
Memoised Garbage Collection

for Software Model Checking

Viet Yen Nguyen1 and Theo C. Ruys2

1 RWTH Aachen University, Germany.
http://moves.rwth-aachen.de/~nguyen/

2 University of Twente, The Netherlands.
http://www.cs.utwente.nl/~ruys/

Abstract. Virtual machine based software model checkers like jpf and
MoonWalker spend up to half of their verification time on garbage
collection. This is no surprise as after nearly each transition the heap
has to be cleaned from garbage. To improve this, this paper presents
the Memoised Garbage Collection (MGC) algorithm, which exploits the
(typical) locality of transitions to incrementally perform garbage collec-
tion. MGC tracks the depths of objects efficiently and only purges ob-
jects whose depths have become infinite, hence unreachable. MGC was
experimentally evaluated via an implementation in our model checker
MoonWalker and benchmarks using the parallel Java Grande Forum
benchmark suite. By using MGC, a performance increase up to 78% was
measured over the traditional Mark&Sweep implementation.

1 Introduction

Within the software development cycle, model checkers are often used to vali-
date the initial design of a system before actually implementing it. The process
of model checking usually consists of three parts: modelling, specification and
verification. During the modelling phase, an abstraction is made from the de-
sign under verification. This abstraction – the model – is then verified against
the specification. This traditional approach has its disadvantages. For, (i) creat-
ing an abstraction at the right level is considered difficult, (ii) the abstraction is
crafted manually and prone to human error, (iii) the model and its semantics are
bounded to the expressiveness of the modelling language, which generally tend
to be rigourously formalised (e.g., process algebra’s, state machines) [4] and (iv)
after validation, the model still has to be transformed to an implementation. As
fully automated code generators do not exist (yet), parts of this refinement step
have to be done manually.

Software model checking overcomes these labor intensive problems by veri-
fying the implemented system directly instead of the abstract model. This ap-
proach has been pioneered by Klaus Havelund [9] in the first version of the
Java PathFinder (jpf). This initial version of jpf comprised a Java to Promela
translator that enabled the verification of Java programs using the model checker

(a) Java PathFinder (b) MoonWalker

Fig. 1. Profiler data from Raytracer 3-1 benchmark [22] (see Section 4.2) describing
the stakes of garbage collection (GC), state storage (State), exploration (DFS) and all
remaining functionality (Misc.).

Spin [10]. This experiment highlighted many challenges associated with the soft-
ware model checking approach. The foremost problem was overcoming the se-
mantic gap between Java and Promela. This was solved by introducing the byte-
code interpretation approach in the second iteration of jpf [23, 25]. Ever since,
more techniques have been developed to make software model checking more ef-
fective [15]. Within the context of this paper, the emergence of thread and heap
symmetry reduction techniques [11, 12, 17] are most important.

These developments gave rise to other software model checkers, like xrt [8],
BOGOR [20], Bandera [4] and MoonWalker [2, 21, 26]. The latter is a soft-
ware model checker developed at the University of Twente. It verifies CIL assem-
blies – better known as Microsoft .net programs – for assertion violations and
deadlocks. It is written in C#, runs on Windows, Linux and MacOS X and its
main purpose it so serve as a testbed for experimenting with novel model check-
ing techniques. The architecture of the initial version [1] was heavily inspired by
jpf’s. In terms of performance, MoonWalker is comparable with jpf. For the
second iteration of MoonWalker, we developed new techniques for speeding
up verification [18]. In this paper, we present one of our contributions.

Using a profiler, we observed that the software model checkers typically spend
around half of the time on garbage collection (see Figure 1 for an illustrating
example). This does not come as a surprise as after most transitions the heap has
to be cleaned from garbage. To lower the stake of garbage collection and there-
fore reduce the time needed for verification, we developed a new algorithm called
the Memoised Garbage Collector (MGC). This algorithm is inspired by incre-
mental graph updates from graph grammars and routing [19], and has a more
favourable time-complexity compared to the often used Mark&Sweep (M&S)
algorithm [16]. The key idea here is that instead of calculating reachability of
a vertex (like M&S does), track the depths of the objects efficiently and purge

objects whose depth becomes infinite, i.e., became unreachable.

This paper is further organised as follows. Section 2 outlines background re-
search. This is followed by a description of MGC in section 3. Section 4 describes

the benchmark setup, results and discussion. This paper ends on directions for
future work (section 5) and the conclusions.

