-level languages in GDB.

The rest of the paper will consist of an abstract expla-
nation of the Cython language and the debugger that was
created. This will be followed by a couple of research ques-
tions, a terminology section, related work and design pat-
terns, the requirements and implementation of the Cython
debugger, a conclusion, future work, acknowledgements
and finally references.

1.1 The Cython Debugger

Cython [2] is a compiler that compiles a C/Python hybrid
language to a CPython extension module, which can then
be used from Python code. This means Cython code can
deal with both C data structures and Python objects, and
can call and be called into by both C and Python code.
The Cython Debugger can debug Python, Cython and C
code simultaneously. For instance, if you have a Cython
extension used by Python code that makes calls into a C
library, the debugger will automatically follow control flow
while disregarding irrelevant abstractions, such as calls the
Python interpreter makes on behalf of the Python code, or
calls generated C code make on behalf of the Cython code.
What the user will see when stepping through the code
is Python source calling Cython source calling C source.
Furthermore, data from Python, Cython and C frames can
be inspected uniformly and Python code can be executed
in both Python and Cython frames.

1.2 Research Questions
The main research question is:

How can multi-level debuggers be implemented?

This question can be decomposed into a set of categorized
subquestions:

1.2.1 Related Work:

e Which multi-level abstraction debuggers are currently
available?

e How are these debuggers implemented and which de-
sign patterns do they use?

1.2.2 Cython debugger:

e How can we implement the Cython debugger as a
GDB extension written in Python?

e Can we use the aforementioned design patterns to
aid our implementation?

1.3 Methodology

The research questions for related work were answered
by reading research papers describing the implementation
and functionality of multi-level debuggers. To figure out
whether the design patterns could be used to write the
Cython Debugger, the design patterns and the possibili-
ties of GDB were studied. Finally, the Cython Debugger
was implemented.

2. TERMINOLOGY

This section aims to explain esoteric terminology that may
be used in the rest of the paper. Firstly, when we talk
about multi-language and multi-level debuggers we are
talking about the same thing. Multi-language does not
preclude a view on the machine level code nor does it pre-
clude manual abstraction-level specification. To explicitly
indicate that abstraction levels may be specified manually
instead of being determined programmatically by debug-
ger “views”, we shall use the term “multi-level” when talk-
ing about the Cython debugger.

Another piece of terminology is GDB’s Machine Inter-
face [7]. This component is part of the GNU Debugger and
allows external programs to programmatically control the
debugger. Tools such as the Eclipse CDT (C/C++ Devel-
opment Tooling) [10, 4], Apple Xcode [4] and EMACS [6]
make use of the Machine Interface to control GDB.

When we talk about an inferior we are talking about
the process that constitutes the debuggee.

With object file we mean a loadable file that contains
executable code, i.e. an executable or a shared library.

When we talk about Python, we may refer either to the
de facto CPython implementation or to Python the pro-
gramming language, depending on the context. There are
multiple implementations of the Python language besides
CPython, for instance Jython, IronPython and PyPy.

Lastly, A Python extension module is an extension
to the CPython implementation of the Python language,
usually written in C or C+4. An extension module needs
to implement a certain interface so Python can open the
resulting object file and expose functionality and data con-
tained therein. Cython generates the code for such mod-
ules, ergo these modules can only be used with CPython-
compatible Python implementations.

3. RELATED WORK

There are existing multi-language debuggers available, two
of which documented in a research paper. One is the afore-
mentioned RTEEM debugger [3], which can be used to de-
bug programs written for embedded systems in multiple
languages, the other paper covers a multi-language de-
bugger that can debug Smalltalk, XQuery and Javascript.
Both papers describe an extensible architecture that al-
lows a user to easily add support for new languages. This
is accomplished by providing a set of interfaces that can be
implemented, where one important interface constitutes

an abstract representation of a Virtual Machine. This way
a debugger can talk to any implementation of this Virtual
Machine as long as it implements the interface properly.
This is illustrated by Figure 1 on the next page.

“The Reflective VM pattern uses reflection and a specifi-
cation of an abstract VM, implemented as a collection of
Java interfaces, to ease the burden of incorporating a new
VM view into the RTEEM debugger. The Chain of Re-
sponsibility pattern gives users access to multi-level VMs
via multi-level loaders and command interpreters. The
Composite design pattern assists in multiprocessor and
multithreaded synchronization of execution” [3].

