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Abstract

Due to the introduction of a wide-range of complex interaction styles and
devices, potentially reaching a large and diverse user group, offering a con-
sistent user experience with a user interface has become increasingly com-
plex. Therefore, the traditional approach of implementing user interaction
directly into the implementation technology potentially leads to version
inconsistency and high maintenance costs.
In this research, we investigate how a Model-Based User Interface Devel-
opment (MBUID) approach can be applied that leverages the characteris-
tics of behavioural domain models, resulted from a Domain-Driven Design
(DDD) approach, to generate verifiable functionality of a front-end appli-
cation for multiple platforms and different modalities while business ana-
lysts with a technical background are able to specify workflows that needs
to be integrated.
Complexity is dealt with by separating domain logic from the implemen-
tation details. For this process, separate abstraction levels are defined and
business logic is encapsulated in behavioural domain models. Three lev-
els of abstraction are defined that increasingly refine the specification of
the behaviour of a user interface. We examined how model transforma-
tions can be defined in this process to semi-automatically transform the
source model to a refined target model while preserving the operational
semantics. As the behavioural domain model embodies part of the sys-
tem behaviour, we examined how we can use these models to define the
interaction with the system such that the user can invoke commands to
manipulate these models. The combination of the defined models for each
abstraction level and the model transformations, the transformation chain,
allowed us to examine approaches how behavioural models can be used
as a source to generate part of the functionality of an user interface.
To be able to preserve the correctness of each model and to generate a fully
operational user interface, we focused on defining a sound specification of
the task model, the first abstraction level of MBUID. We leveraged multi-
ple existing techniques to define the structure, data flow and the interaction
with the user and the system. This enabled us to create a sound specifica-
tion and to generate an operational user interface, just as specified in the
task model. We used this task model as input for the MBUID process and
defined how we can generate applications that contain the same function-
ality on different platforms. We leveraged characteristics of behavioural
domain models twofold. On one hand, we defined patterns to generate
separate task models for commands that can be invoked on these domain
objects. On the other hand, we defined an approach to combine these sep-
arate task models in a composed task model.
The solution has been validated by executing the transformation chain on
real-world specifications used in the financial domain to model services.
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Chapter 1

Introduction

In this chapter we formulate the objectives and the requirements of the solution,
which follows from the problem statement.

1.1 Motivation

The world of software development is changing rapidly. New technologies
introduce new possibilities for systems to evolve. Ideally, these technolo-
gies should enrich the capabilities of software systems; however, many or-
ganisations with large software systems struggle to evolve and maintain
their systems. As their systems become increasingly complex, adding new
features and using new technologies costs a lot of time and money. Espe-
cially in the financial sector, organisations struggle to keep up with new
technologies, as new competitors that do not have the burden of having
to maintain large legacy systems, are seeking opportunities to offer better
services with new technologies.

1.2 Problem Statement

Domain-Driven Design is a method for dealing with complexity of software
systems by distilling domain knowledge out of implementation details [1].
By modelling the domain knowledge separate from the implementation,
domain experts can use their knowledge and modelling skills to define the
characteristics of (complex) domain concepts. This allows complexity to be
tackled at the heart of the software (the domain) by the experts who know
the domain best.

By capturing both the domain knowledge and the implementation details
in models, model transformations can be defined that contains the logic to
transform instances of the domain model to instances of the implementa-
tion models. By binding the domain knowledge and the implementation
details together with model transformations, characteristics of the domain
model can be transformed to an implementation of the supporting system.
Shifting the focus from writing source code to defining transformations al-
lows new features described in the domain model by domain experts to be
integrated with a push of a button.
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In this research, we focus on the development of a multi-user front-end
application for a reactive system by using domain-driven design in com-
bination with a model-driven approach. We define a front-end applica-
tion as an operational user interface that handles both the communication
with the back-end as well as the interaction with the end-user. A multi-
user front-end application is defined as an environment in which different
types of users interact with each other with a certain goal, for example, a
business goal. The problem is that user interface development has become
increasingly complex and the traditional approach of developing a user in-
terface can potentially lead to version inconsistency and fails to deliver a
consistent user experience among different devices and platforms [2].

Various research efforts have been devoted to MBUID. This approach to
User Interface (UI) development supports the integration of characteristics
of domain concepts in a user interface and deals with the complexity of UIs
development. These methods, however, have been developed with static
domain models, while a domain-driven approach does necessarily define
how domain models are modelled, that is specific to the domain. Thus,
domain models defined in a domain-driven approach are not necessarily
aligned with MBUID, leaving room for improvement.

Current MBUID approaches mainly use a descriptive or a relational domain
model that defines static characteristics and relations between concepts. A
behavioural domain model also includes possible interactions with domain
concepts defined as, for example, a state machine that defines different
states and transitions of a domain concept. For the development of a front-
end application, this offers opportunities regarding the verification of spec-
ified behaviour as well as leveraging a behavioural model as a source for
(semi-)automatically obtaining the required UI functionality. In this re-
search, we define methods to exploit the characteristics of a behavioural
domain models to generate verifiable functionality of a front-end applica-
tion.

1.3 Objective

Our main objective has been to investigate how to apply a MBUID ap-
proach that uses characteristics of behavioural domain models such that
the application correctly implements the specified behaviour. To achieve
this, we investigated the features of the involved models and model trans-
formations with the following requirements:

Requirement 1. The generated user interface should be operational such
that it facilitates the communication with both the user as well as the
system.
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Requirement 2. The input modelling language allows business analysts
with a technical background to produce a software specification of a
user interface for different kinds of users.

Requirement 3. Each intermediate model of the transformation chain refers
to behaviour of a domain model such that the resulting user interface
integrates this behaviour.

Requirement 4. Instances of intermediate models can be verified at design
time with respect to both the defined domain concepts as well as user
interface logic. The user interface does not allow illegal actions nei-
ther should it obstruct users to perform valid actions, as defined in
the domain model. The correctness the input model should be veri-
fied with respect to the domain model; does the task model complies
with the input constrains as defined in the domain model?

Requirement 5. The structure of the transformation chain should account
for changes in interaction styles, devices and platform. Developing a
new application should not require rewriting existing software com-
ponents, nor the software specification, in case the product character-
istics, the domain knowledge, remain the same. Instead, new model
transformations and dedicated intermediate models should be intro-
duced to support the new platform or device.

1.4 Validation

To validate the requirements of the solution we defined for each require-
ment a principle that determines if the solution is conform our require-
ments.

Requirement 1. The generated user interface should define a clear inter-
face with the system as well as presenting the user with the appro-
priate tools to finish the described tasks.

(a) The implementation of the user interface should contain a de-
scription of the interface that consists of the input and output
conditions of each interaction with the system.

(b) The user interface should contain the user interface construct el-
ements as such that the user control the behaviour of the system
as well as input and manipulate data.

Requirement 2. Business analysts should be able to define and validate
the specification for the user interface autonomously.

Requirement 3. Each intermediate model should define a description of
which characteristics of the domain model and how it is used to deter-
mine behaviour of the user interface.
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Requirement 4. The input as well as the intermediate models should be
constraint as such that only valid models are accepted. Non-valid
models should be rejected as they do not result in a correct imple-
mentation. Validation methods should be able to asses the validity of
these models.

Requirement 5. Introducing a new platform, device or interaction style
should solely involve the definition of new model transformations
and possibly new (dedicated) intermediate models.

1.5 Structure & Approach

The structure of this report reflects the approach that has been followed
during the research. Figure 1.1 depicts the structure of transformation
chain labelled with the chapters in which we discuss the features and in-
volved design choices.

In our approach, we first conducted a literature review in which we anal-
ysed the concepts involved in this research. Then, we defined the assump-
tions on the basic structure of solution, the specification and behaviour
of the considered system, and our approach to ensure correctness of the
resulting solution. Hereafter, we defined the metamodel of the input mod-
elling language and the intermediate user interface models and the model
transformations involved in the the process of generating an implementa-
tion. Then, we defined approaches to use behavioural domain models as
input for the task model. Parallel with these steps, we defined approaches
to verify the correctness of the involved models. Finally, we have validated
our approach to verify to what extent the solution solves the problem at
stake.

Chapter 2 introduces the main concepts of this research to facilitate un-
derstanding by the reader. Additionally, the most prominent MBUID
approaches has been reviewed.

Chapter 3 presents features of the transformation chain. We define the
concepts of each model, an approach to achieve correctness, and how
models in the transformation chain can refer to properties of the sys-
tem on a conceptual level.

Chapter 4 focuses on a input specification language for the task model.
We introduce a notation to describe workflows, data flow, as well as
a method to define the interaction with the system and the user.

Chapter 5 presents user interface models that refine the task model. We
define the involved concepts and the involved model transforma-
tions.
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Figure 1.1: Overview of the transformation chain labelled with the chapters
where the models and model transformation are discussed

Chapter 6 discusses the model transformations between models of the
transformation chain.

Chapter 7 describes how we can use behavioural models to generate parts
of the task model.

Chapter 8 discusses methods to verify the correctness of the resulting user
interface.

Chapter 9 discusses the experiments that have been carried out to validate
the transformation chain.

Chapter 10 concludes with final remarks and future work.
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Chapter 2

Background

In this section we provide background information to familiarise the reader with
the subject. We highlight the different aspects of the problem at stake.

2.1 User Interface

The User Interface (from hereon referred to as UI) in Human-Computer in-
teraction is the mechanism wherein the user can interact with the machine.
These interactions allow the user to operate and control the machine while
the machine gathers valuable feedback that can help the user. As this def-
inition is very broad, many types of user interfaces exist. We discuss the
major types of user interfaces:

• Graphical User Interfaces (GUI) presents a graphical representation
of the information and the possible controls.

• Command line interfaces (CLI) enables users to interact with the
system by giving the system commands in a textual form.

• Virtual Reality User Interfaces enables users to interact with the sys-
tem in a virtual world in a 3D environment.

• Tangible User Interfaces build upon human skills to manipulate and
sense the physical world by integrating the digital and physical world
[3].

• Voice Assistent User Interfaces enables users to interact with the
system via command-like instructions communicated via voice. WA
Voice Assistent User Interface is often combined with a GUI, to give
feedback in a graphical manner, whereas devices without such feed-
back mechanisms give feedback via voice.

As the UI is a gateway in which a user can interact with the application,
designing a UI requires the designer to cope with the complexity of both
the application and the user [4].

Questions to be answered are: Which operations are available to the user? How
does the user perceive the information presented to him? How does the user react
on feedback?
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Considering that a designer must deal with both worlds (the user and the
system) it is not surprising that research shows that UI development of an
interactive system has become more time-consuming and therefore more
costly. On average the development of such a UI represents 47% of the
source code, requires about 45% of the development time and 50% of the
implementation time, and covers 37% of the maintenance time [5].

To tackle the problem of designing a UI, different approaches exist. Among
others, Vanderdonckt has distinguished 4 major approaches in User Inter-
face development [6]:

1. Traditional approach In this approach, the developer develops a UI
by composing views, e.g., windows and web pages, with user inter-
face components, e.g., buttons, forms and titles. When the functions
of the system are developed, these views are expanded such that the
UI can call system functions and become operational.

2. Programming by demonstration By adding actions to the UI the de-
veloper can demonstrate how the UI interacts with the user. This
approach is very similar to the traditional approach, except that it
adds the possibility to assess the usability of the UI at design-time.

3. Model-based approach (MBUIDE) By separating UI-related concerns
into formal declarative models a functioning UI can be generated.
Once each model is defined, the code generation process can be au-
tomated.

4. Task-based approach Very similar to the previous approach is the
task-based approach except that the task-model is first specified. Us-
ing a task-model, other models can be derived, refined or specified.

The development of user interfaces has become more complex due to some
serious challenges [2]. Vanderdonckt presents an analysis of variables that
are at the root of this increase of complexity.

• Diversity of users. An interactive system can no longer consider
users to be similar, as they show differences in terms of skills and
expertise with regard to operating an interactive system through a
user interface.

• Richness of cultures. When dealing with applications that are glob-
ally accessible, the UI cannot remain the same for each culture, as
cultures can have different languages, different customs or even dif-
ferent demands of the UI.

• Complexity of interaction devices and styles. Due to the availabil-
ity of a wide variety of interaction devices and styles, the handling of
events generated by these devices requires programming skills that
can go beyond the capabilities of an average developer of an infor-
mation system.
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• Heterogeneousness of computing platforms. In the world of soft-
ware technologies, new platforms and technologies will be introduced
continuously, posing new limitations and constraints on the UI.

• Multiple working environments. Users should be able to interact
with the user interface under different circumstances (e.g. light and
sound conditions).

• Multiple contexts of use. The context in which a user operates can
change. For example, if the user decides to start working on his com-
puter and continue working on a task on a mobile device, it would
be convenient that the application can adapt to this context change.

Even though some interface development techniques such as universal de-
sign [7] and inclusive design [8], promote designs that fit for the largest
possible population, the UI cannot longer be considered as independent
of its usage context [9]. This usage context can be defined as a triplet of a
user, platform and environment and determines the characteristics of the
UI in different contexts [10]. With these challenges in mind, the traditional
approach for the design of user interfaces would require many versions of
the UI. This potentially leads to version inconsistency and therefore high
maintenance costs [11]. Adaptive UIs have been promoted as a solution to
offer a consistent UI in changing contexts, as they automatically adapt to
the context of use at runtime [9].

2.2 Model-Driven Engineering

Model-Driven Architecture (MDA) is a software development approach
in which models have a central role [12]. By structuring specifications ex-
pressed as models, transformations can be defined to automate the imple-
mentation of the system. The approach is based on separating application
domain knowledge and application logic from the underlying platform
technology. The basic pattern is to define a Platform-Independent Model
(PIM) that captures domain knowledge and a transformation to a Platform-
Specific Model (PSM) that maps the domain knowledge to platform-specific
implementation details. MDA claims to properly deal with the complexity
of large systems and the interaction and collaboration between organisa-
tions, people, hardware and software.

2.2.1 Model-Driven User Interface Development

Since the 1980s, in the field of UI development, research has been carried
out to use the Model-Driven approach to structure the development of a
UI. In this field, four generations of Model-Driven User Interface Develop-
ment (MDUID) approaches can be distinguished [13].
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The first generation was motivated by the idea of using one universal UI
model that integrates the relevant aspects of a UI. The second generation
of systems can be characterised by abstracting aspects of the UI model in
separate high-level models like, e.g., dialog, task and presentation mod-
els. The introduction of new mobile devices like smartphones and PDAs
motivated the third generation of MDUID approaches. The current fourth
generation of MDUID approaches focuses on the development of context-
aware user interfaces that have the ability to adapt to the user, platform
and environment.

The Cameleon Reference Framework (CRF) is a fourth generation MDUID
approach and has become widely accepted in the Human Computer Inter-
action Engineering community as an approach to structure the develop-
ment of UIs supporting multiple contexts of use. The framework adopts
a model-based approach by prescribing the development of UIs based on
three Ontological models. These ontological models express context-of-use
configurations, domain concepts and adaptation dimensions.

1. The Context of use model describes the characteristics of the UI for dif-
ferent users, platforms and in different environments. For each con-
text of use dimension, a corresponding model can be defined.

2. The Domain model expresses the domain objects that can be manipu-
lated by the user in tasks. These tasks refer to activities with a certain
goal that can be performed by the user with the system.

3. The Adaptation model expresses how the UI should react if the context
of use changes. It also contains an Evolution model that denotes how
the UI should evolve into a new UI.

These three models are the foundation of the CRF framework and can be
used at the different abstraction levels that the framework defines.

Abstraction level 1. Task Model The task model represents the highest
level of abstraction of the UI. This model expresses the task descrip-
tions produced by the designers for that particular system and con-
text of use. In these models, the UI is abstracted from the imple-
mentation details and modality (voice, graphical, gestural, etc.) and
presents the hierarchy of tasks the user has to perform to reach a cer-
tain goal.

Abstraction level 2. Abstract User Interface (AUI) The AUI expresses the
rendering of the tasks and domain concepts defined in the previous
level independent of any modality and implementation details. The
Abstract UI consists of a collection of AUI Units with relationships
among each other to specify the navigation.
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Abstraction level 3. Concrete User Interface (CUI) The CUI refines the
AUI by adding information on how the UI has to be perceived and
manipulated by the user. This model adds the notion of modality
and is, therefore, modality dependent. The UI is specified in terms of
the layout, positioning of the widgets and the interface navigation.
The look and feel of the UI is also specified in the CUI.

Abstraction level 4. Implemented UI The implemented UI uses presenta-
tion technology such as HTML, Swing and Motif to describe the UI
at a specific platform and device. The UI can either be compiled or
interpreted such that different targets can render the UI.

Figure 2.1: Schematic overview of the CRF structure

2.2.2 Domain-Driven Design

Domain-Driven Design (DDD) is a software engineering approach to con-
nect an implementation to complex domain logic in evolving models [1].
This allows both technical and domain experts to analyse iterations of the
domain model. Multiple approaches to DDD exist, such as the Functional
Approach [14] and the Object-Oriented approach [1]. Domain-Driven De-
sign is often implemented using a Model-Driven approach, as the domain
knowledge can be captured in a model, and be transformed to an imple-
mentation.

2.3 User Interface Description Languages

To express the concept at the different abstraction levels of the CRF, lan-
guages have been defined to express the concepts modelled in the first 3
abstraction levels. An overview of User Interface Description Languages
(UIDLs) compliant with the CRF is shown in Figure 2.2.
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Figure 2.2: Compatible UIDLs with the CRF abstraction levels.

• The USer Interface eXtensible Markup Language (UsiXML) [15] is
a XML-based language that is capable of expressing concepts of the
first 3 CRF abstraction levels. UsiXML uses graph theory to formalise
the language. As a result, an instance of the UsiXML metamodel is a
directed, typed graph.

• To capture the semantics of a task, the Concur Task Trees (CTT) no-
tation can be used to define a hierarchical task structure with a wide
range of (temporal) relationships to constrain the execution order of
(sub)tasks [16].

• Maria XML is a general purpose language and able to express both
the Abstract User Interface and the Concrete User Interface model
[17]. Maria XML differs from UsiXML as is not based on a graph
structure, and the metamodel of the concrete user interface is dif-
ferent from the UsiXML metamodel as the authors made different
design choices.

• Useware Markup Language (useML) [18] was originally developed
to support a user-centric development process by providing a lan-
guage that allows task modelling and analysis. A use model (task
model) consists of platform-independent tasks modelled as so-called
use objects in a hierarchical structure. This model is structured as
a tree. The leaves represent elementary Use Objects (eUO). A eUO
is an atomic interactive task. Available types eUOs are inform, trig-
ger, select, enter and change. Like UsiXML and Maria XML, useML
(version 2.0) supports temporal relations to relate eUOs.

• The User Interface Markup Language (UIML) is a XML-based, declar-
ative language designed for specifying a canonical XML represen-
tation of any UI. UIML follows the structure of the Meta-Interface
Model of [19], which divides the interface into 3 separate compo-
nents: presentation, logic and interface.
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• Dialog and Interface Specification Language (DISL) [20] is an extended
UIML subset designed to model the abstract user interfaces, focusing
on supporting adaptation, scalability, reusability, usability for devel-
opers (tools) and low resource demands.

