
Software Model Checking for Mono

Niels Aan de Brugh

August 28, 2006

Abstract

Software has become larger and more complex than the human mind can
grasp. This results in software that can contain errors, even when the soft-
ware is thoroughly tested. Automated validation techniques can be a helping
hand in the process of eliminating these errors. Specifically, model checking
techniques can be used to systematically “test” all possible executions of the
software, finding possible errors automatically. The development of tools to
facilitate this can be considered a new trend in research on validation tech-
niques. Parallel to this trend, a software development platform called .net
was released by Microsoft. This platform runs applications written in many
different programming languages. Mono is a free and open implementation
of .net. This project is an attempt to combine both the error-hunting capa-
bilities of software model checking and the versatility of the Mono platform.
In the course of more than a year we have written our own model checking
virtual machine, capable of checking applications in one of the many lan-
guages that can be compiled to run on .net and Mono. In many respects
the approach is similar to the Java PathFinder, a tool to model check Java
applications, developed at Nasa. We introduce the reader to the background
of Mono and software model checking. Then we discuss our implementation
in full detail, explaining design choices and algorithms used. Finally, we
present some experimental data, suggest several improvements that may be
useful to investigate in the future.

Preface

In many publcations about formal verification, such as model checking, the
author advotes techniques in this field as an excellent remedy to computer
errors. While this is at least partially true from a formal standpoint, the
tools to make the theaory applicable in practice are usually quite difficult
to use.

A trend in the recent years has been to apply model checking to software,
so the developer can use his actual product itself as a base for checking.
Ultimately, model checking should be a real push-button thing that is as
natural to software developers as using a debugger. In my opinion, providing
tool that do this is both necessary and interesting.

This ultimate goal is one of the motivations for me to work on this par-
ticular subject. It was suggested to me by Theo Ruys as I was still working
on an interesting but very formal decision algorithm at irst. Interested in
the practical side and use of the subject I decided to accept the challenge.

Speaking in retrospect, I cannot say I missed much of the practical side.
In fact, the larger part of the assignment involved writing code, redesigning
some parts, writing more code, redesigning once more, and so on. The
project is at least three to four times larger than anything I have written
before. I am sure to say that writing a manageable large application is an
art, and I think by working on this assignment I have at least gained some
valueable experience in it.

The report you are reading is the result of my master’s thesis project
which took more than than a year to complete. The reason for the delay
is both the lack of momentum in my working routine in the beginning of
the project, and my constant urge to adjust existing code to coincide with
a new design idiom I adapted while solving problems in another part of the
code.

The fact that this report is lying in front of you is to a large extend thanks
to my supervisor Theo Ruys. He helped me out of a serious low in (study)
activity and inspiration in a very friendly and patient way. Also, I very
much enjoyed the frequent and often informal chats we had about various
technical subjects. It was in fact Theo who taught me how to program eight
years ago, and although I have certainly gained experience during those
years, he was still able to give new insights in the course of this project. I
would hereby sincerely like to thank him for all his help.

Niels Aan de Brugh
Enschede, August 2006

2

Contents

1 Introduction 5

2 Mono and the CLI 7
2.1 The Mono Project . 7
2.2 Mono Overview . 8
2.3 Machine Model . 10

2.3.1 Computing Environment 10
2.3.2 Tasks of the Virtual Machine 11

2.4 Languages . 12

3 Software Model Checking 18
3.1 Introduction . 18
3.2 Traditional Model Checking 18
3.3 Existing Tools . 20

3.3.1 Full Code Coverage 20
3.3.2 Translation Based Tools 21
3.3.3 Abstraction Based Tools 22

4 Implementation of the Model Checker 24
4.1 What is it? . 24
4.2 Architectural Overview . 27
4.3 Explorer . 29

4.3.1 Exploration Algorithm 30
4.3.2 Rescheduler . 33
4.3.3 Deadlock Detection and Assertion Violations 36

4.4 Instruction Executors . 37
4.4.1 Safe and Unsafe Instructions 38

4.5 State Storage . 40
4.5.1 Recursive Indexing . 40
4.5.2 Doing it Better . 44

4.6 Backtracking . 45
4.6.1 Building the Delta . 46

5 Implementation of the Active State 49
5.1 The Aggregation of Parts . 50
5.2 Data Elements . 50
5.3 Dynamic Allocations: the Heap 52

5.3.1 Design of the Heap . 52
5.3.2 Garbage Collection . 55
5.3.3 Allocation Placement 61

5.4 Static Data: Classes . 66
5.4.1 Class Loading and Initialization 67
5.4.2 Class Storage . 68

3

CONTENTS 4

5.5 Locking . 70
5.6 Thread Pool . 74

6 Testing and Benchmarking 76
6.1 Test Setting . 76
6.2 Test Results . 77

6.2.1 Execution Performance 77
6.2.2 Locking: Dining Philosophers 78

7 Future Work 82
7.1 Partial Order Reduction . 82
7.2 Detailed Back Traces . 83
7.3 Exception handling . 83
7.4 Data and I/O Abstraction . 84

8 Conclusion 86

1
Introduction

Software has become a normal part of our daily lives. Nowadays people are
working with software more than ever before, most of the times without even
realizing it. Televisions and mobile telephones are more complex and provide
more functionality than a high-end workstation did less than a generation
ago. Even a machine that look almost entirely mechanical, such as a car,
may run complex software to make sure the machine continues to function
as intended.

