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Abstract

This thesis shows the results of an empirical experiment that
used three industrial case studies to investigate the effect of coverage
testing on software quality. Moreover, the experiment investigated
the relative costs of coverage testing.

Several test suites were created that achieved 5 different coverage
percentages for the metrics statement, branch and basis path cov-
erage. Test suites consisted mostly of test cases that were created
based on the test-driven development methodology.

We show that a positive correlation is likely to exist for each met-
ric between the coverage percentage that is achieved by a test suite
and the number of faults that are found. In most cases, increas-
ing the coverage percentage for any of the tested metrics results in
a higher number of faults found. We also show that despite using
coverage metrics, even with high coverage percentages, a significant
portion of faults is left undetected.

Moreover, we show that increasing the coverage percentage influ-
ences the costs by a linear increase. The costs were calculated using
the number of test cases, number of tested functions and the total
tested cyclomatic complexity.
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CHAPTER 1

Introduction

One of the techniques most used to improve software quality is testing [26]. The
purpose of testing is broad, and includes (1) showing that software (does not)
work(s), (2) finding software faults, (3) supporting debugging and (4) investi-
gating software quality. Due to the reliance of nowadays’ society on software,
testing has become a critical task. Software faults can have undesirable (or even
devastating) effects. Take for example the recall on the Toyota Prius and Lexus
HS 250h [28]. After several people complained about experiencing an inconsis-
tent brake feel, a software update had to reconfigure the response time of the
anti-lock brake system (ABS), and its sensitivity to tire slippage. Also, software
faults are a nightmare for the economy. The National Institute of Standards
and Technology assessed that they cost the U.S. industry 59.5 billion dollars
annually [27].

Several testing techniques were developed to reduce the number of software
faults, from formal methods [31] to ad-hoc techniques [7]. One of the concepts to
improve software quality is using one or more coverage metrics, e.g., statement
coverage.

A coverage metric specifies which parts of program code should be executed,
e.g., all statements. Each coverage metric has different criteria and therefore
has specific requirements that a test suite should meet. When a test suite meets
the requirements of a coverage metric, testers assume it is able to find more
faults than a random test suite that does not meet the requirements. Based
on this assumption, coverage metrics are used to quantify the quality of a test
suite, i.e., the higher the quality of a test suite, the greater the percentage of
faults it finds.

We conduct an experiment to investigate if this assumption is indeed valid.
The metrics investigated are statement, branch and basis path coverage. By
executing several test suites that meet the requirements of these metrics, and
by using coverage tooling, we reveal the quality of the test suites. As we know
to which metric each test suite belongs, we may conclude to what extent the
use of coverage metrics improve test suite quality.

11
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Organization of this chapter Section 1.1 provides the motivation for the
experiment. Then, Section 1.2 describes how we interpreter software quality. In
Section 1.3 we introduce the research questions. Followed by an introduction to
the approach of the experiment in Section 1.4. Then, the results are evaluated
in Section 1.5. Finally, we provide an overview of the structure of this thesis in
Section 1.6.

1.1 Motivation

As testing has become more and more important, testers should aim at testing
a system as thoroughly as possible. Currently, 50 percent of total project costs
are typically made in the test process [26]. Nonetheless, software faults still
remain.

However, investing even more in the test process is simply unrealistic and
not desirable by the industry. Therefore, the industry needs a method that
limits the testing costs but (at least) maintains the quality of the test process.

The concept of coverage testing is one the test methods that serves this
demand. Several coverage metrics were introduced during the last decades,
that all aim at satisfying this demand.

Each metric has specific requirements that must be met by a test suite. Once
these requirements are met, no additional test cases need to be created and/or
added to the test suite. This reduces the number of test cases needed, which is
very necessary, as the number of possible test cases are infinite, but the available
resources (both economically and in the sense of available hardware) for testing
are not.

As mentioned in the previous section, testers assume that meeting the re-
quirements of one or more metrics increase the quality of the test suite. When
this assumption is confirmed or contradicted, the industry knows whether cov-
erage testing should be used, and to what extent. The exact relation can tell us
which metric is the best to use in a particular situation, and to what extent it
is financially attractive to apply coverage testing.

We investigate this relation on the following metrics: (1) statement, (2)
branch and (3) basis path coverage. For each of these metrics, different coverage
percentages are tested. We analyze the number of faults found, resulting in an
efficiency prediction for each metric. This result can be used by the software
industry as a guide for selecting coverage criteria to meet their desired quality
requirements. Moreover, the result can be used by the industry to evaluate
to what extent coverage testing is a profitable technique. A more detailed
description of the experiment is provided in Chapter 5.

1.2 Software quality

Software quality is a concept that is interpreted in many different ways. Garvin
studied how quality is perceived in different domains [20], and concluded that
‘quality is a complex and multifaceted concept’ which can be described from
five different perspectives: transcendental, user, product, manufacturing, value-
based.
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The transcendental view sees quality as a product property that cannot be
formally defined. Philosophers also refer to this type of property as “logically
primitive”. Most people recognize this type of quality through experience, but
have trouble describing the quality properties. An example is the beauty of an
object, on which different people agree. However, when asked what makes the
object beautiful, people cannot really tell.

The quality in the user view can be defined as the degree to which a specific
product satisfies the desires of a specific consumer, i.e., fitness for purpose.
While this is easier to formally define than the transcendental view of quality, it
is obviously very subjective. Experience shows that different users have different
expectations of a product, e.g., one user may find software with a nice look and
feel to be of good quality, while another user may prefer software to be simple
and fast. As a direct consequence, the level of quality in the user view is not
universally agreed upon.

The product view assumes that measuring and controlling product proper-
ties will result in improved external product behavior. Placed in the context
of software quality, we can map these product properties to software quality
characteristics as defined by Steven McConnell [24] and ISO 9126 [22]. This
would imply that if software conforms to the ISO 9126 standard, its external
behavior improves and therefore its quality.

The manufacturing view of quality suggest ‘defect counts’ and ‘rework costs’
as characteristics to measure. Defect counts are the number of defects found
in a product during development and usage by the end-user. Rework costs are
costs that are made to repair software when it is already in production. The
manufacturing view states that making a product ‘right’ the first time is the
best option. Repairing faults in the development process is considered to cost
less than when the product is already in use, i.e., rework costs should be kept
to a minimum.

With the value-based view, quality is determined by the performance that
can be delivered at a certain cost. For example, a running shoe of good quality
for $500 would not be interesting for a customer to buy. No matter how good
the quality of the shoe is, $500 is too much to find customers that want to buy
the shoe. Therefore, the value-based view considers this to be poor quality. In
software engineering, the risk-based testing approach [9] can be used to improve
quality in the perspective of the value-based view. Risk-based testing computes
the risk of terminating the test process, by determining the probability that
faults occurs, and the impact these faults have on the system. This process
can be used to find a balance between the price of a product (as more testing
increases production costs) and its quality.

The transcendental, user and value-based views do not allow for an objec-
tive quality measurement, as they are mostly determined by the view of the
beholder. As we want to measure software quality in an objective manner, the
product and manufacturing view are possible perspectives from which we could
interpret software quality. However, as we will use coverage testing to find
faults, we interpret software quality from the manufacturing view perspective,
i.e., measuring the number of faults. The more faults a software program has,
the worse we consider its quality.
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1.3 Research questions

The following research questions aim at answering whether the assumption dis-
cussed in Section 1.1 is indeed valid. The term software quality should be
interpreted as discussed in Section 1.2.

RQ: How should coverage testing be used by the software industry
to improve software quality in a profitable way?

SQ1: What is the correlation between different coverage metrics and
software quality?

SQ2: At what coverage percentages will the effect of increasing coverage
diminish?

SQ3: How does an increase or decrease of the coverage percentage influence
the testing costs?

The first subquestion (SQ1) asks for an overview of the quality of test suites
that are created following the requirements of several coverage metrics. More-
over, the Pearson correlation coefficient is asked, so we can determine if a pos-
itive linear relation exists between metrics and software quality. The second
subquestion (SQ2) asks to investigate if the positive effect of coverage metrics
(assuming it exists) stops to increase above a certain coverage percentage. The
third subquestion (SQ3) asks for the test effort that was required to achieve
a certain coverage percentage. The main research question (RQ) asks how the
industry should use coverage testing, based on the required quality of a product,
and the available resources for the product. The goal is to provide the best so-
lution (satisfying at least the minimum quality requirements), using minimum
resources.

1.4 Approach

To provide answers for the research questions defined in Section 1.3, we used
industrial case studies (see Chapter 5). These case studies originate from the
software company Info Support, and are handpicked based on their mutual
diversity. For each case study, synthetic faults have been introduced by one or
more developers that actively worked on the case. By using their experience in
the project(s), the faults are as true-to-nature as possible.

To find these faults, we used test cases that were created by a group of
testers using the test-driven development methodology. Additional test cases
were created by a second tester, based on his experience. These additional test
cases were necessary to achieve (and test) higher percentages of coverage. The
entire set of test cases served as a ‘pool’, from which we created test suites.

To test several coverage percentages of each metric, we created multiple test
suites. Each test suite had a unique set of test cases, and achieved a certain
coverage percentage for the following metrics: statement, branch and basis path
coverage. After executing a test suite, we obtained the number of faults it found.



1.5. RESULTS 15

When combining the coverage percentages for each metric with the number of
faults found, we obtained a result on the efficiency of the metrics under the tested
percentages. For instance, a test suite that achieved 80 percent statement, 60
percent branch and 30 percent basis path coverage, was able to find 5 out of a
total of 10 faults.