2 Background

Notation-wise, in this paper, a directed graph G with a source vertex is defined
as G = (V, v0, E), where V is the set of vertices, E the set of edges, and v0 ∈ V

is the initial, root vertex. The direct predecessors of a vertex u in a graph G

is defined as the set Pred(G, u). The set of direct successors of a vertex u are
defined as Succ(G, u).

2.1 Garbage Collection for Symmetry Reduction

Garbage collection [14] is a form of automatic memory management. It is the
process of reclaiming memory allocations that will not be used in the future,
thereby freeing up memory. Garbage collection is a rather expensive process,
it usually requires the traversal of all memory allocations before it is decidable
which allocations can be reclaimed. Within the context of software model check-
ing, garbage collection is used for a slightly different purpose, as identified by
Iosif [13].

The scenario of a typical software model checker is as follows. Consider an
object-oriented language that disallows pointer arithmetic, like Java or C#. Ob-
jects used by a program are internally stored in an array. Yet, because pointer
arithmetic’s is disallowed, the index of an object (i.e., its address) has no se-
mantic value. Objects can only be reached via dereferencing. When references
between objects in an array are mapped, the resulting graph is a heap graph. The
shape of the heap graph is of semantic value, because the references between ob-
jects are. Due to different interleavings of a program, the software model checker
can reach different states such that both have the same heap graph shape, but the
objects in question are permutated differently in the respective arrays. If states
are matched by simply matching array-equivalence, the semantically equivalent
heaps will be seen as different, thereby increasing the number of states un-
necessary. Detection of semantically equivalent heaps is called heap symmetry

detection [11, 15].
To date, two variants of heap symmetry reduction are known to be effective.

The technique of Iosif [11] traverses the full heap graph and creates a canoni-
cal array of objects out of it. This canonical array is stored in the hashtable.
Upon state matching, the state to be matched is canonicalised and then the
canonicalised arrays are matched. The technique of Lerda et al. [15] maintains a
canonicalised array, instead creating one when necessary. The latter is employed
by MoonWalker. Both rely on the garbage collection algorithm to function. A
heap graph traversal is needed for purging unreferencable, i.e., garbage, objects.
This stems from an important observation by Iosif that garbage objects may dif-
fer between states that have different paths leading to them, but are equivalent
when canonicalised [13].

In software model checking though, it is observable that changes between
successive states are small. Hence, the changes to the heap graph are also small.
This can be exploited by tracking these changes and have them drive the garbage
collection algorithm. Time can be saved for especially large heaps.

2.2 Incremental Shortest Path

To take advantage of the small changes between successive states, we propose a
garbage collection algorithm inspired by an incremental shortest-path algorithm.
A generalised algorithm for single-source directed graphs with positive weights
was devised by Ramalingam and Reps [19]. See Algorithm 1. It can be viewed
as an incremental version of Dijkstra’s shortest path algorithm [5].

Traditionally, depths of vertices are computed all at once using Dijkstra’s
algorithm, stored and used when necessary. We use depth(u) to indicate the
stored depth of vertex u. When the graph changes from G to G′, the real depths
of the vertices may change. This is however not reflected in the stored depths.
Thus usually, upon a change to the graph, Dijkstra’s algorithm is called to
globally recompute the stored depths.

For large graphs, it is more efficient to recompute only the stored depths of
vertices whose real depths have changed. To date however, there is no method
to determine efficiently and precisely this set of vertices. However an over-
approximation of this set can be traversed by using Ramalingam and Reps’s
notion of inconsistency and a top-down traversal order. The former is defined as
follows:

Given the stored depth mapping depth, a graph G′ = (V ′, v′0, E
′) and

the right-handside function rhs(G′, u) = minv∈Pred(G′,u) depth(v) + 1,
a vertex u ∈ V ′ is inconsistent if rhs(G′, u) 6= depth(u).