Two approaches can be used to define the final user interface: the UI can ei-
ther be interpreted using a User Interface Management System (UIMS) or
compiled using some platform-specific presentation technology. An inter-
pretational approach, like MASP [21], DynaMo-AID [22] and Supple [23],
uses models to render a UI at runtime. Model interpretation at runtime is
usually more suitable for supporting adaptive behaviour than relying on
static code artifacts [9]. Another advantage is that UI adaptations can be
deployed without recompiling the application. A compiled approach re-
lies on code artifacts in a specific presentation language. These artifacts are
generated at design-time from the CUI, and adaptive behaviour is limited
at runtime. An advantage of this approach is that many platforms can be
supported if they support a certain way of defining interactive and presen-
tation behaviour in code. A combination of these two approaches is using
models defined at design-time to generate code artefacts at runtime. The
modelling approach used by the 3-Layer Architecture [24] is an example of
this approach. Whereas an interpretational approach seems to have more
advantages than a compiled approach, research showed that performance
can be an issue in worst-case scenarios [25]. Also, existing tools support is
limited and not integrated in a mature IDE.

2.4 Model Transformation Languages and Technologies

In Model-Driven Engineering (MDE), model transformations are used to
transform concepts from the source model to the target model. A com-
monly used approach is to define a model transformation based on the
source and target metamodel. The structure of this technique is shown in
Figure 2.3.

According to Object Management Group (OMG) standards, a metamodel
is a special kind of model that specifies the abstract syntax of a modelling
language [27]. A model transformation definition defines the procedure to
transform concepts defined in the source metamodel to concepts defined
in the target metamodel.

We distinguish horizontal and vertical transformation. Whereas in a top-
down approach vertical transformations refine the model by increasing de-
tails about the target model, we define transformations at the same level of
abstraction as horizontal transformations. Horizontal transformations are
used to refactor, complete, or optimise a model to improve the internal
structure and/or quality [28].
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Figure 2.3: A model transformation approach based on the metamodels of
both the target and source model as published in [26]

In a top-down approach in Model-Driven Architecture, vertical transfor-
mations bridge the implementation gap from specification to an executable
system. In a bottom-up approach, a transformation omits details to create
abstractions from detailed models. A bottom-up approach can be used in
Reverse Engineering to inject a model from an existing implementation [29].
Transformations do not necessarily have to be defined to support a single
direction, from source to the target model. By defining transformations
in both directions, synchronisation between emerging models at different
levels of abstraction can be achieved [30].

At the top level, model transformation approaches can be classified in two
major categories: model-to-text and model-to-model transformations. We
consider programming code as well as other forms of text, such as SQL
queries and system configuration files, as model-to-text approaches. In
model-to-text transformations, we consider 2 approaches: Visitor-Based
and Template-Based approaches:

• Visitor-Based Approaches A basic approach to model-to-text trans-
formations is a visitor-based approach that generates code while travers-
ing the inner structure of the source model. An example of this ap-
proach is Jamba [31].

• Template-Based Approaches A more popular approach is the template-
based approach that uses parametrised templates of the target sys-
tem. A template consists of code snippets where information from
the source model can be injected. Examples of techniques that use
this approach are JET [32] and AndroMDA [33].
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When the semantic gap between a the source and target models is large,
multiple model-to-model transformations can be defined to bridge this
gap. The advantage of using model-to-model transformations is that these
transformations tend to be more maintainable, modular, and can be used to
debug the transformation then a single transformation. In addition, model-
to-model transformations can be used to define horizontal transformations
and thereby supports synchronisation between models. We consider 4 ap-
proaches to model-to-model transformations:

• Direct-manipulation approaches These approaches use an API to ac-
cess the internal structure of the model. An object-oriented frame-
work, like SiTra for Java [34], is an example of this approach. How-
ever, features like scheduling and generating traces have to be imple-
mented from scratch, making it unsuitable for large complex trans-
formation [35].

• Relational approaches A relational approach is declarative, where
the main concept is a mathematical relation. The basic idea is to re-
late a source to a target element type and define constraints of this
relationship. Logic programming can be used to implement the re-
lational approach. An example of a relational approach is [36]. Ake-
hurst and Kent discusses an approach that captures the essence of
mathematical relations in a metamodel.

• Graph-Based approaches Graph transformations can be used in a
model-driven approach. These approaches typically operate on typed,
attributed, labelled graphs. The main concept of graph transforma-
tion is to define a rule consisting of a pattern in the source model and
a pattern in the target model. When a pattern in the source model is
matched, the model is transformed and replaced by the defined pat-
tern in the target model. Conceptually this approach is the same as a
metamodel-based transformation as both approaches map concepts
from a source to a target model. The metamodel approach, however,
does not constrain the structure of the models.

• Structure-Driven Approaches A structure-driven approach distin-
guish 2 phases: in the first phase the hierarchical structure of the tar-
get model is created, in the second phase the attributes and references
are added.

Hybrid approaches combine these approaches, allowing developers to choose
the most appropriate characteristics of each approach depending of the
task.
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2.5 Formal Software specification

Since the beginning of Computer Science, formal specifications have played
an important role. Whereas behaviour of a system can be specified in natu-
ral language, Meyer was among the first to demonstrate the deficiencies of
a requirements document written in natural language [37]. Such an infor-
mal approach suffers from problems regarding noise, silence, overspecifi-
cation, ambiguity, contradictory statements, forward referencing and wish-
ful thinking. These problems are hard to solve in natural language alone.
Therefore, various research efforts have been devoted to formally specify-
ing software systems.

A Formal Specification Languages (FSL) uses mathematical concepts and
notations to express the behaviour of a system. Sets, functions and vari-
ables can be used to express properties that a system should satisfy. FSLs
have been developed to describe what a system must do without speci-
fying how it should be done. Since ambiguity is a key source of errors,
as it allows members of the development and validation team to interpret
requirements differently, formal specifications are useful as they specify
behaviour in an unambiguous manner [38]. Different formal languages
exist and each of them uses their own approach. King distinguished for-
mal language techniques in two groups: the model-oriented and property-
oriented techniques [39].

Property-oriented techniques describe a system indirectly by stating prop-
erties about it. The declaration of such properties constrains the number of
models that satisfy these properties, i.e, the correct programs. Different ap-
proaches of property-oriented approaches are Algebraic Methods, Model
Logics and Axiomatic Methods.

Model-oriented Instead of constraining the number of models, model-
oriented techniques define a model to represent a correct program. In this
case, a program is correct if it behaves the same as the specified model [40].
Among different approaches transition-oriented and state-oriented techniques
use the model-oriented approach.

An example of the use of formal software specification is to define the be-
haviour of a financial service within a software system. By using a model-
oriented approach, such an entity can be modelled as a finite state ma-
chine that describes the behaviour and the possible transitions in different
states [41]. Business processes can be specified as a sequence of interaction
and manipulation of these services. Such a specification can serve multiple
purposes, e.g, as a communication instrument, to domain experts, to the
developers and to the testers or as input of a toolchain that transforms the
specification to an implementation of the system. By using a specification
in a graphical or textual format, the characteristics of an individual service
can be analysed and verified before building the software component that
implements the supporting functionality, which is a costly process.
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2.6 Software Verification

Developing a software system is often a process of requirements engineer-
ing, interpreting requirements and mapping requirements to functionality,
implementing the functionality and testing the result. Whereas software
often doesn’t behave as expected from the requirements, verifying soft-
ware is often a necessary step. The goal of software verification is to verify
if software behaves conform the requirements. We define two major classes
in software verification: software testing and formal verification. The former
involves the execution of tests to detect defects until one has enough con-
fidence that no defects exist. The latter involves theorem-proving, the pro-
cess of showing that the program matches the specified function.

2.7 Conclusion

As we have discussed several approaches of User Interface development,
the traditional approach shows serious issues regarding consistency and
maintenance in the development of user interfaces for different modali-
ties and platforms. An approach to tackle this complexity is Model-Driven
User Interface Development, which is based on Model-Driven Engineer-
ing. This approach tackles the complexity of the development of user
interfaces by separating the domain knowledge from the implementation
details. The Cameleon Reference Framework implements this MBUID ap-
proach and provides a basic approach to structure concepts at different
abstraction levels to generate a user interface for different modalities with
consistent functionality across platforms. Different modelling languages
have been developed that implement the CRF approach. As we require the
correctness of the user interface to be verified, we use formal specification
techniques.

In this research we define an approach that uses the CRF framework as the
basic premise. We define how the intermediate models can be structured
such that we can generate an operational user interface (Requirement 1),
the highest level of abstraction can be specified by business analysts (Re-
quirement 2), behaviour of behavioural domain models can be integrated
(Requirement 3) and correctness can be verified (Requirement 4) while re-
taining the feature of the CRF framework to support the development for a
functional consistent user interface for different modalities and platforms
(Requirement 5).
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Chapter 3

Transformation chain

In this chapter we define the general structure of our transformation chain. We
give an overview of the involved concepts at each level of abstraction and the main
purpose of each transformation. We define the conceptual model of the system and
our approach how to achieve correctness.

The transformation chain forms the spine in our approach. As we follow
a model-based user interface development approach, the transformation
chain consists of models connected with model transformations. These
models contain an explicit and mostly declarative description of the pre-
sentation and the behaviour of a user interface for an interactive system.
Model transformations define the rules to transform concepts from the
source model to concepts of the target model. This allows models to be
abstracted, when information is omitted with a specific goal, and models
to be refined, when information is added.

3.1 Overview

We adopt a common approach of the model-driven user interface devel-
opment paradigm by structuring the transformation chain in 4 distinctive
abstraction levels: the task model, abstract user interface, concrete user in-
terface and the final user interface, as discussed in Section 2.2. Each level of
abstraction serves its own purpose in this top-down approach. We discuss
the relation between these abstraction levels.

Figure 3.1: Models and transformations in the transformation chain

The highest level of abstraction of a user interface, the task model, contains a
description of the required user interaction from a user perspective. Tasks
can be sequenced in a specific order to define a workflow, the order in which
tasks have to be performed to achieve a certain (business) goal. The abstract
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user interface refines these tasks into user interface components and be-
haviour, abstracted from modality and implementation technology. Only
high-level interactions, e.g., presenting information and requiring input
from the user are supported with high-level construct elements because
of this abstraction. Behaviour is specified as a reaction to specific interac-
tion on these elements and can consist of validation rules to check if the
interaction is conform the specification. For example, if the user presses
a button, the specified behaviour can react by executing the next task, as
specified in the task model, if and only if the input given by the user is vali-
dated. The concrete user interface refines the abstract user interface and spec-
ifies the presentation and behaviour for a certain modality, e.g., a graphi-
cal user interface. It refines the low-level construct elements to concrete
construct elements, like e.g., textfields and buttons for a graphical user in-
terface. Because a concrete user interface model is specific for a modality,
dedicated models are defined for each modality. For example, a graphical
user interface consists of graphical elements like a menu, forms, textfield
and buttons whereas a voice user interface can consist of a dialog. The final
user interface is implemented in the chosen implementation technology. De-
pending on this technology the semantics are captured in a model which
can be translated to executable code or interpreted on runtime.

3.2 Conceptual model of the system

The result of the transformation chain consist of an operational user inter-
face, an application that enables the user to interact with the system. To
define what characteristics of the system we can refer to in the four mod-
els, we analyse and define the characteristics of a system that consists of
behavioural domain models. From this model we can derive the func-
tionality that is at the disposal of the user and can be referred to in the
transformation chain.

3.2.1 Concepts

In this research, we define a conceptual model of a multi-user reactive sys-
tem as a set of Objects that can be manipulated by Actors. We define two
types of actors: internal and external actors. Internal actors are objects
within the system that are capable of manipulating other objects. Exter-
nal actors can be a (specific type of) user or other systems. Objects have
attributes that contain information about their state. These attributes can
also contain links to other objects. In our conceptual model, objects are
stateful, which means that the state of the object determines the valid Op-
erations. Operations are means to manipulate the state of the object as well
as manipulating the state of linked objects. Actors in the system can have a
set of capabilities. A Capability defines which operations the external actor
can trigger.
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3.2.2 Object Behaviour

We can define the behaviour of an object, that is, the valid operations in a
specific state, as a state machine. We can define a state machine as a di-
rected graph where nodes denote states and edges denote transitions. A
transition defines an atomic action that changes the state. A transition
can require arguments that can be constrained by preconditions. Post-
conditions define how the attributes of the object are changed and which
external objects are manipulated. So, apart from internal state changes,
objects can trigger transitions of other objects. The start transition deter-
mines the initial state of the state machine. Apart from the initial state, we
distinguish end states, which are states with no outgoing transitions. We
call the process of objects from initial states reaching end states a life cy-
cle. Since objects can have multiple end states, an object can have different
life cycles. Figure 3.2 depicts the state machines of two fictive behavioural
domain models.

pending

accepted re f used

createTransaction

accept
refuse

(a) Transaction

open

blocked closed

openAccount

open

block

withdraw

deposit

close

(b) BankAccount

Figure 3.2: State machine of the domain model SimpleAccount and Transac-
tion

3.2.3 Actors

In a system we define users with different sets of capabilities. The set of
capabilities is the subset of the set of operations in the system. In this set
of capabilities, we allow two types of operations: commands and queries.
The former allow the user to manipulate the state of the system whereas the
latter retrieve information about the state of the system. Since the system
is stateful, it depends on the state of the system which operations are valid.
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3.2.4 Example: Transaction processing

To illustrate the conceptual model, we look at an example of a system that
can transfer money from one account to another, shown in Figure 3.3. We
use the defined behaviour of the BankAccount object and the Transaction ob-
ject from Figure 3.2 specified in Listing 3 and 4 respectively, and the speci-
fication of the system in Listing 1. From the specification of the objects, we
generated the set of operations and defined the relevant queries as opera-
tions, suffixed with .View(). We have assigned a set of capabilities per user
role.

In the example, the system consists of three objects: a Transaction object, a
Bank account A object and a Bank account B object. The set of capabilities and
the state of the object define the valid operations of a user on these objects.
To create an instance of a transaction object, the user has to have the op-
eration createTransaction in his set of capabilities. This initial condition and
the fact that the object has to be initialised, determines if the user is able to
trigger the transition. To actually invoke the operation, the provided argu-
ments of the transition, from, to and amount, has to meet the preconditions
the transition createTransaction.

Whereas objects can invoke transitions of linked objects, the preconditions
of the linked transitions has to be met. In this example, the Accept transition
triggers the Withdraw and Deposit transitions. Both transitions require the
state of the object to be open and the former requires that the balance should
be sufficient.

If all these checks are successful, the transition can be triggered and the
state of the Transaction object changes to pending. In this state, the life cycle
of a transaction is not completed as the transaction has to be accepted first.
Another user, in this example User X, can call AcceptTransaction, as its set
of capabilities allows it to do so and the Transaction object is in the state the
transition can be triggered. This changes the state of the object to its final
state, which is accepted.

The state of the user interface depends on the capabilities of the user and
the state of the relevant objects. To account for every state we could define
an instance of a user interface model for each state of the relevant objects.
In theory, this would allow us to validate if in every state, the user interface
would be correct. However, when the system consists of more then a single
object and user, than the states of the user interface can grow significantly.
A more logical approach would be to define a model for each type of user,
typical for each role, in a role based environment. A role determines the set
of capabilities of a specific type of user. This approach allows us to assess
the completeness of the definition of the user interface, in the sense that
the user interface covers all relevant operations to complete a process. For
example, each object defines a certain life cycle that denotes when all busi-
ness processes of the object can be considered as completed. In the context
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Objects = {Transaction, BankAccountA, BankAccountB}
Actors = {UserA, UserX}

Operations = {Queries ∪ Commands}
Commands = {Transaction.CreateTransaction( f rom, to, amount),

Transaction.AcceptTransaction()

BankAccount.Withdraw(amount)

BankAccount.Deposit(amount)}
Queries = {BankAccount.View()

Transaction.View()}

Capabilities(UserA) = {Transaction.CreateTransaction( f rom : BankAccountA, to, amount)

BankAccountA.View()}
Capabilities(UserX) = {Transaction.AcceptTransaction()}

Listing 1: Definition of the Transactions processing system

Capabilities(UserA) ∪ Capabilities(UserX) = Operations f alse

Listing 2: Formula to verify if the total set of capabilities comprises the set
of operations

of a transaction, the object can be considered as complete when the trans-
action is accepted. A bank account is completed when the bank account
is closed. In these states no outgoing transitions can be triggered. If we
define the capabilities of each user, we can verify if the total set of capabil-
ities covers a complete life cycle: does the set of capabilities consist of all
operations needed to execute a path from initiating an object towards all
end states? This property does not necessary assesses if the user interface
is correct. Whereas multiple applications can invoke transitions, and not
necessarily only the user interface, this property does not always have to
hold. It enables the modeller to assess if he included the necessary oper-
ations. We can check this property for each user, and the life cycle of an
object.

Throughout the transformation chain we refer to characteristics of the do-
main models. The set of capabilities is used to generate a task model for
each role. The defined operations define which arguments need to be pro-
vided by the user. The queries define which information the system can
provide the user interface. Either to use this information to determine UI
behaviour, e.g., to determine if the object is in a valid state such that the
user can start a particular task, or to present this information to the user.
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1 event withdraw[] (accountNumber: IBAN, amount : Money) {

2 preconditions {

3 amount >= balance;

4 }

5 postconditions {

6 new this.balance == this.balance’ - amount;

7 new this.accountNumber == accountNumber;

8 }

9 }

10

11 event deposit[] (accountNumber: IBAN, amount : Money) {

12 preconditions {

13 }

14 postconditions {

15 new this.balance == this.balance’ + amount;

16 new this.accountNumber == accountNumber;

17 }

18 }

Listing 3: Specification of withdraw and deposit events as defined for the
BankAccount object

1 event CreateTransaction[] (from: IBAN, to: IBAN, amount : Money) {

2 preconditions {

3 amount >= EUR 0.00;

4 }

5 postconditions {

6

7 }

8 }

9

10 event AcceptTransaction[] () {

11 preconditions {

12 }

13 postconditions {

14 from.withdraw(amount);

15 to.deposit(amount);

16 }

17 }

Listing 4: Specification createTransaction event as defined for the Transac-
tion object
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Figure 3.3: Instance of the conceptual model
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3.3 Correctness by Construction

We require the output of the transformation chain, the implementation,
to be functionally correct with respect to the input of the transformation
chain, the task model. The implementation is correct if it behaves as ex-
pected. Since the implementation is often a human task, the introduction
of errors is often unavoidable. Therefore, testing is a necessary task to val-
idate if the implementation conform to the requirements and if no errors
have been introduced. Two issues can arise here. If developers, business
analysts, testers and other stakeholders interpreted the requirements dif-
ferently, qualifying the software as correct is not possible. The other issue
is that testing is often an engineering task. The more effort is put into this
task, the more errors can be revealed. However, as a result, there can be
no guarantee that no errors exist in the system-under-test as more effort
could lead to revealing more errors. Our approach to these issues is es-
sentially different than common development practises. We seek to create
an implementation that is initially correct, by applying the method of Cor-
rectness by Construction (CbyC) as described by Hall and Chapman [38].
CbyC defines two fundamental principles to software engineering - to make
it difficult to introduce defects in the first place, and to detect and remove any de-
fects that do occur as early as possible after introduction [42]. By integrating the
building blocks of CbyC into the structure of the transformation chain, the
generated implementation is, in theory, correct.

3.3.1 Building blocks of Correctness by Construction

This may sound ambitious or unrealistic to be used in practise. However,
with the right building blocks we can give certain guarantees to the imple-
mentation. In the transformation chain we adopted the following building
blocks.