The abstract VM is an idealized Virtual Machine which
can be suspended, resumed and queried for it’s succes-
sor. It’s also queryable for threads (which can in turn also
be suspended and resumed). A subsequent chain of De-
bugTarget objects can be requested to set (conditional)
breakpoints, can be queried for variables along with their
values in the current scope, can be asked for the name of
the function or method, can be asked to evaluate an ex-
pression, can perform stepping and stepping over and so
on. Each DebugTarget implementation in the chain may
decide whether it wants to handle the event or request,
where the debug target of the lowest level of abstraction
is queried last. A DebugTarget may determine whether it
wants to handle a request based on the request itself, the
current state of execution of the inferior and possibly com-
mand line options passed to it. For instance, when setting
a breakpoint for Virtual Machines with dynamic symbol
information (i.e. symbols that can only be deduced from
the current state of execution) may need an additional
command line option to be told that the breakpoint ap-
plies to their level of abstraction, which means they should
handle the request. This architecture does not only allow
easy addition of new target languages, but it also allows
uniform command syntax when using a command line in-
terface to the debugger. This pattern of a delegation chain
is called the Chain of Responsibility and is illustrated by
Figure 2 on the next page.

Language specific implementations of higher-level languages
that could not be loaded by inference of debug information
contained in executable files can still be loaded manually
by manual commands.

The composite pattern is used to have multiple objects ap-
pear as a single object, which can be used to compose mul-
tiple chains of responsibility into one so it can be treated
uniformly across multiple threads or processes.

Another paper covering the architecture of a multilan-
guage debugger is [11]. It uses a different set of interfaces
but is in essence similar to architecture described by the
RTEEM paper.

4. THE CYTHON DEBUGGER

This section covers the Cython language, requirements for
the Cython debugger, the possibilities of GDB extensions
written in Python and the implementation of the Cython
debugger as such an extension.

4.1 Cython

As mentioned, Cython [2] is a hybrid language between
C and Python. Cython allows the declaration and defi-
nition of new C and Python data structures, and Cython
code can call and be called from both C and Python code
(to allow C access, things have to be declared with the
public and api keywords). The Cython compiler com-
piles Cython code to C code that uses the Python C API

debugger = B VM interface [P B target processor
/ \ OR

symbol table

lower-level VM

Figure 1. Shows the abstract design of the RTEEM debugger.

UML VM C/IC++VM o AssemblyVM MachineVM
Debugger Debugger Debugger Debugger

Y Y Y Y
UMLVM [— ™ C/C++VM [—® AssemblyVM —® MachineCodeVM

Figure 2. Shows the Chain of Responsibility pattern in the RTEEM debugger.

when needing to deal with anything related to Python.
This C code is then compiled to a Python extension mod-
ule using the same build flags that were used to build
Python and unless Python was statically built, this mod-
ule is then linked to libpython. This extension module can
be imported and used by Python code as a regular Python
module.

An obvious use of Cython is to provide Pythonic bindings
to C libraries or to speed up (computational) Python code.

4.2 Cython Debugger

4.2.1 Requirements

In short, the requirement for the Cython debugger is that
it should be possible to utilize common debugger function-
ality on the Python and Cython source code levels. More
specifically, it should support Python and Cython symbols
for breakpoints, it should have stepping and stepping over
functionality, (stack) data inspection, stack trace format-
ting and preferably code execution. This functionality is
chosen as it is likely the functionality that is most use-
ful and most used with any debugger. Lower-level (e.g.
C) functionality may still be used by invoking commands
provided by GDB, possibly in combination with functions
provided by the Cython debugger.

Convenient methods should be provided to simplify the
export of debug information for the user. This includes
support for distutils (a library for building Python ex-
tension modules, part of the Python Standard Library),
and an executable that starts the debugger and automat-
ically imports debugging information and debug function-
ality.

It would be preferable, though not required, to export de-
bugging functionality through GDB’s Machine interface
thus allowing various graphical frontends to make use of
this functionality.