For more details on our approach and specific requirements for the experiment
we refer to Chapter 5.

1.4.1 Info Support

The industrial case studies were provided by Info Support. Info Support is a
company developing custom-made administration software for different branches,
e.g., government, health care and financial. Most customers of Info Support are
indexed in the Top-500 companies in the Netherlands and Belgium, and include
UWV, CZ and Microsoft.

Using a software factory called Endeavour, Info Support aims at creating
solutions that innovate the way organizations do their business. Endeavour
offers different standardized assembly processes for software projects, reducing
the amount of resources needed and increasing the overall process quality.

More interesting, Endeavour prescribes how the test process should be ex-
ecuted, e.g., test suites should have at least 80 percent statement coverage.
Varying per project, different test methods are used, including test-driven de-
velopment.

1.5 Results

In this thesis we show:

� Formal definitions of the statement, branch and basis path coverage met-
rics, based on flow graphs (Chapter 3).

� A positive correlation is likely to exist between coverage metrics (more
specifically: statement, branch and basis path) and the number of faults
found (Chapter 6).

� Coverage testing is likely to find a rather low number of faults. Depending
on the coverage percentage it ranges from 0 to 55 percent (Chapter 6).

� The costs to increase the coverage percentage grow linearly. Even with
higher coverage percentages (Chapter 6).

As the number of faults found and the testing costs both seem to grow
linearly, there is no obvious minimum or maximum coverage percentage that can
be recommended. While increasing the coverage percentage is likely to increase
the number of faults that are found, still a lot of faults are left undetected.
Therefore, coverage testing should definitely not be used as the only test method
during a test process.
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1.6 Overview

This thesis consists of seven chapters. After the introduction in Chapter 1,
we provide preliminaries that are used throughout the thesis in Chapter 2.
Then, Chapter 3 provides an introduction to the concept of coverage testing and
explains several used metrics. Chapter 4 discusses related work that has been
done on the relation between coverage testing and software quality. Chapter 5
describes the approach that was used. Then, in Chapter 6 we evaluate the results
of the experiment. Finally, Chapter 7 provides the conclusion and introduces
directions for future work.



CHAPTER 2

Preliminaries

This chapter discusses preliminaries that the user should be familiar with to fully
understand the methods and techniques used in this thesis. We first provide an
introduction to software testing in general, followed by discussing several test
methods. Finally, we introduce flow graphs.

Organization of this chapter Section 2.1 gives a brief introduction to soft-
ware testing. Then, Section 2.2 discusses several testing methods like black-box
and white-box testing. Finally, Section 2.3 provides a description and formal
definition of flow graphs, which is used in this thesis to describe several coverage
metrics.

2.1 Software testing

As discussed in Chapter 1, one of the purposes of testing is finding faults in a
software system. By providing the system under test with inputs and observing
outputs, the tester can assess whether the system conforms to its specification.
Providing input and observing output is done by executing test cases. A test
case is a single test that is executed on a system under test. A set of test cases
is called a test suite.

The life cycle of every test process roughly follows the same four stages: (1)
formalizing the requirements, (2) deriving test cases based on the specification,
(3) executing test cases, and (4) interpreting, evaluating and documenting test
results.

As the system under test is always compared to its specification, the quality
of the test process partially depends on the quality of the provided specification.
Still, testing can only show the presence of errors, not their absence [14]. We can
test a system very thoroughly, but still faults may remain. However, thoroughly
testing a system increases our confidence in the system, i.e., we expect less faults
to remain.

17
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2.2 Test methods

This section introduces basic test terminology. Section 2.2.1 discusses black-box
and white-box testing. With black-box testing, we only test to assess software
functionality, i.e., functional testing. White-box testing is also used to assess
software functionality, but tests a system more thoroughly (in the context of
unit testing) than black-box testing, by also assessing the system’s internals.
This enhances the ability of the tester to find faults.

Finally, in Section 2.2.2 we discuss an interesting method called mutation
testing. It is used to assess whether a test suite is correct. This is necessary, as
tests can also contain faults.

Note that each section discusses a different method. However, this does not
imply that a test process can be categorized in only one category (the categories
are orthogonal). For example: a test process may execute functional tests, but
use a model to do so. Such a process would be a combination of white-box
testing and model-based testing.

2.2.1 Black-box versus white-box

Black-box testing is a test method that only deals with a system’s external be-
havior. There are no assumptions needed whatsoever about the internal struc-
ture of the system under test. Correct behavior is observed by executing test
cases, that are derived from the specification. Several techniques exist that help
the tester to create an efficient test suite, including equivalence partitioning and
boundary-value analysis.

While black-box testing is limited to dealing with a system’s external behav-
ior, white-box testing focuses specifically on the internal structure. By knowing
the internal structure, we can design test cases that intentionally reach spe-
cific parts of the code. This allows us to test a system more thoroughly. Like
black-box testing, the tests are based on the system’s specification.

Gray-box testing Sometimes a combination of black-box and white-box test-
ing is used: gray-box testing. This may happen if the tester is aware of the
internals of a system to some extent, and uses this information to create more
efficient test cases. However, the tester will not specifically assess code parts,
e.g., branches or conditions, but remains to rely on the combination of inputs
and expected outputs.

2.2.2 Mutation testing

Unlike the earlier introduced testing methods, mutation testing [11], also called
mutation analysis, is used to test the quality of a test suite. This is very nec-
essary, as testers can obviously make faults in constructing their tests, just like
programmers do in writing code. Mutation testing is performed by testing mu-
tants. A mutant is a modified version of the original program, that contains
one or more added faults. The aim is to create multiple mutants and keep the
number of faults per mutant restricted to a few. Now that a fault is injected
in the program, we can validate whether our test suite finds that fault. If it is
found, we say that the mutant is killed.
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2.3 Flow graphs

A flow graph is a formal model used to represent the possible control flows of a
process, and consists of different types of nodes and directed edges. Although
Allen [8] provides a formal definition of flow graphs, we create our own defini-
tion, as Allen’s definition does not allow the assignment of process descriptions
and boolean expressions. Moreover, we subdivide nodes in two specific nodes:
process nodes and decision nodes. This allows for a better formalization of the
various coverage metrics.

In the following definition, we assume a universe of boolean expressions
Bool and a universe of process descriptions Proc (represented by pseudo-code
statements). We assume that flow graphs have one begin node and one end
node.

Definition 2.3.1. A flow graph is a tuple G = 〈P,D,LP , LD, EP , ED〉, where

� P is a finite set of process nodes;

� D is a finite set of decision nodes;

� LP : P → Proc is an assignment of process descriptions to process nodes;

� LD : D → Bool is an assignment of boolean expressions to decision nodes;

� EP : (P ∪ {begin})→ (P ∪D ∪ {end}) is a function that connects process
nodes to their successors;

� ED : D → (P ∪D ∪ {end})2 is a function that connects decision nodes to
their successors.

Flow graphs always start in the begin node and terminate at the end node.
Between these nodes, a combination of zero or more process and/or decision
nodes exists, which are connected by edges. These edges represent the differ-
ent flows of control that can be traversed. Process nodes always have one or
more incoming edges and one outgoing edge. Decision nodes have one or more
incoming edges and two outgoing edges. If the decision predicate evaluates to
true, the first outgoing edge is traversed. Otherwise, the second outgoing edge
is traversed. More formally, if ED(d) = (d1, d2) and LD(d) evaluates to true,
control flows to d1, otherwise it flows to d2. The graphical notation that is used
in this thesis is listed in Table 2.1.

Having formalized the notation for flow graphs, we can derive a flow graph
from program code as follows: (1) program statements are represented as process
nodes, (2) program decisions (e.g., if and while statements) are represented as
decision nodes, (3) different control flows and execution orders are represented
by arrows. Note that the derivation is language dependent, and therefore may
vary per language. More information on deriving flow graphs from program
code can be found in [16].

Example 2.3.2. Consider the flow graph depicted in Figure 2.1. The flow
graph starts with the rounded begin node and has one edge to traverse to the
decision node. If the decision is evaluated to true, the task is executed and
the program terminates, otherwise the program terminates immediately. This
is captured in our definition as follows:
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Type Represented by
Begin/End node Circle
Process Rounded rectangle
Condition/Decision Diamond
Path Line (direction by arrowhead).

Table 2.1: Flow graph notation

� P = {p1};

� D = {d1};

� LP = {p1 7→ Task};

� LD = {d1 7→ Execute task?};

� EP = {begin 7→ d1, p1 7→ end)};

� ED = {d1 7→ (p1, end)}.

The execution of a program corresponds to a path through its flow graph,
that formally consists of a sequence of nodes.

Definition 2.3.3. Let G = 〈P,D,LP , LD, EP , ED〉 be a flow graph. A path
is a sequence π = 〈n1, n2,. . . , nk〉 such that ni ∈ (P ∪D) for every 1 ≤ i ≤ k
and EP (ni) = ni+1, otherwise there exists some m such that either ED(ni) =
(ni+1,m) or ED(ni) = (m,ni+1). A path always starts at the begin node, and
terminates at the end node, i.e., n1 = begin, nk = end.

We write n ∈ π if there exists an 1 ≤ i ≤ k such that ni = n.

begin

Execute task? Task

end

d1 : p1 :

True

False

Figure 2.1: Flow graph



CHAPTER 3

Coverage Testing

This chapter explains the coverage metrics that are used in our experiment:
statement, branch and basis path coverage. Each metric is formally defined in
terms of flow graphs. Moreover, we provide a textual explanation, followed by
an example.