Unambiguous notations

The cornerstone of this method is the use of an rigorous notation for all
deliverables. A rigorous notation is capable of capturing the relevant char-
acteristics as well as defining these characteristics as unambiguous as pos-
sible. This allowed us to assess the properties of each intermediate model
in the transformation chain. In this research we focus on a rigorous nota-
tion of the task model while preserving the properties of this task model in
the transformations.
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Strong Validation

Ideally, for every human involvement in the transformation chain, we want
to validate the properties of the defined artefact at design-time to avoid
the introduction of errors. This principle is essential in our approach. We
want to detect errors when they are introduced. Since formal methods
can provide rigorous notations, we can use formal methods to validate
the correctness of the defined artefact. In our approach the task model
is based on an Operation Petri-net (OPN). This allows us to validate the
task model by simulation and by checking correctness properties, such as:
does it express all the workflows that the modeller envisioned, and is the
specification consistent?

Correctness preserving transformations

Since we defined the use of sound notations for the task model, and the
existence of validation tools to validate the correctness of this model, we
defined transformations that preserve correctness. We shift the focus from
creating an implementation by hand to generating an implementation for
every instance of the task model, we achieve correct implementations by
validating the transformations. We define properties that should be pre-
served. If these properties are preserved during the entirety of the transfor-
mation chain, including the generated implementation, we conclude that
the transformation chain produces a correct user interface with respect to
the defined properties.

Avoidance of Repetition

The structure of the transformation chain facilitates the reuse of the models
at different abstraction levels. Therefore, we can use existing models to
create a user interface for a new platform. Also, since domain models are
defined in separate models, and we define references to these models, we
avoid redefining domain model behaviour.

Tracebility

As we use declarative model transformations, we can generate transfor-
mation traces that define which objects are transformed into which objects.
This allows us to analyse how certain objects are created during the trans-
formation chain, and in case of an error, it helps us to find the root of this
error.
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3.4 Integration of new platforms and devices

Because of the structure of the transformation chain, models can be reused
and interchanged to generate a user interface for a different modality and
implementation technology. To illustrate this, the concept of model reuse
is depicted in Figure 3.4.
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Amazon 
Lex

Google 
Diagflow

T32-1 T32-2

Platform

Modality

Figure 3.4: Models and transformations for different platforms and modal-
ities

From the task model, we can generate with T1 an abstract user interface.
From the abstract user interface, we can transform the abstract objects to
concrete objects. While the concrete objects are expressed for a certain
modality, we can define for each modality a separate model and transfor-
mation. For example, we define a model transformation T2-1 for a concrete
user interface model of a graphical user interface Mag. The same applies
for a concrete user interface for a voice assistant.

Figure 3.5 illustrates the concepts involved in the task model and the ab-
stract user interface model. For the purpose of explaining the possibility to
reuse models of the transformation chain, we defined a simplified work-
flow called Create a transaction. This transaction requires at least the user
to input an amount of Money and the Receiver. For each input variable,
we defined a separate Task object. This is, however, not required if the in-
put variables are not dependent on each other. The abstract user interface
defines the structure and behaviour. The involved concepts allow the inter-
action to be structured in Container objects. These container objects contain
the construct elements, such that the user can perform the task.
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From the abstract user interface, we define different branches for different
modalities. An example for a graphical user interface (GUI) is illustrated
in Figure 3.6a and a voice assistant user interface (VUI) is illustrated in
Figure 3.6b. Both models define an interaction with the user but use dif-
ferent concepts as interaction objects. In the GUI model, the user interface
is defined as a Container that contains text fields for numerical and textual
input, a button to confirm the input and a checkbox list to select an item.
In the VUI model, the objects are limited to a dialog with questions and an-
swers. We define dedicated metamodels for both modalities and defined
these in Section 5.

3.5 Conclusion

The structure of the transformation chain allows the development of user
interfaces with the same functionality for different platforms and modali-
ties. Models can be reused and model transformations can be used to gen-
erate different branches for modalities and platforms. The building blocks
of CbyC form the guidelines for the used methods and techniques to define
the intermediate models and model transformations in the transformation
chain. The conceptual model enables us to reason about the interface with
the system.
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Figure 3.5: The workflow Create a transaction in the task model and the
abstract user interface model

(a) Graphical user interface
model

(b) Voice assistent user interface model

Figure 3.6: Concrete user interface models for different modalities for Cre-
ate a transaction
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Chapter 4

Task model

In this chapter we describe the design choices for the task model with the design
guidelines from the previous section. This model forms the input for the transfor-
mation chain.

4.1 Overview

The task model forms the highest level of abstraction in our transformation
chain. It defines the workflow, as sequence of tasks, from a user perspective
and can be used to analyse the interaction between user and system and as
the source to generate the abstract user interface from. The goal of a task
model specification is to define which tasks have to be performed to reach
a certain (business) goal.

In our solution, business analysts with a technical background should be
able to define the specification of the resulting user interface. Therefore,
task modelling should be simple enough to understand and to be carried
out. We also require a rigorous notation such that we can validate the speci-
fication at design-time and generate an operational user interface. Whereas
such a notation involves complexity related to task ordering, interaction
with system services and internal state management, the challenge is to
balance the amount of complexity incorporated in the task model. In addi-
tion, we require the task model to fit in the MBUID process as we defined
in Chapter 3. Consequently, the task model should not contain a large se-
mantic gap with the other abstraction levels. As our goal is not to define a
new approach to task modelling (since this does not fall within the scope of
this research), we analysed the capabilities of the existing task modelling
approaches. As a result, we defined a task modelling method that uses
techniques from different approaches such that the complexity of the task
model can be tackled step by step, and can be used as a source to generate
an operational user interface.

In this chapter, we gradually define a rigorous specification of the task
model. First, we define a structural model that uses temporal constructors to
sequence tasks in workflows (Section 4.3). Second, we mark the structural
model with an interaction specification to specify the communication with
the user and the system (4.4). Lastly, from the marked structural model
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Figure 4.1: The tasks in the structural model annotated with an interaction
class forms the input for the transformation to the dynamic model.

a model transformation generates a specification that defines dynamic tasks
which specifies the input and output flow of data and events in the dynamic
model (Section 4.5). The approach we used is depicted in Figure4.1.

4.2 Task modelling techniques

In the field of User-Centered Design (UCD), task modelling and analy-
sis have been widely accepted as one fundamental way to ensure user-
centered design [43] and to improve the understanding of how a user may
interact with a user interface. A task model is often defined as a set of
interactive tasks performed by either the user or the system, or by both,
through the user interface. We discuss the main methods in task modelling
and analysis involved in user interface development.

4.2.1 Hierarchical Task Analysis

Hierarchical Task Analysis (HTA) was among the first task analysis method
that defined a task model in terms of tasks, task hierarchy and plans [44].
The primary goal of this method was to train users to perform certain tasks.
Tasks are recursively defined by decomposing tasks in smaller subtasks un-
til the task can not be decomposed any further. In that case, the task will
be allocated to the user or the user interface. Since the tasks and subtasks
do not define a specific order, plans define the order in which tasks have to
be executed.
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4.2.2 GOMS

The GOMS method describes and analyses how a user should perform
their tasks in terms of Goals, Operators, Methods and Selection rules. Since
the introduction, different forms of GOMS have been developed, each fo-
cusing on a different notation with different analysis goals. With the origi-
nal GOMS model as the root of the family, KLM-GOMS [45], CMN-GOMS
[45], Natural-GOMS-Language (NGOMSL) [46] and CPM-GOMS [47] are
derived from this model. The Keystroke-Level Model (KLM) estimates
the execution time for a task based on the actions the user must perform
in terms of primitive operators. The CMN-GOMS defines a strict hierar-
chy of tasks with the goal to predict the operator sequence and the exe-
cution time. Natural-GOMS-Language (NGOMSL) defines a task model
with task written in natural language with the goal to predict the the oper-
ator sequence, execution time, and time to learn the methods. Cognitive-
Perceptual-Motor GOMS (CPM-GOMS), just as the other GOMS models,
predicts the execution time. However, unlike the other models, the opera-
tors are defined as perceptual, cognitive and motor acts.

4.2.3 Groupware

Groupware Task analysis (GTA) is a technique to model the complexity of
tasks in a cooperative environment [48]. Different to other task modelling
methods, GTA focuses on people, work and the situation.

4.2.4 ConcurTaskTree

ConcurTaskTree (CTT) is a descriptive notation for defining task model
specifications for interactive applications [49]. CTT has a formal definition
of the temporal operators which originates from process algebra. The task
model, defined as a recursive tree, consists of a root task decomposed of
subtasks related with temporal operators. The definition of a task is de-
fined as an action that manipulates an object. Tasks can be assigned to
specific platforms to support different tasks for different target platforms.

4.2.5 MAD

MAD provides an object-oriented task modelling method which defines
tasks, users, objects and constructors [50]. Tasks are decomposed in sub-
tasks, constructors constrain the execution of the task, tasks are related to
specific users and objects are manipulated in the task. Tasks are related by
synchronisation operators (i.e., sequence, parallelism, and simultaneity),
ordering operators (i.e., OR, AND, XOR), temporal operators (i.e, begin,
end and duration), and auxiliary operators (i.e., elementary or unknown).
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4.2.6 Task Oriented Object Design

Task Oriented Object Design (TOOD) defines tasks as objects with an input
transition and an output transition [51]. A task can only be performed
when the input conditions, such as the availability of data, are met. Tasks
that are triggered by events can be decomposed in subtasks.

While HTA, GOMS and MAD are restricted to decomposing tasks into sub-
tasks related by temporal operators, we consider these approaches not as
expressive as Groupware, CTT and TOOD. While TOOD uses mathemati-
cal functions to define when tasks has to be performed, this approach tends
to become complex. However, since TOOD can be simulated using Petri-
nets, strong validation can be achieved.
CTT on the other hand, is not as complex as TOOD, and has been widely
recognised as a notation for task modelling. Existing MBUID approaches,
such as AMBOSS [52], useML [53], taskMOD [54], UsiXML [15], MANTRA
[55] and THERESA [56], are similar to CTT. This comes with the price that
only the temporal constructors integrated in CTT are formalised using tem-
poral algebra. The interaction with domain models is limited to defining
access to attributes of domain models and if the user has to manipulate
or to perceive the attribute. Whereas this approach is sufficient for a wide
range of use cases, we define a more rigorous approach that defines the
interaction that has to be carried out in a task. As a result, we are able
to validate if the generated implementation enables the user or system to
carry out this interaction.

4.3 Workflows in the Structural model

The structure of our task model is based on the ConcurTaskTrees (CTT)
notation. As we discussed, CTT is a descriptive notation suitable for defin-
ing task model specifications for interactive applications[49]. Due to the
well-defined hierarchical structure and expressive temporal constructors,
this notation provides means to define and analyse task models. Using this
notation we define a task model as a tree with nodes as tasks that can be
performed by either the user or the system. Using the tree structure, each
task can be divided into smaller sets of subtasks until the task cannot be
decomposed any further. We call these non-decomposable tasks interac-
tion tasks, as these tree leaves describe the actual interaction with the user
interface, e.g., select an item or give an input. Branch nodes are used to
create the necessary abstraction to define separated branches for specific
tasks. We call these branch nodes abstraction tasks. Temporal constructors
define the execution order. We define the set of temporal relationships in
Table 4.1.
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4.3.1 Formal description

The structural task model is structured as an recursive tree with a single
distinguishable root node as the top node with the direction of the vertices
going downwards. Each task can contain an ordered list of subtasks as
children. Temporal constructors are used to define the possible execution
paths between two subtasks at the same level. Tasks can only have a tem-
poral constructor with the previous or next task in the list. The operational
semantics of these constructors are defined in Table 4.1. The amount of
subtasks of a task is not bound to any limit.

Name Symbol Example Meaning
SequenceEnabling >> t1 >>t2 t1 has to be finished before the user can

start t2.
Choice [] t1 [] t2 The user chooses explicitly between t1

and t2. The user can’t execute both.
Interleaving ||| t1 ||| t2 The user can start both tasks at the

same time, or switch between tasks
when a task is not finished yet.

OrderIndependence | = | t1 | − | t2 The user chooses explicitly between
t1 and t2 and should execute both.
The first task should be finished before
starting with the next task.

SuspendResume |> t1 |>t2 t2 can cause t1 to suspend. When t2
finishes it can reinstate t1. For exam-
ple, in this context t2 could be render-
ing an image such that the input fields
in t1 can’t be edited.

Disabling [> t1 [>t2 t2 can cause t1 to disable. When t2 fin-
ishes, t1 can’t be reinstated.

Table 4.1: Temporal constructors with their symbols and meaning as de-
fined by CTT [49]

t0

t1 t2

t4 t5

t3>> >>

[]

(a)

t0

t1 t4 t5 t3>> >>[]

(b)

Figure 4.2: Example of two similar task models
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4.3.2 Operational Semantics

The CTT notation allows one to define workflows of the task model suc-
cinctly. However, defining the temporal constructors that should define
the order of tasks is not sufficient to obtain the supported workflows in
all cases. For example, if we look at Figure 4.2b, it can be unclear which
workflows are supported. Therefore, we need to define a solution for this
problem. A typical solution would be to define precedence and associa-
tivity conventions among operators to resolve ambiguity [57]. However,
we would argue that the hierarchical structure gives the user enough pos-
sibilities to define such a priority among operators by defining dedicated
subtrees. In addition, this would increase the complexity of the task model
and that is what we want to avoid. The simplest approach would be to de-
fine no precedence and left associativity among operators. In that case, the
possible execution traces of the task model can be expressed in the follow-
ing formula in Listing 5. The original approach of CTT defines a priority
amongst operators, as defined in Listing 6, which results in a different for-
mula, as listed in Listing 7.

t0 ⇐⇒ t1 >> (t4[](t5 >> t3))

t0 ⇐⇒ t1∨ (t4∧ (t5∨ t3))

Listing 5: Formula to evaluate if t0 is finished when operators are left-
associative without precedence

Choice [ ]

Interleaving |||
Disabling [>

SuspendResume | >
OrderIndependence | = |

SequenceEnablingIn f o [ ] >>

SequenceEnabling >>

Listing 6: Precedence amongst operators according to the CTT notation

t0 ⇐⇒ t1 >> (t4[]t5) >> t3

t0 ⇐⇒ t1∧ (t4∨ t5) ∧ t3

Listing 7: Formula to evaluate if t0 is finished when operators are left-
associative with precedence as defined in Listing 6
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Both solutions are examined, and both solutions should resolve ambiguity.
Further research is needed to verify if our concerns about increased com-
plexity are legitimate. A different solution is to prohibit the use of different
temporal constructors on the same level. For this solution we would re-
quire clear rules to define what combination of constructors are allowed.
This solution however, would lower the expressiveness of the language,
and the modeller is required to understand and apply these rules.

For the rest of this research we choose the simplest approach of defining no
precedence and left-associativity among operators. When the supported
workflows of the task model are not clear from its visual presentation, as
in Figure 4.2b, the user can examine the generated execution traces to get
the necessary feedback. In Appendix B, we defined a procedure to obtain
these execution traces.

4.4 Interaction Specification Markings

The structural task model defines workflows that the user interface has to
support. The intention of the task, however, is only captured in its name.
Without a definition of the required interaction, we cannot generate an im-
plementation. Therefore, interaction classes are defined which can be used
to annotate tasks to further specify the interaction carried out in a specific
task. The abstraction tasks in the structural task model decompose task
into smaller non-decomposable interaction tasks. It is these interaction
tasks which need to be annotated with a type of interaction. It is important
to understand that the function of the abstraction tasks in the structural
model is to decompose tasks in smaller subtasks. The leaves of the tree
contain the actual interaction. We present an example, illustrated in Fig-
ure 4.3, to explain how these classes can be used to specify the interaction
carried out in the tasks. In this model, the Create a Transaction workflows
defines a process that enables the user to enter the required information for
transferring money. Tasks labeled with a (
) symbol denote an interaction
task, and thus these tasks need to be annotated. We discuss the different
types of interaction that can be assigned to these tasks.

4.4.1 User Interaction

We define a user as a human actor capable of perceiving, processing and
manipulating information. The user interface facilitates the perceiving and
manipulating processes by respectively presenting the information appro-
priately and giving the user the right tools such that he finishes his task.
To define this interaction with the user, user interaction classes define the
bidirectional interaction between the user and the user interface. The clas-
sification of the interaction classes is based on the ElementaryUseObjects as
defined as part of useML [58]. UseML defines 5 distinctive interaction

41



Create a Transaction

Specify amount(
) Specify receiver

Select from address book

Fetch addresses (
) Select from addresses (
)

Specify account number(
)

Review transaction(
) Confirm transaction(
)>> >> >>

>>

[ ]

Figure 4.3: Example of the task model Create a Transaction

classes: execute, select, dataInput, change and inform. These classes define
interactions of user tasks in a platform independent way and correspond
to the definition of a user. We adopted different terms for these interac-
tion classes, which correspond with the user perspective of the task model:
trigger, select, generate, manipulate and observe, respectively.

User Interaction

Trigger Select Manipulate

Observe Input

Figure 4.4: Overview of user interaction classes

To mark the tasks with the appropriate interaction class, insight into the
type of input the system expects is required. For example, the task Specify
receiver, in Figure 4.3, can be specified as a task that requires the user to
select a receiver from a list, fetched by the system, or by entering an ac-
count number. Whereas both approaches result into a value that defines
the receiver, the former requires a user to select an account, and the latter
requires generating a value that correspond to the account number format.
In another scenario, the receiver may be pre-defined and the user has to
verify if the value is correct. In that case, the user may want to manipulate
the value. The example in Figure 4.3, adopts the first two approaches and
annotates the Select from addresses task with the select interaction class. The
generating class is assigned to the Specify account number task. In the trans-
formation chain both tasks will be implemented differently with different
tools for the user to select a receiver.
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Comparing the example in Figure 4.3 with the examples in previous sec-
tions, this example is more elaborated. The reason is that, besides user
tasks, we also define system tasks in the task model. System tasks define
the interaction with the system and therefore which data is available to the
user. Without any information about the state of the system, carrying out
the specified interaction would be cumbersome.

4.4.2 System Interaction

The conceptual model in Section 3.2 defines the total set of operations that
an given actor can perform with the system, which comprises a subset of all
operations. These capabilities consist of commands that invoke transitions
and queries that retrieve information.

To specify the interaction with the system we define the input and out-
put interface of each interaction. This way, we hide the complexity of sys-
tem interaction. Queries tend to become complex when aggregations and
complex filtering is necessary. In addition, queries can become dependent
on each other when the response references other objects and additional
queries are a necessity. Another problem with queries is that the structure
of the response of queries does not always reflect the structure of construct
elements in the user interface. The user interface should select elements
from the response, possibly process the information, and map the values
to construct elements.

We define two classes of system interaction: query and operation interac-
tion classes.

System Interaction

Query Operation

Figure 4.5: Overview of system interaction classes

Query interaction class

A query is a request for information. In our context, a query is defined as
a request for information about the state of the system. Queries can request
different kinds of data such as lists, (domain) object and specific values,
depending on the requirements of such a query.
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In the user interface, queries are used to obtain information such that the
user can perform his task. The user interface should present this infor-
mation to the user such that the user can make a well-informed decision.
The task model does not define how information is presented, instead but
it does define what information should be obtained from the system and
presented to the user. Based on the conceptual model, the task model is
able to query the attributes of an object and to query a list of objects with
their attributes.