The following table provides a list of commands:

Command Functionality

Explicitly import Cython debug
information

cy import

cy break Set a breakpoint for a Cython function
or method

cy step Step into

cy next Step over

cy run Run a Python/Cython program

cy cont Continue a Python/Cython program

cy finish Finish execution of the current stack
frame

cy up Move up a stack frame

cy down Move down a stack frame

cy print Print a Cython or Python variable in the
current context (local or global)

cy list List the Cython source code

cy globals List the globals in the current Cython
module

cy locals List the locals in the current Cython
stack frame

cy select Select a stack frame as numbered by

cy backtrace

cy backtrace Print a stack trace of all frames
considered relevant

Execute Python code in the most recent
Python or Cython stack frame relative to
the currently selected frame

cy exec

An important requirement is that these commands (apart
from cy exec) do not change state in the inferior or call
functions therein. This is important because the inferior
may not be in a safe state to call arbitrary functions from
the debugger (e.g. it may be in a non-reentrant function).
So the debugger may only read memory from the inferior
(other than injecting software breakpoints).

Commands for running and continuing (cy run and cy
cont) programs are not strictly necessary, but useful when
execution is halted in a Python or Cython frame so the
command can display the line of source code written by
the user instead of a line of interpreter code or generated
C code.

The stepping, up, down and backtrace commands should
work with the notion of a “relevant frame”. A frame is
considered relevant when it is:

e A Cython frame
e A Python frame

e A C frame belonging to a C function called from the
user’s Cython source code

The cy exec command should be able to execute Python
code in the most recent Python or Cython frame, rela-
tive to the currently selected frame. Seeing that Cython
frames are actually C frames, a dict of locals will have
to be constructed, mapping variable names to the Python
objects they are referencing. Changes do not have to be
merged back (which is in fact not even possible to do in
Python frames for predefined local variables [13]).

It should be easy to invoke the debugger and to automat-
ically import debug information if needed. The debugger
should set the Python interpreter that was used to build
the Cython extension modules.

4.2.2 GDB extensions written in Python

In GDB 7, the debugger has become scriptable with Python.
The Python interpreter is embedded in GDB and can be

invoked from the GDB command line. Python code can

introduce new commands (that can receive arguments),

override existing commands and call other commands (and

optionally catch their output). The API also allows you

to introduce new GDB parameters, which can be used to

configure the behavior of the debugger. There is also an

API to deal with the stack, symbol tables, GDB functions

and expressions, types, etcetera.

Functionality written in Python can be automatically loaded
by the debugger by installing such functionality in a gdb-
specific directory in the user’s system and giving the script
the name objfile-gdb.py. Another way to load scripts
automatically is to give an executable a section named
.debug_gdb_scripts that holds a list of script names to
load. Both these mechanisms are not entirely flexible as
they both require an executable to be loaded before com-
mands or parameters can be used, and objfile-gdb.py is
not an valid module name in Python which makes import-
ing them harder.

The GDB Python API allows you to use something called
a “pretty printer”. A pretty printer handler can be in-
stalled globally, program wide or it can be associated with
a specific object file. Whenever a GDB value is printed
or formatted GDB will look at all the pretty printer han-
dlers sequentially (from specific to general) until it finds a
handler that returns a pretty printer object. This object
is then requested to format the value. This allows unre-
lated pretty printers associated with different libraries to
be loaded and used automatically.

4.2.3 Implementation

Compiler modifications.

To support debugging functionality for Cython code, the
Cython compiler was modified to export information about
the Cython source code. It currently exports information
in the XML format and does not use an existing debug
format like STABS [15] or DWARF [5], because Cython
debug information is not stored in platform-specific bina-
ries. It does not store debug information in the executables
for several reasons:

e The user should be able to debug on multiple lev-
els, which means debug information of multiple lev-

els will have to be available, i.e., it should be possible
to “C-step” through Cython code

e Extension modules are loaded at import-time by the
Python interpreter, i.e. Python is not linked to the
modules. This means debug information (especially
for breakpoints) would not be available until after
the import

The Cython compiler exports the following information
about Cython code:

e Symbol information with regard to context
e A C to Cython line number mapping
e Function and method signature information

e Lists of “step-into functions”

Symbol information includes information about Cython
variables, functions and methods. Because Cython com-
piles down to C it uses name mangling to avoid name
clashes. This means the Cython name and the C name
become disassociated which means it becomes hard to set
(pending) breakpoints or inspect Cython variables.