For each metric, we explain how the coverage percentage can be calculated.
Moreover, to improve understandability, we provide an example calculation for
each metric individually.

Organization of this chapter Section 3.1 explains how coverage testing
works, and introduces terminology we use throughout the rest of this thesis.
Section 3.2 explains the example code and its corresponding flow graph that
is used during this chapter. Finally, in Section 3.3 we explain specifically how
statement, branch and basis path coverage work.

3.1 Coverage testing

When testing a software system, a tester creates one or more test suites that test
specific parts or the whole system. However, as a system’s size and complexity
grows, the tester wants to create test suites that are as efficient as possible. An
efficient test suite tests a system as thoroughly as possible (in terms of a larger
portion of the code or more important/complicated code), with a minimum
number of test steps. To compute how thoroughly a test suite tests a system,
several metrics exist. A metric defines a way to compute the fraction of the
system that is touched by a test suite. A tester may decide for himself if he
wants his test suite to touch the entire fraction of the code prescribed by a
metric. In other words, it is left to the tester to decide to what extent his test
suite complies with a metric. This is expressed as a percentage, and is referred
to as the coverage percentage. A test suite may be checked on multiple metrics.
Therefore, a tester could decide that his test suite must touch all the code parts
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prescribed by two different metrics. Moreover, he could decide to partially
touch the code parts prescribed by one metric (e.g. a coverage percentage of 70
percent), and touch all the code parts as prescribed by another metric.

Each metric focuses on different aspects of the code to be touched by a test
suite, for instance on covering each statement or every branch. As a conse-
quence, one metric may require the tester to put more effort in a test suite than
another metric. When a metric m1 requires a tester to put more effort in the
test suite than another metric m2, we say that metric m1 is stronger than met-
ric m2. Note that a test suite that touches all parts of the code as prescribed
by strong metric m1, does not imply that all parts of the code prescribed by a
weaker metric m2 are also touched. In general we assume that a test suite that
meets the requirements of a stronger metric is more efficient (in terms of finding
more faults) than a test suite that meets the requirements of a weaker metric.
This is assumed for every possible system and every pair of test suites.

Example 3.1.1. To test a system A, a tester created the test suites T1 and
T2, each testing a different part of the system. The tester decided that each
test suite must achieve a minimum coverage percentage of 70 percent for metric
m1, and 80 percent for the weaker metric m2. The tester finds that test suite
T1 achieved a coverage percentage of 80 percent for metric m1, and 90 percent
for metric m2. Therefore, test suite T1 meets the minimal requirements of the
tester.

Test suite T2 achieved a coverage percentage of 80 percent for metric m1, and
60 percent for metric m2. In this situation, the test suite meets the minimum
coverage percentage for metric m1, but lacks to meet the minimum coverage
percentage for the weaker metric m2. Therefore, test suite T2 does not meet the
requirements.

3.2 Example code

To show the specific properties of each metric, we introduce the code example
depicted in Listing 3.1. The method getSum takes two parameters: num1 and
num2. If parameters num1 and/or num2 are smaller than zero, the method
exits. Otherwise, it executes a for-loop that executes 10 repetitions. Each
repetition calculates the sum of num1 and num2 and adds the result to the
result variable. After the for-loop is exited, the result variable is printed to the
screen.

The corresponding flow graph for this code example is depicted in Figure 3.1.

Listing 3.1: Code example

1 void getSum(int num1, int num2) {
2 if(num1 >= 0 || num2 >= 0) {
3 int result = 0;
4 for(int i = 0; i < 10; i++) {
5 result += num1 + num2;
6 }
7 print result;
8 }
9 }
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begin
num1 >= 0 ||
num2 >= 0;

result = 0; i = 0; i < 10;
result +=
num1 +
num2;

i++;
print

result;end
(1) False (2)

True (3)

(4) (5) True (6)

(7)(8)
False (9)

(10)

Figure 3.1: Flow graph of code example from Listing 3.1

The edges are numbered, so that they later can be referred to. As the flow graph
is quite straightforward, we will not further explain the derivation of the flow
graph from the code. A flow graph derivation method was introduced earlier in
Chapter 2.

Each example in the following sections refers to the test cases depicted in
Table 3.1. These test cases are designed for the code example from Listing 3.1.
The first column shows the names of the test cases, the second column the
parameters that are passed to the getSum method. The third column shows the
edges that are traversed in the flow graph from Figure 3.1 by each test case.

3.3 Metrics

This section explains the statement, branch, path and basis path coverage met-
rics, which belong to the category of white-box testing. To the best of our
knowledge, no formal definitions of these metrics yet exist. Therefore, we created
formal definitions ourselves based on the theoretical explanation and examples
shown in [26] and [29].

3.3.1 Statement coverage

Statement coverage requires that all statements in a program are executed.

Definition 3.3.1. Let G = 〈P,D,LP , LD, EP , ED〉 be a flow graph. The state-
ment coverage of a set Π of paths through G is the percentage of process nodes
p ∈ P that are executed by Π:

|{p ∈ P | ∃π ∈ Π . p ∈ π}|
|P |

. (3.1)

A shortcoming of statement coverage is that it does not take into account
the control flows in the code. To illustrate this we introduce test suite T1 = 〈t2〉.

Test case Parameters Traversed edges
t1 (num1 = -1, num2 = 1) 〈1, 2〉
t2 (num1 = 1, num2 = 1) 〈1, 3, 4, 5, 6, 7, 8, 9, 10〉

Table 3.1: Available test cases
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Note that t2 is depicted in Table 3.1. While every statement of the program is
executed by T1 (therefore achieving a 100 percent statement coverage), edge 2
is never traversed.

In complex software it is often infeasible to reach a 100 percent statement
coverage. A cause of this may be the presence of unreachable code, e.g., code
that is only executed on certain operating systems or hardware. The tester
should be aware of such cases, as it prevents testing certain code blocks which
in fact may be executed once the system under test goes in production. This
may happen for instance if the hardware used in production is not available
during testing.

3.3.2 Branch coverage

Branch coverage, also referred to as decision coverage, takes into account the
control flows of a program. Every decision of the program must be evaluated at
least once to true and once to false, e.g., edges 〈2, 3, 6, 9〉 in Figure 3.1 should
all be traversed. Note that this in fact implies that all edges, and therefore also
all statements, are visited at least once.

Definition 3.3.2. Let G = 〈P,D,LP , LD, EP , ED〉 be a flow graph.

� A branch in G is a tuple 〈d, o〉, consisting of a decision node d ∈ D, and
a possible outcome o ∈ {true, false}.

� A branch b = 〈d, o〉 is matched by a path π ∈ Π that traverses d, such that
LD(d) = o at the moment that π reaches d. If so, we say that matched(b,
π)=true.

� Let B be the set of all branches in G. The branch coverage of a set Π of
paths through G is the percentage of branches b ∈ B that is matched:

|{b ∈ B | matched(b,π)}|
|B|

(3.2)

Test suite T2 = 〈t1, t2〉 achieves a 100 percent branch coverage for the code
example from Listing 3.1. If we would remove test case t2 from T2, we will no
longer achieve a 100 percent branch coverage, but only 25 percent. Test case t1
only traverses edge 2, therefore edges 3, 6 and 9 are left untested. If we would
remove test case t1, and stick with t2, we reach 75 percent (as edge 2 will be
the only one that is not traversed).

When a program contains a ‘while(true)’ loop, it can never evaluate to false.
Therefore, it is likely that a 100 percent branch coverage cannot be achieved for
an entire system. The tester should take notice of such events, as it decreases
the coverage percentage and may give the tester an unfair idea of its test suite
quality.

3.3.3 Path coverage

Path coverage is obtained by executing every possible path (Chapter 2, Defini-
tion 2.3.3) in a program.

Definition 3.3.3. Let G = 〈P,D,LP , LD, EP , ED〉 be a flow graph.



3.3. METRICS 25

� When a path π is executed we say that executed(π) = true. Otherwise,
executed(π) = false.

� The set of all paths through G is denoted by PG. The path coverage of a
set Π of paths through G is the percentage of all paths π ∈ PG that are
executed:

|{π ∈ PG | executed(π)}|
|PG|

(3.3)

Let T3= 〈t1, t2〉. Table 3.1 shows the edges traversed by each test case. At
first sight one may argue that T3 achieves a 100 percent path coverage. Obvi-
ously, when looking at the code, we know that the for-loop has 10 repetitions.
However, the number of repetitions in the for-loop cannot be determined during
execution. Therefore, the number of paths is infinite. As a result, the actual
path coverage of T3 is 0 percent.

3.3.4 Basis path coverage

Basis path coverage is a hybrid between path coverage and branch coverage.
However, it partially ignores the loops in a software program by executing only
one iteration. Moreover, instead of simply traversing every path, it only tra-
verses independent paths. An independent path is any path that tests a decision
independently of other decisions, i.e., it shows the influence of changing one
particular decision at a time. This implies that basis path coverage subsumes
statement and decision coverage. To find the independent paths in a program,
McCabe developed a procedure called the baseline method [30]. The method
starts at the begin node of a flow graph, and follows the leftmost path until
the end node is reached. This is the first independent path (also referred to
as the baseline). The second step is to repeat this procedure, but flip the first
decision, resulting in a different path. The second step is then repeated until
all subsequent decisions have been flipped. Note that with every step, only one
decision is flipped. All other decisions stay in their original state (the state in
step 1).