Command interaction class

Invoking a transition on a domain model can be specified using the com-
mand system interaction class. Invoking such a command requires the
specification of the target transition, input data mapped to arguments of
that transition and the identifier of the target object. In case the transition
is a start transition, i.e., the object did not exist before the transition, the
identifier of the target object is not required. Whereas we require the user
interface to give feedback if the command is successfully invoked, such an
interaction either answers with an error message as output or the output
consist of information about the new state of the object as specified in the
output transition.

The set of system interactions defined in the task model form the input
for a transformation that implements the resolvers of these queries. A
resolver calls the functions in the system to resolve the values of the re-
sponse. When resolvers can not be generated automatically, due to the
involved complexity, the implementation should be created by hand. This
separate layer implements the queries in the task model, can be referenced
throughout the transformation chain. This approach increases the flexi-
bility, maintainability and hides the complexity of retrieving information
about the state of the system.

These interaction classes allow us to mark the required tasks in the struc-
tural model. This marked model contains the workflows and the interac-
tion with the user and the system. Where temporal relationships define
the ordering between tasks, no such relation between tasks concerning the
data flow is defined. For example, what is the purpose of a selected item? If
data should be observed, which task does produce this information? In ad-
dition, temporal relationships do not define what happens when the user
cancels the task. To adopt the notion of data flow and to support advanced
scenarios, outside of the defined workflows, a dynamic model is defined
to capture these semantics.
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4.5 Dynamic Model

To specify the data flow and advanced workflows, we adopt the Task Ori-
ented Object Design [51] in the dynamic task model, to specify tasks as
objects with an input and output transition. A dynamic task model defines
data flows, system state checks, and events that trigger tasks.

4.5.1 Task object

In the dynamic task model we define a task as an object which consists of
an input and output interface, and a body. The input interface defines the
required input data necessary for the execution of the task. This data is con-
sidered as the initial condition to be able to execute the task. Three types
of input conditions are defined: events, preconditions and input data. The
body describes the subtasks and the data flow between subtasks and from
the task to the subtasks. The output interface specifies the data that is cre-
ated, the postconditions that must be met and which reactions are trig-
gered.

Figure 4.6: Task object with the elements of the input and output interface

Input interface

• Triggers To trigger the execution of a task, an event within the set of
triggers should be raised either as a result of the previous tasks, or
by the system. We define two types of events: internal events and
external events. Internal events are produced by other tasks in the
task model and are used to trigger the other tasks in the workflow.
External events can be set off by the system as a result of an asyn-
chronous call or to interrupt the current workflow such that the user
should perform a task with a higher priority.

• Input data specifies the incoming data from another task to perform
the task.

• Preconditions can be defined to constrain the valid input data to start
the execution of the task.
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Output interface

• Reactions can be produced by the user during the task and can be
used as Events as input for other tasks.

• Output data specifies the data that is produced or transformed dur-
ing the performance of the task and can be used by other tasks. By
defining input/output sequences we can define a data flow from one
task to another.

• Postconditions define the constraints of the values of the output data.

4.5.2 Event-Driven Tasks

Temporal constructors are capable of defining relationships between tasks.
This defines the basic workflows that a user interface should support. Whereas
these constructors are powerful, the specified behaviour is not completely
deterministic. It does not specify what happens when tasks become obso-
lete, when users want to abort a task or go back to the previous task. In
all cases, the user should be able to abort the task, and the user interface
should return to a state that is relevant to the user. Since the Task Ob-
ject Oriented Design defines the tasks as event-driven, tasks are triggered
by the corresponding events. Tasks defined in the structural model can
be transformed to event-driven tasks as defined in Figure 4.7. Comple-
mentary to the derived tasks, dedicated events can be defined that can be
raised by the user to go back to the previous task or to abort the task.

4.5.3 Input/output mapping interaction classes

Since every interaction task is annotated with an interaction class, this an-
notation specifies the type of input and output data. For example, a task
which is annotated with the select interaction class, should receive a list as
input and an item of that list as output. In the dynamic model we spec-
ify the constraints on the input and output of a task. For user interaction
the input/output pattern is used in the transformation to select a construct
element that is able to receive and provide the data. For the system in-
teraction, the input/output pattern is used to generate the specification of
the interface. We define the input/output pattern resulted from an interac-
tion class as functions. We define the constraints on the input and output
pattern in of both the user interaction classes and the system interaction
classes in Listing 8 and the syntax is introduced in Listing 9.

By defining tasks with input/output mappings, user interaction is abstracted
from modality and platform. The interaction specification does not de-
fine how actors should carry out their tasks but defines the relationship
between the input and output. In the transformation chain, model trans-
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Figure 4.7: Temporal constructors expressed in event-driven tasks
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{i : Set < Item >} Select {o : Item of i}
{i : Set < Item >} MultipleSelect {o : Set < Item > subset of i}

{i : −} Generate {o : Value}
{i : Value} Manipulate {o : Value}
{i : Value} Observe {o : −}

{t : Type, id : ID} GetObject {o : Objecto f typet}
{t : Type, f ilters : Set < KeyValue >} GetObjects {o : Set < Object >}

{i : Set < KeyValue >, id : ID} InvokeCommand {o : Value}

Listing 8: User Interaction classes projected as functions

formations use this specification to derive the corresponding construct el-
ements and create data bindings to retrieve and store the corresponding
data. In the dynamic model, this input and output interface specification
allows the validation to enforce that the specified interaction can be carried
out due to the availability of input data.

{I}C{O}
I = Input Constraints

C = Name of interaction class

O = Output Constraints

DomainModelTypes = Set of types of Domain Models

Type = member of DomainModelTypes

ID = Identi f ier

ValueSet = {String, Integer, Double}
Value = member of ValueSet

Object = instance of a Domain Model object

KeyValue = Key/Value mapping

Set < Item > = Set of items of type Item

Listing 9: Syntax of Listing 8
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4.6 Implementation

To be able to specify an instance of a model we defined a metamodel of the
task model that comprises the features of the structural model, dynamic
model and the interaction classes. The metamodel defines the involved
concepts and the relations between concepts in an instance of that model.

The metamodel is illustrated in Appendix C. The Task class forms the center
of the metamodel and can be annotated with the Interaction class by defin-
ing an interaction relation. The enumarator, UserInteractionType and Sys-
temInteractionType, defines the type of interaction in the Interaction class.
The input and output of the interaction is specified as an input and output
relation with a Data class. In this class, the data can be named, given an
unique identifier, a data type, and a label. Implementing the event-driven
tasks requires an Event class and a relationship between the Task and Event
class. The Event object specifies an event that either triggers tasks or can be
produced by tasks. Temporal constructors can be defined by relating tasks
with a Relationship object. To be able to refer to external task models, we
defined ProxyTaskDModel objects.

4.7 Limitations & Constraints

Validation at design time Whereas we enable the business analyst to de-
fine a task model by defining the structure and verifying if the task model
supports the desired workflows, we can not validate at that point if this
task model is valid. We can not check if the data complies with the input
transition of a task.

Guaranteeing system output In addition, we define an interface with the
system by defining only the external properties: the input and output.
However, when the interaction does not involve a predefined query or
command, we can not asses the validity of that system interaction at design-
time.

Rigid relations The temporal constructors define a rigid definition of the
relation between task. To enable custom paths, we defined event-driven
tasks that can be triggered by tasks and raise events that trigger other tasks.
Whereas we can derive event-driven tasks from the temporal constructors,
the CTT notation is not valid when custom paths are added. Therefore, the
business analyst should either understand the event-driven task structure,
or feedback is required.

Statically defined input/output The current definition of a task is based on
static data; the type of data and the value is defined at design-time. How-
ever, in some cases, which data objects will be created may be unknown
when for example, the user has to enter an arbitrary amount of metadata.
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4.8 Conclusion

The task model is defined as such that different projections can be derived.
The structure, data flow and the dynamics can be modelled in separate
projections, tackling the complexity in steps, enabling business analysts
with a technical background to gradually define and refine the task model.
The structural projection defines tasks, decomposed in smaller tasks re-
lated with formalised temporal constructors from a widely accepted tech-
nique, CTT. However, in CTT the interaction with the user is limited to
defining which attributes of domain models should be perceived or ma-
nipulated. Our process of defining interactions makes the definition of this
interaction more concrete, with the user and the system. We introduced the
notion of system tasks to explicitly define what is expected from the sys-
tem such that we can define the output of these system tasks as input for
the user interaction. Whereas the interaction description relates the input
to the output, we can use this input and output description to define the
data flow between tasks and validate if data will be available for the use
to perform the defined interaction. The data flow enables the modeller to
specify where the generated data, by the user or the system, will be used
as input for the user or system tasks.
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Chapter 5

User Interface Models

In this section we address the design choices involved in defining the intermediate
user interface models. Both the underlying concepts as well as the implementation
in a metamodel for both models will be discussed.

5.1 Purpose

The task model defines the tasks that should be supported by the User
Interface to interact with the user and the system. As we want to transform
this specification to an operational user interface, we define two models
that allows the gradually refinement of these models for a specific modality
and platform. The goal of these models is to express the structure and logic
of a user interface in such a way that transformations can transform this to
different modalities and platforms. It is important that the models should
preserve the operational semantics of the task model; both models should
contain the same workflows as the task model, and the input and output
references should be preserved.

In this chapter we define two user interface models that resemble in struc-
ture: the abstract and concrete user interface. The former defines a rep-
resentation of the user interface abstracted from platform and modality
and refines the task model by adding user interface specific constructs and
logic. The latter refines the abstract model by transforming the specified
constructs in concrete constructs with presentation style and platform spe-
cific behaviour. In this chapter we discuss the concrete user interface model
for a graphical user interface.

5.2 Abstract User Interface

In the abstract user interface we define construct elements, API calls and
user interface behaviour. Similar to UsiXML, we use events and event lis-
teners to model the behaviour of construct elements. Events are raised by
construct elements to denote an action of a user and raised by function
calls to denote the result of an interaction with the system. This approach
is illustrated in Figure 5.1.
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Figure 5.1: Conceptual overview of defining behaviour of the abstract user
interface with EventListeners

5.2.1 Abstract Construct Elements

Containers, Triggers, Lists, Input and Output objects form the elementary
objects of this model and provide the structure and the tools such that the
user can perform the specified tasks. We call these objects, AbstractUser-
Interactors (AUIs). A Container groups a distinct set of AUIs such that the
accessibility of these elements can be toggled. A Trigger defines an atomic
action of the user to, for example, confirm, reset, or start a task. A List
enables the user to perceive a structured set of information and to select
a single or multiple items of that list. An Input object enables the user to
input or to manipulate information. An Output object specifies that infor-
mation has be communicated to the user.

The concept of abstract construct elements and their characteristics is easier
to grasp if we project these elements on a specific platform and modality.
For example, a typical GUI consists of a form that enables the user to in-
put and to manipulate data. An instance of an abstract user interface that
models such a form can be defined as a Container that contains Input, Out-
put, List and Trigger elements. When we project this structure onto a GUI,
the Input elements will be transformed into a text field, an integer field
or another field that enables the user to provide information. Output ele-
ments will be transformed into text, a graphic or different form of output.
Lists will be transformed into dropdown elements that enables the user
to choose a value. Triggers will be transformed into buttons such that the
user can confirm or reset the information.
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5.2.2 Events

We define two types of events: internal and external events. Internal events
denote a state change of a construct element. External events denote the
result of an API call.

Internal events

The different states and transitions of an abstract construct element can be
defined in an abstract state machine∗. Such a state machine denotes which
transitions can be triggered in which state. Both the user as well as the
user interface can trigger these transitions. An event is raised when the
state of an AUI element changes. The behaviour of each AUI is defined in
a separate state machine. Therefore, we can customise the behaviour of the
same AUI with a different behaviour. An example of two state machines
for the same AUI is illustrated in Figure 5.2.

sh sastart sd

enable

hide

trigger

disable

enable
(a) trigger does not change the state

sh sastart sd

enable

hide

trigger

enable
(b) trigger changes the state into sd

Figure 5.2: Two different state machines of the abstract construct element
Trigger

The state machine in Figure 5.2a describes the behaviour of a Trigger ele-
ment with 3 different states: Hidden (sh), Accessible (sa) and Disabled (sd).
Only in the Accessible state, the user can trigger the Trigger event. Fig-
ure 5.2b defines the same Trigger element, but when the user triggers the
trigger transition , the state of the element will change into the state disabled.
In this case, the user can only trigger the Trigger once. This can be usefull
when a user has to confirm information. Another use-case is to change the
start state in, for example, the disabled state. The user interface can com-
municate to the user that the possibility exists but the user can not trigger
the Trigger, yet.

Using this separate state machine we can customise the behaviour of the
AUI elements and express design choices at this level in the transformation
chain.

∗Not to be confused with ASM’s as a method for the design and analysis of complex
systems
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External events

In our approach we define system calls asynchronous by definition. As
a result, an external event denotes the start and finish of a function call.
When the function call returns a result, an event is raised. When the func-
tion call is not successful, the user interface can react on this event by show-
ing feedback, or by aborting the task.

5.2.3 Event Listener

The event listener approach is used to define inter-element behaviour. The
event listener as a concept listens to events and can act upon events by
changing the state of construct elements and send an request to the system.
The collection of event listeners forms the orchestrator of the user interface.
It defines the behaviour of the user interface based on transitions of AUI
elements and the result of function calls.

5.3 Concrete User Interface

The CUI refines the AUI by adding information on how the UI has to be
perceived and manipulated by the user. This model adds the notion of
modality and is, therefore, modality dependent. The target modality deter-
mines the structure of the model and also the available construct elements
that a user interface can support. For each modality we define a dedicated
concrete user interface model that models the structure and behaviour of
a user interface for that specific modality. We discuss the structure of an
graphical user interface which resembles the structure of the abstract user
interface model.

5.3.1 Concrete Construct Elements

The transformation of an abstract construct element to an concrete con-
struct element depends on the context in which the element appears. For
example, a list in a graphical user interface could a dropdown input or a
simple checkbox list in a form, or the list could be displayed as a table as
in a CRUD interface. Semantically these three options are the same, they
each offer the possibility to select an item from the list, and in the abstract
user interface they are modelled using the same object. In the concrete user
interface these elements are refined such that they fit in their context.

The refinement of these elements focuses on the corresponding modality
concept and the styling. Both are modality dependent. The modality con-
cept determines if the list is a table or dropdown, and the styling specifies
how the concept should be presented to the user.
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Modality Concepts

For a graphical user interface a set of modality concepts is defined that is
supported by a wide-range of devices that offers a graphical user interface.
For a graphical user interface we identified distinct classes of concepts that
are supported on touch devices and mouse-keyboard devices.

Concrete state machines

In the abstract state machine, each transition is defined by the source and
target state. In the concrete state machine we expand this event definition
by means of a concrete interaction. For example, triggering a trigger could
be by means of a click or a touch, or both. By linking these interactions with
transitions, we can customise these state machines such that they fit in a
particular context. Another example comes up when you consider a target
device with limited capacity, for example, in case of a mobile device. In
that case a separate state machine can define the behaviour of a collapsible
menu such that the container changes in size when the user triggers it. To
model this behaviour we define the visible state as a compound state in
which the state of the container can either be closed (but visible) or open.
Figure 5.3 illustrates a concrete state machine for a collapsible container.

so sc sdsash
enable
hide

open

close

disable
enable

Figure 5.3: Example of a use-case for a concrete state machine to describe
the behaviour of a concrete collapsible construct element

Building blocks

When this state machine has been defined, this could be used for different
situations without redefining the same behaviour. This results in a library
of concrete user interface elements that can be combined when needed.

Styling

We add styling to a construct element by mapping states to style classes.
If a concrete construct element only has three states, the styling of each
state corresponds to the characteristic of the state. For example, a button
in the disabled state can be greyed out and hidden in the hidden state. The
majority of effort in styling is involved in the accessible state. Depending
on the modality element, different styling attributes are relevant.
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5.4 Metamodels

We define metamodels for the abstract and concrete user interface and state
machine.

5.4.1 Abstract User Interface

The structure of the metamodel of the abstract user interface resembles the
structure defined in Section 5.2. The metamodel defines the AbstractUser-
Interactor as a class that is contained by the AbstractUserInterface which con-
tains the events, data and construct elements. The Data class is related to
the AbstractUserInteractor class and the SystemInteraction class. The Sys-
temInteraction class defines the function calls that either query or invoke
a command on the system. The EventListener class defines the behaviour
when either an AbstractUserInteractor or a SystemInteraction object raises
an InternalEvent or an ExternalEvent. The Condition object defines a con-
dition when the reaction should be triggered. The AbstractUserInteractor
forms the supertype of the abstract construct elements which we defined
in Section 5.2.1. For each element, a class in the metamodel is defined.

5.4.2 Concrete Graphical User Interface metamodel

We defined a concrete user interface model for a graphical user interface.
The general structure of a userInteractor, System Interaction and the EventLis-
tener remains intact as these concepts are still valid in a graphical user
interface. The metamodel of the concrete user interface can be found in
Appendix D. What differs is that the AbstractUserInteractor is refined into
a ConcreteUserInteractor which is a supertype of the modality concepts that
are supported by the target modality. The set of construct elements which
we defined is depicted in Figure 5.6. Each ConcreteUserInteractor can be
mapped to a ConcreteStyleModel. The metamodel of the ConcreteStyle model
is depicted in Figure 5.4. In this model, each state can be mapped to a Con-
creteGraphicalStyle. This class does not contain an exhaustive set of styling
attributes, but it does show how styling can be defined.

5.4.3 State machine

We defined a metamodel for a state machine that defines the behaviour of
the AbstractUserInteractor and ConcreteUserInteractor. For the Statemachine,
Transition and AbstractState object, the concrete state machine can refer to
an abstract user interface via the conformsTo relation.
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5.5 Conclusion

The defined metamodels define concepts that can be used to model the
structure and logic of a user interface. In addition to current approaches,
we defined an extra class, SystemInteraction such that system interaction
can be specified. An alternative approach is to refer to SystemInteraction
objects in the task model. In that approach we avoid the repetition of the
same information. However, when the task model changes, or iterations
are being developed, the references are likely to be broken, or do not com-
ply with the structure and objects of the abstract and concrete user interface
models. We choose for internal consistency; the model remains consistent
while other models may change. Changes in other models can be prop-
agated when necessary, and do not directly corrupt other models in the
transformation chain. We added state machines that enable the user to
specify and customise the behaviour of the construct elements. This be-
haviour, together with the event listeners that define how and when state
changes of construct elements should be triggered, can be used to check if
state changes can be triggered. For example, when an event listener spec-
ifies that the button should be triggered, the element should be accessible
for the user. We have to verify if we can statically analyse if the specified
behaviour is consistent. In addition, we have to validate this approach to
verify use-cases for the use of these state machines.
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Figure 5.4: Metamodel of the Style model

Figure 5.5: Metamodel of the Statemachine
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Chapter 6

Model Transformations

In the previous sections we discussed the involved concepts of different models in
the transformation chain. The goal of model transformations is to refine the objects
of a model. We discuss the general structure of the transformation rules and the
problems involved.