The surjective C to Cython line number mapping is needed
to provide functionality such as stepping, stepping over,
breakpoints on specific lines and source code listing.

Signature information is included so backtraces could have
the option of listing the parameter names and their argu-
ments. However, to provide clean backtraces without a lot
of noise, parameter names and their argument values are
omitted.

A list of step-into functions is recorded so the debugger
knows which C functions are called by the user and which
are generated by the compiler. When stepping, the de-
bugger will not step into generated C function calls, but
only into C functions that the user called.

Distutils Integration.

Distutils is a library that can build Python extension mod-
ules. Cython already had support for distutils, which was
extended to include support for debug flags that tell the
Cython compiler to export debug information. When the
debug flag is active it will skip C compiler optimization
as this can optimize things as data initialization. For in-
stance, if the user initializes a Cython C variable of an
integer type, then the compiler may optimize this step
out which means the debugger won’t be able to step to
that line.

The Python Debugger.

There was already a project called EasierPythonDebug-
ging [12] which provided some functionality for debugging
Python code in GDB. The Cyton debugger has incorpo-
rated this project and patches were provided for addi-
tions made. The Easier Python debugging project pro-
vides support for pretty printing most built-in Python
types like integers, unicode- and byte-strings, dictionar-
ies, lists, etcetera. Types are correctly inferred by looking
at certain flags in the type of an upcast PyObject (any ob-
ject in Python is a PyObject), after which the object can
be safely downcast to a specific type and its data safely
read (at least, as safe as one can ever be). If any pointer

should point outside the address space the debugger pre-
vents reading from (or writing to) that location without
affecting the debuggee.

The Python debugger also has commands to list source
code, print backtraces and local variables and commands
to go up and down the Python stack. The Cython de-
bugger augments Python functionality with breakpoints,
stepping, stepping over, finishing of frames, running and
continuing, listing of globals and python code execution.

Implementation of the debugger.

Use of design patterns

The implementation of the debugger does not quite follow
the aforementioned design patterns. This is because the
debugger was not written from the ground up, instead it
uses GDB’s Python API. The API provides a command-
driven interface instead of an event-based interface. This
means functionality can only get invoked by the user typ-
ing in commands, so it is not possible to subscribe to
events such as breakpoints that are hit or memory ad-
dresses that change. To be able to use those design pat-
terns we would have to transfer control to our Python code
which invokes GDB commands and infers events based on
returned output. For instance, if the user sets a watch-
point for a certain memory address, the user would then
subsequently have to use the Cython debugger commands
to control execution, i.e., they would have to use cy cont
instead of cont. This command could then infer possible
events and delegate these into a chain of responsibility.
However, it would be much more ideal if commands could
get invoked by function calls which return information to
the caller, instead of parsing output of which a standard
and consistent format is not guaranteed.

So, instead the Cython debugger execution control com-
mands try to detect if some event occurred, which can
be anything from the delivery of a signal to the firing of
a watchpoint. This output will be displayed to the user
along with the source code depending on the current layer
of abstraction.

Command implementation

Every Cython command subclasses the CythonCommand
class, which has methods like is_relevant_frame (gdbframe)
and get_source_descriptor (gdbframe), which can be used
to determine whether a frame is considered relevant and
to get a descriptor of a file which can be used to read and
colorize lines of source code. There is also a Python dec-
orator that is used to dispatch a command based on the
abstraction level of the current frame. This is kind of like
a delegation chain without the flexibility and it requires
the Cython abstraction to know the abstraction level of
all frames. Fortunately this is easy to establish using the
is_relevant_frame (gdbframe) method, but a design flaw is
that this mechanism is not pluggable with new or other
abstraction layers other than Python, Cython and C.

The decorator that can do the dispatching was used in
for instance cy locals:

class CyLocals(CythonCommand):

@dispatch_on_frame (c_command=’info locals’,

python_command=’py-locals’)

def invoke(...):

Now, when the user invokes the cy locals command, the
invoke method will only be called if the currently selected
frame is a Cython frame. If the currently selected frame
was a C frame or Python frame the wrapper function re-
turned by the decorator returned by the dispatch_on_frame
function would have invoked the respective info locals
and py-locals commands instead.