Inconsistent vertices are spotted cheaply by monitoring the changes to the pre-
decessor transitions upon graph changes, as shown later in Section 3. Then, the
inconsistent vertices are traversed according to their key, which is defined as the
minimum of the rhs and the stored depth: key(G′, u) = min(rhs(G′, u), depth(u)).
The vertex u with the lowest key is processed first, see line 2 of Algorithm 1. It is
the inconsistent vertex closest to the root. If there are multiple vertices with the

Algorithm 1: RamalingamReps()

Data: graph G′ = (V ′, v′

0, E
′)

while G′ contains inconsistent vertices do1

u← the vertex with the lowest key2

if rhs(G′, u) < depth(u) then3

depth(u)← rhs(G′, u)4

else if depth(u) < rhs(G′, u) then5

depth(u)←∞6

same lowest key, one is selected non-deterministically. In case its rhs is smaller
than its stored depth, we know that the changes to the graph moved u closer
to the root. We can assign its rhs value to depth to make it consistent (line
3-4). This could cause its successors, Succ(G′, u), to become inconsistent, and
they will be processed when their key is the lowest. On line 5-6, we deal with
the case that rhs(G′, u) is greater than depth(u), thus it moved farther from the
root. We assign its stored depth with infinity (∞). This ensures vertex u’s key is
purely determined by the rhs and if it is the lowest, it will be processed again.
The cause-and-effect behaviour of making vertices consistent and triggering its
successors become inconsistent is guaranteed to reach a fixpoint because of the
traversal order by the lowest key. A proof of correctness is provided in [19].

Intuitively, this algorithm determines a subgraph of vertices for which the
stored depths reflect the real depths. This is ensured for consistent vertices whose
stored depth is smaller or equal to the vertex with the smallest key value. Based
on this subgraph, the inconsistent vertex closest to this subgraph is made consis-
tent. This enlarges the subgraph. This is recursively done until all inconsistent
vertices are traversed and the subgraph is equal to the graph. A walkthrough
of this algorithm is shown in Figure 3. It outlines the steps of Ramalingam and
Reps’s algorithm on graph G′ from Figure 2.

v0

v1 v2

v4

v3

v5 v6

0

1 2

2

3

3 3

(a) Graph G

v0

v1 v2

v4

v3

v5 v6

0

1 2

2

3

3 3

(b) Graph G′

Fig. 2. Graph G was changed to graph G′, but the stored depths (the labels upper-
right from the vertex) were not recomputed. Because of this, vertices v2, v3 and v6 are
inconsistent, as indicated by the gray fill in graph G′.

The foremost application of Ramalingam and Reps’s algorithm is in routing.
Routers need to recalculate shortest paths to neighbouring routers when the
connections change. Whereas Dijkstra’s algorithm recalculates all shortest paths,
this algorithm only recalculates shortest paths that have actually changed. For
large networks, this algorithm reduces time. In this paper, we show how the idea
behind this algorithm improves garbage collection in software model checking.

v0

v1 v2

v4

v3

v5 v6

0

1 2

2

3

3 3

(a) Initial situation. Ver-
tex v2 is selected as the
inconsistent vertex with
the lowest key.

v0

v1 v2

v4

v3

v5 v6

0

1 1

2

3

3 3

(b) Vertex v2 was made
consistent by assigning its
rhs to its stored depth.
Vertex v3 is next.

v0

v1 v2

v4

v3

v5 v6

0

1 1

2

∞

3 3

(c) depth(v3) becomes in-
finity because it has no
predecessors. Vertex v6 is
next.

v0

v1 v2

v4

v3

v5 v6

0

1 1

2

∞

3 2

(d) rhs(G′, v6) is based
on v2 and therefore its
stored depth becomes
two. No inconsistent
vertices left.

v0

v1 v2

v4 v5 v6

0

1 1

2 3 2

(e) Vertices of infinite
depth are purged, like v3.
Vertices v4 and v5 did not
need to be traversed.

Fig. 3. Walkthrough of Ramalingam and Reps’s algorithm on graph G′ of Figure 2.
The vertices in the dashed subgraph are ensured consistent.

3 Memoised Garbage Collection

Ramalingam and Reps’s algorithm works on graphs in general. To make it appli-
cable for garbage collection in software model checking, we introduce additional
semantics upon it.

First, a heap does not have a single root object, but multiple, namely the
objects referenced from the call stacks of the program threads (see Figure 4). To
make a heap graph a single-root graph, we introduce a fictive root v0 whose suc-
cessors are the objects referenced from the call stacks. Each reference counts as a
distance of one. Given these semantic additions, the resulting graph can be pro-
cessed by Ramalingam and Reps’s algorithm. When the algorithm terminates,
objects with an infinite depth are unreachable and can be garbage collected.

