November 12, 2018

INTEGRATING FORMAL
METHODS TOOLS

A CASE STUDY

Author
Matthijs Hofstra

Faculty

Electrical Engineering, Mathematics & Computer Science

Chair
Formal Methods & Tools

Committee
prof. dr. Marieke Huisman
dr. Ansgar Fehnker

UNIVERSITY OF TWENTE.

Preface & Acknowledgements

This thesis is written as part of my final project of my Computer Science master at the University
of Twente.

| would like to thank my committee: Marieke Huisman for her support, feedback, and con-
siderable patience, and Ansgar Fehnker for joining the committee after changes in the scope
and focus of my research called for a change of committee.

Page 3

Page 4

Abstract

Many formal methods tools exist that can assist in the creation of correct software programs,
and more are created each year. Yet many of these tools focus only on one specific technique,
and are unable to deal with problems that are unsuited for that technique. We believe that
combining tools that implement different techniques can yield great results. Yet it seems that
little research is being done in this area. We suspect that one of the reasons is that formal
methods tools tend to be hard to integrate with existing software. If integrating different formal
methods tools were easier, then the barrier to combine different tools would be much lower. As
a secondary effect, when tools are easier to integrate it will be easier for them to be adopted
outside the academic world.

In this thesis we will explore the difficulty of integrating different formal methods tools by
performing a case study in which we will create a framework for generating loop invariants for
Java programs. The tools for generating loop invariants will serve as a hopefully representa-
tive sample of formal methods tools in general. The framework will integrate several existing
tools that either perform automated loop invariant generation or contribute to automated loop
invariant generation. We will report on the problems encountered during the integration of the
different tools and investigate how these problems could have been avoided. Based on this
analysis we will create guidelines that can be used by formal methods researchers to make the
results of their work more accessible to others. The ultimate aim of these guidelines is twofold:
to facilitate research by making it easier for formal methods researchers to build on the work
of others, and to allow research results to make the jump from the academic world into the
software development industry.

Keywords:
Loop Invariant Generation, JML, Integrating, Formal Methods Tools

Page 5

Page 6

Table of Contents

1 Introduction 11
1.1 Background e 11
1.2 Goals . . . o e e 12
1.3 Thesisorganization 13
2 The Java Modeling Language 15
2.1 JML annotations on classes andfields 15
2.2 JML annotationsonmethods 16
2.3 JML annotations inside methods L. 17
2.4 CheckingJML e e e e e e e 18
25 OpendML e e e e e e 19
2.6 SUMMAry e e e e e e e e e e e e e e e e e 19
3 Loop Invariant Generation 21
3.1 Polynomial Invariant Generation by Algebraic Techniques 21

3.2 Inferring Invariants in Separation Logic for Imperative List-processing Programs . 22

3.3 Dailkon e 24
3.4 DynaMate e e 25
3.4.1 EvoSuite e 26

3.42 GIN-DYN e 26

3.5 Summary ... e e e e e e e e e e e e e 27

4 Setting up the Case Study 29
4.1 Goal e e e e e e e e 29

4.2 Requirements e e 29
4.2.1 The framework should integrate several differenttools 30

4.2.2 The framework should reuse existing functionality whenever possible . . . 30

4.2.3 The framework should be extensible 30

4.3 Conclusion e e 30
5 Architecture 31
5.1 Frameworkdesign e 32
511 Test-casegeneration. 32

5.1.2 Dynamicinvariantdetection Lo Lo 32

5.1.83 Staticanalyzers e 33

5.1.4 Invariantcheckers 33

5.2 Components e e e e e e e e e e 34
5.2.1 ExecutionProvider 34

5.2.2 DynamiclnvariantGenerator oo 34

5.2.3 StaticlnvariantGenerator 34

524 InvariantReject 35

5.3 Operation of the framework, 35
6 Implementation 37
6.1 Buildingthe Context 37
6.2 EvoSuite. e e e e e 38
6.3 Basic staticinvariantgenerator Lo 38
6.4 Daikon e e 38
6.4.1 Gathering loop information, 38

6.4.2 Interpretingtheresults L 39

6.5 OpendML e 40
7 Findings 41
7.1 Documentation e 41

7.2 Tools may not clean up properly afterrunning 42

7.3 Modifyingthe ASTinOpendML 42
7.4 Interactions between EvoSuite and Daikon 43
Advice 45
8.1 Buildtoolsasalibrary 45
8.2 Have technical documentation onusingthe APl 46
8.3 Avoidglobalstate., 46
8.4 Usecommonlibraries 46
8.5 Futurework 47

8.5.1 Investigate common needs in research tool development 47

8.5.2 Further research into combining the results of multiple loop invariant gen-

erationtools. 47
8.5.3 Investigate combining tools in other areas in formal methods 47
8.6 Conclusion e 48

Page 9

Page 10

Chapter 1

Introduction

In this chapter we will give a brief background of the circumstances motivating our research.
This will be followed by the goals of our research, and an overview of the organization of this
thesis.

1.1 Background

Each year a lot of research into formal methods is performed in the field of computer science.
New techniques are investigated, existing techniques are refined, and tools are created to test
and demonstrate the usefulness of these techniques. While much of this work is interesting
in a theoretical sense, the ultimate goal of formal methods is to enable the creation of more
reliable and robust systems.

While all this research is taking place, software is growing in importance. Computers are
no longer just large devices standing on a desk; they surround us at all times. We carry them in
our pockets as mobile phones, and some people carry them on their wrists as smart watches.
A lot of communication that used to happen in person or by writing a letter now happens
electronically over the internet.

These developments are not without risks. A system that can be used over the internet may
also be abused over the internet. The more technology becomes a part of our lives, the more
we are affected when that technology fails. While in some situations the failure of technology
is merely inconvenient, in other contexts the consequences can be much more severe, ranging
from loss of privacy and financial damage to risk of bodily harm or even death.

Some industries have adopted formal methods as part of their process, but many have not.
The damage caused by software bugs is estimated to cost billions of dollars annually. In light
of such numbers one would expect there to be more incentive for the industry as a whole to
adopt formal methods, but to date this has not happened.

There are many possible reasons for the failure of the industry to adopt formal methods.
Some may have doubts about the applicability or (cost-) effectiveness of formal methods. Per-
haps there is a lack of knowledge about what formal methods have to offer. Others reasons
may be more technical in nature, such as formal methods tools being difficult to use, or hard to

Page 11

include in existing software development workflows.

We believe that one of the problems facing the field of formal methods is the difficulty of
integrating formal methods tools in other software. This problem negatively affects both the
ability of researchers to build on the work of others, as well as the ability for the industry to
incorporate formal methods tools in software development workflows, for example through in-
tegration in integrated development environments. In this thesis we will focus on the integration
of formal methods tools with other formal methods tools, but we hope that improvements in this
area will also facilitate increased industry adoption.

When a new formal methods tool is created and a paper is written, the ease with which this
new tool can be integrated within existing software is unlikely to be one of the most important
qualities that this new work will be judged on, both by the authors and peer reviewers. This
is unsurprising because “can be easily integrated with other software” is not a quality that has
academic value. The produced software is often a proof-of-concept; it will contain the required
functionality to show the effectiveness and viability of the ideas of the author(s), but lack the
polish that would make it usable in different situations.

1.2 Goals

The ultimate goal of our research is the increased use of formal methods outside of the aca-
demic world, because we believe that increased real-world use of of formal methods will be
beneficial for both the industry and the field of formal methods itself. We hypothesize that
one of the reasons that formal methods tools are slow to gain adoption in the industry is be-
cause there are (possibly unnecessary) technical hurdles to integrate these tools within other
software. We will investigate the existence of these technical hurdles and what can be done
to overcome them. We hope solving these problems will ultimately lead to increased use of
formal methods tools in the industry.

A large step towards this goal would be for the field of formal methods itself to gain an
increased interest for combining different tools. The work by Galeotti et al. on DynaMate [10]
has shown that combining different tools can be very effective, because tools can have different
strengths, and combining different tools can solve problems that none of the individual tools
could have solved. But we believe that the difficulty of integrating different tools is standing in
the way of further research into combining tools.

To be able to identify the technical difficulties that are encountered when integrating formal
methods tools in other software, we would like our case study to be a “realistic” instance of
such an integration. We believe loop invariant generation to be a great subject to use for our
case study, because many different techniques exist.

Therefore we have chosen the implementation of a framework for the integration of different
loop invariant generation tools as our case study. We believe the creation of this framework
gives a good impression of the technical difficulties that can be encountered when integrating
formal methods tools, because various different tools will be involved. Because the results of
the different tools must be combined and sometimes passed to other tools, this forces a real
integration, where the framework must understand the various inputs and outputs of the tools

Page 12

that are used.

1.3 Thesis organization

In chapter 2 we will describe the Java Modeling Language. This language can be used to
describe properties of a Java program. Program properties most relevant to our study will
be method preconditions, method postconditions, and loop invariants. Our description of the
Java Modeling Language is incomplete, but covers a subset that is sufficient to understand our
research.

Chapter 3 describes several existing tools and techniques for automatic loop invariant gen-
eration, to give an impression of the state of the art. While too much work has been done in the
field of loop invariant generation to summarize it all in a single chapter, all the loop-invariant-
generating tools that we use in the case study are included in this chapter.