Unfortunately, with the impressive advancement of technology and func-
tionality comes unforeseen failure. The complexity of the design and imple-
mentation of system has become too much for a single human being to grasp.
The list of famous computer errors (bugs) is long, and several had extreme
consequences. Such as the loss of NASA’s Mars Polar Lander and ESA’s Ar-
iane 5, a bug in one of the first Pentium series processors Intel released and
had to recall later, to even the loss of human life in the Therac-25 debacle.

Of course, not all software bugs need to have such dramatic consequences
to be harmful. The loss of an hour’s work due to a crashed word processor
is both costly and can be downright frustrating to the user.

One of the causes of the increased complexity of software is its increase in
size and functionality. A lot of errors introduced in this way can probably
be caught by traditional testing, given enough time. Unfortunately, that
time usually not available.

However, many systems no longer perform just one sequential task that
can be monitored from the start to the end. With the increase in computing
power came the possibility to do multiple tasks at the same time. Unfor-
tunately, it is very hard to catch all errors that are caused by concurrent
execution of software by means of traditional testing, and a bug that slips
through may cause harm a long time after the software has been released.

Although providing fixes and patches long after the software has been
released is a common practice nowadays, it is desirable for both the provider
and consumer of the software to get most things right the first time.

A mechanical and mathematically inspired technique that is specifically
successful in finding errors that are often missed by human testers is called
model checking [8]. Using this method, we can test if a formally stated

5

Introduction 6

propositions holds on a formalized model of the system. A nice feature of
model checking is that it is an automated process, requiring little to no
human interaction.

Much research has gone into the field of model checking, resulting in a
long list of tools, each with its own strengths and weaknesses. However, all of
these tools check properties of a formalized model of a system, not the system
itself. With the increase of computational power and development in the
theoretical field, a new trend in the model checking world has arisen, that is
to apply the method to real software rather than a model. This eliminates
the requirement to create a formal model of the system, and thereby the
inconsistencies that may be introduced in the modelling process.

The abundance of errors is not the only problem that plagues the soft-
ware world. A large and still rapidly expanding web of programming lan-
guages, operating system and architectures has formed itself over the last
two decades. Applications written for one architecture cannot be easily
deployed on another, and (legacy) code that has been developed in one pro-
gramming language cannot be easily used from code written in another. To
keep the overview in such a situation requires even more expertice of the
developer. Still, a lot of essentially redundant work is being done.

Sun presented Java as a solution to this problem. Java promises to run
the same code on a wide variety of operating systems and architectures. By
now it has matured in a usable development platform, but it does not solve
the incompatibility problem of programming languages. Microsoft’s .Net
initiative promises to tackle this last problem by providing a system similar
to Java that can run code written in many different programming languages.

Inspired by the .Net technology, a group of developers started working
on a free, open source version, which they named Mono.

In this project we try to combine the virtues of both software model
checking and Mono. That is, we aim to build a tool that is capable of
finding software errors in applications written for Mono. By the nature of
Mono and .Net this tool would allow developers to check code written in
many different languages. We call this tool mmc, short for Mono Model
Checker.

The rest of this document describes how we developed mmc. We will
start by introducing the reader to Mono (chapter 2), and what is currently
happening in the field of software model checking 3. After that, we will
discuss the design and implementation of mmc in chapters 4 and 5. In
chapter 6 we present experimental results, comparing mmc to a similar tool.
We will finish our discussion of mmc with an elaboration on what future work
mmc could benefit from (chapter 7), and finally we conclude in chapter 8.

2
Mono and the CLI

In this introductory chapter, we shall describe the Mono platform in enough
detail so the reader should be able to understand the rest of this report. This
includes a short overview (section 2.2) and a description of the languages
and machine model (section 2.4 and 2.3 respectively). We will start with an
informative introduction to the Mono project, shortly describing its history
and goals.

2.1 The Mono Project

In this section we give a succinct summary of the history and background of
the Mono project. It contains no technical information needed to understand
the rest of the document, but is provided for the interested reader. For
this section only, some background knowledge about the current computer
industry is required.