Definition 3.3.4. Let G = 〈P,D,LP , LD, EP , ED〉 be a flow graph, and PG
the set of all paths in G. The set of all decision nodes in a path π ∈ PG is
denoted as Dπ. The baseline of G is found as follows:

Baseline(PG) = {π ∈ PG | ∀d ∈ Dπ . LD(d) = true}

The basis path coverage of a set of paths Π is the percentage of all indepen-
dent paths executed including the baseline:

|{π ∈ Π | ∃!d ∈ Dπ . LD(d) = false}|+ |Baseline(Π)|
|{π ∈ PG | ∃!d ∈ Dπ . LD(d) = false}|+ 1

(3.4)

The number of test cases required to conform to basis path coverage can be
computed with the use of McCabe’s cyclomatic complexity metric [30].

In the following example we show how to use the baseline method:

Example 3.3.5. This example concentrates on the code example shown in
Listing 3.2. The returnParameter function should return the original value
that is assigned to the num parameter. Obviously, the boolean parameters are
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Listing 3.2: Basis path coverage

1 int returnParameter(int num, boolean d1, boolean d2, boolean d3) {
2 if(d1)
3 num++;
4 if(d2)
5 num−−;
6 if(d3)
7 num=num;
8 return num;
9 }

used to manipulate the method’s control flow. Under certain circumstances, the
method returns a different value than expected. For example, if d1 = true and
d2 = false (d3 can be ignored), the result would increase the parameter num
by one.

When using the baseline method, the first step results in d1, d2 and d3 to
evaluate to true, which we abbreviate to TTT. The descendant steps flip d1,
d2 and d3 each independently, resulting in the following set of independent
paths: TTT, FTT, TFT, TTF. To achieve full basis path coverage, all four
paths should be traversed.



CHAPTER 4

Related work

This chapter introduces several related studies on the relation between test
coverage and software quality. Each study is empirical, therefore the exact
relation still has to be confirmed. A detailed description of each experiment
approach is given, followed by the results.

Organization of this chapter Section 4.1 describes one of the earliest in-
vestigations on the relationship between various coverage metrics and software
reliability. Then, Section 4.2 describes an experiment that investigates the abil-
ity of the decision/all-uses metrics to find faults. Section 4.3 describes an exper-
iment that applied mutant testing techniques to investigate the ability of block
coverage, branch coverage, c-use and p-use coverage to find software faults. Sec-
tion 4.4 describes an experiment that measures the efficiency of several metrics
under different testing profiles. We end this chapter with an conclusion on the
related work in Section 4.5.

4.1 Garg, 1994

Garg investigated the coverage-reliability relationship and the sensitivity of re-
liability to errors in the operational profile [19]. The operational profile can be
defined as the context of a program in production, thereby restricting the input
domain. The experiment had two major objectives:

� Finding a relation between various notions of coverage and the reliability
of software.

� Investigating the sensitivity of reliability to errors in the operational pro-
file.

The coverage-reliability relationship determines to what extent coverage test-
ing improves the reliability of software. Software is considered to be reliable if
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the input-output sets correspond to the specification. The exact computation
can be found in the original paper.

Knowledge about the operational profile makes it easier to determine the
behavior of the end-users. Therefore, more specific test cases can be constructed.
When testing is then terminated because of time constraints (or other reasons),
the most likely usage scenarios of the system can be tested first [25], as the
created test-cases are bound to the input domain.

4.1.1 Experiment design

Notions of coverage that were used are: statement/block, dataflow, p-use [21]
and c-use [21] coverage. For each of these notions, its relation to software
reliability was measured. For the exact definition of reliability we refer to the
original paper [19].

The measurements were conducted on the UNIX utility ‘sort’, that consists of
approximately a thousand lines of code. The operational profile was determined
by the following properties: (1) probabilities of usage of each of the command-
line options provided by sort, and (2) probability distributions for the size of
the input file.

Ten faults were injected in various parts of the program. The injected faults
were provided by various graduate students, and none of the faults disrupted
the syntactical correctness of the program. The faults that students chose were
based on their experience and judgment.

4.1.2 Results

Figure 4.1 shows that the reliability of the ‘sort’ program shows an approx-
imately linear growth for all notions of coverage. Note that p-uses coverage
only needs a coverage percentage of less than 50 percent to achieve an average
reliability of 0.9, where block coverage requires 70 percent to achieve the same
result.

As the outcome of sensitivity analysis of different operational profiles on
reliability is not directly related to our study, these results are omitted.

4.2 Frankl and Iakounenko, 1998

Frankl and Iakounenko published the paper ‘Further empirical studies of test
effectiveness’ [18]. They conduced an empirical experiment to investigate the
ability of the decision and all-uses [21] coverage criteria to detect software faults.
Using a large set of test suites (which were randomly generated), each sub-
ject program was thoroughly tested. The relation between coverage and fault-
detecting ability was determined by measuring the number of faults found for
different percentages of coverage.

4.2.1 Experiment design

The effectiveness of a coverage criterion cannot simply be measured by using one
test suite. Test suites that have slightly different test cases can all satisfy some
criterion, but have different results. For example: when two test suites both have
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Figure 4.1: Garg, 1994, results (taken from [19])

50 percent decision coverage, they may execute completely different decisions in
the program. Thus, in defining the effectiveness of a coverage criterion, different
test suites are required. To restrict the total number of different test sets that
all satisfy the same criterion, the test suite sizes are required to be of equal
order.

The programs used for this experiment are eight different versions of an an-
tenna configuration program written for the European Space Agency, consisting
of over ten thousand lines of C code. For more specific information about the
number of decisions and definition-use (every variable that is defined, should be
used at least once [21]) associations in each version, we refer to Figure 4.2.

Faults were found by integration testing and operational use. These faults
were corrected, but faulty versions were preserved. Therefore, original faults
could be used for this experiment.

Figure 4.2: Frankl and Iakounenko, 1998, Version properties (taken from [18])
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4.2.2 Results

For all of the programs that were tested, test sets that attained a high level
of decision coverage were significantly more likely to detect the faults than
randomly generated test sets of the same size. However, in most subjects, even
the high coverage level test sets were not terribly likely to detect the faults.
Therefore, the results leave the question open whether the benefits of using
such coverage criteria outweigh the testing costs.

Figure 4.3 shows the result of testing version 18 of the program. Most of
the other versions showed a somehow similar result. The effectiveness increases
drastically around a coverage percentage of 90 percent. However, this percentage
is very hard to reach in large and complex programs. For the results of other
versions that were tested we refer to the original paper [18].

4.3 Lyu, Huang, Sze and Cai, 2003

Lyu et al conducted an experiment to test the effectiveness of different test
methods, i.e., the effectiveness of test methods to find faults [23].

4.3.1 Experiment design

The experiment used a real-world project and engaged multiple programming
teams to independently develop program versions based on an industry-scale
avionics application. For each program version, the nature, source, type, de-
tectability and effect of faults uncovered were studied.

The study applied mutant testing techniques to reproduce mutants with
real faults, and investigated the effectiveness of data flow coverage, mutation

Figure 4.3: Frankl and Iakounenko, 1998, Result version 18 (taken from [18])
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Figure 4.4: Lyu, Huang, Sze and Cai, 2003, Results (taken from [23])

coverage, and design diversity for fault coverage. In total, 21 program versions
and 426 mutants were available. To take a more conservative view in evaluating
test coverage, only program versions that at least passed the first test case were
considered. This tailored the total number of mutants to 252.

4.3.2 Results

The effectiveness of test coverage in revealing faults is shown in Figure 4.4.
Notions of coverage that were used are: block coverage, decision coverage, C-
use coverage and P-use coverage.

Columns two to five identify the number of faults in relation to changes of
blocks, decisions, c-uses and p-uses. For example, “6/11” for version 1 under
the “Blocks” column means that during the evaluation test stage, six out of
eleven faults showed the property that when these faults were detected by a
test case, block coverage of the code increased. Column six (Any) counts the
total number of mutants whose coverage increased in any of the four measures
when the mutants were killed.

The results show that out of 252 mutants, 155 show some kind of coverage
increase when they were killed. The range for the ratio is between 22.2 percent
(found in rightmost column, version ID 8) and 94.7 percent (version ID 12),
with an average of 61.5 percent. This is a high ratio, implying that coverage
plays an important role in finding faults. However, as the range of the ratio is
very wide, it heavily depends on the programmer who ‘created’ the faults.
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4.4 Cai and Lyu, 2005

Cai and Lyu published a paper on the effect of code coverage on fault detection
under different testing profiles [12]. Previous studies showed that the relation-
ship between code coverage and fault detection is complicated. Cai and Lyu in
their paper hypothesized that (1) the effect of code coverage on fault detection
varies if different testing profiles are examined and (2) different code coverage
metrics may have influence on such relation.

Testing profiles are used to partition test cases by type, e.g., random test
cases or functional test cases. This study concentrates on the following testing
profiles:

� Whole test set : The entire set of test cases.

� Functional tests: Test cases that specifically test the functional require-
ments.

� Random tests: Random test cases.

� Normal tests: Test cases that test the most common operations.

� Exceptional tests: Test cases that test exceptional operations, i.e., not
commonly executed operations.

4.4.1 Experiment design

The experiment uses the RSDIMU avionics application [23]. The application
was part of the navigation system in an aircraft or spacecraft, and was first en-
gaged in [15] for a NASA-sponsored 4-university multi-version software project.
The faults were introduced using mutation techniques.

Based on the detected software faults, 21 program versions were selected
and 426 software mutants were used [23], which were then exposed to coverage
testing and mutation testing. Notions of coverage that were used are block,
decision, C-use and P-use coverage. However, as every notion of coverage yielded
almost exactly the same results, we depict the results of block coverage and omit
the results of other notions.