In chapter 4 we describe the requirements of our framework, and motivate these require-
ments based on the goal of our research.

Chapter 5 gives a description of the architecture of our framework. We define several cate-
gories of tools related to loop invariant generation, and describe how tools in these categories
can work together in the framework.

Chapter 6 gives an overview of the actual implementation of the framework. It describes
how the various tools are used, including how they are given their inputs, and how their outputs
are interpreted.

In chapter 7 we describe the problems we encountered while implementing the framework
and combining the different tools.

In chapter 8 we give recommendations for tool creators that would help make their tools
more suitable for integration. This advice will be based on our experiences while creating the
framework, and on the problems we encountered in chapter 7. After the advice we will give
suggestions for future work, and present our conclusions.

Page 13

Page 14

Chapter 2

The Java Modeling Language

The Java Modeling Language, hereafter referred to as 'JML, is a language that can be used
to describe the behavior of Java programs. This behavior is described in a ‘design by contract’
style, where a programmer can specify invariants of a class and the preconditions and post-
conditions of methods and constructors. Methods and constructors are treated very similarly
in JML, with the necessary exception that class invariants and constraints need not hold on en-
try of a constructor, and are implicitly postconditions of constructors. The distinction between
constructors and methods will not be very relevant to our research and from this point on we
will refer to both as simply methods, unless specified otherwise. Below we will discuss several
keywords from JML that we expect will be most relevant to our research, and we will give some
examples that demonstrate their use. For a complete description of JML we recommend the
JML Reference Manual [13], which describes the language in detalil.

2.1 JML annotations on classes and fields

Specifying a class invariant happens with the invariant keyword. It is not required for an
invariant to hold at all times, as long as it always appears to hold from the perspective of an
outside observer. JML accomplishes this by distinguishing between visible states and invisible
states of an object, where visible states include states such as ’at the end of a constructor’
and ’at the start and end of a method’, and invisible states include states such as ’at the start
of a constructor’ and 'while inside a method’. An exception exists for private methods and
private constructors that are annotated with the helper keyword. Helpers are special because
invariants do not have to hold on entry, nor do they need to be established on exit. Because
these helpers are private and can therefore be called only by other methods and constructors
of the class (that do have to ensure invariants) this does not result in observable invariant
violations.

In addition to invariants, JML has constraints, which are specified with the constraint
keyword. Constraints relate states in the lifetime of an instance. For example, a constraint
could specify that the value of a member variable can only increase. For any two visible
states in an objects lifetime, its constraints constrain how the state of the instance can change
between the older state and the newer. Below is an example that demonstrates an invariant
and a constraint. In the example, an invariant is used to state that the member field n must

Page 15

g W N =

g A~ W N =

0 N O OB WN =

—_ o e e
N o ok WO = O ©

always be larger or equal to zero. A constraint is used to state that the value of n must always
be equal or greater than in any states that came before, in other words, it can never decrease.
In order to refer to the private n in the specification, we use the spec_public keyword, which
allows us to refer to private and protected fields in the specification as if they were public. In
addition, we use \old(E) keyword, which in this context allows us to refer to the value of an
expression E in a previous state. When using \o1d (E) in a method postcondition or in a method
body, it evaluates to the value that E had on entering that method.

class Example {
private /xQ@ spec_public @%/ int n;
//@ public invariant n >= 0;

//Q@ public constraint n >= \old(n);

2.2 JML annotations on methods

As mentioned earlier, JML also allows a programmer to specify the behavior of methods, follow-
ing the design by contract paradigm. There are many things that we can say about a method
using JML, the most basic of which are its pre- and postconditions. The requires keyword is
used to specify a precondition, and the ensures keyword is used to specify a postcondition. A
basic example that demonstrates these two keywords can be found below.

//@ requires n < Integer.MAX VALUE;
//@ ensures \result == n + 1;
public int addOne(final int n) {

return n + 1;

JML annotations can also specify other behavioral aspects, such as under which conditions
exceptions are thrown (using the signals keyword), which fields may be modified by a method
(using the assignable keyword), and if a method diverges or not (using the diverges keyword).
The example below demonstrates this by showing the specification of a method that takes an
integer n. When n is negative, an exception is thrown. Otherwise, when n !'= 12 we return the
number 8, and when n == 12, we loop forever.

/+*Q@ normal_behavior
Q requires n >= 0;
Q ensures \result == §;
Q assignable \nothing;
@ diverges n == 12;
@ also
Q exceptional_ behavior
Q requires n < 0;
Q assignable \nothing;
@ signals (Exception) true;
@x/
public int foo(final int n) throws Exception {
if (n < 0)

throw new Exception();
if (n !'= 12)

return 8;
while (true) ({}

Page 16

In the above example we used heavyweight specification, and in the example before that we
used lightweight specification. The heavyweight specification is more expressive and we sus-
pect that this is the type of specification that we will use in the actual project, but the lightweight
specification is more succinct and thus useful for examples. The syntax and semantics of loop
invariants are the same for both types of specification.

2.3 JML annotations inside methods

In addition to making it possible to describe the behavior of a class and its methods from the
perspective of a user of that class, JML can also be used to describe behavior inside a method.
This can be done using assertions and loop invariants. An assertion states that a certain pred-
icate should always hold whenever program execution reaches the point where the assertion
is defined. In JML the assert keyword is used to specify an assertion. Note that the Java pro-
gramming language also has an assert keyword, however because it cannot guarantee that
evaluating its predicate is free from side-effects and because it is less expressive than assert
in JML, we will not use it. A loop invariant can be thought of as an assertion that has to hold just
before entering a loop, and at the end of the body of a loop. This is useful because a correct
loop invariant allows us to say things about the properties of a loop without knowing the num-
ber of iterations in advance. While assertions and loop invariants are usually implementation
details that are unimportant to users, they can be valuable to programmers. Even without tool
support, assertions and loop invariants can be used to document the assumptions that were
made by the author. With tool support, there are two more ways that we can use assertions
and loop invariants: we can verify that they hold at run-time using run-time assertion checking,
or use them in combination with static analysis to prove a method correct. For static analysis
loop invariants are essential to proving that a method obeys its specification. Both of these
applications will be discussed later in this chapter.

In Figure 2.1 we demonstrate a use of the loop_invariant and assert keywords. The
allTrue method checks if an array of booleans only contains true. To do this, we iterate over
the array, accumulating the result in a variable named result. We add an invariant to the loop
that describes this behavior: we state that the value of result is equal to the property of all
positions of array arr with an index smaller than i being true. This property holds trivially on
loop entry; there are no indices smaller than i because i = 0, so the property is vacuously
true. In the loop body we check the current position in the array, and increase i by one, thus
once again establishing the loop invariant. Because the loop invariant holds on loop entry and
at the end of every execution of the loop body, when we exit the loop we know that the invariant
holds, and that the loop condition is false. In the example, this knowledge is made explicit
using the assert keyword, and the method postcondition is easily established.

Page 17

0N O O WD =

N DO N 2 = 4
N - O © 00 NO” O A WND =+ O ©

/*@ requires arr != null;
@ ensures \result ==
Q (\forall int i; 0 <= i && i < arr.length ; arr[i]);
@x/
public static boolean allTrue (final boolean[] arr) {
boolean result = true;
int i = 0;
/*@ assert arr.length >= 0;
@ loop_invariant result ==
@ (\forall int j; 0 <= j && j < i ; arr[j]l);
@ loop_invariant i >= 0 && i <= arr.length;
@x/
while (i < arr.length) {
result = result && arr[i];
it++;
}
/*@ assert result ==
@ (\forall int j; 0 <= j && j < i ; arr[j]);
@ assert i == arr.length;
@x/

return result;

Figure 2.1: An annotated method demonstrating preconditions, postconditions, loop invariants,
and assertions.

2.4 Checking JML

Various tools exist that can check if a piece of Java code actually matches its JML specification.
They can be divided in two categories: tools that check specifications at run-time (run-time
assertion checking), such as jmirac, and tools that prove that the specification is correct by
examining the source code (static checking), such as ESC/Java2 and OpenJML.

The tool jmirac comes with jmlc, a program which can compile Java source files into Java
class files like a normal Java compiler, but it also recognizes JML and will generate extra code
that will check that the specification is obeyed at run-time. This checking includes preconditions
(requires), postconditions (ensures), assertions, invariants, loop invariants, etcetera. This
way, when you execute the resulting Java code (either by running it normally or when running
tests) an exception will be thrown if the execution does not match the specification.

On the other hand, tools such as ESC/Java2 and OpenJML take the JML specification and
the Java code and attempt to prove (using an automated theorem prover) that the code obeys
the specification. This does not require compiling and executing the Java code, although large
parts of the process of translating the annotated Java code to input for a theorem prover is very
similar to the work performed by an ordinary compiler.

Both approaches have their advantages and disadvantages. For example, with run-time
checking you can omit loop invariants completely and it will still be possible to check method
preconditions and postconditions. However, run-time checking will only tell you if the specifica-
tion is correct for the inputs that you have tried. In contrast, static checking will let you prove
that methods obey their specification, but the tools that can do this usually require more guid-

Page 18

ance, especially in the form of loop invariants for code with loops. One important property of
loop invariants is that they cannot be automatically derived in the general case. Static checking
tools also tend to have problems with reasoning about floating point arithmetic, and they may
ignore the possibility of integer overflow.