Due to the dynamic nature of object oriented software, the algorithm must
also deal with newly instantiated objects, as they change the heap graph. To
ensure that the new object will be seen as reachable from the fictive root, the
stored depth of that object must be initialised with infinity. It will then be seen

callstacks

Eval. stack:

Locals:

Arguments:

method
frame

frame
method

method

method

method

frame

frame

frame

Fields:

heapthreads

Fig. 4. Organisation of a state in a software model checker. It consists of two threads,
each having a callstack. The three objects on the left are root objects, as they are
referenced directly from the call stacks.

as inconsistent upon the first next run of the algorithm, and as such, it will be
made consistent by assigning it with a consistent depth.

3.1 Implementation

An implementation of the algorithm has three main issues to consider, namely
(i) how inconsistent vertices are determined, (ii) how an inconsistent vertex with
the least key is found and (iii) how predecessors of an object are determined.
Algorithm 2 is an implementation of Algorithm 1 for which these issues have
been resolved.

(i) The first issue is tackled by lines 3-6 and lines 15-19. Initially, a vertex
could be detected on inconsistency by computing its rhs and compare it against
its stored depth. Computing the rhs is expensive as it requires the traversal of all
the predecessors. Therefore, we first use a safe indication, which we call “dirty-
ness”. A predecessor set is dirty whenever it was modified, like additions and
removal of predecessor objects, from the previous predecessor set, Pred(G, o).
Also, it is possible that during one transition, an object is created, used and
discarded. Those objects have an empty predecessor set and also have to be con-
sidered for inconsistency. When an object passes these tests, then ultimately its
rhs is calculated and compared against its depth. Between lines 15-19, successor

Algorithm 2: MemoisedGC(s, s′)

Data: priority queue Q

G = (V, E, v0)← the object graph associated with state s1

G′ = (V ′, E′, v0)← the object graph associated with state s′, the successor of s2

foreach object o ∈ V ′ do3

if Pred(G′, o) is dirty ∨ Pred(G′, o) is empty then4

if rhs(G′, o) 6= depth(o) then5

add o to Q with order key(G′, o)6

while Q is not empty do7

u← dequeue element from Q with smallest order8

if rhs(G′, u) < depth(u) then9

depth(u)← rhs(G′, u)10

Affected← Succ(G′, u)11

else if depth(u) < rhs(G′, u) then12

depth(u)←∞13

Affected← Succ(G′, u) ∪ {u}14

foreach o ∈ Affected do15

if rhs(G′, o) 6= depth(o) then16

if o ∈ Q then adjust o on Q with order key(G′, o)17

else add o to Q with order key(G′, o)18

else if o ∈ Q then remove o from Q19

objects are traversed that could have become inconsistent because their common
parent has become consistent. The inconsistent childs are added to the priority
queue Q so that they will be made consistent.

(ii) The second issue is determining the object with the least key. Inconsistent
objects added to Q are sorted by their key. Due to this order, the object with
the least key can be extracted in constant time. In case the key changes of an
inconsistent object’s that is already in Q (because its predecessor has a changed
depth), then this change is reflected by an update to the queue, as done in line
17.

(iii) The third issue relates to function rhs and Algorithm 2. The heap only
stores the successor relation explicitly. The predecessor relation can be derived
implicitly from this. However, to speed up the algorithm, we maintain an explicit
predecessor relation. In MoonWalker, this relation has to be updated in the
following situations:

– Upon interpretation of the stfld instruction, if an object reference is stored
into an object’s field.

– Upon interpretation of the stelem instruction, if an object reference is stored
into an array element.

– Upon a System.Array.ArrayCopy internal call, when object references are
copied to the destination array.

– When an object reference is pushed on the call stack; then the referenced
object becomes a child of the fictive root.

– When an object reference is popped from the call stack; then the referenced
object is removed as child of the fictive root.

When state collapsion [23] is applied, the predecessor relation also has to be
updated similarly upon restoring an object, array and callstack. Furthermore,
the predecessor relation has to be stored as a bag (i.e., a counting set). It is
possible that an object references another object multiple times by holding the
same object reference in multiple fields. If one of these references is removed, then
the predecessor relation still holds. The predecessor relation between objects is
discarded when all references to the successor object are removed.