4.4.2 Results

The experiment measured the block coverage of each test case on the whole set
of mutants. The same was done for mutant coverage. The combination of these
results shows that a test suite with a higher coverage percentage is likely to
kill more mutants, i.e., find more faults. However, a different phenomenon can
be observed when viewing the result of combining the two clusters. Figure 4.5
shows this phenomenon. Around 35 percent block coverage and 90-150 mutant
coverage we see a lot of mutants were killed. At 50 percent block coverage and
150-270 mutant coverage we can observe the same massive kill of mutants. Exact
details of the analysis are omitted, but can be found in the original paper [12].

The reason behind this phenomenon can be interpreted as the result of differ-
ent testing profiles. After combining the results with the earlier defined testing
profiles, we obtain the result shown in Table 4.1. From this result we can ob-
serve the effectiveness of coverage on each profile, e.g., the whole test set has
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Figure 4.5: Cai and Lyu, 2005, Test case contribution of block coverage (taken
from [12])

an effectiveness rate (R2) of 0.781. More interesting is the result of test cases
that fall into the exceptional test profile, as the rate is extremely high (0.944).
Test cases that fall into the normal test profile seem to find the least amount
of faults, with a rate of 0.045. Therefore, the testing profile plays an important
role in the selection of test cases.

4.5 Conclusion

Although several empirical studies have been conducted to find a relation be-
tween several notions of coverage and software quality [12, 18, 19, 23], the results
seem incoherent. This can be partially justified by different experiment designs,
but still a consistent relation seems to be lacking.

An important difference among the experiment design of related studies, is
the method used to introduce faults to the software. In [19], several graduate

Testing profile(size) R2

Whole test set(1200) 0.781
Functional test(800) 0.837
Random test(400) 0.558
Normal test(827) 0.045
Exceptional test(373) 0.944

Table 4.1: Profile results
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students introduced faults to the ‘sort’ application, based on their own discre-
tion. In an experiment of Cai et al [23], mutants were created that individually
contained a small number of faults, introduced according to mutant testing
techniques. The same technique was later used in another experiment of Cai et
al [12]. An experiment conducted by Frankl et al [18] seems to be unique, as
it used the original faults that were discovered during development and real-life
usage of a software application.



CHAPTER 5

Approach

This chapter explains the approach of the experiment and how we intent to find
answers for the research questions stated in Chapter 1. Moreover, it shows how
we ensured that the results are reliable, by discussing important details in the
experiment design and introducing the real life case studies that were used.

Organization of this chapter Section 5.1 gives an introduction to the ex-
periment design, laying out the basic steps that were followed. Section 5.2
explains the process in more detail using a graphical representation. Then, Sec-
tion 5.3 describes how we used the tooling. Section 5.4 shows how the results
were analyzed. Finally, in Section 5.5 we describe the case studies that were
used.

5.1 Introduction

To investigate the effects that statement, branch and basis path coverage have
on software quality, our first step is to create test suites. These test suites serve
as an input for one or more coverage tools. The second step is to use these
coverage tools to measure the coverage percentage for the statement, branch
and basis path metrics (see Chapter 3). The third step is observing the number
of faults found by each test suite, measured by a unit-testing framework. In
the last step the results are analyzed by combining the coverage measures with
their corresponding fault percentage. The fault percentage is the number of
faults found divided by the total number of injected faults, multiplied by a
hundred. This provides us an overview of the effectiveness of several different
coverage percentages for each of the metrics. Finally, we provide a statistical
analyses by calculating the Pearson correlation coefficient on the list of coverage
percentages and their corresponding number of faults found.

These steps allow investigating to what extent the requirements of a metric
improve the quality of a test suite (also referred to as a metrics efficiency). This
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Figure 5.1: Experiment design

is investigated for several coverage percentages, e.g., is 60 percent statement
coverage as efficient as 70 percent statement coverage? Also, we can investigate
if one metric is more efficient than another. And finally, we can investigate the
effort needed to achieve a certain coverage percentage (more on effort estimation
can be found in Section 5.4). The outcome of these investigations helps us
answering the research questions defined in Chapter 1.

5.2 Design

To improve the clarity of the experiment design, we introduce a graphical rep-
resentation of the process in Figure 5.1. During our experiment, we used three
different projects (see Section 5.5), each having its own unique set of test cases.
The process graphically presented here was repeated for each individual test
suite that we created, thus several times per project.

We now explain each block in an individual paragraph, providing details on
their composition and role in the overall process.

Code base The code base represents the entire collection of source code of a
system under test. As mentioned earlier, we have three projects. Consequently,
we have three individual code bases.

Each code base is injected with synthetic faults. To inject faults that are as
true-to-nature as possible, a group of developers was selected that had extensive
experience with the code base. This resulted in a total of three different groups,
one for each code base. Note that the developers of these groups have limited
knowledge of the test cases designed for the projects, as this may influence their
objectivity when inserting faults.

Pool of test cases The pool of test cases is the entire set of test cases available
to test a code base. This pool partially consists of test cases created by a
team of testers from Info Support (see Section 1.4.1), that used the test-driven
development methodology [10]. The pool of test cases was complemented by
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additional test cases that were created by another tester. These additional test
cases were necessary to achieve higher coverage percentages.

Code bases written in the Java language, were tested by test cases that use
the JUnit Framework [4]. Code bases written in the C# language by the NUnit
Framework [6].

Test suite The test suite is a finite set of test cases that is formed by taking
a subset of the pool of test cases. This selection is done by handpicking test
cases from the test case pool, using the following guidelines: (1) Complex test
cases are interspersed with simpler test cases. (2) Complex parts of the system
are generally tested by a greater number of test cases than simpler parts of
the system. (3) Test cases created by the Info Support test team are preferred
above the additional added test cases. The coverage percentage is a calculated
average for the entire project. However, each test suite must be designed to
equally distribute the coverage percentage across each part of the system as
much as possible. Obviously, due the nature of software systems, deviations do
occur.

Each test suite is created to achieve a certain coverage percentage for a spe-
cific metric. The chosen metrics and coverage percentages (which can be found
in Table 5.2) vary to investigate the efficiency on different coverage percentages
(helping us answering SQ2, found in Chapter 1). As the desired coverage per-
centages may not be reached exactly due to the size and complexity of the case
studies used, we allow a margin of 2.5 percent.

Coverage tool A coverage tool is used to measure the coverage percentages
for each metric that is achieved by a test suite. In Table 5.1 we provide a
list of coverage tooling that we used in our experiment. It shows that for the
Java framework, the Codign Coview [1] tool supports the branch and basis path
coverage metrics and Eclemma [2] supports statement coverage. NUnit [6] is
combined with NCover [5], supporting both the statement and branch coverage
metrics. By conducting small tests we validated that these tools use the metrics
as we formally defined them in Chapter 3.

Coverage Percentage The coverage percentage is the result of a coverage
tool. It presents, in the form a percentage, to what extent the test suite meets
the requirements of a certain coverage metric. As can be found in Table 5.1,
some tools support multiple metrics. In such a case the tool reports the coverage
percentage for each metric. For example, Codign Coview may report that a test
suite T1 has a branch coverage percentage of 75 percent, but also has a statement
coverage percentage of 70 percent.

Test Framework The test framework executes the test suites and reports the
number of failed test cases. It allows us to observe the number of faults found
by each test suite individually. We use the JUnit test framework for projects
developed in the Java framework, and the NUnit test framework for projects
developed in the .NET framework.

# Faults The number of faults (written as #Faults) is the number of injected
synthetic faults that are exposed by a test suite. Note that a test framework
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Tool name Framework Statement Branch Basis Path
Codign Coview Java No Yes Yes
Eclemma Java Yes No No
NUnit/NCover .NET Yes Yes No

Table 5.1: Used tooling

returns the total number of test cases that fail. This may be different than the
number of injected synthetic faults it exposes, as multiple test cases may fail due
to only one fault. We manually analyzed the failed test cases, and documented
the number of synthetic faults that were found by these test cases.

Efficiency determination Merging the coverage percentage and the number
of faults found, we can determine the efficiency of the test suite. For example,
70 percent statement coverage found 6 out of a total of 10 faults. Therefore, the
efficiency of 70 percent statement coverage is 60 percent. Repeating this step
for the other metrics (and coverage percentages), we can determine the relation
between the coverage metrics and software quality (helping us answering SQ1,
found in Chapter 1).

5.2.1 More on test suite creation

When taking a closer look at Table 5.2, one may observe that for each metric,
the coverage percentages vary from the other metrics. This is due the fact that
one metric is stronger than another, and as a consequence it may be relatively
easy to reach a certain coverage percentage with one metric, but impossible
with another metric. In general, we picked these percentages by evaluating
their diversity and practical feasibility.

To increase the quality of our experiment result, we have the following set
of additional requirements during test suite creation:

� To increase the reliability of the result, we require that each coverage per-
centage is tested by at least two test suites per case study. We require
the test suites to have a different composition. The degree of difference
in composition is determined per coverage percentage, and depends on
the available test cases. We aim at maximizing the difference in compo-
sition (by minimizing the size of the intersection set of the test suites),
provided that the test suites do not loose plausibility and conform to the
requirements from Section 5.2. The creation of two individual test suites
reduces the chance that test suites (especially those with a low coverage
percentage) expose or miss an exceptional number of faults by coincidence.
For example, a test suite that achieves 50 percent branch coverage may

Percentage levels
Statement 50% 60% 75% 85% 95%
Branch 30% 50% 60% 75% 85%
Basis path 10% 15% 20% 25% 30%

Table 5.2: Coverage metrics and corresponding percentages being tested
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expose zero faults if all faults coincidentally occur in the other 50 percent
of branches.