2.5 OpendML

OpendML is a tool set that can help verify JML specifications. It supports both static checking
and run-time checking for Java up to version 1.7, and was created to replace ESC/Java2, a
similar tool which supports Java 1.4. OpenJML is built on OpendDK, an open-source Java
Development Environment, by modifying and extending the OpenJDK Java compiler. For ex-
ample, parsing of JML specifications is added to the parsing phase, and before the code gener-
ation there is now the option of first modifying the AST to insert run-time checks, or to perform
static checking and skip code generation entirely.

One of the key goals of OpendML is to provide challenge problems to SMT solvers [3],
which it uses for its static checking. OpenJML has been tested with Z3 [4], CVC4 [1], and
Yices [5], and it uses these solvers by translating Java methods and their specifications to a
verification condition and presenting this to a solver. The verification conditions are expressed
in the SMT-LIBv2 format, which is a standard input format that all the aforementioned solvers
support. The solver can then reason about the problem and give the result to OpenJML, which
then informs the user of the result. Because OpenJML keeps a mapping between the original
Java code and the verification conditions it generates, it can translate the results of the SMT
solver into a message that a user can understand. If the SMT solver finds a counter-example
that demonstrates a violation of the specification then OpenJML can print information about
the values that variables took to reach the state where the specification was violated.

When OpenJdML performs its static checking it will evaluate each method in isolation, re-
placing calls to other methods by an assertion of its preconditions and and assumption of its
postconditions. This is convenient because a method that fails to verify (e.g. because it is
missing a loop invariant) does not preclude other methods from being verified, as long as it
has correct pre- and postconditions. This means that when adding JML specifications to an
existing codebase, it is not required to annotate the entire codebase all at once to get useful
results.

2.6 Summary

JML is a language that can be used to annotate Java programs. These annotations can for-
mally specify the behaviour of the annotated code. JML is able to describe many program
properties. The properties that are most important to this thesis are method preconditions,
method postconditions, and loop invariants, all of which are demonstrated in Figure 2.1. Tools
such as OpenJML are able to use static analysis to prove that a Java program obeys its JML
specification, provided that the specification is correct. Loops are hard for tools to reason
about and are generally required to be annotated with loop invariants for a correctness proof
to succeed.

Page 19

Page 20

Chapter 3

Loop Invariant Generation

As described in the previous chapter, tools performing static analysis to prove that a program
obeys its specification require loop invariants to reason about loops. These loop invariants
cannot be automatically derived in the general case. This limitation has not stopped formal
methods researchers from creating tools and techniques that are able to derive loop invariants
in specific cases. In this chapter we will describe several of these tools and techniques. Several
of the tools described in this chapter are used in the loop invariant generation framework we
have created.

3.1 Polynomial Invariant Generation by Algebraic Techniques

Kovacs and Jebelean identify a subset of imperative loops called P-solvable loops [11] [12].
An algorithm is presented that can generate a finite set of polynomial relations among the loop
variables, provided that the loop body contains only assignments and no conditionals. From
these polynomial relations any polynomial invariant can be derived. It is not clear if this method
is complete for P-solvable loops with conditionals, but without conditionals it is complete.

The algorithm works by expressing the value of each variable in the loop body as a recur-
rence equation. So the value of a variable in iteration n can be expressed as a formula f(n)
that depends on the values of variables in iteration n — 1. Naturally 0 < n, and f(0) is defined to
be the value of a variable after the first iteration. If a loop body contains conditionals, these are
translated to more loops. For example, the program in figure 3.1 can be translated to the pro-
gram in figure 3.2 (in these examples, e; and c; are expressions and statements respectively).
When all the conditionals are removed, the loop bodies are analyzed from the most inner loops
to the most outer loops by solving the recurrence relations. This yields a loop invariant that
holds for the outer loops and any inner loops.

While (ey) {
C1;
if (eg) { c3 } [else { cs }]1;

C5;
Figure 3.1: A loop containing a conditional

Page 21

While (e1) {
While (ey Aeg) { ci;e3;c5 ¥
While (e; A —e) { ci;leas]es F

Figure 3.2: The loop with the conditional replaced by inner loops.

Kovacs and Jebelean describe how the algorithm is able to find interesting loop invariants
for several nontrivial programs containing loops, such as a program for calculating square
roots by E.W. Dijkstra, a program for calculating square roots by K. Zuse, and a program for
calculating the product of two numbers.

The algorithm appears to work very well for loops that manipulate numbers, but is unable
to work with non-numeric data structures. A tool named Valigator has been created, which
implements their algorithm.

3.2 Inferring Invariants in Separation Logic for Imperative List-
processing Programs

Magill et al. describe a way to reason about the shape of data and derive loop invariants using
separation logic [14]. Their algorithm works for (potentially cyclic) linked lists and was able
to extract loop invariants automatically for several pointer programs that perform destructive
heap operations. A list is modeled using a recursive definition that can easily be folded and
unfolded. Their technique will symbolically execute a loop body multiple times, and for each
iteration attempt to fold into lists all memory cells that are not directly pointed to by a program
variable. When the algorithm finds a fixed point it can generate an invariant. The technique in
the paper has only the boolean, integer, and list-of-integers types, but the authors believe that
their technique can be extended to allow types such as list-of-booleans and lists-of-lists.

The authors use the two predicates below to describe a list. The first describes a list that
may or may not be empty, while the second describes a non-empty list. The notation a — (b, ¢)
means that a points to a tuple of values b and ¢. This structure is used to represent a list by
having the first value of the tuple represent a value, and the second value represent a pointer
to the remainder of the list.

Is(p1,p2) = (Fz,k.p1— (z,k) xIs(k,p2)) V
(p1 = p2) A emp

Is'(p1,p2) = Is(p1,p2) Ap1 # D2

During symbolic execution, memory is represented as a triple (H;.S; P). At any point there
can be multiple possible states that the memory may be in, so we keep track of a set of
possible memories {(H;S; P)}. Entities in the heap are expressed in separation logic and
listed in H, assignments on the stack are listed in S, and P contains predicates in clas-
sical logic, augmented with arithmetic. The symbolic evaluator starts with the annotation

Page 22

0 N O O WD =

—_
OO~ WON = O ©

H A P, which describes the initial state of the heap and properties of the stack variables.
The authors illustrate the workings of their method using an example program, we will use
the same program, but translated to Java. Note that the Node.Next property should be con-
sidered to be equal to the k from the Is definition above (because we never inspect the con-
tents of the list we can ignore x in this case). This program can be seen in figure 3.3. For
this program, the starting annotation would be Is(oldList,null), yielding an initial state of
{3v1, v2,v3.(Is(v1, null); oldList = v, newList = vo,tmp = vs;)} (P is empty). Note that from
this point on we will omit existential quantifiers. The authors have defined symbolic evaluation
rules that manipulate the state, we will not repeat them here, but they are fairly straightforward.
The rules take a single memory or a set of possible memories, and produce a memory or a set
of memories. For example, after executing the first two statements of the example program,
the state would be {(Is(v1, null); oldList = vy, newList = null,tmp = v1;)}. If required Is(a, b)
can be unfolded to its right-hand side, but this is only done if progress is otherwise impossible
because unfolding can be done an arbitrary number of times, which would blow up the state.

// Assume that Node is some class that has a 'Next’ reference
// to another Node (or null), allowing construction of a singly
// linked list.
public static Node LinkedListReverse (Node oldList) {

Node newList = null;

Node tmp = oldList;

while (tmp !'= null) ({
oldList = oldList.Next;
tmp.next = newlist;
newList = tmp;
tmp = oldList;

}

return newlist;

Figure 3.3: Translated example program from the paper

The algorithm handles loops as follows: when it enters a loop it adds the loop condition to
the predicates P, then it symbolically executes the loop body. When it reaches the end of the
loop body it attempts to fold the instances below:

Vg — (x, vp) * IS(vp, ve)
and

IS(va,vp) * 1s(vp, ve)
into instances of:

Is(vg, ve)

and

IS(vg, ve)
Because folding loses some information it should not be applied in all cases. The authors have
a heuristic where they do not fold away any value directly assigned to a program variable, so if

S contains some assignment z = v then v will not be folded away. This heuristic is not perfect
and there exist programs that cannot be proved because too many folds are applied. A simple

Page 23

example case mentioned by the authors is a program where the loop invariant relies on the
property that some pointer is two steps ahead of another pointer: instances of (v; — (_, va) *
vy — (L, v3)xIs(vs,v4); ¢ = v1,y = v3;) will be folded away to (Is(v1, v3) *IS(vs, v4); 2 = v,y =
v3;) because vy was not assigned to any program variable. The program keeps executing the
loop body until it reaches a fixed point, where the memory of the previous iteration implies
the memory of the current iteration. If a fixed point is reached, the loop invariant is equal to
the disjunction of the memories of each iteration; that is, if we number the memories for each
iteration, where (0) is the memory before executing the loop body for the first time, (1) is the
memory after executing the loop body one time, and (n) is the memory after executing the
loop body n times, then if we reach the fixed point at iteration n, the loop invariant is equal to
OV V(2 V...V (n).