The dispatch_on_frame function and its returned decora-
tor are written as one closure, where the dispatch_on_frame
function takes the c_command and python_command arguments
and returns the decorator. The decorator then gets the
decorated function (the invoke method) as the first and
only argument, and its return value is assigned as the
invoke method (methods are actually functions that get
bound on access through the descriptor protocol [9]). Here
we return a wrapper function that performs the dispatch-
ing:
def dispatch_on_frame (c_command,
python_command) :
def decorator (function):
def wrapper (self, #*args, **xkwargs):
check selected frame and
perform dispatch

return wrapper
return decorator

This kind of dispatching is only possible for a couple of
commands, specifically commands that depend on con-
text. Commands that are not dependent on context, e.g.
commands that set breakpoints, need some kind of indica-
tion of the intended abstraction level. The Cython debug-
ger handles breakpoints with command line arguments or
the use of different commands. For instance, there is the
break command for the C layer, the py-break command
for the Python layer and the cy break command for the
Cython layer. However, Python and C breakpoints may
also be set using the cy break command. This command
differentiates between layers by first looking at the Cython
layer (of which symbol information is statically available)
and, when no such symbol is found, defaulting to the C
layer. Python breakpoints may be set by providing a com-
mand line option, i.e.:

cy break -p python_function

Of course, this cannot work for C symbols that have the
same name as a Cython symbol.

Execution control
Execution control is provided through an interface that
mandates the exposure of:

e A boolean function that indicates whether a frame
is considered relevant

e The source file name associated with a relevant frame
e The current line in the source code

e A list of static breakpoint locations

A list of runtime (i.e. dynamic) breakpoint locations

The interface is a class that should be subclassed. The in-
terface will then automatically provide code execution con-
trol functionality, such as stepping, stepping over, finish-
ing frames, and running and continuing a program. This
means that whenever execution of the debugee halts, a
reason (if applicable) is printed, along with the current
line of source code. For the Cython debugger we use the
aforementioned concept of relevance.

Unlike the lists of breakpoint locations, the source file
name and line number should be self-explanatory. The
list of runtime breakpoints is optional, but the list of static
breakpoints is mandatory. These lists are needed to pro-
vide support for efficient source code stepping. First, step-
ping was implemented by a loop around GDB’s step com-
mand, which meant that for every C function call and
every C source line the debugger knows about, the infe-
rior is halted, transfer controller to the debugger where
Python code running in the debugger repeats this process
until a new Python or Cython line number is reached:

while true
execute C step
break if:
new line,
new relevant frame, or
return to older frame

This appeared to be a real big bottleneck and made step-
ping extremely slow. So instead, an approach with break-
points was chosen: before starting stepping, breakpoints
are set for all the C functions which are considered relevant
after which execution can be resumed as usual. Then the
“step-loop” can suddenly become a “step-over loop” that
has to check:

e Whether a breakpoint was hit

e Whether a new line of source code was reached

If any of these conditions are met the breakpoints are unset
and control is transferred back to the user.

The step-over loop is still needed, as it can be very hard
to set a breakpoint for the next line number in the user’s
source code. For instance for Cython the line number map-
ping is known in advance, but in Python source code is
compiled to bytecode which is then interpreted. It is hard
to tell the debugger to “run until the next line of Python
code is reached”. For instance, if a software watchpoint
was used with a GDB-defined function that determines
whether a new line of Python code was reached, then this
would be just as slow as the step-over loop as it would also
require the context switch for every new line of C code:

watch current frame is original frame and
line number has changed
continue

The fastest possible manner would be to set a conditional
breakpoint at a certain point in the code evaluation loop
which can check for a change of line number in the condi-
tion. This could save a lot of context switches for Python
code and really speed up Python code stepping. For in-
stance, the point of opcode dispatch is likely to be a good
place to set the breakpoint and have the condition evalu-
ate there.

This does, however, require intimate knowledge of the in-
terpreter and it is hard to reliably specify the breakpoint
location of opcode dispatch in the code evaluation func-
tion. It might be reliable to use goto labels used in the

Python evaluation function (PyEval_EvalFrameEx) [16]) as
the breakpoint location, but this functionality will be new
in the upcoming release of GDB (7.3). There are also no
probe points [8] [1] which can help in this regard. Maybe a
watchpoint could be used on the instruction pointer. For
now, however, the relatively slow step-over approach is
chosen as it is certainly reliable.