3.2 Time Complexity

Whereas the time complexity of M&S is lineair to the size of the heap, the time-
complexity of MGC is expressed in other terms. The main term is that of an
affected object, which is an object whose stored depth has changed during one
run of the algorithm. The extended size of an affected object o is |Pred(o)|. Given
these terms, [19] showed that the worst-case time-complexity of algorithm 2 is
O(N · (log(N) + M)), where N is the sum of extended sizes of affected objects
plus the amount of affected objects, and M the cost to calculate rhs.

4 Experimental Evaluation

To evaluate the effectiveness of MGC, we wanted to compare it against M&S.
M&S was already implemented in MoonWalker. For running the experiments,
we also implemented MGC. It took us three man-months to implement it, in-
cluding the learning-curve necessary to pick up the .net platform, to get familiar
with MoonWalker’s code and implementing several enhancements to Moon-

Walker in between.

4.1 Bandera’s Models

Instead of crafting our own benchmarks, we purposely used existing benchmarks.
Otherwise one could interpret the results with bias. Thus, we took three models
from Bandera’s suite, namely Pipeline, SleepingBarbers and BoundedBuffer,
and manually ported them to C#. However, after running these academic ex-
amples through MoonWalker, we found them unsuitable for our comparison.
The more favourable time-complexity of MGC would only be advantageous for
models with big heaps and long verification times. The three small examples
have either short verification times (around a second) or very small heaps.

4.2 Java Grande Forum Benchmarks

Benchmarks that resemble real life situations usually have bigger and complex
heaps and larger state spaces, making them more interesting and challenging

to verify. The three multi-threaded models in the Java Grande Forum Bench-
mark suite (JGF) [22, 24] are such models. These models were developed for
the scientific community to evaluate emerging parallel programming paradigms
and to expose their weaknesses. Two of these models, MolDyn and Raytracer,
were usable. The third benchmark, MonteCarlo, uses file I/O which is not (yet)
supported by MoonWalker. The benchmarks have two parameters, denoted
as t − d, where t is the number of threads and d is the datasize. For MolDyn,
the datasize means the number of particles that is simulated. For Raytracer it
means the number of pixels in both width and height that is being rendered. A
higher t and/or a higher d will lead to a larger state space. Additionally, to get
an idea of the models’s size and complexity, its metrics are shown in table 1.

Metric MolDyn Raytracer

#Lines of code 965 1540
#Classes 9 17
#Methods 28 71
#Statements 433 421
#Source code size in Kb. 26 49

Table 1. Metrics of the MolDyn en Raytracer benchmarks.

As the benchmarks are written in Java, we had to convert them to C#.
Due to the size of the code, converting it manually as we did for Bandera’s
small examples is too error-prone. Instead, we used Microsoft’s Java Language
Conversion Assistant 3.0, which is included with Microsoft Visual Studio 2005.
The conversion was nearly complete and self-contained. The only two things
that were not automatically converted were assert statements and final field
attributes. The first was fixed by manually converting the assert statement to a
System.Diagnostics.Debug.Assert statement in the resulting C# code. The
second was fixed by adding the readonly attribute to fields which are marked
final in the Java code.

While running initial runs, MoonWalker found an assertion violation in
both models due to a datarace. The datarace occurs over the accesses to variables
used to check the assertion and therefore the race does not affect the behaviour of
the model. Data races in the Java Grande Benchmarks have also been detected
by [6]. While the datarace can be fixed by proper synchronisation of accesses
to the concerning variables, we purposely did not do that. We wanted to keep
the benchmarks as pure as possible, and secondly, the datarace only increases
the state space, so the only side-effect is that the model checker has to do more
work.

4.3 Setup

All benchmark runs were performed on a cluster of nine identical systems. Each
system has a 2.4 GHz CPU, 2 GB of memory, running Windows XP and installed

with .NET 3.0. For both benchmarks, all configurations from 2-1 to 3-3 were ran,
with a total of six configurations. Each benchmark run was performed with both
static and dynamic partial order reduction enabled [18], a memory threshold of
1.5 GB and a time-limit of 10 hours. A grand total of 24 runs were made, which
took a day on the cluster to complete.