The example program reaches a fixed point after the second iteration. The resulting loop
invariant is shown below. The first line is equal to the initial state, the third line is equal to the
state after a single iteration, and the third line is equal to the state of all subsequent iterations.

Fuy.(Is(vy, null); tmp = v1, newList = null, oldList = vy)
V
Fv1, ve, v3.(v1 — (ve, NUll), IS(vs, NUll); tmp = vs, newList = vy, oldList = v3,v1 # null)
V
Juy, v3, v5.(|81(03, null)xls(vs, null); tmp = vs, newList = v, oldList = vs; v3 # nullAv; # null)

There are cases where a fixed point cannot be found. For example, if all the values in a list
are accumulated in some variable, we get a predicate of sum = vi+va+v3+. ..+ v,, potentially
going on forever. Because the algorithm is primarily focused on shape information it deals with
this problem by simply forgetting any information about integers, in the aforementioned case it
would simply assign a fresh value to sum. The authors then propose to extend their method by
adding predicate abstraction, which allows some information to be preserved while ensuring
that the algorithm can still converge on a fixed point. While they have not implemented this
extension, they claim that it proved useful when working out some examples by hand.

The authors describe in their results how their implementation of the algorithm allowed them
to generate loop invariants for several programs performing list operations, such as computing
the length of a list, summing the elements, deleting a list, reversing a list, and partitioning a list.
Because the algorithm forgets integer arithmetic we assume that while in each of these cases
some invariants were found, it cannot be the case that all invariants were found (for example,
for calculating the length of a list or the sum of its elements), exactly which invariants were
found is not clear from the paper.

3.3 Daikon

Ernst describes the tool Daikon, which performs dynamic program invariant detection. The
tool is able to detect many invariants that hold during one or more executions of a piece of
code, by monitoring the values taken by variables at specific points during execution [6] [7]
[10]. This monitoring is usually performed while executing a test suite. By default Daikon does
not attempt to find loop invariants. However, the tool will monitor which parameters are used

Page 24

for method calls, so by inserting calls to dummy methods taking all interesting variables as their
parameters at the entry and exit of a loop, the tool can be made to detect loop invariants.

The tool is divided in two parts: an instrumentor and the inference engine. The instrumentor
performs monitoring either by inserting monitoring code into the source code of the program
that is to be examined, or by operating directly on an executable. The inference engine (also
named Daikon) will infer the invariants from the data produced by the instrumentor. Many
languages, including Java, C, and C++, are supported, and adding support for a new language
requires only the creation of an instrumentor for that language.

The inference engine is able to detect invariants such as a variable never being zero or
null, a variable being constant, a variable being restricted to a certain range, a variable always
being greater or smaller than another variable, and many more. Daikon will filter out redundant
invariants that are consequences of stronger invariants, for example, if it finds that x = 5 and
10 <= y <= 30, then it will not report invariants such as = # 0 and = < y, which are logical
consequences. In addition to supporting various invariants over numeric variables, Daikon can
also discover properties of sequences, such as one sequence being a subset or a reversal of
another sequence, and a variable always having a value contained in a certain sequence.

In practice, it turns out that many of the invariants that are detected by Daikon turn out to
be true invariants, holding not just in the limited number of executions that Daikon was able
to examine, but in all possible executions. The quality of the test suite influences the quality
of the detected invariants: a large test suite that tests methods with many different inputs that
cover most of the corner cases will generate fewer spurious invariants than a test suite that
often reuses the same input values and does not test corner cases.

While Daikon alone cannot ensure that the invariants it has found are generalizable, an
automated prover can be used to verify that they apply to all possible executions. For instance,
when using Daikon on a Java program the invariants can be added to a class or method as
JML, and then a tool such as OpenJML can attempt to verify them.

3.4 DynaMate

Galeotti et al. describe how they created a framework named DynaMate for automated veri-
fication by combining several tools [10]. They test their framework on 28 methods containing
loops from various java.util classes. Their framework manages to create complete correct-
ness proofs for 25 of these methods. Below we will give an outline of the algorithm behind
DynaMate, and then we will discuss the tools it uses.

The input of a DynaMate run is a Java method and its pre- and postconditions (in JML).
Test cases are automatically generated for the method using a tool called EvoSuite [8]. The
Daikon tool, which is described in detail in the previous section, will automatically generate
candidate loop invariants based on the execution of the generated test cases. Candidate loop
invariants are then verified with ESC/Java2. If the verified loop invariants are sufficient to prove
the method the algorithm is done. Otherwise more test cases are generated and Daikon is
run again. This can happen for several iterations until either proving the method succeeds or
until no more valid loop invariants are found by Daikon. When the latter happens the GIN-

Page 25

DYN tool is used. This tool creates candidate loop invariants by generating mutations of the
method postcondition. The set of candidates is pruned by rejecting those that fail at least
one test case, and by eliminating tautologies. ESC/Java2 is then used to verify the remaining
candidates. This process is also repeated until verification of the entire method succeeds. If
the entire process takes too long the program gives up and reports a failure.

With an average run time of about 45 minutes per method DynaMate is not very fast. The
authors suggest this run-time might be improved by not treating the third-party components as
black boxes.

The underlying tools use randomness in their operation so for some methods it will only be
able to prove them on some runs. For example, the authors report that over 30 runs DynaMate
was able to prove ArrayList.lastIndex0f correct only 20% of the time.

3.4.1 EvoSuite

EvoSuite is a tool that can automatically generate test suites for Java programs. The tool will
attempt to evolve a small test suite with high code coverage. It achieves this by automatically
generating multiple test suites, and then uses a genetic algorithm to evolve a better generation
of test suites. Fitness of a particular test suite is calculated based on branch coverage. The test
suites created by EvoSuite are useful when performing dynamic program invariant detection
with tools such as Daikon because their high branch coverage will ensure that most corner
cases are observed.

3.4.2 GIN-DYN

The GIN-DYN tool attempts to guess loop invariants based on the postconditions of a method.
The tool is based on gin-pink [9], which is discussed in detail in the previous section. How-
ever, it operates slightly differently. Firstly it operates on a single loop at a time, rather than
generating mutants using the entire method body and then trying to use them as loop invariants
for each loop. All clauses occurring in the method postconditions are used as initial mutants.
GIN-DYN also uses different mutation operators, which we will describe below. The authors
provide no data to suggest that their mutation operators are better than those used by gin-pink,
but apart from the aging mutation they appear to be at least as powerful as the operators used
in gin-pink.

First there is substitution, where a subexpression in a mutant is replaced by an expression
of the same type that occurs somewhere in the current loop. This mutation strategy can do
everything that the constant relaxation and uncoupling mutations from gin-pink can do and
more, because the operators in gin-pink can only operate on constants and variables rather
than expressions.

Secondly we have the weakening mutation, which takes a mutant and a boolean expres-
sion occurring in the loop body and generates two new mutants, one where the original mutant
is implied by the boolean expression, and one where it is implied by the negation of the ex-
pression. For instance, if our original mutant is m and b is a boolean expression, then the new
mutants are b =— m and b = m.

Page 26

Finally GIN-DYN has the aging strategy, which is a much simpler version of the mutation
strategy with the same name that is used in gin-pink. The GIN-DYN aging mutation simply
takes a mutation containing a subexpression e of type int, and generates two new mutants,
where e is replaced by e — 1 and e + 1 respectively.

Because randomly applying these operators leads to a combinatorial explosion, GIN-DYN
has some predefined sequences of mutations called waves. These are sequences that are
likely to yield good results. After running a wave, bad mutants are rejected by checking if
they hold at the start and the end of the loop body when running the test cases generated by
EvoSuite. Any hypothesized invariant that does not hold in at least one of the tests is obviously
invalid and is removed. Note that all generated mutants can be tested at once in a single
execution of the test suite. Some of the mutants that remain may be redundant because they
are implied by loop invariants that have already been found. These mutants are also removed
by generating for each mutant a dummy method that contains only all confirmed loop invariants
as an assumption, and the mutant as an assertion. If the method is verified by ESC/Java2
then the mutant must be an implication of the invariants that are already known, so it can be
removed. Finally the remaining mutants are added to the actual method and tested for validity.

3.5 Summary

In this chapter we have described several loop invariant generation techniques. Many of these
use static analysis, while others will attempt to derive loop invariants based on observed pro-
gram executions. The work by Galeotti et al. on DynaMate serves as an inspiration for the loop
invariant generation framework we have created. The other techniques are good examples of
additional improvements that could be added to the framework as possible future work. Be-
cause of the varied nature of the the loop invariant generation techniques that currently exist,
and because of the success of DynaMate even with only a very limited selection of loop invari-
ant generating tools, we expect a framework that incorporates more of these techniques to be
very effective.

Page 27

Page 28

Chapter 4

Setting up the Case Study

As described in the introduction, we will create a framework that integrates multiple different
loop invariant generation tools. The creation of this framework will serve as a case study to
identify technical difficulties that may be blocking the integration of formal methods tools in
general. In this chapter we will explicitly list our goals, and formulate a list of requirements
for the framework based on these goals. These requirements will guide the design of the
framework

41 Goal

The work by Galeotti et al. [10] shows that multiple different tools can complement one another,
and this combination of tools is able to perform better than any individual tool is able to. Their
research focused primarily on demonstrating the synergy between their chosen tools, but they
did not report on the difficulties of integrating these different tools within one framework. The
goal of our study is to investigate technical difficulties that stand in the way of integrating formal
methods tools in other software.