Code execution

The cy exec command allows Python code execution in
the most recent (relative to the selected stack frame) Python
or Cython stack frame. This is implemented by copying
the code from the debugger into a newly allocated buffer
in the debuggee. This buffer is passed to a function that
compiles it into a code object which is then evaluated in
a similar fashion as the Python command line interpreter
does. This means statements are executed as usual, but if
an expression evaluates to a non-None value, this value’s
representation will be printed.

When Python code is executed, the debugger ensures that
the original exception value is saved before the code ex-
ecution starts and restored after the code execution has
finished. If there was an uncaught exception in the code,
a traceback will be printed. This is implemented conve-
niently using context managers.

In Python, code can be executed in two dictionaries: a
dictionary of global variables and a dictionary of local
variables. When the nearest frame is a Python frame, its
globals and locals dictionaries are used to execute the code
in. When the nearest frame is a Cython frame, the debug-
ger will build a dictionary of all initialized local Python
variables on the C stack and will grab the globals dictio-
nary from the Cython module object and then execute the
Python code in these dictionaries.

Tests

Unit tests for the Cython debugger are executed in GDB
running as a subprocess and the results are collected in
the parent process. This seems to be a robust way to test
functionality as it allows the writer to write unit tests in a
normal manner, instead of telling the debugger to invoke
certain commands and then try to match the output. It
is not possible to use the GDB Python API from outside
GDB as the gdb module that provides all the functional-
ity is a built-in module only available from the embedded
interpreter and not as a standalone module.

S. FUTURE WORK

There are several things that can be implemented in fu-
ture work. One is the aforementioned approach to faster
stepping and stepping-over.

5.1 New Language API

It would be nice if new languages could be added more eas-
ily. For this a design similar to the design of the RTEEM
debugger could be used. Some preliminary discussion has
taken place in which it was established that a lot of func-
tionality could work by simply having the user implement
filters that, if accepting, return a wrapper around a GDB
frame that can tell about the source file name, the line
number, the name of the frame, the symbol table, etcetera.
A filter could return an “ignore, a “can’t handle” and a
“handle indicator (in which case it would be queried for
a frame wrapper object). The debugger would provide a
“raw” mode (i.e. normal behavior) and “cooked” mode,
which automatically chooses the highest layer of abstrac-

tion (as determined by the list of filters). With only this in-
formation symbol listing, stack inspection and navigation,
source code listing, execution control and backtrace for-
matting could be handled. More delicate issue are break-
points and code execution. For breakpoints the symbol
information might not be statically available and code ex-
ecution is entirely dependent on the target language or
interpreter.

5.2 Exposure of debugger functionality to the
Machine Interface

When the user implements the aforementioned interface
it would be preferable if the exposed information could be
automatically exported in the Machine Interface, which
would allow for instance Graphical frontends to utilize new
language support. In this case it might be preferable if
the frontends were oblivious to the newfound functional-
ity. Alternatively, the Machine Interface (with according
adjustments made to its specification) could expose the
“raw” and “cooked” information at the same time which
would allow the debugger to choose what it wants to dis-
play (or to display both abstraction views simultaneously).

6. CONCLUSION

Although it is possible to write a nice multi-language de-
bugger as an extension to GDB written in Python, it would
require a bit of work to make the debugger flexibly adapt-
able to new layers of abstraction. Currently, however, a lot
of code like reading source code from files and colorizing
it needs to be reimplemented in every extension because
there is as of yet no generic way to export the required
information to code that implements this kind of func-
tionality.

Related work such as the RTEEM Debugger uses three
well-known design patterns to provide an architecture that
can easily be extended to include support for new views on
any executable program. Although we could have written
such an interface, it did not really seem worth the trou-
ble and it would have remained questionable how many
projects would have been able to make use of it. Instead
this functionality should be part of the GDB Python API
written in a language that can interface with both Python
and C (Cython comes to mind) where it is both easiest to
implement and most useful as it would be fully standard-
ized.

However, it must be noted that this interface will not
greatly simplify supporting new virtual machines or lan-
guages, as the common functionality is not by any means
the biggest part of the code. The biggest part of the code
is dealing with language specific features: symbols, break-
points, it’s type system and associated pretty printers,
code execution and optionally a performing step and step-
over implementation.