6.1 Transformation languages

To define a model transformation we need a language to encapsulate how
concepts from one model transform to concepts from another model. In
Table 6.1, an non-exhaustive overview of model transformation languages
is presented with the use of evaluation properties defined by Czarnecki
and Helsen [59]. The list of model languages are supported by tools and a
large body of knowledge is available in literature.

name type tracebility directional tool-support
AGG [60] graph user specified bidirectional AGG Tool
ATL [61] hybrid automatic unidirectional EMF
ETL [62] hybrid user specified unidirectional EMF
GROOVE [63] graph - unidirectional GROOVE simulator
Henshin [64] graph automatic bidirectional EMF
QVT-Operational [26] imperative automatic unidirectional EMF
QVT-Relations declarative automatic bidirectional EMF
VIATRA2 [65] graph user specified unidirectional EMF

Table 6.1: An overview of model transformation languages

Among others, Query/View/Transformation (QVT) and Atlas Transfor-
mation Language (ATL) [61] are languages standardised by the Object Man-
agement Group (OMG) and well-supported with tools. Due to the declar-
ative nature of ATL, the possibility to add imperative statements, and due
to the large body of knowledge about the semantics and verification tech-
niques, ATL is chosen to as the language for the model transformation def-
initions.
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6.2 Transformation definitions

Since we require that we can automate the transformation from task model
to an operational user interface, we define model transformations that fa-
cilitate this process. In this research, the purpose of the defined model
transformations is to demonstrate that it is possible to refine models such
that they result in an executable definition of a front-end application. We
first discuss the general approach in the defined transformation. Then we
discuss how this approach translates to the definition of rules.

6.2.1 Taskmodel to Abstract User Interface

Transforming the task model to an abstract user interface model consists of
expressing relations among tasks and defining abstract construct elements
such that the interaction can be carried out by the user. This first model
transformation requires little to none customisation as the transformation
from task model to abstract user interface can be defined in a straightfor-
ward approach.

conforms to 

Taskmodel Mt

input

based on based on conforms to 

Taskmodel to AUI  
M2M transformation

definition T1

executed

conforms to 

Abstract User Interface
Model Ma

output

conforms to 

Taskmodel  
Meta model

conforms to 

Abstract User Interface
Meta model

conforms to 

Transformation
language ATL

MOF

conforms to 

Figure 6.1: Conceptual overview of the first model transformation T1

Transforming Relationships to Event listeners

To define user interface behaviour we create for each relationship the nec-
essary event listeners. For each type of temporal constructor we define a
pattern that implements the event listeners such that the definition of the
temporal constructor is enforced. For each temporal relations a pattern is
defined that translates the characteristics of the temporal constructor with
events and event listeners.
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1 rule getSequenceEnablingRightEventListener {

2 from

3 t: Taskmodel!Relationship

4 (

5 t.nature = #SequenceEnabling or t.nature =

#SequenceEnablingInfo↪→

6 )

7 to

8 a: AUI!EventListener (

9 onEvent <- l,

10 withReaction <- r,

11 withReaction <- l_hide,

12 transitionType <- #NAVIGATION

13 )

14 l: AUI!InternalEvent (

15 Element <- t.left_sibling,

16 eventType <- #FINAL_EVENT

17 ),

18 r: AUI!InternalEvent (

19 Element <- t.right_sibling,

20 eventType <- #ENABLE_ELEMENT

21 ),

22 l_hide: AUI!InternalEvent (

23 Element <- t.left_sibling,

24 eventType <- #DISABLE_ELEMENT

25 )

26 }

Listing 10: Excerpt from transformation TaskDModeltoAUI that defines a
transformation rule for the creation of an event listener for the SequenceEn-
abling relationship

Finish criteria

Even though temporal constructors define the temporal relation between
tasks, it only specifies the next tasks to be executed after finishing that par-
ticular task. It does not define when the task is considered as finished. Es-
pecially when a task is composed of subtasks, it is not straightforward to
determine when a task can be considered as finished. Considering that a
task contains either an interaction class or an arbitrary amount of subtasks,
we define a strategy to resolve the finish criteria. To solve this problem, a
helper is defined that traverses the subtree of that particular task and re-
turns the finish criteria by means of a logical expression. To illustrate this,
Listing 11 defines the formula that evaluates if the task t1 defined in Fig-
ure 6.2 is considered as finished. The logical expression is defined using
the semantics as described in Table 4.1.

(t3∧ ¬(t5∨ t6)) ∨ (¬t3∧ (t5∨ t6)) ⇐⇒ t1

Listing 11: Formula that evaluates if t1 is considered as finished
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Figure 6.2: Sample task tree to illustrate the finish criteria of t1

According to the formula defined in Listing 11, t1 is finished if either t3
is finished or either t5 or t6 is finished. To capture this behaviour in the
user interface, an EventListener object is defined. This EventListener object
defines that when t1 is finished, t2 should be enabled. In the example of
Listing 11 this EventListener object should listen to the finish criteria of t3,
t5 and t6.

6.2.2 Abstract to Concrete User Interface

The transformation from abstract user interface to concrete user interface
involves the transformation from abstract to concrete construct elements.
For an abstract construct element, multiple options can be considered in
the concrete model. Therefore, we consider the mapping of these elements
as a design choice. To express these design choices we defined a mapping
model that maps instances of abstract construct elements to a concrete con-
struct element type.

Abstract User Interface
Model Ma

T2

AUI to CUI  
M2M transformation

definition T2

Concrete User Interface
Mc

Construct elements
mapping definition Mm

Figure 6.3: Input and output models of transformation T2

The metamodel of the mapping model is depicted in Figure 6.4. The Map-
ping class maps an AbstractUserInteractor to a type of ConcretaUserInteractor.
The supported types of the concrete model are defined in an enumerator
CUI type. In the transformation definition each construct element is either
transformed according to the specified mapping, or the default mapping is
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used. Because of this default mapping, the design choices only have to be
expressed when the default mapping is not desirable.

Figure 6.4: Metamodel of the mapping model

Using the mapping model, design choices are captured in a separate model.
An alternative approach is to generate an instance of the target model and
add design choices by hand. However, these design choices are not stored.
When the source model changes, these design choices can not be reapplied
and the model has to be edited by hand, again. By capturing design choices
in a separate configuration file, the target model can be regenerated and it
includes the design choices if the model is not changed significantly.

To use the mapping model in the transformation definition, the mapping
model is considered as input. At least two matching rules are defined for
each AUI element. One rule for the default transformation and one rule for
a custom transformation, when the mapping model defines a mapping for
that element. Helper functions are defined to verify in the matching rules if
an mapping is defined for that element. Listing 12 depicts an example of a
transformation definition of an OutputElement. When the element is not in
the mapping model, the matching rule toText will be executed. Otherwise,
the OutputElement will be transformed to a Notification element with the
styling specified in the mapping model. The defined mapping rules are
defined in Table 6.2. The default mappings is denoted with an asterisk.

6.2.3 Concrete User Interface to Final User Interface

The last transformation is strongly dependent on the target modality and
platform. Therefore, the transformation we defined is very specific to the
implementation technology. In this research, we choose a Javascript frame-
work as the implementation technology for the front-end application. But
in theory, every implementation technology can be used, as long as it sup-
ports the concrete construct elements defined in the concrete user interface
model.
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1 helper context AUI!AbstractUserInteractor def : inMapping(cui :

MAP!CUI_type) : Boolean =↪→

2 MAP!Model.allInstances().first().mappings->

3 exists(m | m.CUI_type = cui and m.AUInteractor = self);

4

5 helper context AUI!AbstractUserInteractor def : getMapping(CUI_type :

MAP!CUI_type) : MAP!Mapping =↪→

6 MAP!Model.allInstances().first().mappings->

7 select(a | a.AUInteractor = self and a.CUI_type = CUI_type).first();

8

9

10 rule toText {

11 from

12 a : AUI!OutputElement (

13 a.notInMapping()

14 )

15 to

16 c : CUI!Text (

17 name <- a.name.toNamespace(),

18 value <- a.name.toNamespace()

19 )

20 }

21

22 rule toNotication {

23 from

24 a : AUI!OutputElement (

25 a.inMapping(#Notification)

26 )

27 using {

28 m : MAP!Mapping = a.getMapping(#Notification);

29 }

30 to

31 c : CUI!Notification (

32 value <- a.value,

33 concretegraphicalstyle <- m.style

34 )

35 }

Listing 12: Excerpt from the transformation AUItoGUI to illustrate how
mappings are integrated in matching rules

Because the Javascript framework composes the user interface as a tree
with nodes as components, the transformation is straightforward: every
Container can be modelled as a component and an HTML component is
created for each construct element. More details on the implementation
can be found in Appendix F.
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abstract rule (in AUItoGUI.atl) concrete
List reserved List*

toDynamicDropdown SelectableList
toMenu Menu

Input toTextField TextField*
toMoneyField MoneyField
reserved FileInput
toIntegerField IntegerField
toDateField DateField

Output toText Text*
reserved Chart
reserved Widget
toNotication Notification

Trigger toButton Button*
Container toContainer Container*

toMenu Menu
toForm Form

Table 6.2: Mapping of abstract construct elements to concrete construct
elements

Concrete User Interface
Mc

T3

CUI 
M2T transformation

definition T3

Final User Interface

Figure 6.5: Involved models in T3
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6.3 Conclusion

In this section we defined an approach to implement the model transfor-
mation that transforms well-formed instances of models in the transfor-
mation chain to more refined models. Since we want to automatically
generate an implementation, the complexity of translating a model defi-
nition to source code is shifted to the transformation definition. In practise
defining a correct model transformation costs a significant amount of effort
as defining declarative model transformation concentrates the complexity
on a limited amount of matching rules. The advantage is that a such an
transformation is deterministic and therefore predictable. As a result, we
bootstrapped the transformations to a limited set of temporal relationships
to demonstrate the transformation chain. To generate more complex user
interfaces, we need to invest more effort into these model transformations.
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Chapter 7

Leveraging Domain Models

In the previous sections the structure and concepts were defined that form the
models of the transformation chain. In this section we define how a behavioural
domain model can be used as input to our transformation chain.

In the task model we are able to refer to characteristics of domain objects
in the system: tasks can query the state of objects and invoke commands to
change their state. Instead of defining the specification by hand and refer-
ring to elements in the domain models, the reverse approach would be to
generate a specification from a domain model specification and customise
these by hand. We call this approach the boilerplate approach.

7.1 Generating task model specification

If we recall the behaviour specification of an object as we specified in the
conceptual model, we identify that the behaviour is expressed as a state
machine in which transitions can change the state of the object. Invok-
ing such a transition is the responsibility of either an internal actor or an
external actor. In case of the latter, tasks can be defined to describe the in-
teraction with the user and system such that the transition can be invoked.
The definition of a transition, or more precisely, the specification of the ar-
guments and the corresponding constraints can be used to generate tasks
that enable the user to specify values for each argument.

7.1.1 Tasks

Arguments can be mapped to interaction classes. The type of argument de-
termines which type of interaction is expected. As we defined our tasks as
an input/output interface, mapping an argument to a specified interaction
class is straightforward using the following heuristics. For each interaction
class, a task is defined.

• Query and Select When the argument specifies a reference to an ex-
ternal domain object, the user should be able to select that object. In
the task model, we map such an argument to a system query and a
user selection class. Whereas the user selection class requires a list as
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input, the retrieval of such a list is a task for the system.

• Generate or Manipulate When the argument is a data type that does
not require the user to select an option, this argument will be mapped
to a generate or manipulate interaction class.

7.1.2 Data Flow

Generating the data flow is only possible if the purpose of these data is
clear. In case a task model is generated to execute a transition, each data
object is mapped to the corresponding argument. In that case the output
of the tasks that produce this data should be connected to the task that
invokes that command. However, the output of a task may be used in a
different task to enable users to verify if the data is correct. In that case,
these data should also be connected to this specific review task. To be able
to generate this data flow, the transformation generates a dedicated review
task and connects the data flow to this task. We discuss patterns to config-
ure such a transformation in Section 7.2.1.

7.2 Boilerplate approach

We discussed how arguments of a transition can be mapped to tasks in
the task model. However, to generate a task model of an transition, we
need to define patterns. The obvious approach would be to generate a
single task for every argument that allows the user to specify a value for
each. However, we identified common patterns that help the user to finish
a task. We call this approach the boilerplate approach since it defines the
basic sequence of tasks.

7.2.1 Workflow patterns/heuristics

Insert/Review/Confirm

In the initial state, the user is not able to perceive the state of the object other
than perceiving that the object is not created. In that case, the user has to
trigger the initial transition to create the object. For the initial transition, we
can map the arguments to either data generation tasks and selection tasks.
A review task can be generated to enable the user to review the values
of the generated data and a confirm task can be generated to confirm the
values and to trigger the invocation of the transition.
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Select/Update/Confirm

For non-initial transitions, the user has to select the object that the user
wants to view or manipulate. Depending on the state of the object, the
user is able to select which task he wants to perform. Since these objects
are created and contain information about the state of the object, this in-
formation can be used to help the user. For example, if the task should
enable the user to update current attributes of an object, we can define a
task with a manipulation interaction class with as input the current value
of the attributes and as output the updated values. In that case, the user
interface presents this information to the user such that the user can either
manipulate the data or decide not to change the values.

7.3 Task model modularity

The boilerplate approach enables the generation of dedicated task models
for transitions in a domain object. Since a task model for a single transition
does not comprise the complete definition of tasks to be supported by an
application, we defined an modular approach to compose a complete de-
scription of a task model for an application. In our approach we compose
a complete task model by composing the task models we generated from
the boilerplate approach.

7.3.1 Proxy Model

This modular approach defines a task model composed of proxy models.
A proxy model contains a reference to an external task model. Whereas
a TaskDModel is defined as a subtype of Task, each task model is also de-
fined as an input/output interface. If a proxy task model is self-contained,
we can use that model in the composition of a parent task model. A self-
contained task model defines all required information to complete the task
model either as system and user interaction or as input constraints and
does not trigger tasks outside of the task model. Whereas the proxy model
defines an input and output interface, the adopting task model (the parent)
should comply with the input constraints of the proxy model. When the
parent complies with the input constraints, and the proxy is self-contained,
the output of the proxy task model can be used in the parent task model.

The advantage of this approach is threefold. First, when a transition changes,
we can anticipate on that change by either generating a new version of that
task model or changing the specific task model by hand. Secondly, proxy
models can be nested. An example of a use-case of nesting task models
is when in the middle of a task, the user has to select an object that does
not exist yet. We could just abort the task and require the user to navigate
to the creation task, but referring to the proxy task model that allows the
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user to create such an object without forcing the user to abort his possibly
long running process. In this way, we can nest proxy models to improve
the usability of the user interface. Thirdly, we can define task models for
specific users. By defining the capabilities in terms of transitions, we can
define a task model for a specific user. This complies with the Correctness by
Construction approach by avoiding repetition as we defined in Section 3.3.

7.3.2 Application Configuration Model

In the conceptual model, users are described as an entity with a set of capa-
bilities. A capability refers to a specific transition of a domain object. This
user model can be used to compose a task model by using the derived task
models of each transition in the set of capabilities. A task model is com-
posed by defining a parent task model and an application configuration
definition. For each transition in the set of capabilities, proxy task models
are derived, which will be stored in separate models. The parent model de-
fines the main structure of the application. The application configuration
specifies the set of users, the parent model and a node in the parent model
to insert the proxy task models. For each user, a task model is composed
and forms the input for the transformation chain. The metamodel of the
application configuration model is depicted in Figure 7.1 which includes
the user model as well.

Figure 7.1: Metamodel of the application configuration definition model
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7.3.3 Transformation Definition

To compose a task model based on an application configuration model,
we define two transformations. The structure of the first transformation
is depicted in Figure 7.2. The input of this transformation is an instance
of a application configuration model and an instance of the domain ob-
jects. As we have discussed in Section 7.1, we can generate task models for
each transition based on the specification of a domain object. This trans-
formation uses the set of capabilities of each user to generate separate task
models.

Domain Object
Specification

T0-1

Domain Object Transition
to proxy task model T0-1

Proxy Task Model

User Model Muser

Proxy Task Model
Proxy Task Model

Figure 7.2: Input and output models of the first part of the transformation
T0

The second transformation uses the composition of the parent task model
and the proxy models to create a task model for each user in the application
configuration model.

Proxy Task Model
Proxy Task Model

Proxy Task Model

Parent Task Model T0-2

Taskmodel to AUI  
M2M transformation

definition T1'

Taskmodel Mt 
composes

Application
Configuration Model

Figure 7.3: Input and output models of the second part of the transforma-
tion T0

7.4 Limitations & Constraints

• The discussed approaches to derive a task model from a behavioural
domain model are straightforward; a task is defined for each argu-
ment. Since this enables the user to enter a value for each argument,
this can become tedious and is not user-friendly; the user has to go
through every single step. More advanced transformations can de-
tects groups of arguments and create logically grouped tasks.
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• The current transformation defines a task for each argument. How-
ever, not every argument maybe mandatory for the transition to be
triggered. In that case, either the arguments should be annotated as
mandatory, or the user should configure the transformation to spec-
ify which arguments should be converted to a task.

• Since task models can be reused by different users with different user
roles, the definition of these task models should take this into ac-
count. If users have different roles, executing a task may involve
different queries and different steps to achieve the same goal.

7.5 Conclusion

In this section two approaches have been discussed to leverage behavioural
domain models to integrate the behaviour of the domain models in the
user interface. A transformation is defined to generate task models from
behavioural domain models. This transformation generates tasks and in-
teraction classes for each argument of the transition. Whereas the transfor-
mation is straightforward, the order of the tasks to be executed may not be
considered as user-friendly. For this reason, more advanced transforma-
tions have to be defined. To anticipate on changes in the domain model
we have discussed an approach that generates separate models dedicated
to specific transitions. When a transition changes, only that specific tran-
sition has to be altered, and not the complete task model. In addition, an
application with different users can be modelled and used as input for the
generation of different task models for different users for the same appli-
cation.
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Chapter 8

Enforcing Correctness

In this chapter we discuss methods to enforce the correctness of our transformation
chain results. We discuss methods we have used and that can be used to further
verify correctness.

8.1 Correctness

In software systems, formal verification is a method of proving that the
system is correct with respect to a certain formal specification or property.
This proof is carried out on an abstract mathematical model of the system.
Depending on the nature of the system, and the target properties, different
mathematical models can be used. Examples are Finite State Machines,
Labelled Transition Systems, Petri Nets and Process Algebra.

To reason about correctness, Hoare’s logic is used, as first defined in [66].
Hoare defined a formal system to reason about the correctness of pro-
grams. The central notion of Hoare’s logic is Hoare’s Triple as depicted
in Listing 13: S is the program in the form of statements that implement
the function it executes, P is the precondition and Q is the postcondition,
both in predicate logic. Using this Triple, partial correctness can be proven.
Partial correctness gives the guarantee of a valid output only if the program
terminates and the preconditions are met. However, to prove total correct-
ness, in addition to partial correctness, one has to proof that the program
always terminates.

{P}S{Q}

Listing 13: Hoare Triple

We consider model transformations as programs that operate on instances
of the input metamodel. In this sense, we can apply the notions of correct-
ness of programs on model transformations. We consider the input and
output models as correct if they conform to structure and the constraints as
specified in the metamodel. Therefore, we consider the structure and con-
straints of the source model as preconditions of the model transformation
and the structure and constraints of the target model as postconditions.
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The challenge is to proof that if the preconditions are met, the postcondi-
tions are guaranteed.

Different approaches use the notion of a transformation model to use exist-
ing model checkers to asses the correctness of the transformation. Cabot et
al. defines an algorithm to derive a transformation model that consist of
the source and target metamodel, and invariants in OCL [67] that are auto-
matically derived from the transformation definition [68]. A model satis-
fiability checker (UML2Alloy [69]) is used to transform the transformation
model to the specification language Alloy [70] to verify partial correctness.
They have shown that this method can be applied for QVT [71], TGG [72]
and ATL.