Even though we will add a limited number of tools to our framework, we will set it up in such
a way that new tools can be added by writing some glue code that sits between a new tool and
the framework. This setup will force a design that isn’t specialized for the types of tools we use.
This is desirable because a design that is too focused on the particular tools we use may hide
difficulties that would appear when writing a more general framework.

The problems we encountered while implementing the framework are documented in chap-
ter 7. Based on these problems we will formulate advice for tool creators that may help improve
the easy with which their tools can be integrated in the future.

4.2 Requirements

Using the goals discussed in the previous chapter we have formulated requirements for our
framework. These requirements are listed below, and each individual requirement will be dis-
cussed in detail in the subsections following this list.

Page 29

1. The framework should integrate several different tools.
2. The framework should reuse existing functionality where possible.
3. The framework should be extensible

4.2.1 The framework should integrate several different tools

We believe loop invariant generation tools make a good target for integration because there are
many different ones with various strategies, and they can complement one another as shown
by Galeotti et al. [10]. Because these tools are created by different researchers, we believe
this diversity will contribute to discovering more difficulties that hinder integration.

4.2.2 The framework should reuse existing functionality whenever possible

If tools were to use the same software libraries where possible they might be easier to integrate.
This would not apply to internal details, but could make a big difference for types exposed
through an API. For instance, if two tools operating on Java were to use different libraries for
interacting with Java code, there might be additional friction when integrating these two tools.

4.2.3 The framework should be extensible

While it may be possible and easier to build a piece of software that handles only the specific
tools that we have chosen to integrate, this would likely not reveal the difficulties that would
arise when integrating arbitrary tools. Therefore we will set up our framework in a generic way
such that multiple tools can be added, and use those generic ways to integrate with the tools
we have chosen.

4.3 Conclusion

We will use EvoSuite for test-case generation, and Daikon for dynamic invariant detection. We
know from DynaMate that these two tools work well together. In additional to these tools we
will write a simple static analysis technique which will perform static invariant generation. We
will use OpendML to tie everything together: the framework will use OpenJML to parse Java
code, analyze Java code, and, where required, to modify Java code. In addition, OpenJML will
be used to verify generated invariants.

One advantage of the chosen tools is that they are all written in Java. We believe that a
shared implementation language will maximize the possibility for integration, because there are
no extra language barriers. Writing a static analysis pass using OpenJML will test the viability
of using OpenJML as a basis for writing static analysis tools.

Page 30

Chapter 5

Architecture

Interoperability between different tools often requires that the results of one tool can be used
as the input for another. For instance, when a tool generates invariants that are suspected,
but not proven to be true, we would like to pass these suspected invariants to to tools that can
prove (or disprove) invariants. None of the tools we use are directly usable in this way. To get
these tools to interoperate we introduce an intermediate format, and will introduce functionality
to translate between this intermediate format and the inputs and outputs of the various tools.

Even with translation of inputs and outputs not all tools need to directly interact. A tool that
generates testcases does not produce output that is going to be of use for a static analysis
tool. We have listed the invariant generation paths that we intend to support in figure 5.1. The
tools we will use will all fall into one of these categories. In the next section we will discuss
these categories in more detail.

In addition to keeping track of the various tools that it can run, the framework should keep
track of the loops it is attempting to prove and of the invariants that have been found. Because
some invariants are merely suspected and not (yet) proven, the framework has to keep track
of the status of each invariant as well. It may be impossible to prove a particular suspected
invariant until other invariants have been found, so suspected invariants cannot simply be
discarded when proving it fails the first time (although naturally a counter-example is always
sufficient to reject it immediately).

The framework will keep track of the loops by holding a representation of them in memory.

testcase generation static analysis

testcases
invariants

dynamic invariant detection
invariants
(dis-)prove invariants

Figure 5.1: Invariant generation

Page 31

For each loop the framework will also keep track of the variables that are in scope. This
information will be exposed to the code that runs the tools, which can use it to translate tool
results to the intermediate format.

5.1 Framework design

The framework we come up with consists of several parts. We first observed that there are
different types of tools among the ones we will use: tools that generate test-cases, tools that
perform dynamic invariant detection, tools that perform static invariant detection (“static analy-
sis”), and tools that can verify or reject suspected invariants. In the following subsections we
will discuss each of these types in turn.

5.1.1 Test-case generation

Tools that dynamically detect invariants need to observe program executions to collect informa-
tion. Ideally every program would have a good test-suite that can be used for this purpose, but
when this is not the case it is possible to automatically generate test-cases. A good test-case
generator can also supplement an existing test-suite. Tools such as EvoSuite will attempt to
generate test-cases that have full code coverage, which is good for dynamic invariant detection
tools because it allows dynamic invariant detection over not just the common paths but also
the edge cases.

In our framework a test-case generator can be requested to generate executions for some
classes. Because there is no practical limit to the number of test-cases that can be generated,
the test-case generator may decide for itself when it has produced enough tests. The frame-
work can request more executions when the ones that were generated previously turn out to
be insufficient.

5.1.2 Dynamic invariant detection

Tools such as Daikon are able to record the program state at various points in the execution
of a program, and use this recorded information to make informed guesses about invariants
of that program, based on the invariants that hold in the observed executions. By observing a
large and diverse set of executions the invariants observed by a dynamic invariant detector are
more likely to match the true invariants of the program.

The framework will support tools that perform dynamic invariant detection. These tools
will receive their program executions from the test-case generation tools. Because invariants
found through dynamic invariant detection are always a best guess based upon observations,
invariants found by these tools will always need to be verified by other tools.

Dynamic invariant detection can discover invariants such as result > 0 in the code example
5.2, even when no information about Math.max is available. Naturally any tool attempting to
prove the correctness of this invariant would still require access to additional information about
Math.max.

Page 32

—_

O O 00N O O b WN =

public static int example(int[] arr) {
int result = 0;
// Can be detected by a dynamic invariant detector:
//@ loop_invariant result >= 0;
for(int i : arr) {

result = Math.max (result, result + i);

return result;

Figure 5.2: Dynamic invariant detection example

5.1.3 Static analyzers

Tools performing static analysis represent the classical approach to proving program correct-
ness. While discovering all relevant loop invariants using only static analysis is impossible in
the general case, there are many cases where static analysis is able to generate some or all
loop invariants necessary to prove correctness of a method. A good example of such a tool
could be Valigator, which analyses the relations between numbers in a loop.

Our framework will not require a static analysis tool to be sound, a static analyzer may
indicate for the invariants that it has found whether they should be considered proven or not.
Unproven (“hypothesized”) invariants will be checked by other tools. Invariants reported as
proven will be assumed to be correct by the framework. The GIN-DYN tool used by Dynamate
is a good example of an unsound static analysis tool: it will guess invariants by mutating the
method post-conditions, and most of the invariants that it produces will be incorrect.

We will add a static analysis pass of our own to the framework which will guess invariants
for for-loops. In our experience, many for-loops have the following shape: for (inti = a; i <
b; i++) { /* loop body */ }, where a and b are expressions, and int i can actually be of any
numeric type, and have any name. A simple static analyzer that ignores the loop body and
simply guesses that i >= a and a <= b will often be correct. Our implementation will report
the invariants it generates as hypothesized. Tools such as OpenJML can usually trivially prove
these invariants when they are correct.

5.1.4 Invariant checkers

Some of the tools mentioned above produce invariants that may be incorrect. To make cer-
tain the framework does not report incorrect invariants, we can use tools that can distinguish
between correct and incorrect invariants. We will use OpendML to make this distinction. By
using static analysis it can attempt to prove or disprove hypothesized invariants. If the invariant
checkers are unable to either prove or disprove an invariant it will be remembered so that ad-
ditional attempts to prove or disprove it can be made once more correct invariants have been
found.

Page 33

5.2 Components

To keep the framework extensible, we will define interfaces for each tool-type discussed in the
previous section. Adding a new tool can then be achieved by implementing the appropriate
interface. We refer to the combination of a tool and the wrapping code as a component, and
the interfaces all inherit from a base interface called Component.

The Component interface defines an init method which is called once for each component
to initialize it. We observed that many tools needed to interact with the filesystem in some
way, so the init method has a path to a folder where the tool is allowed to create files and
folders. By ensuring that all tools have their own folder, there is no risk of tools overwriting
files of other tools. In addition to a path, the init method has a Context parameter which is
an object containing various methods for obtaining information about the Java code that the
tools must find loop invariants for. This information includes which classes are targeted for loop
invariant generation, and information about the loops in each class. This information includes
a reference to the abstract syntax tree node representing the loop, a list of all the variables that
are in scope for the loop, and a list of all variables that are used in the body of the loop.

In addition to the init method, Component defines a method getName, which returns the
name of the underlying tool. This is used for diagnostic messages.

5.2.1 ExecutionProvider

The ExecutionProvider interface extends the Component interface. It has a method provideExecutionsFor,
which takes a list of Java class names as a parameter, and returns a list of Execution in-

stances. The Execution interface represents a program execution that can be used by dy-

namic invariant generators to run code which triggers executions for the requested classes.

EvoSuite uses this interface and the instances it returns contain information about how to run

the generated unit-tests.