The Mono Project is an open development initiative sponsored by Nov-
ell [33]. Its aim is to develop a free implementation of Microsoft’s .Net
cross-platform development platform.

.Net [34] is marketed by Microsoft as a complete solution for (web)
applications and includes many company-wide initiatives. Mono restricts
itself to the development platform only. Novell sponsors the development
of Mono so developers will be able to deploy their software on Linux as
well as Windows, taking a competitive disadvantage away from the former
platform.

Although technically not strictly related, .Net and Mono both promote
the use of the new c# language. This high-level object-oriented program-
ming language resembles the Java language, but contains more features and
resembles c++ more closely. The language was developed by Microsoft, and
standardized in ecma-334 [13].

In February 2001, Miguel de Icaza started working on a part (mcs, the c#
compiler) of what is now the Mono project. At time De Icaza was working
for Ximian, a company he co-founded in 1999, which was later bought by
Novell. In July 2001, Ximian announced the Mono open source project as

7

2.2 Mono Overview 8

an effort to increase developer productivity for the Gnome1 community. By
then, De Icaza’s compiler was able to parse itself.

In June 2004 Mono announced their 1.0 release. At the time of writing
version 1.1.16.1 is the newest version. The product is currently being used
for the development of several commercial and open source (desktop) appli-
cations (a list can be found on [33]). At the moment it is not being used as
much as main-stream programming languages like c, c++ or Java.

In many aspects Java is Mono’s obvious competitor. Both serve the
same purpose of providing a cross-platform application platform, targeted
by a powerful yet easy to learn programming language. There are at least
three identifiable reasons why Mono is (at the time of writing) not quite as
popular as Java.

First of all, a reasonably fast version of Mono is only recently available,
whereas Sun’s Java has been available for over ten years. Mono does not
have the advantage of being the only product of its kind on the market like
Java had ten years ago. Secondly, support for the language features of the
c# 2.0 standard (such as generic types) is still experimental. Finally, the
performance of Mono is not quite as good as that of the newest version of
Java, although Mono outperforms many popular languages such Python and
Ruby.

Regardless, we feel the choice for Mono is a valid one, mainly based on
the technical advantages of the platform. Some of these technical virtues
will be discussed in the technical overview given in the rest of this chapter,
specifically in section 2.2.

Also, we think Mono will be more easily adopted by developers of desktop
applications. Mono already has binding for several powerful gui frameworks,
a field where Java has failed to take advantage of its head start. Additionally,
a likely yet speculative argument is that Mono applications will be easily
deployable on the .Net platform integrated in future versions of Microsoft’s
operating system.

Aside from technical considerations, we consider the free and open nature
of Mono’s development to be harmonious with the goals of this project.

With this last remark we conclude this informative section, and continue
the rest of the chapter looking at the technical side of things, starting with
a technical overview in the next section.

2.2 Mono Overview

Mono [33] is a platform to develop and run applications. It is based on
virtual machine

the concept of a virtual machine, i.e. an extra layer between the application
and the actual operation system, thereby allowing for development of easily

1Gnome is a free and open-source desktop environment for Linux and other unices.
Ximian has written several applications for the Gnome desktop.

9 Mono and the CLI

* *

*

*

. . .

. . .vb source

vb compiler (mbas)

Native Executable Code

c# compiler

c# compiler (mcs)

Common Intermediate Language (cil)

Common Language Infrastructure (mono)

Class Library

Figure 2.1: Architectural overview of Mono.

portable applications. The reader might be familiar with Sun’s Java Virtual
Machine, which is very similar.

Mono is a free and open implementation of the Common Language In-
frastructure (cli), a standard developed by Microsoft which was published
by ecma as standard 335 [28, 14]. Additionally, Mono is bundled with a
c# [13, 37] compiler, mcs.

The cil is not tied to a specific programming language. Quite to the con-
trary, the cli describes all language independent aspects that are needed for
components written in different languages to work together. This includes a
common virtual execution system, type system and executable file format.

The situation is sketched in figure 2.1. Parts bundled with Mono are
marked with an asterisk. Additionally to mcs and mbas, compilers for many
languages can be downloaded from the internet.

Additionally to the compilers and a run-time environment, Mono comes
with a class library containing common functionality such as threading, net-
working, data containers, an introspection framework, and much more. For
a full overview we refer the reader to the Mono website [33].

A library that has proven to be extremely useful to us is the Cecil library.
It is still not an official part of Mono, but can be downloaded separately [6].
We used Cecil to inspect assemblies, compiled pieces of software. Unlike the
reflection framework in the class library Cecil is capable of inspecting those
files at instruction level.

Completing the high-level overview of Mono, we will now continue our
introduction providing a little more detail, starting with the machine model
as provided by Mono (and mmc) in the next section.