8.2 Validation Properties

To be able to assert the correctness of the intermediate models, we defined
properties of a valid input and output model. These properties are based
on the specification, in our case, the task model. We strived to define a
set of properties that if this set of properties holds for every intermediate
model, the models are correct and can result in an operational user in-
terface that behaves as specified in the task model and according to the
manual intervention.

8.2.1 Task model

As the task model forms the input for the transformation chain, this task
model forms the specification for the resulting user interface: the user in-
terface should support the workflows that are specified in the task model.
We defined a number of properties of a valid task model:

1. Task reachability Tasks should be reachable if the execution is re-
quired in a specific workflow.

2. Sinkholes Is there a task where there is no point of return? As each
task is defined as an input interface with preconditions, there should
be at least one task where the preconditions can be met.

3. Data availability Can the input criteria of every task be met? As each
task is defined as a function with preconditions, the input data must
be produced before the user can start the execution of the task.

4. System interaction Is the system able to produce the output from the
input? As we are not able to check the implementation of the sys-
tem tasks, we can not verify if the implementation is correct. We can
however check if the queries and commands are well-formed with
respect to the specification of the domain models.
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8.2.2 User Interface Models

The user interface models are derived from the task model. We require
that these models preserve the correctness properties, and, in addition, we
want to check if the semantics are preserved.

1. Workflows preservation Can the workflows be executed in each in-
termediate model? To verify this property, an approach would be
to derive the workflows of the task model and check if intermediate
models implements the workflows.

2. Undesirable loops Does the user interface contain behaviour that re-
sults in a loop? Since behaviour of the user interface is modelled with
EventListeners, this behaviour can result in a loop.

8.3 OCL Constraints

A method to constrain valid models is to define constraints with the Object
Constraint Language (OCL). These constraints are defined on the meta-
model level and constraints the values of the features of an object. It is
therefore limited to expressing local constraints. We show how these con-
straints can be used to enforce the correctness properties.

8.3.1 Task model

The invariant in Listing 14 constraints Relationship objects to define a re-
lationship for tasks that are defined at the same level. To avoid dangling
tasks, we define an invariant in Listing 15 to makes sure that each task is
at least related to another task. As we do not distinguish abstraction tasks
and interaction tasks in the metamodel, as we defined in Section 4.4, we
verify this property by adding the invariant as listed in 16. By defining
these constraints we prevent that tasks are unreachable due to dangling
tasks (Property 1 and 2).

1 invariant relationship_between_tasks_with_same_parent:

2 self.relationships->forAll(r |

3 (r.left_sibling.oclIsKindOf(AbstractTask) implies

4 children->exists(t | t = r.left_sibling)) and

5 (r.right_sibling.oclIsKindOf(AbstractTask) implies

6 children->exists(t | t = r.right_sibling))

7 );

Listing 14: Invariant to constrain relationships to only occur on the same
level
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1 invariant all_tasks_must_have_a_relationship:

2 children->forAll(t |

3 relationships->exists(r |

4 r.left_sibling = t or r.right_sibling = t

5 )

6 );

Listing 15: Invariant to constrain subtasks

1 invariant only_interaction_on_leaf:

2 if self.subtasks->isEmpty() then

3 self.interaction->notEmpty()

4 else

5 self.interaction->isEmpty()

6 endif;

Listing 16: Invariant to constrain interaction classes only on leave tasks

Data constraints

As each task is expressed as an object with an input and output interface,
we want to enforce that the input conditions can be met. For each task
we can enforce that the specified input and output variables meet the re-
quirements to execute the interaction. To be able to execute the interaction,
the input and output variables should be specified, the type of the vari-
able should comply with the type of interaction and the input should be
originated from a task that either retrieved or generated that data.

1 invariant correct_input_manipulation:

2 if (self.type = ’#MANIPULATION’) then self.input->notEmpty() else

true endif;↪→

3 invariant correct_output_manipulation:

4 if (self.type = ’#MANIPULATION’) then self.output->notEmpty() else

true endif;↪→

5 invariant correct_input_generation:

6 if (self.type = ’#GENERATING’) then self.input->isEmpty() else true

endif;↪→

7 invariant correct_output_generation:

8 if (self.type = ’#GENERATING’) then self.output->notEmpty() else true

endif;↪→

Listing 17: Invariant to constrain the input and output conditions for inter-
action classes

These invariants enforce that the referenced data objects correspond to the
specified arguments to invoke the transition. However, it does not enforce
that in the workflows the user is able to specify the values of these input
objects (Property 3 and 4). Neither does it enforce that if the specified con-
ditions can be met. To enforce this property we have to check the output of
the preceding tasks.
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1 invariant all_arguments_to_trigger_transition:

2 let args : Integer =

3 self.input->collect(i |

4 self.event.arguments->exists(a | a.key.name = i)

5 )->size()

6 in not (args < event.arguments->size());

Listing 18: Invariant to constrain the input condition for commands to
check if all arguments are provided for the specific transition

8.3.2 User Interface Models

The user interface models are less constrained compared to the task model.
Whereas the task model is structured as a tree, the user interface models
do not enforce such a structure. Therefore, the user interface models are
not constrained on the structure. Only constraints on the data bindings of
the interaction classes are defined.

Data binding constraints

The constraints on the data bindings are equivalent to the constraints de-
fined on the task model.

1 invariant event_of_domainObject:

2 type = SystemInteractionType::COMMAND implies

self.domainObject.events->includes(self.event);↪→

3

4 invariant list_with_list_input:

5 self.input->notEmpty() and self.input.type = maverick::DataType::List;

6

7 class InputElement extends Element

8 {

9 invariant always_output:

10 self.output->notEmpty();

11 invariant type_check:

12 (self.output->notEmpty() and self.input->notEmpty()) implies

(self.input.type = self.output.type);↪→

13 }

Listing 19: Data binding constraints in the abstract and concrete user inter-
face models

The defined constraints in OCL are not sufficient to assert if the models are
valid with respect to the correctness properties. Other validation methods
are needed, with a larger scope compared to OCL, to enforce if a combina-
tion of objects is valid. For example, with the OCL constraints we can not
enforce that if the input data is generated in a workflow before reaching
that particular task, nor can we enforce that if the user interface models
support the same workflows as in the task model. For that purpose we can
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convert the task model to a petri-net.

8.4 Validation Tools

Whereas the task model is based on the Task Oriented Object Design ap-
proach, as defined by [73], we can use a stronger validation method to
check the correctness properties of the task model. For that purpose, the
task model is converted to an Operational Petri-Net. Using this formalism,
simulation can be carried out to validate and verify the dynamic charac-
teristics of the task model. Existing tools like PetShop [74], Great SPN [75],
and ReNew [76] can be used for this purpose. To translate the defined no-
tation for the task model to the notation of TOOD, we have to investigate
if we can add the notions of synchronisation, prioritisation and coherence.

8.5 Limitation & constraints

• OCL constraints are limited in verifying the correctness properties.
For this purpose, other validation techniques are required to enforce
the correctness of the models. As the task model is based on an ex-
isting technique which can be converted to an Operational Petri-net,
this should be possible.

• The user interface models are not based on a formalism, therefore,
we can not use available formal methods to verify the correctness of
this model.

• The current defined constraints do not enforce that if the state changes,
defined by the event listeners in the user interface models, are valid.
As we can define the behaviour of a construct element in a state ma-
chine, it should be possible to statically analyse if the current state of
the construct element allows the state change in the event listener.

8.6 Conclusion

The defined constraints are not sufficient to fully guarantee the correctness
of the models. It only gives an indication about the wellformedness of the
models. To validate the models, the Task Oriented Object Design approach
enables the derivation of an Operational Petri-Net (OPN). Further research
is required if this method is able to guarantee the correctness of the task
model.
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Chapter 9

Validation

In this section we discuss how different properties of the transformation chain,
presented in chapters 3 till 8, have been validated. We discuss the goal, the method
and our validation experiments.

9.1 Goal

The goal of the validation in this work consists of two parts: validate if
business people with a technical background are able to specify the input
of the transformation chain (Requirement 2) and validate that if a correct
and operational user interface can be generated (Requirement 1 and 4) that
can retrieve information and invoke commands of the system as described
in Section 3.2 (Requirement 3). Because implementing a functional and
correct transformation chain involves most of the effort in this research,
we discuss this in more detail.

For the transformation chain we want to demonstrate if the models are
able to express the concepts at the appropriate abstraction levels (Section 4
and 5). Furthermore, we want to validate if models of adjacent abstraction
levels can be automatically transformed using the model transformations
(Section 6). At last, we want to validate if we can generate a task model
from a behavioural domain model (Section 7) and we want to validate to
what extent the model transformations produces valid models. Concretely,
we want to provide answers to the following questions, derived from the
requirements (Section 1.3):

1. Can the models express the concepts at the appropriate abstraction
levels?

2. Can we transform concepts from adjacent abstraction levels?

3. Are we able to generate a task model from a behavioural domain
model?

4. Can we generate a task model that is composed by other task models?

As we defined a comprehensive set of features of an end-to-end process,
from specification to an implementation in a specific implementation tech-
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nology, we implemented a limited set of features such that we are able to
demonstrate the basic functionality of the transformation chain from start
to finish.

9.2 Method

To validate the transformation chain, we demonstrated its properties by
executing it on real-world examples of behavioural domain models in three
experiments. These models encapsulate the behaviour of financial services
at ING, a large financial institution.

9.2.1 Implementation

For the implementation of the transformation chain we first parsed the tex-
tual specification of the behavioural domain models. For this process, we
defined a metamodel that captures the features of the specification that are
essential for the transformation chain. To parse and inject the specification
into a model, a grammar is defined that matches the concrete syntax of
the specification language. The injected models are used to derive a task
model directly from a specification. Secondly, the metamodels of the task
model, and UI models are defined using Ecore, which is implemented in
the Eclipse Modelling Framework (EMF) to support the development of
modelling tools. Model transformations are defined in the Atlas Transfor-
mation Language (ATL) and executed with the EMF framework.

The Final UI is implemented in a Javascript framework. Using such a
framework enables fast prototyping as it takes care of retrieving and set-
ting data with data bindings. The implementation of the Final UI is pre-
sented in Appendix F.

9.2.2 Experiments

A combination of a top-down and a bottom-up approach are used in the
conducted experiments. We used a top-down approach to generate an
implementation from individual behavioural domain models to check if
an implementation can be generated for every domain model that is pro-
vided. Because we implemented a rather straightforward transformation
from behavioural domain model to task model, more advanced task mod-
els are produced by hand that uses a broader set of features of the task
model. These more complex examples are produced using a bottom-up
approach of reverse engineering real-world examples from the financial
domain. In cases where the defined transformations are not able to auto-
matically generate certain concepts, we show that the models do account
for the discussed features by editing these models by hand. Although the
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transformations are not able to generate the necessary concepts, we can
show that the models do support these features. We conducted the follow-
ing experiments:

Experiment 1. Exhaustive specification test
Execute the entire transformation chain on each individual transition
of the domain models and use this as input for the transformation
chain to generate a Final UI that supports the steps to invoke the
transitions.

Experiment 2. Simple example: Money transfer
Creating a simple example of a more complex case from a typical
business process, as input for the transformation chain to generate a
Final UI.

Experiment 3. Real-world case: BuyerFunderAgreement
Reverse engineering a mock-up from a real-world use-case and spec-
ification of behavioural domain model to generate the functionality
to implement the mock-up.

To evaluate the correctness of the transformation chain, we defined a num-
ber of correctness indicators. Transformations are evaluated by the number
of warnings during the transformation, the amount of violated constraints
in the target model, the amount of manual operations and if the trans-
formation terminates. Since the last indicator is obvious, we only discuss
transformation warnings and the violated constraints.

Transformation warnings

The number of warnings indicate if some elements are not transformed
as the metamodel of the target model expects. Throughout the transfor-
mation chain different warnings can be reported. For example, a cardi-
nality mismatch occurs when the transformation adds a collection of ele-
ments to a single-value feature. This error might introduce nondetermin-
istic behaviour as the transformation engine decides which element is as-
signed. Therefore, elements might be skipped during the transformation
process and that is not desirable. An inter-model containment warning can
occur when elements of the source model are not transformed during the
process, but referenced to in the target model. This could lead to unde-
sired outcomes and can be propagated to other levels of the transformation
chain. An overlapping feature warning could occur when the source and tar-
get model define a feature with the same name. This is problematic when
features have the same name, and should contain the same properties, but
are not consistent.
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Violated constraints

Model constraints are defined to evaluate if the models are well-formed.
While this is a property of a model, it is a correctness indicator of a transfor-
mation as the transformation process should output a valid model. While
the well-formedness of a model is an indication of a valid model, we use it
to evaluate the transformation definition.

Amount of manual operations

While the defined transformations can automatically generate elements,
some models need to be adapted by hand. Although the goal is to fully
automate the transformation chain and to configure the model transfor-
mations to adapt the user interface, the current defined transformation
requires some minor alterations such that the generated implementation
integrates the required properties. The amount of manual operations gives
an indication to what extent the models and the transformation support
the automatic generation of the required features.

9.3 Exhaustive specification experiment

For this experiment we have collected a set of 16 specifications of behavioural
domain models. These specifications are used for a specific application in
a real-world case in the financial world. For this experiment, we have au-
tomated the transformation chain by defining ANT tasks for each model
transformation in the chain, and saved the intermediate models for further
inspection. Because the last transformation to the final user interface is not
integrated in the ANT workflow, only a sample of the generated concrete
user interface models is transformed to a final user interface. This final
user interface is evaluated visually in the web browser and tested by exe-
cuting the task models. For each behavioural model, we have collected the
correctness indicators.

In this experiment we observed the following:

Observation 1. All transformations terminate and resulted in a target model.

Observation 2. The user interface models do not violate any major con-
straints. Only a minor violation has been observed of a transforma-
tion that created a redundant Relationship object.

Observation 3. Models in the transformation chain contain overlapping
enumerators but the literals in these enumerators are consistent.

Observation 4. The transformation AUItoGUI elimates eventlisteners that
are triggered by the event that it raises.
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9.3.1 Minor violation

The minor violation, from Observation 2, is the result of the first process
of generating a task model from a domain model. As this is not a desired
outcome, the transformation should be altered such that it detects the last
task and thus it does not create a redundant Relationship object.

9.3.2 Redundant EventListeners

In the process of transforming the task model to the abstract user inter-
face models, redundant eventlisteners are created (Observation 4). These
Eventlisteners listen to the same event that they emit. This is a problem as
it might result in a loop. The cause of these problems lie at the transfor-
mation definition which is defined in a single step. Therefore, as a result,
temporary properties are assigned, like in this case, events. A solution
would be to create a two step transformation such that these objects are
not created or that these objects will be removed.

For now, this problem is obfuscated as the next transformation detects and
eliminates these objects. In addition, the final user interface implements
functions that detects and prevent these kinds of loops. Nevertheless, the
abstract user interface models are not valid when these objects exist, and
as we have defined in Section 3.3, this problem needs to be solved at the
root.

9.3.3 Overlapping enumerators

Multiple intermediate metamodels contain enumerators with the same name
which cause the Overlapping enumerators. For now, we were able to check
the consistency among these enumerators, we conclude that this did not
impacted the results. However, when models needs alterations, the con-
sistency across the metamodels is difficult to maintain. A maintainable
solution, which mitigates these consistency problems, would be to extract
common enumerators in separate models. The development environment
that we used had problems with cross-references in models, and therefore
this solution has not been implemented.

9.4 Simple example: Money transfer

The money transfer example, which formed the running example in this
research, is used as an example of a single purpose task model. Its solely
purpose is to describe workflows for a single user to enter information re-
lated to transferring money from a bank account of the user to another
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bank account. Compared to a task model directly derived from the specifi-
cation, this example is more advanced as it incorporates more than a single
workflow. We have used the real-world specification of an InhousePayment,
which specifies the behaviour of a payment process. While this specifica-
tion is developed as such that it should be implemented in a real-world
application, the specification is not considered as final. The task model of
the toy example is presented in Appendix E.

In this experiment we observed the following:

Observation 1. All transformations terminate and resulted in a target model.

Observation 2. A significant number of warnings report overlapping fea-
tures in each transformation. This problem is related to the problems
with cross-references as described in Section 9.3.3.

Observation 3. For unknown reasons, the mapping model contains an un-
resolved proxy to the abstract user interface model. After resolving
this proxy by hand, the problem was solved. This problem is related
to the problems with cross-references as described in Section 9.3.3.

Observation 4. The EventListener object, contained by the container that
offers the user to choose between two options, does not define the
fact that when a choice has been made, that specific container should
hide. Manual intervention is required to solve this problem.

Observation 5. The task model violates the constraint that either an in-
teraction class should be assigned to a task or the task must be de-
composed with an interaction class. For a particular container, this
constraint has been violated and therefore the transformation should
be improved.

The root of the problem of Observation 2 and Observation 3 is the problem
with cross-references as described in Section 9.3.3.

9.4.1 Choice Container

In our approach the structure of the task model can be defined using tem-
poral constructors. Based on this structural model, an event-driven task
model can be derived. Whereas this process is straightforward, and results
in a semantically valid model, the defined constraints do not consider this
as a valid model. This is observed in the transformation from a Relationship
object with the temporal constructor Choice to an event-driven structure.
The root of the problem is that we have chosen for defining a separate task
that defines the triggers to execute one of the two choices to implement
the choice. This task is generated in the process of converting a structural
model to an event-driven task model. While the rest of the tasks are con-
verted, the task that allows the user to make a choice should be injected as
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transformation input (xmi) output (xmi) warnings
ExpressTemporalRelationships InhousePayments.taskd InhousePayments.taskd.refined 20
TaskDmodelToAUI InhousePayments.taskd.refined InhousePayments.aui 23

InhousePayments.mapping
AUItoGUI InhousePayments.aui InhousePayments.cui 20

InhousePayments.mapping

Table 9.1: The transformations involved in the InhousePayments experiment

model type (metamodel) auto/manual
violated

constraints
notes

InhousePayments.taskd Taskmodel manual 0
InhousePayments.taskd.refined Taskmodel auto 1 The container that

enables the user
to choose which
task he wants to
perform violates a
constraint.

InhousePayments.aui AbstractUI auto 0
InhousePayments.mapping Mapping auto 1 The automati-

cally generated
mapping model
contains an unre-
solved proxy and
is thus not valid.

InhousePayments.cui ConcreteUI auto 0 The choice con-
tainer does not
hide, when a
choice has been
made.

Table 9.2: The generated models involved in the InhousePayments experi-
ment
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an event-driven task. Considering that this transformation is defined in a
single step, the logic that defines which tasks reacts on which event has to
be defined specifically for that task. In addition, converted tasks have to
be altered such that the injected task will be triggered. The complexity of
injecting a task in a single step with a declarative transformation definition
lies at root of the problem we have seen in Observation 4 and Observation
5. An approach that solves this problem is by separating the injection of
the choice task and the process of generating event-driven tasks. The first
step is depicted in Figure 9.1.

t0

t1 t2 t3[ ] >>

(a) The original task model tree

t0

t0’ t1 t2 t3>> [ ] >>

(b) The generated tree

Figure 9.1: Injecting the choice task

9.5 Real-world case: BuyerFunderAgreement

To validate if the transformation chain can produce user interfaces for a
more realistic application, a bottom-up approach is used to create a task
model from a set of mock-ups. This set of mock-ups is designed inde-
pendent of this research without the intention to reverse-engineer the be-
haviour in a task model. An excerpt from the mock-ups is depicted in Fig-
ure 9.2. The mock-ups comprise a process that enables the user to define
the necessary tasks to create a BuyerFunderAgreement, which is basically an
agreement between a buyer entity and a funder entity. These tasks involve
the selection of the involved entities and defining the agreement condi-
tions.