� The test suite size should be of equal order for each case study. This is
due to the fact that test suite size may influence its efficiency [32]. More-
over, once a coverage percentage is reached by a test suite, we stop adding
test cases. As in practice, people aim at achieving a certain coverage
percentage, and then immediately cease creating tests. Note that adding
additional test cases is possible without increasing the coverage percent-
age, by testing same parts of the system with different input variables,
e.g., boundary-value analysis.

5.3 Execution

The execution of the experiment required some development tools. For the
Java case studies, the Eclipse framework (version 3.5) was used, including the
EclEmma and Codign Coview plugins. These plugins both work out of the box
after installing them using the Eclipse software update function. Information
and documentation for installing plugins can be found at the Eclipse documen-
tation site [3]. Additional documentation on using these plugins can be found
at their websites [1, 2].

The .NET case study was developed using Visual Studio 2008. Additional
tooling used is NUnit and NCover. NUnit is used as a library within the Visual
Studio project to create test cases. After compiling the test suite containing the
test cases, a DLL file is created. This file can be imported by the NCover tool,
which executes the test suite and determines the coverage percentage reached
by the test suite. More information on using NUnit and NCover can be found
at [6, 5].

5.4 Analysis

Our analysis starts by documenting the number of faults that are found by each
coverage percentage, resulting in an efficiency prediction table. The efficiency
prediction table presents the relation between the coverage metrics and soft-
ware quality. In other words, it shows the efficiency of each coverage metric
under different coverage percentages .To prove in a statistically robust manner
that indeed a relation between coverage metrics and software quality exists, we
use the Pearson correlation coefficient [13]. The Pearson correlation coefficient
determines if, and to what extent, a linear relation exists between two variables.

Definition 5.4.1. Let X be the set of coverage percentages tested, and Y be
the corresponding percentages of faults found (faults found divided by the total
number of faults). The correlation coefficient rXY is given by:

rXY =

∑
XiYi − nX̄Ȳ√

(
∑
X2
i − nX̄2)(

∑
Y 2
i − nȲ 2)

(5.1)

Where Xi is the value of the x-axis at measurement i, Yi is the value of the
y-axis at measurement i, n is the number of measurements, X̄ is the average of
all X values and Ȳ is the average of all Y values.
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The result of equation 5.1 is a number between -1.00 and +1.00, representing
the degree of correlation. A positive value implies a positive correlation, i.e.,
large values of X tend to be associated with large values of Y. A negative value
implies an inverse correlation, i.e., large values of X tend to be associated with
small values of Y.

An important factor that should be kept in mind when interpreting these
correlation coefficients, is the fact that the selection process of test cases was
not completely random, and therefore is less reliable. The test case pools we
used in the industrial case studies, do not reflect random samples of the total
set of test cases used in the software industry. However, we do consider it to
reflect a random sample of test case pools used at Info Support. As Info Support
uses the test-driven development methodology to create their test cases, we also
consider the test case pool to reflect (although in lesser extent) a random sample
for every test case pool in the software industry, as long as it is based on the
test-driven development methodology.

In addition to calculating the correlation coefficients, we calculate the con-
fidence interval for each coefficient using the Fisher transformation [17]. This
widely known calculation provides details on the certainty that the calculated
correlation coefficient is not based on coincidence. We use this calculation to
obtain an interval for which we can state with 95 percent certainty that the
actual correlation coefficient will fall in.

Finally, the research questions (see Chapter 1) require us to estimate the
effort that was spent to create each test suite. To provide a clear and consistent
calculation for this effort, we introduce the test effort metric.

Definition 5.4.2. Let N be the total number of test cases, Fi the number of
functions tested by test case i, and Ci the maximum cyclomatic complexity [30]
of the function(s) tested by test case i. The test effort ET to create test suite
T is:

ET = N +

N∑
i=1

Fi + 3

N∑
i=1

Ci (5.2)

Note that the test effort metric does not calculate the man hours spent to
create the test suite. It can only be used as a reference model to calculate
relative differences in effort among test suites. The formula was derived by
discussing with experienced testers from Info Support. Therefore, the equation
represents only the effort required specifically by their testers. It is not intended
as a general metric for the software industry.

5.5 Case studies

As stated earlier, we used three industrial cases studies in our experiment. These
case studies were selected by their mutual variance, increasing the diversity of
the experiment. This diversity helps us in determining the reliability of the
result, as the results of each case study may confirm or contradict the results
from another case study.

This section provides an introduction to each case study, by describing its
most important goals, identifying its size and the platform in which it was
developed.
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5.5.1 Integrity Service

This case study involves an integrity service for seven different payment re-
quests, e.g. paying a bill with internet banking. Whenever a payment request
is created, the integrity service creates a unique digital signature for the pay-
ment based on its internal information. Once the payment is signed, it transfers
through several complex systems, mostly ending at the Society for Worldwide
Interbank Financial Telecommunication (SWIFT). At this last station before
the payment is executed, the integrity service is called to test whether the mes-
sage has been altered.

Project size: 10.000 LOC
Average cyclomatic complexity: ≈ 1.32
Used technology: Java 1.5, Spring Core 2.5, Spring Web Services 1.5, JiBX 1.2,
Spring JDBC.

5.5.2 Insurance Administration

This case study involves an application for a major dutch insurance company.
The application is a portal that enables the employees to sell policies, view the
financial state of customers, add and view the history of the employees, create
tenders etc.

Also, a Service-Oriented Architecture exists that provides services which
realize the communication to external parties, integration with standard pack-
ages, and persistence of customer related data. Therefore, the application is
considered a business-critical system.

The system consists of approximately hundred web services and front-end
components.

Project size: 25.000 LOC
Average cyclomatic complexity: ≈ 1.41
Used technology: .NET 3.5, Web Services.

5.5.3 Hosted Business Suite

Besides developing custom software, Info Support offers a hosted business suite
for customers. A hosted business suite is a package of online software that can
be used by the customer, which is hosted by Info Support. For example: Hosted
Exchange Online Server, Windows Sharepoint Services and CRM.

Customers who use the Hosted Business Suite may act as resellers of this
software. This results in a tree structure of customers. Each customer can order
specific demands for the software, i.e., the software can be customized.

The Billing project partially automates the process of calculating the costs
(that should be billed to the customer), and integrates this data with the infor-
mation available about the customer in the CRM system of Info Support. The
end result is a complete bill, specifying the customer, used software and costs.

Project size: 30.000 LOC
Average cyclomatic complexity: ≈ 1.9
Used technology: Java 1.6, JSF, Cobertura, Easymock.





CHAPTER 6

Results and discussion

This chapter provides and discusses the results of the experiment, by providing
scatter charts and statistic calculations for each case study. The first case study
is discussed in greater detail than case studies two and three, avoiding discussing
almost identical results and/or showing simple calculations repetitiously. The
chapter ends with an overview that provides the correlations and costs for each
case study. Also, we provide charts in which the costs and fault percentages are
combined. Finally, we provide charts showing the combined results of all case
studies and provide a general evaluation of the results.

Organization of this chapter Section 6.1 provides the results of the first
case study, including calculations of the correlation coefficients and the test
effort metric. In Section 6.2, we provide the results of the second case study,
followed by the results of the third case study in Section 6.3. Then, Section 6.4
shows the costs of achieving the coverage percentages of each metric. Finally,
Section 6.5 provides an evaluation of the results.

6.1 Case study 1

6.1.1 Statement coverage

Figure 6.1 shows the results for the statement coverage metric. The x-axis rep-
resents the coverage percentage, and the y-axis represents the fault percentage.
According to the experiment design, we used two different test suites for each
tested coverage percentage, resulting in a total of 6 series (2 for each case study).

The scatter chart shows us that the test suite from series 1 that achieved
60 percent statement coverage, found 15 percent of all faults. A test suite
from series 2 that achieved the same percentage of statement coverage, found
25 percent of all faults. The difference in fault percentages is likely caused
by the greater difference in composition that test suites with a low coverage

43



44 CHAPTER 6. RESULTS AND DISCUSSION

percentage have (see Chapter 5, Section 5.2). The difference among the two
series diminishes when the coverage percentage grows.

Correlation The Pearson correlation coefficient is calculated using the results
provided in Figure 6.1. An explanation of the variables used in this formula can
be found in Section 5.4.

rXY =

∑
XiYi − nX̄Ȳ√

(
∑
X2
i − nX̄2)(

∑
Y 2
i − nȲ 2)∑

XiYi − nX̄Ȳ = ((50 · 10) + (50 · 10) + (60 · 15)

+ (60 · 25) + (70 · 20) + (70 · 25)

+ (80 · 30) + (80 · 30) + (90 · 40)

+ (90 · 40))− (10 · 70 · 24.5)

= 18550− 17150 = 1400.

(
∑

X2
i − nX̄2)(

∑
Y 2
i − nȲ 2) = (2(502 + 602 + 702 + 802 + 902)

− (10 · 702)) · ((102 + 102 + 152 + 252

+ 252 + 202 + 302 + 302 + 402 + 402)

− (10 · 24.52))

= (51000− 49000) · (7075− 6002.50)

= 2145000.√
(
∑

X2
i − nX̄2)(

∑
Y 2
i − nȲ 2) =

√
2145000 ≈ 1464.58.

rXY =

∑
XiYi − nX̄Ȳ√

(
∑
X2
i − nX̄2)(

∑
Y 2
i − nȲ 2)

=
1400

1464.58
≈ +0.96.