4.4 Results

The results of the experiment are summarised in two tables. Table 2 describes
the results of the MolDyn benchmark and Table 3 describes the results of the
Raytracer benchmark.

con
fig.

gc. heap
siz

e (#
ob

j.)

tim
e (se

c)

mem
ory

(M
b.)

sta
tes

(·1
0
3)

rev
isit

s (·1
0
3)

sta
tes

sto
red

(·1
0
3)

sta
tes

sto
red

/M
b

sta
tes

/se
c

2-1
MGC

45
434 1470 1482 1063 1482 1008 5863

M&S 458 1470 1482 1063 1482 1008 5560

2-2
MGC

101
1447 o.m. 1928 790 978 652 1878

M&S 1553 o.m. 1926 788 977 651 1748

2-3
MGC

253
78 o.m. 246 0 246 164 3163

M&S 72 o.m. 249 0 249 166 3475

3-1
MGC

60
913 o.m. 2726 3022 1664 1109 6296

M&S 1038 o.m. 2724 3018 1662 1108 5531

3-2
MGC

144
91 o.m. 328 0 328 218 3591

M&S 98 o.m. 327 0 327 218 3324

3-3
MGC

372
153 o.m. 152 0 152 101 993

M&S 68 o.m. 151 0 151 101 2238

Table 2. MolDyn results with the Memoised Garbage Collector (MGC) and the Mark
& Sweep Garbage Collector (M&S).

The heap size column describes the max. heap size encountered during veri-
fication. The time column is the verification time in seconds. A verification that
has run out of time is indicated by “o.t.”. The memory column is the maximal
memory used during verification in megabytes. A verification that has run out
of memory is indicated by “o.m.”. The states column is the amount of states
in the state space. The revisits column is the amount of states revisited during
verification. The states stored column is the amount stored in the hashtable.
This may differ from the amount of states in the state space due to the ex post
facto transition merger that is enabled with stateful dynamic partial order re-
duction [7]. Note that three columns are represented in thousands for the results
from MolDyn benchmarks. The state stored/Mb. column gives an indication of
the memory utilisation efficiency. The states/sec. column is the amount of states
processed per second during verification. It is calculated by adding the amount
of states with the revisits and have that divided by the verification time.

From the table of MolDyn, we observe that MGC is faster (in terms of
states/sec) for configurations 2-1, 2-2, 3-1 and 3-2, with respectively 5%, 7%, 14%
and 8% performance increase. The average performance increase with MGC on
these configuration is 9%. Table 3 shows that MGC is faster for all configurations
except configuration 2-3. The increases are respectively, 3% for both configura-
tions 2-1 and 2-2, 78% for configuration 3-1, 8% for configuration 3-2 and 40%
for configuration 3-3. The average performance increase of these configurations
is 26%.

con
fig.

gc. heap
siz

e (#
ob

j.)

tim
e (se

c)

mem
ory

(M
b.)

sta
tes

rev
isit

s

sta
tes

sto
red

sta
tes

sto
red

/M
b

sta
tes

/se
c

2-1
MGC

935
1 37 844 579 844 23 1231

M&S 1 36 844 579 844 23 1198

2-2
MGC

940
109 664 65923 53264 65923 99 1091

M&S 113 655 65923 53264 65923 101 1055

2-3
MGC

3254
o.t. 1151 79673 19899 79673 69 3

M&S o.t. 1373 97233 24289 97233 71 3

3-1
MGC

1368
38 483 53631 71076 53631 111 3278

M&S 68 475 53631 71076 53631 113 1842

3-2
MGC

1368
o.t. 1571 32520383 248967 187623 119 910

M&S o.t. 1572 30093872 246229 185707 118 843

3-3
MGC

1384
23 o.m. 43330 0 43330 29 1890

M&S 32 o.m. 43323 0 43323 29 1347

Table 3. Raytracer results with the Memoised Garbage Collector (MGC) and the
Mark & Sweep Garbage Collector (M&S).

We hypothesised that the increase of performance correlates with the heap
size. This is partially true. We saw that Raytracer configurations have bigger
heaps, and as such the performance increase is generally higher than those of
the MolDyn benchmarks. The latter configurations however revealed a surpris-
ing result, namely a huge decline in performance for configuration 3-3 and a
moderate decline in performance for configuration 2-3. We investigated this us-
ing a profiler and observed that our initial assumption does not always hold. We
assumed that the heap does not change much between successive states. This
depends however on the heap property that is being measured. The heap shape
does not change much, but we did observe that the depth labelling changes
much for MolDyn configurations 2-3 and 3-3. As object references are popped
and pushed upon the callstacks, the successors of the fictive root change, and
thus, also the object graph. Also, these affected objects can cause a chain re-
action of changed depth labelling of subsequent successor objects. The MGC

bases object reachability on this depth labelling.