5.2.2 DynamiclnvariantGenerator

The DynamicInvariantGenerator interface is implemented by tools that can dynamically de-
tect (likely) loop invariants, such as Daikon. The interface extends Component and adds a single
method generateInvariants, which accepts a list of Execution instances, and returns loop
invariants. Because dynamic invariant detection can only detect “likely” invariants, implemen-
tations of this interface will generally mark the resulting invariants as “hypothesized” , leaving
the work of proving or rejecting the invariants to other tools.

5.2.3 StaticlnvariantGenerator

Tools using static analysis to generate loop invariants can use the StaticInvariantGenerator
interface. This interface has a single method generateInvariants, which has no inputs and
returns invariants. While most static analysis tool will not return different results when invoked

Page 34

multiple times, this is not guaranteed. The GIN-DYN tool used in DynaMate generates possible
invariants by randomly mutating method post-conditions. Therefore tools of this type will also
get executed for each iteration of the framework, and have the option of marking reported
invariants as “proven” (for sound static analysis tools) as well as “hypothesized” (for tools such
as GIN-DYN).

5.2.4 InvariantReject

The InvariantReject interface is intended for tools which can reject incorrect invariants, as
well as those which can prove the correctness of correct invariants. It has two methods. The
first method is assumeInvariants, which takes invariants that have already been proven as an
argument, and tells the tool to assume that these invariants are correct. This can be useful
when a different tool has proven correctness of one or more invariants. The second method is
rejectAll, which takes a collection of invariants and should attempt to prove or reject these
invariants, and return three sets of results (proven, hypothesized, and rejected). The hypoth-
esized state is for invariants that the tool was unable to conclusively prove or disprove, these
invariants may be resubmitted once additional invariants have been proven.

5.3 Operation of the framework

The workings of the framework itself are simple. The framework will load and initialize the
various components. Then it will enter a loop, where it will run the different component types in
turn, and collect sets of confirmed, hypothesized, and rejected invariants. At the end of each
iteration, it compares these sets with those found in the previous round, and when there are no
changes it exits the loop. Note that this does not imply that no more invariant could have been
found; for instance, dynamic invariant detection is limited by the executions it has observed, so
generating more test-cases might have enabled the detection of more invariants.

The framework will load the various components and initialize them. After that it will enter
a loop where it will run the components. After each iteration it will check if it progress has
been made. The framework measures defines progress as any mutation to the sets of proven,
hypothesized, and rejected invariants. When no more progress is being made the framework
will exit the loop and shut down.

Page 35

start — Initialize components

Run static invari-
ant generators

Run execution providers

New invariants found

Run dynamic in-

Run invariant rejectors .
variant generators

No new invariants found

Halt

Figure 5.3: Main framework loop

Page 36

Chapter 6

Implementation

The part of the framework which initializes all the components and runs the main loop is
straightforward. It has a hard-coded list of components that are constructed and initialized.
After that it will initialize a new instance of the LoopRunner class, which will then enter the main
loop and run the components in turn until no new invariants are found, as described in the
previous chapter. The implementation complexity resides in two parts: the analysis of the Java
files that the framework operates on, and the implementation of the various components.

In this chapter we will first describe how the context is created, and then describe each
component we implemented for the framework.

6.1 Building the Context

For analyzing the Java files the framework will initialize a Context object. OpenJML has an API
that enables using it as a library, and the Context object will create an instance of OpendML
inside the current process and expose its APl. The Context object will load the Java files in
OpenJdML and run an analysis to find all loops in the given files. For each loop, it will store:

The variables that are in scope for that loop

The variables that are defined within the scope of that loop
The variables that are used in that loop

The method that contains the loop

The class that contains the loop

RS

The context will be passed to all components, which can use the gathered data. Gathering
the above information is done in two passes over the abstract syntax tree built by OpenJML,
and most of the components we created use this information in some way. Having this in-
formation in a context object available to each component avoids having to re-implement the
functionality in each component.

Page 37

6.2 EvoSuite

The framework uses EvoSuite for its test-case generation. During each iteration of the main
loop, the framework will have EvoSuite generate a new test-suite. While it is possible for
EvoSuite to mutate an existing test-suite, we have chosen not to use this functionality, but to
generate an entirely new suite each time. This choice avoids having to distinguish between the
case of having to generate a new test-suite and the case of having to mutate an existing one.

EvoSuite can be set to keep working until it has achieved 100% branch coverage, but
such coverage is not possible for all possible inputs, nor is it possible to accurately predict
in advance how much branch coverage can be achieved in the general case. To ensure that
EvoSuite terminates, we set a time limit. The framework starts this time limit at 10 seconds,
and will exponentially increase this limit each iteration.

6.3 Basic static invariant generator

We made the observation that many for-loops behave very predictably: they assign an initial
value to a single variable, and that variable is then only ever incremented or decremented,
usually monotonically. It can take a couple of iterations before dynamic invariant detection
gains enough confidence to emit these properties, especially since for-loops often iterate over
the indices in some list or array, and EvoSuite tends to generate relatively short inputs. To work
around this we have created an extremely simple static invariant generator, which visits every
for-loop and hypothesizes these invariants. This guessing of invariants is safe to do because
invariants will be checked with OpenJML, which will usually instantly either reject on confirm
the correctness of these invariants.

6.4 Daikon

When other components have generated testcases, the Daikon component can run Daikon to
perform dynamic invariant detection on testcase executions. However, this involves more than
simply running the tool. Daikon will take snapshots of variables when entering and leaving a
function, but it will not detect any information about loop executions. To extract information
about loop executions, we must modify the source to insert dummy function calls. In addition,
even though Daikon can report the invariants that it has found in JML syntax, this JML is not
directly usable and requires a translation. In the following paragraphs we will explain how
Daikon is used in the framework.

6.4.1 Gathering loop information

Using the data that the Context object provides, the Daikon component knows which loops it
must investigate, and which variables are in scope and used in these loops. It will generate
dummy classes containing dummy methods, and insert calls to these methods in loop bodies.
These operations are performed on the abstract syntax tree provided by OpenJML. An example

Page 38

0N O O WD =

N MDD NDMNDMN 2L A a4 a4 a4 a4 a4 a a4
A WODN - O O 00N WOWN-—= O O

/* Original method x*/
void example (int[] args) {
int sum = 0;
for (var i = 0; i < args.length; i++) {
sum += args[i];

}

11111177117711771711777711777777777
/* Modified method x/
void example(int[] args) {
int sum = 0;
for (var i = 0; i < args.length; i++) {
try {
dummy method (args, sum, i);
sum += args[i];
} finally {

dummy_ method (args, sum, i);

}

/* In a dummy class: x*/

void example O (int[] args, int sum, int i) {}

Figure 6.1: Daikon loop transformation

of this transformation is shown in Figure 6.1. The original abstract syntax tree is left intact by
copying it and applying these transformations on the fly.

After we have obtained the transformed methods and dummy classes, these are all written
to disk and recompiled. We then run Daikon on the testcases, which will execute our instru-
mented classes. Daikon will record calls to the dummy methods in the loop bodies. When
the test-case execution is complete, we can ask the tool to generate invariants based on the
gathered information. The tool will then emit invariants that held over all observed executions.

6.4.2 Interpreting the results

After Daikon has run on the testcases we need to interpret the results. Daikon has the ability to
run on multiple trace files, and we include not just the trace of the most recent test executions,
but also all those that have come before. This way Daikon has more data from which it can
attempt to extract invariants. This is important because dynamic invariant detection always
carries the risk of false positives. Daikon manages to be useful despite the risk of false positives
by not reporting found invariants that are likely to arise “by chance”. For instance, if Daikon
were to only observe a single call of a method, then based on that data it might be justified
to emit the invariant that the parameters of that method are always the ones passed in that
execution. In practice Daikon will suppress reporting many invariants until it has gathered
enough data that, given a set of reasonably representative observed executions, the invariant
is unlikely to arise by chance.

The detected invariants are reported per method, for both the method entry as well as the

Page 39

method exit. Because we are only interested in the invariants detected on our dummy methods,
and these dummy methods have empty bodies, we can afford to only look at the invariants that
are found on method entry. The invariants on method exit will be exactly the same, but will also
include statements such as \old(param) == param. By ignoring the exit invariants we do not
have to filter out such tautological statements.

By remembering an association between the loop that we are interested in and the names
of the generated dummy methods, we know which loops the detected invariants must apply
to. In addition we reuse the original variable names as the names of the dummy method
paramaters, thereby ensuring that translation is easier.

Daikon has the option to report its finding as JML. Sadly these invariants are not directly
usable because they often contain references to the daikon.Quant class. For instance, let a
and b be variables, where b is a collection that contains a. Daikon will report this invariant as
daikon.Quant .member0f (a, b). OpenJML does not know what this means, so this must be
translated to “normal” JML. Our Daikon component contains transformations to do this.

The static members on daikon.Quant that Daikon uses to represent invariants cannot be
trivially translated to JML. For instance, the daikon.Quant .member0f method mentioned above
has 18 overloads, all of which have two arguments, and the emitted invariants do not indi-
cate which overload was chosen. For instance, daikon.Quant.member0f (a, b) might mean
\exists int i; 0 <= i && i < b.length; b[i] == aif ‘b’ is an of an array type, but if b is
a List, then the meaning would be \exists int i; 0 <= i && i < b.size(); b.get(i) ==

a.