The code was however still able to make certain things
generic, like reading source code from files and lexing it
(it uses the pygments library to do this, which implements
a wide variety of lexers and can produce output in a va-
riety of formats [14]). Also execution control commands
(cy run, cy continue, cy finish, cy step, cy next and
their Python equivalents) were implemented in a generic
way where the user could subclass the interface and export
information about the relevance of frames, the current line
number and source file name.

7. ACKNOWLEDGEMENTS

Special thanks goes to Tom Tromey for providing tech-
nical assistance with GDB and its Python API, and for
ideas, thoughts and discussion on support for a scripting
language API for GDB in Python. Thanks to Michael We-
ber and Hasan Sozer for their assistance on the paper and
thoughts on the design and functionality of the Cython
debugger.

8. REFERENCES

[1] Built-in probe point types (DWARF probes). 2010.
URL: http://docs . redhat . com/docs/en-US/
Red _Hat _Enterprise_Linux/5/html/SystemTap _
Language_Reference/ch04s02.html.

[2] Cython Homepage. Sept. 2010. URL: http://cython.
org/.

[3] David J. Murray Dale Parson and Yu Chen. “Object-
Oriented Design Patterns for Debugging Heteroge-
neous Languages and Virtual Machines”. In: (2010).
URL: http://www3 . interscience . wiley . com/
journal /109800987 /articletext ?DOI=10.1002%
2Fspe.634.

[4] Debugger Machine Interface Frontends. 2010. URL:
http://www.linuxfoundation.org/en/DMI.

[5] DWARF Debugging Format. 2010. URL: http://
wiki.dwarfstd.org/.

[6] EMACS’ GDB-MI. 2010. URL: http : / / www .
emacswiki.org/emacs/GDB-MI.

[7] GDB Machine Interface Official Documentation.
2010. URL: http://sourceware.org/gdb/current/
onlinedocs/gdb/GDB_002fMI.html.

[8] Jon Haslam. Statically Defined Tracing for User Ap-
plications. 2007. URL: http://wikis . sun. com/
display/DTrace/Statically+Defined+Tracing+
for+User+Applications.

[9] Raymond Hettinger. Descriptor HowTo Guide. 2010.
URL: http://docs.python.org/howto/descriptor.
html?highlight=descriptor20protocol.

[10] Interfacing with the CDT debugger, Part 2: Ac-
cessing gdb with the FEclipse CDT and MI. 2010.
URL: http://www. ibm . com / developerworks /
opensource/library/os - eclipse - cdt - debug2/
index.html.

[11] Michal Pise Jan Vrany. “Multilanguage Debugger
Architecture”. In: (2010). URL: http://users.
fit.cvut.cz/ vranyjl/data/papers/VranylOa-
unified-debugger.pdf.

[12] David Malcolm. FEasier Python Debugging. 2010.
URL: http://fedoraproject.org/wiki/Features/
EasierPythonDebugging.

[13] Python builtins documentation. 2010. URL: http:
//docs . python . org/library/functions . html #
locals.

[14] Python Syntaz Highlighter. 2010. URL: http://
pygments.org/.

[15] STABS Debugging Format. 2010. URL: http://
docs.freebsd.org/info/stabs/stabs.pdf.

[16] The Very High Level Layer. 2010. URL: http://
docs.python.org/c-api/veryhigh.html#PyEval_
EvalFrameEx.

APPENDIX
A. GRAPHICAL OVERVIEW

The following illustration provides a graphical overview of all the components involved when debugging a Cython program.

The user can interact with the debugger either through a Graphical frontend or through the command line. The Cython
debugger extension runs in the embedded Python interpreter in GDB, and its code is called whenever its commands are
invoked. The Cython debugger can import debug information that was stored by the Cython compiler when the user’s
Cython code was compiled. The debugger can then debug a Python interpreter that uses any combination of Python,

Cython and C code. The illustration is not entirely accurate, as Cython generates C code that is compiled by a C compiler
to a Python extension module.

Debugger Interface

GDB
(The GNU Cython Compiler Python VM
Debugger) (Debuggee)
GDB

Embedded Python

M Debug Python VM
Cython
Debugger
>
User =2 Debug Pythqn
(o) ? Extension
o Information
& Module
£
£
()
£
Q S)
O m .§,

GDB Frontend
(EMACS, Eclipse CDT, Cython Comiler
Apple Xcode)