Furthermore, the profiler revealed an overhead in the maintenance of parent
lists. These list are updated upon every change to the object graph. The changes

are especially heavy when a collapsed state is restored, where it is not uncommon
that many objects change.

Note that both observations depend on the model that is being verified. The
Raytracer model is less susceptible to massive depth-labelling changes between
successive states, thereby benefiting more from MGC.

When it comes to memory overhead (in terms of states stored per Mb.), we
see that there is no significant difference between MGC and M&S. This means
that the memory overhead for maintaining parentlists is neglectible.

5 Future Work

Profiler measurements revealed that MGC decreases the stake of garbage col-
lection from 55% to 24% on Raytracer 3-1. Yet, during development of MGC,
we identified several opportunities for further optimising the garbage collection
process.

Implementation. The implementation can be further improved by using a
HOT queue [3] instead of currently used the Interval Heap for Q in Algorithm
2. The HOT queue has a better time-complexity for monotone increasing keys,
which holds for this algorithm. Also the calculation of the rhs function can
be done in constant-time using the improved algorithm by [19]. Both are more
difficult to implement efficiently and for this reason, it is deferred as future work.

No garbage or lots of garbage. While studying the effect of MGC, we observed
that lots of calls to the garbage collector do not result in the collection of garbage
objects and that some calls result in the collection of lots of objects. The first
especially happens when the callstack of a thread grows by successive method
calls. If one would develop a method to detect this beforehand and disable the
garbage collector, time is saved, especially when combined with M&S. The latter,
collection of lots of garbage, occurs when exploration comes closer to the end
state. By switching from MGC to M&S, thus a hybrid-approach, would benefit
here.

Other incremental shortest path algorithms. The incremental shortest path
algorithm by Ramalingam and Reps set off an active field of study on incre-
mental shortest path calculation. Since its publication, hundreds of publications
describing refinements and specialisations have emerged. It is well possible that
improvements have been developed that are also applicable to MGC.

Incremental cycle detection with reference counting. The improvements men-
tioned above are merely to improve the MGC. Our study also gave us an idea
for a more fundamental improvement. MGC uses the depth of a vertex as a
property to determine reachability. In the end, it is all about the latter, not
about the depth. Other properties of a graph might be used instead. For exam-
ple, a fundamental different approach is to combine reference counting with a
form of incremental cycle detection. The incremental cycle detector exploits the
changes in a transition by incrementally maintaining the list of cycles in a heap.
The reference garbage collector only has to check whether the change causes the
cycle to become unreachable from the object graph, and if so, collect the cycle.

Applications of incremental computation. The incremental nature of the MGC

is also applicable to other algorithms. For instance, [17] describes an incremental
heap canonicalisation algorithm based on Iosif’s canonicalisation algorithm [11].
They use the shortest path to achieve this, and, as they suggest themselves,
can be calculated incrementally. This can be further extended to gain an incre-
mental k-BOTS algorithm, such that thread symmetries [12] can be detected
incrementally.

6 Conclusions

Software model checkers spend around half of their time on garbage collection
using the Mark&Sweep algorithm. To optimise this, we describe the Memoised
Garbage Collecter, which has a better time-complexity than M&S. In particular,
we show how depth-information can be used to determine reachability, how an in-
cremental shortest-path algorithm can be applied to track the depths efficiently,
how this algorithm drives the MGC, how this garbage collection algorithm can
be implemented and finally an experimental evaluation of it on real-life bench-
mark models. The performance gain observed from our benchmarks is up to 78%
percent, depending on the model and configuration.

Through our work on MGC, we identified several directions for future work
(see Section 5) which hopefully lead to more improved garbage collection algo-
rithms and faster software model checking in general.

References

1. N. H. M. Aan de Brugh. Software Model Checking for Mono. Master’s thesis,
University of Twente, Enschede, The Netherlands, August 2006.

2. N. H. M. Aan de Brugh, T. C. Ruys, and V. Y. Nguyen. MoonWalker: Verification
of .NET Programs. LNCS, 2009. Proceedings of TACAS 2009.

3. B. V. Cherkassky, A. V. Goldberg, and C. Silverstein. Buckets, Heaps, Lists, and
Monotone Priority Queues. In M. Saks, editor, SODA’97: Proceedings of the eighth
annual ACM-SIAM symposium on Discrete algorithms, pages 83–92, Philadelphia,
PA, USA, 1997. Society for Industrial and Applied Mathematics.