To translate the references to daikon.Quant into ordinary JML we first use OpenJML to
parse the expressions. The framework has the entire type-checked source abstract syntax
tree in memory, and we combine this information with the parsed expressions to determine
how to perform the translation. Using this technique we are able to translate most invariants
emitted by Daikon into ordinary JML, removing all references to the methods on daikon.Quant.
These translated invariants can then be reported to the framework, which can then attempt to
prove or reject them.

6.5 OpenJML

We use OpendML to test invariants that are not yet proven or rejected. This is done by making
a copy of the original abstract syntax tree, and while copying inserting the suspected loop
invariant. Proving one loop invariant may depend on another, so in addition to the suspected
loop invariant we insert all other loop invariants that are known to hold for that loop. Then we let
OpendML attempt to prove the method. When OpenJML succeeds, we know the invariant to be
correct. When OpenJML indicates that it has found a counter-example, we know the invariant
can be rejected. It is also possible for OpendML to indicate that proving was inconclusive.
When this happens the loop invariant will keep its ‘suspected’ status and we will try to prove it
again when additional other loop invariants have been found.

Page 40

Chapter 7
Findings

During implementation we ran into some bugs and challenges with the tools involved. We
will discuss the limitations that concern the suitability of OpendML as a library for interacting
with Java code, as well as those that we believe to be more likely to arise when integrating
different tools. We will not discuss individual bugs that are restricted to a single tool and are
not triggered or exacerbated by being included in a framework.

7.1 Documentation

One of the biggest problems we encountered was not caused by the implementation of the
tools, but by limited technical documentation. Due to this lack of documentation we ended up
at several dead ends during the implementation of the framework, trying to accomplish things
in a certain way that could not work for reasons that were not obvious until a lot of time had
been wasted doing something incorrectly.

Of the various tools we interacted with OpenJML the most, and while we do not believe
the documentation is OpendML is worse than that of the other tools, it was due to this tight
integration that missing technical documentation was most noticeable. For example, the user-
guide of OpenJML contains a separate chapter about using OpenJML and OpendDK within
other programs, but this chapter turned out to be far from complete. It contains some very
useful sections about creating a compilation context and parsing Java code, which make it
easy to get started. However, the chapter contains various sections that do not yet have any
content, such as the ones about type-checking, static checking, and modifying abstract syntax
trees. We had to discover how to perform these actions through trial and error.

After learning more about the workings of OpenJML it was relatively easy to work with, but
the lack of technical documentation may well be preventing it from being integrated in other
programs.

We found that the EvoSuite and Daikon tools have good documentation on how to use
these tools, and even some documentation for modifying and extending them. However we
were unable to find any documentation on how to integrate either tool in another program, and
resorted to just creating a new process and passing the appropriate command line options.
Later we discovered that EvoSuite can leave threads alive in the background, and Daikon will

Page 41

create a new process with a custom class-loader as part of its operation anyway. For these
reasons we believe that creating a new process for these two tools instead of attempting to run
them inside the process of the framework was the best outcome.

7.2 Tools may not clean up properly after running

The EvoSuite tool has a Java API, suggesting that it can be used without creating a new
process. However, it will create new threads during test-case generation, which may be left
running even after test-case generation is complete. This can keep the framework process
alive even after the main thread is done. The EvoSuite tool deals with this by explicitly call-
ing system.exit (0) at the end of its main method, but this is not a solution when integrating
EvoSuite in another program.

In our framework we wish to invoke EvoSuite multiple times, but we do not wish to accu-
mulate an ever-growing number of unnecessary background threads. To solve this we must
launch a new process whenever we wish to run EvoSuite. While this works well, this solu-
tion clearly limits integration: only the normal command-line interface can be used, and the
Java API cannot be used. We hope this threading issue will get fixed so that better integration
becomes possible.

7.3 Modifying the AST in OpenJML

In our framework OpendML is used as much as possible for operations interacting with the input
source code. For instance, for dynamic loop invariant detection with Daikon it is necessary to
insert new function calls around loop bodies so that Daikon knows how to make snapshots
of the variables. We perform these operations by copying the abstract syntax tree created
from the original source code and injecting the new parts on the fly. We originally tried to then
continue compilation with our modified code, but this does not work: we needed to perform
type-checking to get the instrumentation right, and OpenJML doesn’t support repeating type-
checking. In the end we had to resort to writing out our modified source code to files, and shell
out to javac to compile these files. We were unable to find a way to get this to work inside
OpendML without creating a new process.

For OpenJML to be a better library to use for modifying abstract syntax trees it should
be possible to repeat type-checking after modifications have been made. We suspect the
simplest way to support this use-case would be for OpenJML to discard any previous type-
checking results when type-checking is requested. Naturally this would lead to unnecessary
work being performed, because a class that hasn't itself been modified and does not reference
any modified class will still type-check exactly the same, but it would still be much more efficient
and ergonomic than the current workaround.

During development some other issues with OpendML were found as well, mostly related
to incorrect output when converting abstract syntax trees back to strings. These issues were
fairly minor and quickly fixed after being reported to the project. We do not believe that such
issues would block adoption of OpendJML as a commonly used library to interact with Java

Page 42

code, as they were easy to work around, and if more exist they would very quickly be found
(and fixed) when more people start using OpenJML.

7.4 Interactions between EvoSuite and Daikon

While developing our framework we ran into an unexpected interaction between EvoSuite,
Daikon, and the Java standard library. The interaction between these components caused a
problem that was highly unlikely to occur when these components were used in isolation.

1. EvoSuite will often use the List<E>.subList (int, int) method on an existing list to cre-
ate additional lists. It is not clear to us whether it does this intentionally to increase code
coverage.

2. Java specifies that the semantics of the list returned by subrist are undefined when the
original list is structurally modified. In practice, the Java standard library will attempt to
detect this occurrence and throw an exception to warn the developer.

3. When checking invariants, Daikon will call methods such as List.toaArray() On parame-
ters that happen to be a list.

Individually none of these things would be problematic. When combining them, it turned out
that Daikon would unintentionally trigger a concurrentModificationException When attempting
to get the values in the lists, because EvoSuite would create lists that were either outright
invalid (in the sense that performing any operation on them would be undefined and trigger an
exception) or would cause other lists to become invalid after the first modification.

In Figure 7.1 we demonstrate a small program that runs without errors when executed
normally. However, when running this program with Daikon an exception will be thrown. The
exact steps that trigger this are as follows:

1. The parameter bomb is a sublist of parameter trigger.

2. Modifying trigger invalidates bomb, because sublists are invalidated when the backing
list is modified.

3. When exiting the detonate method, Daikon will record the values of the parameters.

4. The sublist bomb throws a concurrentModificationException When toArray iS invoked.

While code such as in the given example program is unlikely to be written by a human,
EvoSuite will use subList in generated unit tests when creating inputs, thereby triggering these
exceptions.

This problem has since been solved in Daikon, but we think it is a good example of unex-
pected problems that can occur when combining different tools.

Page 43

© 00 NO O WON =

public static void main(String[] args) {
java.util.List<Object> base = new java.util.ArrayList<>();
detonate (base.subList (0, 0), base);
}
public static void detonate(
java.util.List<Object> bomb,
java.util.List<Object> trigger) ({
trigger.add (new Object());

Figure 7.1: Code example that crashes Daikon

Page 44

Chapter 8

Advice

Based on our experiences building the framework we have formulated several recommenda-
tions, that we will discuss below. For each recommendation we will discuss the impact we think
it would make, and the effort required on the part of tool builders.

8.1 Build tools as a library

The tools that we used were clearly intended to be used from the command line. While such a
tool can still be integrated in other software by creating a new process with the correct param-
eters, running it, and then parsing strings to interpret the results, this does form a barrier for
integration. If tools were to present an API, they could be used as a library by other programs.
This has two big advantages:

The first advantage is in argument passing. A command-line interface allows only strings
to be passed as arguments. While this limitation does not pose a problem for command-
line programs, it can raise additional barriers for programs trying to integrate with a tool. For
example, some tools take one or more files as inputs. A command-line program will usually
accept arguments that represent a path to these files. A program integrating a tool may wish
for that tool to operate on data that exists only in memory. When a tool accepts its inputs only
as file-paths the program wishing to use that tool is forced to create temporary directories, write
the data to a file, run the tool with a path to the file, and possibly ensure that the temporary
files and directories are removed. None of this would be necessary if the tool provided an API
that accepts streams.

The second advantage is in returning results. A command-line tool will usually report its
results by outputting text. A program wishing to use this output will be forced to convert these
strings back into something it can understand. An API would allow the tool to return strongly
typed objects. A program using this APl can then choose to operate on these objects directly,
or possibly convert them to a different format. Either way avoids the need to parse text, which
greatly simplifies interoperability.

Of the tools that we have used we think OpenJML exemplifies this approach best. All of the
functionality we needed could be accessed by loading it as a library and using the API. The
API has many convenient methods that allow loading Java source code not only from files on

Page 45

a disk, but also from a string or an arbitrary stream.