The correlation coefficient of approximately 0.96 indicates a strong positive
correlation between the coverage percentage and the fault percentage. There-
fore, it is likely that higher coverage percentages find more faults compared to
lower coverage percentages. Moreover, the fault percentage linearly increases as
the coverage percentage grows.

We now calculate the confidence interval for the above calculated correlation
coefficient:

Confidence interval = z′ ± z · σz′
z = 1.96 (95% certainty).

z′ = .5[ln(1+r) - ln(1-r)] = .5[ln(1+0.96) - ln(1-0.96)] = 1.9459.

σz′ =
1√
N − 3

=
1√

10− 3
= 0.38.

z′ ± z · σz′ = [1.9459− (1.96 · 0.38), 1.9459 + (1.96 · 0.38)]

= [1.2011, 2.6907].

Converting [1.2011, 2.6907] back to r: [0.83, 0,99]
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Thus, there is a 95 percent chance that the actual correlation coefficient is
in the interval [0.83, 0.99].

Test suite design effort We now show the calculation of the effort needed
to achieve 50 percent statement coverage.

ET = N +

N∑
i=1

Fi + 3

N∑
i=1

Ci

N = 90

Average Fi = 1.00

N∑
i=1

Fi = 90 · 1.00 = 90.

Average Ci ≈ 2.205

3

N∑
i=1

Ci ≈ 3 · 90 · 2.205 ≈ 595.49.

ET = N +

N∑
i=1

Fi + 3

N∑
i=1

Ci

≈ 90 + 90 + 595.49

≈ 775.49.

Calculating the costs for all measured coverage percentages provides the
following overview:

Coverage percentage 50% 60% 70% 80% 90%
Costs (ET ) 775 933 1070 1221 1416

A graphical representation of the costs for each case study and corresponding
metrics can be found in Appendix A.

6.1.2 Branch coverage

Figure 6.2 shows the results for the branch coverage metric. Evaluating the
result, we observe almost identical behavior as seen earlier with statement cov-
erage. Lower coverage percentages are likely to find a very limited number of
faults, e.g., 40 percent of branch coverage found 0 or 10 percent of the total
number of founds. Test suites with the highest coverage percentage measured,
85 percent, found 35 percent and 40 percent of all faults.

Interesting is the fact that the test suite from Series 1 (see Figure 6.2) that
achieved 50 percent of branch coverage, was able to expose more faults than
the test suite from the same series that achieved 60 percent of branch coverage.
This could be the effect of luck being involved, which was discussed earlier in
Section 5.2.1, Chapter 5.
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Correlation Approximately +0.93. Confidence interval: 0.72 < r < 0.98.
Test suite design effort

Coverage percentage 40% 50% 60% 75% 85%
Costs (ET ) 646 916 1018 1181 1416

6.1.3 Basis path coverage

The efficiency of basis path coverage is shown in Figure 6.3. Basis path coverage
is considered to be a stronger metric than statement and branch coverage. The
results show us that lower percentages of basis path coverage, found the same
amount of faults as higher percentages of coverage for the statement and branch
metrics, e.g., 25 percent of basis path coverage found the same amount of faults
as 90 percent statement coverage. This confirms the assumption that stronger
metrics are likely to find more faults than weaker metrics (See Chapter 3, Sec-
tion 3.1). In both case studies, a coverage percentage of 30 percent for the basis
path metric, achieved a fault percentage between 45 and 55 percent. These are
the highest fault percentages measured during the experiment.

Correlation Approximately +0.95. Confidence interval: 0.80 < r < 0.98.
Test suite design effort

Coverage percentage 10% 15% 20% 25% 30%
Costs (ET ) 897 1027 1356 1440 1472

Figure 6.1: Case study 1 - Statement coverage
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Figure 6.2: Case study 1 - Branch coverage

Figure 6.3: Case study 1 - Basis path coverage
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6.2 Case study 2

6.2.1 Statement coverage

Figure 6.4 shows the results for the statement coverage metric. Note that the
fault percentage does not seem to consistently grow from the moment that a
coverage percentage of 70 percent is reached. With the exception of the test
suite from Series 1 with 80 percent coverage, all other test suites do not manage
to expose more than 33 percent of the injected faults.

Correlation Approximately +0.80. Confidence interval: 0.34 < r < 0.95.
Test suite design effort

Coverage percentage 50% 60% 70% 80% 90%
Costs (ET ) 3323 4104 5069 6084 6749

6.2.2 Branch coverage

The results for the branch coverage metric are depicted in Figure 6.5.

Correlation Approximately +0.96. Confidence interval: 0.83 < r < 0.99.

Test suite design effort

Coverage percentage 40% 50% 60% 75% 85%
Costs (ET ) 2628 3323 4104 5171 6749

Figure 6.4: Case study 2 - Statement coverage
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Figure 6.5: Case study 2 - Branch coverage

6.3 Case study 3

6.3.1 Statement coverage

The results of the statement coverage metric are depicted in Figure 6.6. A
coverage percentage of at least 80 percent clearly finds more faults than lower
coverage percentages. Test suites that achieved the highest measured coverage
percentage of 90 percent, were able to consistently find 55 percent of all faults.
Compared to case studies 1 and 2, the fault percentage is significantly higher.
This is likely caused by the poor quality of the synthetically injected faults,
resulting in the faults to be found more easily.

Correlation Approximately +0.84. Confidence interval: 0.44 < r < 0.96.

Test suite design effort

Coverage percentage 50% 60% 70% 80% 90%
Costs (ET ) 1020 1139 1316 1496 1723

6.3.2 Branch coverage

Figure 6.7 depicts the results from the branch coverage metric. Compared to
case studies 1 and 2, we observe the following differences (1) the results are
more scattered and (2) the fault percentages are significantly higher. Both (1)
and (2) are caused by the simplicity of the injected faults.
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Correlation Approximately +0.58. Confidence interval: -0.08 < r < 0.89.

Test suite design effort

Coverage percentage 40% 50% 60% 75% 85%
Costs (ET ) 755 1020 1139 1320 1717

6.3.3 Basis path coverage

Figure 6.8 depicts the results from the basis path coverage metric. The results
seem to have a stronger correlation compared to statement and branch coverage.
However, a significant deviation occurs at a coverage percentage of 10 percent,
resulting in a lower correlation coefficient.

Correlation Approximately +0.56. Confidence interval: -0.11 < r < 0.88.
Test suite design effort

Coverage percentage 10% 15% 20% 25% 30%
Costs (ET ) 1053 1274 1476 1709 1600

Figure 6.6: Case study 3 - Statement coverage
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Figure 6.7: Case study 3 - Branch coverage

Figure 6.8: Case study 3 - Basis path coverage
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6.4 Costs versus fault percentage

Figures 6.9, 6.10 and 6.11 show the test suite design effort (also referred to as
costs) needed to achieve the different coverage percentages. The depicted costs
and fault percentages are averages over three case studies (with the exception
of basis path coverage, which was measured in only two case studies). From the
linear increase, we can conclude that there is no steepening in costs whatsoever
at any percentage. Therefore, the costs of increasing the coverage percentage
is approximately the same independent of the current (i.e., already reached)
coverage percentage.

The linear growth in costs is likely caused by the low cyclomatic complexity
of the case studies, as this reduces the number of different paths to be traversed
enormously. As a consequence, reaching higher coverage percentage takes less
effort, as we do not have to create a lot of test cases that are specifically designed
to flip a certain decision node in the code.

Appendix A provides the results for each case study and metric individually.

Figure 6.9: Overall costs - Statement coverage
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Figure 6.10: Overall costs - Branch coverage

Figure 6.11: Overall costs - Basis path coverage
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Case study Coverage metric Correlation Confidence interval (95%)
1 Statement 0.96 0.83 < r < 0.99

Branch 0.93 0.72 < r < 0.98
Basis path 0.95 0.80 < r < 0.98

2 Statement 0.80 0.34 < r < 0.95
Branch 0.96 0.83 < r < 0.99

3 Statement 0.84 0.44 < r < 0.96
Branch 0.58 -0.08 < r < 0.89

Basis path 0.56 -0.11 < r < 0.88

Table 6.1: Overview correlations

6.5 Evaluation

6.5.1 Overview correlations

Table 6.1 shows the Pearson correlation coefficient of each case study and cor-
responding metrics. Case studies one and two have the strongest positive cor-
relation, with a minimum correlation coefficient of 0.80. The correlation of the
third case study is exceptionally low for the branch and basis path coverage
metric. As discussed in Section 6.3, the smaller coverage percentages of these
metrics have likely by luck exposed more faults than some of the higher cov-
erage percentages. The lower correlation coefficient is a direct consequence of
this phenomenon. To give an idea of the influence of these deviations on the
correlation coefficients and corresponding confidence intervals, table 6.2 pro-
vides a recalculation, excluding the deviations. We can observe that when these
deviations are excluded, a strong correlation exists.

The confidence interval row shows the interval for the correlation coefficient
for which 95 percent certainty is given. For instance, we can state with 95 per-
cent certainty, that the actual correlation coefficient for the statement coverage
metric of case study 1 lays in the interval [0.83, 0.99]. For 6 out of 8 measured
correlation coefficients, we may conclude that a positive correlation is highly
likely to exist (exceptions are branch and basis path coverage from case study
3). However, the degree of correlation remains uncertain, caused by the low
number of measurements.