4. J. C. Corbett, M. B. Dwyer, J. Hatcliff, and Robby. Bandera: A Source-Level
Interface for Model Checking Java Programs. In ICSE 2000, pages 762–765, 2000.

5. E. Dijkstra. A Note on Two Problems in Connexion with Graphs. In Numerische
Mathematik, volume 1, pages 269–271, 1959.

6. T. Elmas, S. Qadeer, and S. Tasiran. Goldilocks: Efficiently Computing the
Happens-Before Relation Using Locksets. In K. Havelund, M. Núñez, G. Rosu,
and B. Wolff, editors, FATES/RV 2006, LNCS 4262, pages 193–208. Springer,
2006.

7. C. Flanagan and P. Godefroid. Dynamic Partial-Order Reduction for Model Check-
ing Software. In J. Palsberg and M. Abadi, editors, POPL 2005, pages 110–121.
ACM, 2005.

8. W. Grieskamp, N. Tillmann, and W. Schulte. XRT- Exploring Runtime for .NET
Architecture and Applications. In B. Cook, S. Stoller, and W. Visser, editors,
Proceedings of the Workshop on Software Model Checking, volume 144, pages 3–
26, 2006. Proc. of SoftMC 2005.

9. K. Havelund. Java PathFinder, A Translator from Java to Promela. In D. Dams,
R. Gerth, S. Leue, and M. Massink, editors, SPIN 1999, LNCS 1680. Springer,
1999.

10. G. J. Holzmann. The Spin Model Checker – Primer and Reference Manual.
Addison-Wesley, Boston, Massachusetts, USA, 2004.

11. R. Iosif. Exploiting Heap Symmetries in Explicit-State Model Checking of Soft-
ware. In ASE 2001, pages 254–261. IEEE Computer Society, 2001.

12. R. Iosif. Symmetry Reductions for Model Checking of Concurrent Dynamic Soft-
ware. STTT, 6(4):302–319, 2004.

13. R. Iosif and R. Sisto. Using Garbage Collection in Model Checking. In K. Havelund,
J. Penix, and W. Visser, editors, SPIN 2000, LNCS 1885, pages 20–33. Springer,
2000.

14. R. Jones and R. Lins. Garbage Collection. John Wiley & Sons, Chichester, 1996.
15. F. Lerda and W. Visser. Addressing Dynamic Issues of Program Model Checking.

In M. B. Dwyer, editor, SPIN 2001, LNCS 2057, pages 80–102. Springer, 2001.
16. J. McCarthy. Recursive Functions of Symbolic Expressions and Their Computation

by Machine, Part I. Communications of the ACM, 3(4):184–195, 1960.
17. M. Musuvathi and D. L. Dill. An Incremental Heap Canonicalization Algorithm.

In P. Godefroid, editor, SPIN 2005, LNCS 3639, pages 28–42. Springer, 2005.
18. V. Y. Nguyen. Optimising Techniques for Model Checkers. Master’s thesis, Uni-

versity of Twente, Enschede, The Netherlands, December 2007.
19. G. Ramalingam and T. W. Reps. An Incremental Algorithm for a Generalization

of the Shortest-Path Problem. Journal Algorithms, 21(2):267–305, 1996.
20. Robby, M. B. Dwyer, and J. Hatcliff. Domain-specific Model Checking Using The

Bogor Framework. In ASE 2006, pages 369–370. IEEE Computer Society, 2006.
21. T. C. Ruys and N. H. M. Aan de Brugh. MMC: the Mono Model Checker. Electr.

Notes Theor. Comput. Sci., 190(1):149–160, 2007. Proc. of Bytecode 2007.
22. L. A. Smith, J. M. Bull, and J. Obdrzálek. A Parallel Java Grande Benchmark

Suite. In ACM/IEEE Conference on Supercomputing (SC 2001), New York, USA,
2001. ACM.

23. W. Visser, K. Havelund, G. P. Brat, and S. Park. Model Checking Programs. In
ASE 2000, pages 3–12. IEEE Computer Society, 2000.

24. The Java Grande Forum Benchmark Suite.
http://www.epcc.ed.ac.uk/research/activities/java-grande/.

25. Java PathFinder. http://javapathfinder.sourceforge.net/.
26. MoonWalker. http://www.cs.utwente.nl/˜ruys/moonwalker/.