(a) (b) (c)

Figure 9.2: Mock-ups for the BuyerFunderAgreement application
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For this example, a behaviour domain model, the BuyerFunderAgreement
specification, is available. This model defines 8 events, triggering transi-
tions that range from creating an object (create) to changing the state to
accepted. From the domain specification, we derived tasks for each argu-
ment in the transition create. Whereas the mock-ups define the process of
creating an agreement in 5 steps, for each group an abstraction task is de-
fined that contains the smaller subtasks. These tasks are adopted in a task
model that simulates a realistic application. An excerpt of this model is
depicted in Figure 9.3. The three main tasks are: Authenticating, Manage
Agreements and Logout.

Create BuyerFunderAgreement

Authenticating Manage Agreements

Create Agreement

Enter SP details Enter Buyer Enter Funder Enter Supplier Review input Trigger create

Update Agreement

Logout>>

[ ]

>> >> >> >> >>

[>

Figure 9.3: Excerpt from the Create BuyerFunderAgreement task model

In addition to the observations from the previous experiments, in this ex-
periment we observed the following:

Observation 1. All transformations terminate and resulted in a target model.

Observation 2. Manual operations were necessary to include a reaction
that enables the user to go to the previous task, as defined in the
mock-ups.

Observation 3. Automatically generated titles and text for buttons are not
suitable for a real-world application.

Observation 4. The state of construct elements changes during the inter-
action with the user and this state is not saved. The current imple-
mentation only saves the state of containers to toggle the visibility.
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transformation input (xmi) output (xmi) warnings
ExpressTemporalRelationships Agreement.taskd Agreement.taskd.refined 21
TaskDmodelToAUI Agreement.taskd.refined Agreement.aui 23

Agreement.mapping
AUItoGUI Agreement.aui Agreement.cui 40

Agreement.mapping

Table 9.3: The transformations involved in the BuyerFunderAgreement ex-
periment

model type (metamodel) auto/manual
violated

constraints
notes

Agreement.taskd Taskmodel manual 0
Agreement.taskd.refined Taskmodel auto 0 The reactions that enable

the user to go back to the
previous tasks are added
by hand

Agreement.aui AbstractUI auto 0
Agreement.mapping Mapping auto 1 The automatically gener-

ated mapping model con-
tains an unresolved proxy
and is thus not valid.

Agreement.cui ConcreteUI auto 0

Table 9.4: The generated models in the BuyerFunderAgreement experiment
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9.5.1 Automatic generated text elements

As the implementation in a graphical user interface often requires text to,
for example, label form elements or to indicate sections, text elements are
generated. These text elements however, contain values that are generated
throughout the process which are not necessarily suitable for presenting
information in a graphical manner, as described in Observation 3. In Figure
9.4, we illustrated the difference between the generated implementation
(9.4a) and the desired implementation (9.4b).

(a) (b)

Figure 9.4: Screenshot of the generated implementation and the desired
implements (without style)

It is obvious that the generated text elements in Figure 9.4b are not suitable.
To solve this, an approach would be to define a model that maps the rele-
vant text elements to a more appropriate value. This would form the input
for the transformation from an abstract to a concrete user interface model.
Since for each modality the communication and interaction with the user is
different, this process is different for each modality. For example, in voice
assistant user interface the concept of sections and form elements do not
exist. Therefore, these text elements are transformed either to statements,
in the case of separate sections, or to questions to indicate input elements.
In addition, this approach would make it possible to support different val-
ues for different languages. The approach does, however, involve manual
intervention whereas our goal is to automate the process.

91



9.5.2 Manual intervention to include back button

In the workflow of creating a trade agreement, an option should be adopted
that enables the user to return to the previous task. However, as the struc-
tural model specification does not support the definition of such an op-
tion, manual intervention is required to include this option in the dynamic
specification. To avoid this additional step, a solution would be to anno-
tate the task in the structural model that should include this option. The
transformation should add a Trigger and an EventListener object that hides
the current tasks and enables the previous task when the user triggers the
trigger.

9.6 Usability of GLUI

Although we require business analysts with a technical background to be
able to understand and to define the specification of a task model, the us-
ability of the task modelling language should be validated. During the re-
search, proposals for a concrete syntax have been discussed in an informal
setting with a business analyst. This proposal can be found in Appendix
G. Because the task model has been evolved during the research, and the
concrete syntax has not, we have not been able to fully define a concrete
syntax for the current state of the task model. Therefore, we have not been
able to fully validate if business analysts are able to understand and use
the concrete syntax to define a task model specification. Also, because the
business analyst was involved in the research as a supervisor, his judge-
ment might be biased. Nevertheless, the first signs are positive since the
business analyst was positive towards defining the task model using the
proposed concrete syntax. To fully validate the usability of the language,
usability tests should be carried out with a larger population of business
analysts with a technical background. Despite the fact that the proposal for
a concrete syntax embodies a textual representation of the task modelling
language, the notation of the CTT can be used for the structural model.

9.7 Conclusion

Because we have not implemented every feature of the transformation
chain to be integrated in the Final UI, we can not validate every feature
of the transformation chain. Based on the conducted experiments we are
able to answer the questions stated at the beginning of this section. We can
conclude that the models at the abstraction levels are able to express the
concepts at each level. The construct elements defined in the abstract user
interface can be transformed to refined elements in the concrete user in-
terface model. Although the semantic gap between the concrete GUI user
interface is not significant, an implementation can be generated from the
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concrete user interface model. We have shown that the Final UI is able to
interact with the user and the system, to implement the user interface logic
in terms of event listeners and to implement the data binding required to
store the values entered by the user and retrieved by the system. Whether
the task model can be defined by business analyst should be further vali-
dated.
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Chapter 10

Final Remarks

10.1 Conclusion

In this research we have investigated how to apply an MBUID approach
that leverages characteristics of behavioural domain models to automati-
cally generate an operational front-end application. For this purpose we
have defined a transformation chain that defines three metamodels cap-
turing concepts from the first three abstraction levels of the widely used
Chameleon Reference Framework. Between conjunctive abstraction levels,
model transformations successfully transform concepts from source to tar-
get model. A model-to-text transformation has been defined to generate
an operational user interface that implements the functionality defined in
the task model and the user interface models.

Customisation of the model transformation has been achieved by defin-
ing a mapping model that maps abstract construct elements to concrete
elements. This enables human intervention and stores design choices in a
separate model such that the transformation results in the same customised
model and design choices are not lost.

To generate an appropriate user interface, we have discussed how the prin-
ciples of Correctness by Constructions can be integrated. Based on these
principles we have focused on a rigorous task model specification as well
as correctness preserving transformations. Whereas the latter is based on
constrains that determine a valid model, the enforcements of these con-
straints determine the correctness of this method. More research is re-
quired to verify the correctness of the model transformation.

We are able to leverage the behaviour of a behavioural domain model by
deriving a task model from individual transitions. A transformation is de-
fined to show that by using heuristics a task model can be derived. While
for each transition a task model is derived, it can not be considered as com-
plete description of a task model for an application. For that purpose, we
have defined an approach that composes a complete task model based on
a model of an application. Both approaches have been successfully used
and resulted in implementing the behaviour in the user interface.
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To validate the transformation chain, real-world behavioural domain mod-
els are used to generate an operational user interface that implements the
behaviour of these models. An exhaustive test has been carried out to suc-
cessfully generate a task model of each domain model specification. More
advanced task models have been defined by hand to test more advanced
features of the transformation chain. This did not lead to significant prob-
lems and resulted in an operational user interface.

10.2 Future work

Concrete Syntax To validate if business analysts with a technical back-
ground are able to understand the concepts and the relations of the task
model, a concrete syntax should be defined, in both a graphical or a tex-
tual form. Whereas tools are available to define a Domain Specific Lan-
guage based on metamodels, the derivation of a DSL is straightforward.
However, whereas the learning curve of a DSL is a hurdle to overcome, a
graphical notation would be more accessible. An hybrid approach would
be another option to investigate. More research is required to determine
which approach is suitable for this task model.

Verification of transformation definitions Although we have validated
the transformation definitions based on the violated constrains of the source
and target models, the correctness of the model transformations can not be
guaranteed. For this reason, more research has to be conducted to find
out if the mentioned method can prove if the transformation definition is
correct. For this purpose, other model transformation languages, based
on graph transformations, should be considered as more suitable methods
exist that are able to prove this property.

Defining dedicated models for modalities In this research the abstrac-
tion levels of the Cameleon Reference Framework provided the guidelines
for the concepts at each intermediate model in the transformation chain.
Although, these models have been altered such that interaction can be
defined more explicit, and the interaction with the system can be speci-
fied, further research is required to validate if concrete models for different
modalities can be generated from the abstract user interface model.

Deriving a Petri-net from task model The dynamic task model is based
on a method that uses an Operational Petri-Net to verify the correctness of
the task model. However, although we have defined a simplified version
of this task modelling method, further research is required how our ver-
sion can be converted to a OPN. Furthermore, more research is required
to validate if this method is useful to check the correctness properties we
defined for the task model.

To obtain the metamodels and the transformation definitions, send a mes-
sage to peter1wessels@gmail.com.
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Appendix A

Specification of Bankaccount
and Transaction

1 specification BankAccount {

2 fields {

3 accountNumber: IBAN

4 balance: Money

5 }

6

7 events {

8 openAccount[minimalDeposit = EUR 50.00]

9 withdraw[]

10 deposit[]

11 block[]

12 unblock[]

13 interest[maxInterest = 5%]

14 close[]

15 }

16

17 invariants { mustBePositive }

18

19 lifeCycle {

20 initial init -> opened: openAccount

21

22 opened -> opened: withdraw, deposit, interest

23 -> blocked: block

24 -> closed: close

25 blocked -> opened: unblock

26

27 final closed

28 }

29 }

Listing 20: Specification of BankAccount domain model
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Appendix B

Obtain Execution Traces Al-
gorithm

The data structure of the task model allows different workflows defined in
a single tree. We call the set of workflows supported by the task model:
execution traces. These execution traces define the order of tasks to termi-
nate the root node. That is, the user follows a trace such that the root node
is considered as executed. The first step to obtain the execution trace from
a task model tree is to convert the ConcurTaskTree to a concurrent decision
tree as defined in Definition 1. From the concurrent decision tree we can
follow the InOrderTrace algorithm as defined in Listing 23 to obtain the ex-
ecution traces.

Definition 1. We define a concurrent decision tree as a tree defined recursively:

• An unbounded set of symbols T are called tasks and denote a proposition
that is either true when a task is executed or false if not. Items in the set T
are denoted by a lower case t followed by any number in the set of Natural
Numbers N. T = {t1, t2, t3...}

• A task is a node without children, a leaf, labeled by a symbol of set T.

• A decision is a node labeled by the symbol of the temporal constructors with
two children both of which are either a task or a decision.

t0 ⇐⇒ t1∨ t2∨ t3

t0 ⇐⇒ t1∨ (t4∧ t5) ∨ t3

Listing 21: Formula corresponding to Figure B.1a

To convert Figure B.1a to a concurrent decision tree, we follow the proce-
dure in Listing 24. The procedure consist of 2 stages. In the first stage, it
defines the temporal constructors contained by the root node as nodes in
the converted tree, as in Figure B.1b. In the second stage, this process is
repeated for each leaf of the result of stage 1 and results in Figure B.1c.
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t0

t1 t2

t4 t5

t3>> >>

[ ]

(a) The source tree

>>

t1’ >>

t2 t3’
(b) Stage 1

>>

t1’ >>

[ ]

t4’ t5’

t3’

(c) Converted tree, result
from stage 2

Figure B.1: Converting a ConcurTaskTrees to a concurrent decision tree

As we can see in Figure B.1, the first stage is to create a node for the tempo-
ral constructor of the first task in the list, in this case t1 is related to t2 with
the SequenceEnabling constructor (>>). Then, we define separate branches
for both tasks the temporal constructor relates, so in this case t1 and t2. For
the right-branch, in this case t2, we repeat the process with the next task in
the list, t3, and substitute t2 with the result of this process. This results in
the branch with SequenceEnabling constructor (>>) as the label of the node
and t2 and t3 as branches. This process is repeated until no items are left in
the list. The result is illustrated in Figure B.1b. For each leaf in the tree of
stage 2, t1, t2 and t3, we repeat this process if the leaf, in the current stage
of the conversion, is a subtree in the original tree. In this example, t2 de-
fines a subtree with two branches, t4 and t5. Therefore, repeat the process
of Stage1 for the subtree of t2 and substitute the placeholder with the result
of this process.

Using this conversion we can use an InOrder algorithm, as described in
Listing 23, to obtain the execution trees. This algorithm uses the proce-
dures defined for each temporal constructor, as defined in Table B.1.

1. t1→ t4→ t3
2. t1→ t5→ t3

Listing 22: Resulting set of traces

So, do the conversion and the defined procedure (Listing 23) enables us
to obtain the traces? To answer this question, we have to verify if the re-
sulted set of traces are valid. A property of a valid trace is that a user can
execute the trace. We call these traces, executable traces. An executable
trace defines a sequence of interaction tasks that can be executed one after
each other while considering the structural model. So each task in the trace
should be an interaction task.
When the CTT is well-formed, this property is guaranteed as the conver-
sion from CTT to CDT, in Figure B.1, requires that the subtree of abstraction
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Name Procedure
>> Store both branches in the same trace in order of appearing.
[ ] Copy the current trace and store InOrderTrace(t1) in the current trace and In-

OrderTrace(t2) in the new trace.
||| Copy the current execution trace and store in the current trace InOrderTrace(t1)

followed by InOrderTrace(t2), in the new trace InOrderTrace(t2) followed by
InOrderTrace(t1).

| = | Copy the current execution trace and store in the current trace InOrderTrace(t1)
followed by InOrderTrace(t2), in the new trace InOrderTrace(t2) followed by
InOrderTrace(t1).

|> Copy the current trace and store in the current trace InOrderTrace(t1) followed
by InOrderTrace(t2), in the new trace, InOrderTrace(t1).

[> Store both branches in the same execution trace in order of appearing.

Table B.1: Procedures for temporal constructors

InOrderTrace (T)

if T is a leaf

add the label to the trace

returns

let t1 and t2 be the left and right subtrees of T

follow the corresponding procedure of the root label (temporal constructor) of T

Listing 23: Recursive procedure to obtain the execution traces
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Conversion(T):

if T is leaf:

create a node with its value as label

// Stage 1

let C be the ordered list of temporal constructors of T and i its index

let s1 be Stage1(C)

// Stage 2

let L be the set of leaves of s1

foreach l in L:

if l is a node in T:

substitute l with Conversion(l)

Stage1(C):

let C[0] be the first temporal constructor on the list

create a node for C[0] with the value as its label

let t1 and t2 be the subtrees the temporal constructor relates

create a left-branch for t1 with the value as its label

if C[1] exists:

pop C[0] from list

create a right-branch for Stage1(C)

else:

create a right-branch for t2 with the value as its label

Listing 24: Recursive procedure converts a CTT to a concurrent decision
tree
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tasks, in this case t2, are to be substituted recursively by its equivalent con-
current decision tree. The result is that the CDT tree does not consist of any
abstraction tasks, but only of interaction tasks and temporal constructors.
We can also verify if the root node can be considered as executed by eval-
uating the corresponding formula. In Table B.2, we evaluated the formula
corresponding to Figure B.1a. We can verify that the resulting traces eval-
uate the corresponding formula to true and others to false.

t1 t4 t5 t3 t1∧ (t4∨ t5) ∧ t3

F F F F F
T F F F F
T T F F F
T T T F F
T T T T F
T T F T T
T F T T T

Table B.2: Truth table to determine if the task model is finished

The resulting set of execution traces can be used to verify if the task model
consists of the workflows the modeller wants to include in the interface.
In addition, as the execution traces are a property of the user interface, we
can use this property to validate intermediate models.
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Appendix C

Metamodel of Taskmodel
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Appendix D

Concrete Graphical User In-
terface Metamodel
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Figure D.1: Metamodel of the concrete graphical user interface models
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Appendix E

Taskmodel of toy example: Money
transfer
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Figure E.1: Money Transfer task model
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Appendix F

Implementation in VueJS

For every container, a component has been generated which contains the
subcontainers. A vueJS store has been implemented that updates the state
of the components. Interceptors are used to mock the calls and the call-
backs of the system interaction.