One additional important restriction is that the functionality in the “library”-part of a tool
should avoid performing actions that negatively affect the current process, such as ending the
process. If the functionality behind an API will sometimes deliberately end the current process,
then a program integrating with that API will still be forced to create a new process to interact
with that tool.

8.2 Have technical documentation on using the API

As mentioned in the previous chapter, missing documentation about using the OpenJML API
cost us a lot of time. For Daikon and EvoSuite we could not even find documentation about
integrating either of them in another program. If a tool has an API that could be used for
integration, but is missing documentation on how to use this API, then that API will probably
not get used. We would recommend tool creators to document the usage of their API. If a
program has various public classes and methods but is not intended to be integrated directly
in another program, then documenting this limitation can also be valuable.

8.3 Avoid global state

The use of global state is often tempting when developing a small tool, because it can avoid
the need to have a context object instance that would otherwise be required at many places
in the program. However, when the tool is made part of a larger program, the global state can
become a liability. The global state may prevent the functionality of the tool from being invoked
multiple times or from using the tool in a multi-threaded environment.

Daikon is one tool which could use this advice. The main Daikon class is never constructed,
and keeps track of all of its state in static variables. Clearly this design choice makes it impos-
sible to use this class from multiple threads at the same time, because there would be many
opportunities for race-conditions. Perhaps the designers of Daikon have a good reason for this
design, but it does introduce extra complexity when integrating with other programs.

8.4 Use common libraries

Tools tend to operate on objects in some domain. For example, in our case-study the tools
we used operated on Java programs, either as source-code on as binaries, and produced
invariants. Quite a lot of time had to be spent on translating these invariants into a format that
the framework could work with, and finding the particular loop that it applies to. We believe the
use of common libraries in program APIls would facilitate tool interoperability by ensuring that
fewer translations between different formats are required.

One great example of a common library facilitating interoperability among formal methods
tools is SMT-LIB [2]. It defines a common input and output language for SMT solvers, making it

Page 46

very easy to swap one SMT solver for another. OpendML uses the format defined by SMT-LIB,
enabling it to easily support several different SMT solvers.

8.5 Future work

We see various avenues for future work. Below we will list some of these avenues.

8.5.1 Investigate common needs in research tool development

Interoperability between different tools is easier when they are more alike. Tools within a com-
mon domain will likely have several actions in common that could be performed by a common
library. For example, when generating loop invariants for Java programs common actions in-
clude parsing and interacting with Java code (especially for tools performing static analysis)
and reporting detected invariants. Future work could include investigating various categories
of formal methods tools and checking which operations are shared between tools within a cer-
tain category. It would be interesting to see which shared libraries are used, and if there is a
need for additional libraries.

8.5.2 Further research into combining the results of multiple loop invariant
generation tools

The work by Galeotti et al. on DynaMate has demonstrated that combining multiple different
tools for loop invariant generation can be more effective than using these tools individually.
Does adding additional tools produce even better result? Which tools synergize best?

Originally we had intended to include Valigator by Kovéacs et al. [11], but this tool does not
accept Java as an input language. Translating Java to their input language turned out to be
hard, and therefore we did not include this tool in our framework. However, because Valigator
is very different from the other tools we have used, we did expect it to supplement them well.
For this future work we would recommend taking a number of dissimilar tools and using them
together on some test input. Comparing with various subsets of the chosen tools might give
information about which tools complement one another best.

8.5.3 Investigate combining tools in other areas in formal methods

Fully automatic loop invariant generation is an interesting subject because it is both clearly
beneficial and impossible to do in the general case. These properties have resulted in a large
number of techniques which are able to perform loop invariant generation in specific cases.
Investigate whether there are other areas in the field of formal methods that have similar con-
ditions, and check whether combining different techniques also yields good results.

Page 47

8.6 Conclusion

After performing our case study we believe that the formal methods we have experimented
with still have a lot of room for improvement when it comes to ease of integration. When we
started we were expecting that integration would be much easier that it turned out to be. Based
on this case-study we have a strong impression that formal methods tools are not made with
integration in mind.

We were positively surprised by the quality of the usage information for all of the tools
we have used. It seems clear to us that the people behind these tools do want others to
use them, and are willing to invest time in making this possible. Based on this we hope that
ease of integration will also get priority when more research is performed into the effectiveness
combining complementary tools.

We hope that tool creators will take our advice to heart, and that tools created in the future
will be easier to integrate in other software. While combining existing tools is less exciting that
creating entirely new algorithms and techniques, we believe it to be important work, that will
increase the effectiveness of formal methods, and hopefully lead to increased industry use of
formal methods. Making tools easier to integrate in existing software has the additional effect
of making it more attractive to integrate in integrated development environments, and hopefully
this is a place where many formal methods tools will ultimately end up.

Page 48

Bibliography

[1] Clark Barrett, Christopher L Conway, Morgan Deters, Liana Hadarean, Dejan Jovanovic,
Tim King, Andrew Reynolds, and Cesare Tinelli. Cvc4. In Computer aided verification,
pages 171-177. Springer, 2011.

[2] Clark Barrett, Aaron Stump, Cesare Tinelli, et al. The smt-lib standard: Version 2.0. In
Proceedings of the 8th International Workshop on Satisfiability Modulo Theories (Edin-
burgh, England), volume 13, page 14, 2010.

[3] David R Cok. Openjml: Software verification for java 7 using jml, openjdk, and eclipse.
arXiv preprint arXiv:1404.6608, 2014.

[4] Leonardo De Moura and Nikolaj Bjerner. Z3: An efficient smt solver. In Tools and Algo-
rithms for the Construction and Analysis of Systems, pages 337-340. Springer, 2008.

[5] Bruno Dutertre and Leonardo De Moura. The yices smt solver. Tool paper at http.//yices.
csl. sri. com/tool-paper. pdf, 2(2), 2006.

[6] Michael D Ernst, Jake Cockrell, William G Griswold, and David Notkin. Dynamically dis-
covering likely program invariants to support program evolution. Software Engineering,
IEEE Transactions on, 27(2):99-123, 2001.

[7] Michael D Ernst, Jeff H Perkins, Philip J Guo, Stephen McCamant, Carlos Pacheco,
Matthew S Tschantz, and Chen Xiao. The daikon system for dynamic detection of likely
invariants. Science of Computer Programming, 69(1-3):35—45, 2007.

[8] Gordon Fraser and Andrea Arcuri. Evosuite: automatic test suite generation for object-
oriented software. In Proceedings of the 19th ACM SIGSOFT symposium and the 13th
European conference on Foundations of software engineering, pages 416—419. ACM,
2011.

[9] Carlo Alberto Furia and Bertrand Meyer. Inferring loop invariants using postconditions. In
Fields of Logic and Computation, pages 277-300. Springer, 2010.

[10] Juan P Galeotti, Carlo A Furia, Eva May, Gordon Fraser, and Andreas Zeller. Automating
full functional verification of programs with loops. arXiv preprint arXiv:1407.5286, 2014.

[11] Laura Kovacs. Automated polynomial invariant generation by algebraic techniques for
imperative program verification in theorema. Giese and Jebelan (2007) pp, pages 56—69,
2007.

[12] Laura Kovacs and Tudor Jebelean. Finding polynomial invariants for imperative loops in
the theorema system. In Proc. IJCAR 06 Workshop Verify 06, pages 52-67. Citeseer,
2006.

Page 49

[13] Gary T Leavens, Erik Poll, Curtis Clifton, Yoonsik Cheon, Clyde Ruby, David Cok, Peter
Miiller, Joseph Kiniry, Patrice Chalin, Daniel M Zimmerman, Werner Dietl, et al. Jml
reference manual, 2013. Revision 2344.

[14] Stephen Magill, Aleksandar Nanevski, Edmund Clarke, and Peter Lee. Inferring invariants
in separation logic for imperative list-processing programs. SPACE, 1(1):5-7, 2006.

Page 50

	Introduction
	Background
	Goals
	Thesis organization

	The Java Modeling Language
	JML annotations on classes and fields
	JML annotations on methods
	JML annotations inside methods
	Checking JML
	OpenJML
	Summary

	Loop Invariant Generation
	Polynomial Invariant Generation by Algebraic Techniques
	Inferring Invariants in Separation Logic for Imperative List-processing Programs
	Daikon
	DynaMate
	EvoSuite
	GIN-DYN

	Summary

	Setting up the Case Study
	Goal
	Requirements
	The framework should integrate several different tools
	The framework should reuse existing functionality whenever possible
	The framework should be extensible

	Conclusion

	Architecture
	Framework design
	Test-case generation
	Dynamic invariant detection
	Static analyzers
	Invariant checkers

	Components
	ExecutionProvider
	DynamicInvariantGenerator
	StaticInvariantGenerator
	InvariantReject

	Operation of the framework

	Implementation
	Building the Context
	EvoSuite
	Basic static invariant generator
	Daikon
	Gathering loop information
	Interpreting the results

	OpenJML

	Findings
	Documentation
	Tools may not clean up properly after running
	Modifying the AST in OpenJML
	Interactions between EvoSuite and Daikon

	Advice
	Build tools as a library
	Have technical documentation on using the API
	Avoid global state
	Use common libraries
	Future work
	Investigate common needs in research tool development
	Further research into combining the results of multiple loop invariant generation tools
	Investigate combining tools in other areas in formal methods

	Conclusion