6.5.2 Merged results

Figures 6.12, 6.13 and 6.14 show the overall results for the statement, branch
and basis path coverage metrics. Case studies 1 and 2 seem to achieve almost
identical results for the statement and branch coverage metric. Test suites from
case study 3 achieved a higher fault percentage, but this is caused by the poor
quality of injected faults, resulting in these faults to be found more easily. Also,

Case study Coverage metric Correlation Confidence interval (95%)
3 Branch 0.85 0.37 < r < 0.98

Basis path 0.96 0.79 < r < 0.99

Table 6.2: Recalculated correlations
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case studies 1 and 3 have almost identical results for the basis path coverage
metric.

Due to the higher fault percentages achieved by case study 3, the range of
faults that were found is very wide. Therefore, the results do not give certainty
on the exact amount of faults that the metrics and corresponding coverage
percentages will find.

6.5.3 Fault detection capability

The results provided in this chapter show that coverage testing was by far not
able to find all faults. This raises the questions why some of the faults were
found, and others were left undetected . An afterwards inspection of the injected
faults, shows that faults that had a direct influence on the normal flow of a
program were highly likely to be detected. This is probably a direct consequence
of using the test-driven development methodology, as this methodology requires
test cases to be written that specifically test the functionality of methods.

Faults which did not directly effect the normal program flow, were left unde-
tected most of the time. An incomplete list of some of these faults is (1) incor-
rect boundary value checking, (2) not handling null values, (3) not checking for
undesired duplicates in lists, (4) forgotten break-statements and (5) forgotten
concurrency prevention (e.g. forgetting synchronize keyword). Test methods
that would be able to find most of the undetected faults are boundary-value
analysis and equivalence partitioning [26].

6.5.4 Threats to validity

One threat to this experiment is the validity of the calculations performed by
the coverage tooling. Although we did test if the tools followed the rules of our
formal definition by testing small examples, we cannot validate if the calcula-
tions are performed correctly on larger projects. Nevertheless, we assume the
results to be correct.
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Figure 6.12: Overall result - Statement coverage

Figure 6.13: Overall result - Branch coverage
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Figure 6.14: Overall result - Basis path coverage





CHAPTER 7

Conclusion and Future Work

This chapter provides an overall conclusion based on the results of the experi-
ment. We provide answers to the research questions we formed at the beginning
of the experiment, and propose directions for future work.

Organization of this chapter Section 7.1 provides answers to the research
questions. Then, in Section 7.2 we propose directions for future work.

7.1 Answer to research questions

This section provides answers to the research questions we defined at the be-
ginning of the experiment. First, we answer the subquestions in Section 7.1.1.
Then, we answer our main research question in Section 7.1.2.

7.1.1 Subquestions

SQ1: What is the correlation between different coverage metrics and
software quality? All three measured metrics showed a positive and almost
similar correlation between the coverage percentage and fault percentage. As
shown in Section 6.5.1, 6 out of 8 measurements show a correlation of +0.80 or
higher.

The other 2 measurements, both from case study 3, showed a correlation of
+0.58 (branch coverage) and +0.56 (basis path coverage). This is caused by
deviations that occurred at the lower coverage percentages for these metrics.
Test suites with 40 percent branch coverage found an exceptional high number
of faults (45 percent of all faults). The same holds for test suites that achieved
10 percent basis path coverage (also found 45 percent of all faults). Further
investigation on these deviations showed that these test suites were relatively
lucky in their composition, as by coincidence they contained the test cases that
exposed the faults. The explanation for the fact that this phenomenon occurred
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with both metrics, is that the test suites used here achieved both 40 percent
branch coverage and 10 percent basis path coverage at the same time. Therefore,
the test suites were actually the same. To show the impact of these deviations
on the correlation coefficient, we re-calculated them excluding these deviation.
This resulted in a correlation coefficient of +0.85 for branch coverage, with a
confidence interval of 0.37 < r < 0.98. Recalculation of the coefficient for basis
path coverage resulted in +0.96, with a confidence interval of 0.79 < r < 0.99.

As shown by Table 6.1 in Section 6.5.1, chances of a positive correlation
to exist is likely for all three measured metrics. Thus, when applying coverage
metrics, increasing the coverage percentage is likely to result in a higher number
of faults to be found.

SQ2: At what coverage percentages will the effect of increasing cover-
age diminish? Overall results provided in Section 6.5.1 show that the linear
growth of the fault percentage is continuous, even when reaching higher cover-
age percentages. This holds for all three measured metrics. An exception on
this trend occurs at the statement coverage metric in case study 2 (see Fig-
ure 6.5), where the fault percentage does not significantly increases when the
coverage percentage exceeds 70 percent. However, as this is the only exception
that occurred, we assume that in general the effect of increasing coverage does
not diminish at all.

Therefore, independent of the already achieved coverage percentage or used
metric, increasing the coverage percentage is likely to result in more faults to
be found. Obviously, this only holds for the coverage percentages tested in this
experiment.

SQ3: How does an increase or decrease of the coverage percentage
influence the testing costs? In Section 6.5.1 we showed that the testing
costs grow linearly with the coverage percentage. There was no increased steep-
ening in costs when achieving higher coverage percentages. This linear increase
in costs is likely caused by the low cyclomatic complexity of the involved case
studies. As shown in Section 5.5, the cyclomatic complexity varied between
1.3 and 1.9. As a consequence, achieving higher coverage percentages did not
require flipping an exceptional amount of decisions to reach uncovered code.

7.1.2 Main question

RQ: How should coverage testing be used by the software industry
to improve software quality in a profitable way? The software industry
itself is a way too broad target to answer our main question. As discussed in
Section 5.4, test cases used in this experiment cannot serve as a random sample
for the software industry. Therefore, the conclusions mentioned here should only
be considered valid for the company Info Support and their specific test process,
and in lesser extent to software companies that use the test-driven development
methodology as their main method to create test cases.

The normal to strong correlation between the coverage percentages of several
metrics and software quality suggests that increasing the coverage percentage
will likely increase the number of faults that are found by a test suite. This
holds for each tested metric and coverage percentage, i.e., independent of the
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used metric and/or already achieved coverage percentage. However, the exact
correlation remains uncertain, as we performed a limited number of measure-
ments during the experiment.

We observed that the different metrics performed equally, i.e., find almost
the same amount of faults. What should be taken into account on this result
is that (1) tested coverage percentages differed among the metrics, and (2)
the cyclomatic complexity was relatively low, resulting in a reduced difference
among metrics. For instance: a method that has a cyclomatic complexity of 1,
can be tested on a 100 percent statement coverage and a 100 percent branch
coverage using the same test case.

The exact percentage of the total number of faults that are found by a cer-
tain metric and corresponding coverage percentage remains uncertain, as they
differed significantly among case studies. Moreover, even in best-case scenarios,
most metrics were able to find as little as half of the total faults(see Section 6.5).
Therefore, coverage testing should definitely not be the only method in a test
process. After investigating the faults that were (not) found, we conclude that
faults that manipulated the behavior of the program under normal conditions
were found mostly. Faults that only occurred in more exceptional situations
(See Section 6.5 for details) were mostly left undetected. It is very likely that
boundary-value analysis [26] and equivalence partitioning [26] would have ex-
posed most of these undetected faults in our case studies.

The costs of increasing the coverage percentage grows linearly. There are no
exceptional peaks or steepened increases whatsoever. Therefore, there are no
obvious boundaries that should be taken into account from an economic point of
view. However, as discussed in SQ2, the linear relation is likely to be maintained
by the low cyclomatic complexity of the involved case studies. Therefore, we
recommend keeping the cyclomatic complexity of any project as low as possible,
as this likely keeps the test effort to reach higher coverage percentages under
control.

Based on the motives mentioned above, we recommend using statement and
branch coverage. We do not recommend using basis path coverage, as the cur-
rent tool support is very minimal.

We do not recommend any specific coverage percentage to achieve. This de-
cision should be made by the managers based on their specific demands. How-
ever, the results of this experiment can be used as a guideline to find a balance
between software quality and spending resources on testing. Besides using cov-
erage testing, we recommend adding boundary-value analysis and equivalence
partitioning to the test process.

7.2 Future work

Based on our results there are several interesting directions for future work.
First, we tested very low coverage percentages for the basis path coverage metric.
However, despite the low coverage percentages, test suites that did achieve these
percentages covered a relatively high amount of faults. Future research may
investigate the increase in fault percentage for higher coverage percentages.

Second, test cases used in this research were created based on the test-driven
development methodology. Obviously, this has a direct consequence on the way
the system is tested, and therefore the number of faults that are found. Further
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research could specifically focus on the influence that the type of test cases have
on the efficiency of coverage metrics.

Third, as we mentioned in our results, most faults that were not found by
the coverage metrics, could have been exposed using boundary-value analysis
and/or equivalence partitioning. Therefore we suggest investigating their effi-
ciency using industrial case studies.

Finally, similar studies are needed to obtain an increased confidence on the
correlation between coverage and software quality, and to validate our result. A
recommendation would be to increase the number of injected faults compared to
this experiment. This will improve the exactness of the correlation coefficients.
But also to add case studies that have a relative high cyclomatic complexity, to
investigate the effect this has on the efficiency of the metrics and the costs.
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APPENDIX A

Test suite design costs

A.1 Case study 1

Figure A.1: Case study 1 - Statement coverage
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Figure A.2: Case study 1 - Branch coverage

Figure A.3: Case study 1 - Basis path coverage
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A.2 Case study 2

Figure A.4: Case study 2 - Statement coverage

Figure A.5: Case study 2 - Branch coverage
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A.3 Case study 3

Figure A.6: Case study 3 - Statement coverage

Figure A.7: Case study 3 - Branch coverage
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Figure A.8: Case study 3 - Basis path coverage
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