1 <template>
2 <div>
3 <p> c r e a t e </p>
4

5 <s e l e c t d e b i t A c c o u n t c l a s s =” s e l e c t d e b i t A c c o u n t ” v−i f =”
s e l e c t d e b i t A c c o u n t e n a b l e d ” v−on : t r i g g e r =” e v e n t l i s t e n e r ( $event )
”>

6 </se lec t deb i tAccount>
7

8 <ChooseCredit c l a s s =”ChooseCredit ” v−i f =” ChooseCredit enabled ” v−
on : t r i g g e r =” e v e n t l i s t e n e r ( $event )”>

9 </ChooseCredit>
10

11 <enter amount c l a s s =”enter amount ” v−i f =” enter amount enabled ” v−
on : t r i g g e r =” e v e n t l i s t e n e r ( $event )”>

12 </enter amount>
13

14 <enter paymentDescript ion c l a s s =” enter paymentDescript ion ” v−i f =”
enter paymentDescr ipt ion enabled ” v−on : t r i g g e r =” e v e n t l i s t e n e r (
$event )”>

15 </enter paymentDescription>
16

17 <Confirm Transact ion c l a s s =” Confirm Transact ion ” v−i f =”
Confirm Transact ion enabled ” v−on : t r i g g e r =” e v e n t l i s t e n e r ( $event )
”>

18 </Confirm Transaction>
19

20 </div>
21 </template>
22 <s c r i p t>
23 import s e l e c t d e b i t A c c o u n t from ’@/components/ s e l e c t d e b i t A c c o u n t ’
24 import ChooseCredit from ’@/components/ChooseCredit ’
25 import enter amount from ’@/components/enter amount ’
26 import enter paymentDescript ion from ’@/components/

enter paymentDescript ion ’
27 import Confirm Transact ion from ’@/components/Confirm Transact ion ’
28

29 import eventlog from ”@/helpers . j s ” ;
30 export d e f a u l t {
31 name : ’ c r e a t e ’ ,
32 computed : {
33
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34 s e l e c t d e b i t A c c o u n t e n a b l e d : funct ion ( ) {
35 re turn ( t h i s . $ s t o r e . g e t t e r s . g e t S t a t e ( ’ c a 6 s e l e c t d e b i t A c c o u n t 2 ’

) . s t a t e == ’ENABLE ELEMENT ’ )
36 }
37 ,
38 ChooseCredit enabled : funct ion ( ) {
39 re turn ( t h i s . $ s t o r e . g e t t e r s . g e t S t a t e ( ’ ca3ChooseCredit28 ’ ) .

s t a t e == ’ENABLE ELEMENT ’ )
40 }
41 ,
42 enter amount enabled : funct ion ( ) {
43 re turn ( t h i s . $ s t o r e . g e t t e r s . g e t S t a t e ( ’ ca12enter amount14 ’ ) .

s t a t e == ’ENABLE ELEMENT ’ )
44 }
45 ,
46 enter paymentDescr ipt ion enabled : funct ion ( ) {
47 re turn ( t h i s . $ s t o r e . g e t t e r s . g e t S t a t e ( ’

ca13enter paymentDescript ion17 ’ ) . s t a t e == ’ENABLE ELEMENT ’ )
48 }
49 ,
50 Confirm Transact ion enabled : funct ion ( ) {
51 re turn ( t h i s . $ s t o r e . g e t t e r s . g e t S t a t e ( ’ ca5Confirm Transact ion32

’ ) . s t a t e == ’ENABLE ELEMENT ’ )
52 } ,
53 } ,
54 components : {
55 se lec t deb i tAccount ,
56 ChooseCredit ,
57 enter amount ,
58 enter paymentDescription ,
59 Confirm Transact ion
60 } ,
61

62 data ( ) {
63 re turn {
64 s e l e c t d e b i t A c c o u n t : t h i s . $ s t o r e . g e t t e r s . g e t S t a t e ( ’

c a 6 s e l e c t d e b i t A c c o u n t 2 ’ ) . s t a t e
65 , ChooseCredit : t h i s . $ s t o r e . g e t t e r s . g e t S t a t e ( ’

ca3ChooseCredit28 ’ ) . s t a t e
66 , enter amount : t h i s . $ s t o r e . g e t t e r s . g e t S t a t e ( ’

ca12enter amount14 ’ ) . s t a t e
67 , enter paymentDescript ion : t h i s . $ s t o r e . g e t t e r s .

g e t S t a t e ( ’ ca13enter paymentDescript ion17 ’ ) . s t a t e
68 , Confirm Transact ion : t h i s . $ s t o r e . g e t t e r s . g e t S t a t e ( ’

ca5Confirm Transact ion32 ’ ) . s t a t e
69 }
70 } ,
71 methods : {
72 e v e n t l i s t e n e r ( events ) {
73 f o r ( var i = 0 ; i < events . length ; i ++) {
74 t h i s . $ s t o r e . dispatch ( ’ u p d a t e s t a t e ’ , events [ i ] )
75 }
76 }
77 }
78 }
79 </s c r i p t>
80

81 <s t y l e>
82

83 . s e l e c t d e b i t A c c o u n t {
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84 background−c o l o r : red ;
85 display : block ;
86 }
87

88 . ChooseCredit {
89 background−c o l o r : red ;
90 display : block ;
91 }
92

93 . enter amount {
94 background−c o l o r : red ;
95 display : block ;
96 }
97

98 . enter paymentDescript ion {
99 background−c o l o r : red ;

100 display : block ;
101 }
102

103 . Confirm Transact ion {
104 background−c o l o r : red ;
105 display : block ;
106 }
107

108 </s t y l e>

Listing F.1: VueJS Component definition

1

2 import Vuex from ’ vuex ’
3 import Vue from ’ vue ’
4 import ax ios from ’ ax ios ’
5

6 Vue . use ( Vuex , ax ios )
7

8 export d e f a u l t new Vuex . S tore ({
9 s t a t e : {

10 elements : [
11

12 {
13 element : ’ c a 1 c r e a t e 2 6 ’ ,
14 s t a t e : ’DISABLE ELEMENT ’
15 }
16 ,
17 {
18 element : ’ c a 6 s e l e c t d e b i t A c c o u n t 2 ’ ,
19 s t a t e : ’DISABLE ELEMENT ’
20 }
21 ,
22 {
23 element : ’ ca3ChooseCredit28 ’ ,
24 s t a t e : ’DISABLE ELEMENT ’
25 }
26 ] ,
27 data : [
28

29 {
30 id : ’ c a 3 7 l i s t w i t h d e b i t A c c o u n t 3 7 ’ ,
31 type : ’ L i s t ’ ,
32
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33 value : {
34 i tems : [
35 {
36 id : 1 ,
37 value : ’ t e s t ’
38 } ,
39 {
40 id : 2 ,
41 value : ’ t e s t ’
42 }
43 ]
44 }
45

46 }
47 ,
48 {
49 id : ’ ca38se lec ted debi tAccount38 ’ ,
50 type : ’ Object ’ ,
51

52 value : ’ ’
53

54 }
55 ,
56 {
57 id : ’ c a 3 9 l i s t w i t h c r e d i t A c c o u n t 3 9 ’ ,
58 type : ’ L i s t ’ ,
59

60 value : {
61 i tems : [
62 {
63 id : 1 ,
64 value : ’ t e s t ’
65 } ,
66 {
67 id : 2 ,
68 value : ’ t e s t ’
69 }
70 ]
71 }
72

73 }
74 ,
75 {
76 id : ’ c a 4 0 s e l e c t e d c r e d i t A c c o u n t 4 0 ’ ,
77 type : ’ Object ’ ,
78

79 value : ’ ’
80

81 }
82 ,
83 {
84 id : ’ ca41amount41 ’ ,
85 type : ’Money ’ ,
86

87 value : ’ ’
88

89 }
90 ] ,
91 e v e n t l i s t e n e r s : [
92
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93 {
94 element : ’ ca5Confirm Transact ion32 ’ ,
95 value : ’DISABLE ELEMENT ’ ,
96 t r i g g e r s : [
97 {
98 element : ’ c a 1 c r e a t e 2 6 ’ ,
99 value : ’DISABLE ELEMENT ’ ,

100 type : ’ ConcreteUI : : In te rna lEvent ’
101 }
102 ]
103 }
104 ,
105 {
106 element : ’ c a 1 c r e a t e 2 6 ’ ,
107 value : ’ENABLE ELEMENT ’ ,
108 t r i g g e r s : [
109 {
110 element : ’ AccountAgreement ’ ,
111 value : ’CALL ’ ,
112 type : ’ ConcreteUI : : ExternalEvent ’
113 }
114 ]
115 }
116 ,
117 {
118 element : ’ AccountAgreement ’ ,
119 value : ’CALLBACK ’ ,
120 t r i g g e r s : [
121 {
122 element : ’ c a 6 s e l e c t d e b i t A c c o u n t 2 ’ ,
123 value : ’ENABLE ELEMENT ’ ,
124 type : ’ ConcreteUI : : In te rna lEvent ’
125 }
126 ]
127 }
128

129 ] ,
130 c a l l s : [
131

132 {
133 element : ”AccountAgreement ” ,
134 s e r v i c e : ”” ,
135 type : ”QUERY” ,
136 input : [ ] ,
137 output : [” c a 3 7 l i s t w i t h d e b i t A c c o u n t 3 7 ”]
138 }
139 ,
140 {
141 element : ”AccountAgreement ” ,
142 s e r v i c e : ”” ,
143 type : ”QUERY” ,
144 input : [ ] ,
145 output : [” c a 3 9 l i s t w i t h c r e d i t A c c o u n t 3 9 ”]
146 }
147 ,
148 {
149 element : ”AccountAgreement ” ,
150 s e r v i c e : ”” ,
151 type : ”QUERY” ,
152 input : [” ca38se lec ted debi tAccount38 ” ,”
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c a 4 0 s e l e c t e d c r e d i t A c c o u n t 4 0 ” ,” ca41amount41 ” ,”
ca42paymentDescription42 ” ,” ca43generated credi tAccount43 ” ] ,

153 output : [ ]
154 }
155

156 ]
157 } ,
158 mutations : {
159 update : ( s t a t e , payload ) => {
160 l e t t a r g e t = s t a t e . elements . f ind ( e => e . element === payload .

element )
161 console . i n f o ( ’ [ update ] Process ing ( ’ + payload . element + ’ , ’

+ payload . value + ’ ) ’ ) ;
162

163 i f ( t a r g e t == n u l l ) {
164 console . warn ( ’ Element ’ + payload . element + ’ added to s t o r e

’ ) ;
165

166 l e t event = {
167 element : payload . element ,
168 s t a t e : payload . value
169 }
170 s t a t e . elements . push ( event ) ;
171 Vue . s e t ( s t a t e , ’ elements ’ , s t a t e . elements )
172 } e l s e {
173 Vue . s e t ( t a r g e t , ’ s t a t e ’ , payload . value )
174 }
175 }
176 } ,
177 a c t i o n s : {
178 u p d a t e s t a t e : ( context , payload ) => {
179 contex t . commit ( ’ update ’ , payload )
180

181 contex t . s t a t e . e v e n t l i s t e n e r s . forEach ( funct ion ( e l ) {
182 i f ( e l . element === payload . element && e l . value === payload .

value ) {
183 e l . t r i g g e r s . forEach ( funct ion ( s t ) {
184 i f ( s t . type == ” ConcreteUI : : In terna lEvent ” ) {
185 contex t . dispatch ( ’ u p d a t e s t a t e ’ , s t )
186 } e l s e i f ( s t . type == ” ConcreteUI : : ExternalEvent ” ) {
187 contex t . dispatch ( ’ make cal l ’ , s t )
188 }
189 }
190 )
191 }
192 } )
193 } ,
194 update data : ( context , payload ) => {
195 l e t t a r g e t = contex t . s t a t e . data . f ind ( d => d . id === payload . id )
196 i f ( t a r g e t == n u l l ) {
197 console . warn ( ’ [ data ] Data does not e x i s t ’ )
198 } e l s e {
199 var pat te rn = /( password ) /gi
200 var value = payload . value
201

202 i f ( t a r g e t . id . search ( pat te rn ) ) {
203 //value . r e p l a c e ( pat tern , ’∗ ’ )
204 }
205

206 console . i n f o ( ’ [ data ] Data ’ + payload . id + ’ i s s e t to ’ +
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payload . value )
207 Vue . s e t ( t a r g e t , ’ value ’ , payload . value )
208 }
209 } ,
210 make cal l : ( context , payload ) => {
211 contex t . s t a t e . c a l l s . forEach ( funct ion ( c a l l ) {
212 i f ( c a l l . element === payload . element ) {
213 i f ( c a l l . type === ”COMMAND”) {
214 contex t . dispatch ( ’command ’ , c a l l )
215 } e l s e i f ( c a l l . type === ”QUERY”) {
216 contex t . dispatch ( ’ query ’ , c a l l )
217 } e l s e {
218 console . e r r o r ( ’ [ system ] Cal l can not be i d e n t i f i e d ’ )
219 }
220 }
221 } ) ;
222 } ,
223 command : ( context , c a l l ) => {
224 Vue . ht tp . post ( ’/ s e r v i c e / ’ + c a l l . s e r v i c e + ”/” + c a l l . element

+ ”/”) . then ( response => {
225 // JSON responses are automat i ca l ly parsed .
226 l e t event = {
227 element : c a l l . element ,
228 value : ”CALLBACK”
229 }
230 contex t . dispatch ( ’ u p d a t e s t a t e ’ , event ) ;
231

232 f o r ( var d in response . data . bindings ) {
233 const current = response . data . bindings [ d ] ;
234 l e t data = {
235 id : current . key ,
236 value : current . value
237 }
238 contex t . dispatch ( ’ update data ’ , data )
239 }
240 } )
241 . ca tch ( e => {
242 console . log ( e )
243 } )
244 } ,
245 query : ( context , c a l l ) => {
246 Vue . ht tp . get ( ’/ s e r v i c e / ’ + c a l l . s e r v i c e + ”/” + c a l l . element +

”/”) . then ( response => {
247 // JSON responses are automat i ca l ly parsed .
248 l e t event = {
249 element : c a l l . element ,
250 value : ”CALLBACK”
251 }
252 contex t . dispatch ( ’ u p d a t e s t a t e ’ , event ) ;
253

254 f o r ( var d in response . data . bindings ) {
255 const current = response . data . bindings [ d ] ;
256 l e t data = {
257 id : current . key ,
258 value : current . value
259 }
260 contex t . dispatch ( ’ update data ’ , data )
261 }
262

263 } )
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264 . ca tch ( e => {
265 console . log ( e )
266 } )
267 }
268 } ,
269 g e t t e r s : {
270 g e t S t a t e : ( s t a t e ) => ( element ) => {
271 re turn s t a t e . elements . f ind ( e => e . element === element )
272 } ,
273 getData : ( s t a t e ) => ( id ) => {
274 re turn s t a t e . data . f ind ( d => d . id === id )
275 }
276 }
277 } )

Listing F.2: VueJS Store definition

1

2 import Vue from ’ vue ’ ;
3 import VueResource from ’ vue−resource ’ ;
4

5 Vue . use ( VueResource ) ;
6

7 l e t routes = [
8

9 {
10

11 method : ’GET ’ ,
12

13 response :
14 {
15 bindings : [
16

17 {
18 key : ” c a 3 7 l i s t w i t h d e b i t A c c o u n t 3 7 ” ,
19

20 value : {
21 i tems : [
22 {
23 id : 1 ,
24 value : ’ t e s t 1 ’
25 } ,
26 {
27 id : 2 ,
28 value : ’ t e s t 2 ’
29 } ,
30 {
31 id : 3 ,
32 value : ’ t e s t 3 ’
33 } ,
34 {
35 id : 4 ,
36 value : ’ t e s t 4 ’
37 }
38 ]
39 }
40

41 }
42

43 ]
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44 } ,
45 u r l : ’/ s e r v i c e /AccountAgreement/ ’
46 }
47 ,
48 {
49

50 method : ’GET ’ ,
51

52 response :
53 {
54 bindings : [
55

56 {
57 key : ” c a 3 9 l i s t w i t h c r e d i t A c c o u n t 3 9 ” ,
58

59 value : {
60 i tems : [
61 {
62 id : 1 ,
63 value : ’ t e s t 1 ’
64 } ,
65 {
66 id : 2 ,
67 value : ’ t e s t 2 ’
68 } ,
69 {
70 id : 3 ,
71 value : ’ t e s t 3 ’
72 } ,
73 {
74 id : 4 ,
75 value : ’ t e s t 4 ’
76 }
77 ]
78 }
79

80 }
81

82 ]
83 } ,
84 u r l : ’/ s e r v i c e /AccountAgreement/ ’
85 }
86 ,
87 {
88

89 method : ’GET ’ ,
90

91 response :
92 {
93 bindings : [
94

95 ]
96 } ,
97 u r l : ’/ s e r v i c e /AccountAgreement/ ’
98 }
99

100 ] ;
101

102 Vue . ht tp . i n t e r c e p t o r s . u n s h i f t ( ( request , next ) => {
103 l e t route = routes . f ind ( ( item ) => {
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104 re turn ( request . method === item . method && request . u r l === item .
u r l ) ;

105 } ) ;
106

107 i f ( ! route ) {
108 // we ’ re j u s t going to re turn a 404 here , s i n c e we don ’ t want our

t e s t s u i t e making a r e a l HTTP request
109 next ( request . respondWith ({ s t a t u s : 404 , s t a t u s T e x t : ’Oh no ! Not

found ! ’ } ) ) ;
110 } e l s e {
111 next (
112 request . respondWith (
113 route . response ,
114 { s t a t u s : 200}
115 )
116 ) ;
117 }
118 } ) ;

Listing F.3: VueJS Interceptor definition
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Appendix G

Proposal of a concrete syntax

To specify an instance of the task model we defined a proposal for a con-
crete syntax such that we can express task models in a textual form. The
concrete syntax defines a simple language construct that enables the mod-
eller to define different kinds of tasks. Listing G.1 shows the language
construct of a task. Depending on the kind of task (abstract or interaction),
the body of the task consists of an interaction class definition or subtasks.
The task model can be recursively defined by nesting task constructs.

1 Task [Name] : [ Abstrac t | I n t e r a c t i o n |User | System ] {
2 [ Task | Behaviour ]
3 }

Listing G.1: Simple language construct to define a task
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[72] A. Schürr, “Specification of graph translators with triple graph gram-
mars,” in in Proc. of the 20th Int. Workshop on Graph-Theoretic
Concepts in Computer Science (WG ‘94), Herrsching (D, Springer,
1995.

[73] M. Abed, D. Tabary, and C. Kolski, “Using formal specification tech-
niques for the modelling of tasks and generation of hci specifications,”
The handbook of task analysis for human computer interaction,
pp. 503–529, 2003.

[74] O. Sy, R. Bastide, P. Palanque, D. Le, and D. Navarre, “Petshop: a
case tool for the petri net based specification and prototyping of corba
systems,” Petri Nets 2000, p. 78, 2000.

[75] G. Chiola, G. Franceschinis, R. Gaeta, and M. Ribaudo, “Greatspn 1.7:
graphical editor and analyzer for timed and stochastic petri nets,”
Performance evaluation, vol. 24, no. 1-2, pp. 47–68, 1995.

[76] O. Kummer, F. Wienberg, M. Duvigneau, J. Schumacher, M. Köhler,
D. Moldt, H. Rölke, and R. Valk, “An extensible editor and simu-
lation engine for petri nets: Renew,” in International Conference on
Application and Theory of Petri Nets, pp. 484–493, Springer, 2004.

126


	Introduction
	Motivation
	Problem Statement
	Objective
	Validation
	Structure & Approach

	Background
	User Interface
	Model-Driven Engineering
	Model-Driven User Interface Development
	Domain-Driven Design

	User Interface Description Languages
	Model Transformation Languages and Technologies
	Formal Software specification
	Software Verification
	Conclusion

	Transformation chain
	Overview
	Conceptual model of the system
	Concepts
	Object Behaviour
	Actors
	Example: Transaction processing

	Correctness by Construction
	Building blocks of Correctness by Construction

	Integration of new platforms and devices
	Conclusion

	Task model
	Overview
	Task modelling techniques
	Hierarchical Task Analysis
	GOMS
	Groupware
	ConcurTaskTree
	MAD
	Task Oriented Object Design

	Workflows in the Structural model
	Formal description
	Operational Semantics

	Interaction Specification Markings
	User Interaction
	System Interaction

	Dynamic Model
	Task object
	Event-Driven Tasks
	Input/output mapping interaction classes

	Implementation
	Limitations & Constraints
	Conclusion

	User Interface Models
	Purpose
	Abstract User Interface
	Abstract Construct Elements
	Events
	Event Listener

	Concrete User Interface
	Concrete Construct Elements

	Metamodels
	Abstract User Interface
	Concrete Graphical User Interface metamodel
	State machine

	Conclusion

	Model Transformations
	Transformation languages
	Transformation definitions
	Taskmodel to Abstract User Interface
	Abstract to Concrete User Interface
	Concrete User Interface to Final User Interface

	Conclusion

	Leveraging Domain Models
	Generating task model specification
	Tasks
	Data Flow

	Boilerplate approach
	Workflow patterns/heuristics

	Task model modularity
	Proxy Model
	Application Configuration Model
	Transformation Definition

	Limitations & Constraints
	Conclusion

	Enforcing Correctness
	Correctness
	Validation Properties
	Task model
	User Interface Models

	OCL Constraints
	Task model
	User Interface Models

	Validation Tools
	Limitation & constraints
	Conclusion

	Validation
	Goal
	Method
	Implementation
	Experiments

	Exhaustive specification experiment
	Minor violation
	Redundant EventListeners
	Overlapping enumerators

	Simple example: Money transfer
	Choice Container

	Real-world case: BuyerFunderAgreement
	Automatic generated text elements
	Manual intervention to include back button

	Usability of GLUI
	Conclusion

	Final Remarks
	Conclusion
	Future work

	Appendices
	Specification of Bankaccount and Transaction
	Obtain Execution Traces Algorithm
	Metamodel of Taskmodel
	Concrete Graphical User Interface Metamodel
	Taskmodel of toy example: Money transfer
	Implementation in VueJS
	Proposal of a concrete syntax