2.3 Machine Model 10

Arguments:
Locals:
Eval Stack:

call
stack

method
frame

method
frame

method
frame

threads shared heap classes

Figure 2.2: Computing environment of Mono.

2.3 Machine Model

In this section we will describe what the virtual machine (vm) model looks
like. In a few aspects the virtual machine is similar to a typical computer,
but in most it is different. Where applicable, we shall use the readers prior
knowledge about computers in general. We do not assume any prior knowl-
edge about virtual machines.

First, we will describe the Mono world as seen by the code, i.e. the
computing environment (section 2.3.1), and next discuss what tasks the
vm performs (section 2.3.2), that is what we can expect from the run-time
environment.

2.3.1 Computing Environment

The computing environment is a stack-based machine with access to a heap
for dynamic allocations, and a static data part. It is similar to the Java vm,
but unlike a normal computer. Figure 2.2 depicts a sketch of the environ-
ment.

Similar to a normal computer, data blocks (frames) for the called meth-
ods is organized in a logical stack: calling a method pushes a frame on top
of the call stack, and returning from a method pops one off the stack.

Computations are done by pushing values on and popping values off an
evaluation stack. For example, to calculate 2+3, we first push 2 and 3 on the
stack, and than call the add instruction, which will pop 2 and 3, and push
back 5. Registers (found in all but a few hardware computers) do not exist.
This approach is common for virtual machines, since the number of registers

11 Mono and the CLI

at our disposal is only known at run-time, so the register-allocation can only
happen then. Also, since the architecture of the cli is based on multiple
compilers and just one run-time, it makes sense to keep the compilers as
simple as possible.

The memory model of Mono is divided in a stack, a heap and a static
part. The stack is a local block of memory that is created when a method is
called, and that is automatically removed when returning from that method.
Both local variables and arguments are stored on the stack. The heap is a
pool containing dynamically sized blocks of memory that are allocated at
run-time. Multiple processes may access the heap simultaneously. The
static part contains space to store loaded classes, and is in many respects
comparable to a store of global variables. At run-time at most one instance
of a class is loaded, and the classes can be accessed by any of the running
threads.

Two kinds of values exist in the cli: reference and value types. The
reference and value types

first kind includes arrays, objects and delegates, which are all allocated at
the shared heap. Multiple threads may access this data. It is up to the
programmer or compiler to provide concurrent access control. To access an
allocation on the heap, a reference to it is needed.

Value types include primitive types (such as integer and floating point
numbers, boolean values, and so on), and references to allocations on the
heap. Additionally, depending on the high-level language used, a special
kind of object is available, called a struct in c#. This type of object is allo-
cated on the stack rather than the heap, and is typically used for relatively
small aggregations of data.

2.3.2 Tasks of the Virtual Machine

Like a normal computer, the vm’s task is to run client applications by pro-
cessing instructions (what these instructions look like will be discussed in
section 2.4). But very much unlike a normal computer, the virtual ma-
chine is implemented in software instead of hardware. The vm itself needs
some sort of computing machinery to run on, but which kind of hardware is
mostly invisible (and irrelevant) to the client application. It can therefore
regard the vm as a uniform computing environment regardless of underlying
hardware. Hardware abstraction is an important task of the vm.

As a machine that abstracts away underlying hardware running object
oriented (oo) software, the vm needs to provide high-level oo functionality.
This functionality is traditionally provided by the compiler or libraries.

A compiler for a typical (more traditional) object-oriented programming
language (e.g. c++) deals with all details involving object-orientation. De-
tails such as handling polymorphism and virtual calls, alignment of fields
and the stack, proper handling of exceptions, just to name a few. In case
of Mono, the compiler can remain agnostic about all these aspects, as they

2.4 Languages 12

are handled by simple instructions to the vm.
The vm also burdens itself with additional tasks typically done by the

programmer. Examples include locking, disposing of no longer used alloca-
tions, wrapping primitive types in objects and process (and thread) man-
agement. The former and latter aspect are handled via calls to declarations
in the class library, the other two again via instructions.

The vm is instructed by the client application in two possible ways. First
of all, the client application contains cil instructions, which are discussed
in more detail in the next section. Second, it can call methods in the class
library. However, no code for these methods is provided inside the class
library. Instead the vm is expected to handle the call internally. Therefore,
these calls are called internal calls. In many respects they resemble the
software interrupts (or traps) used in traditional programming.

In the next section we will discuss two languages relevant in the context
of Mono, the new language c# and the format of the compiled code, cil.

2.4 Languages

As described above, many high-level programming languages may target the
cli. The mmc itself is written in c#. An introduction to this language can
be found in [11], and a language reference in [37]. c#’s syntax and language
features resemble Java and c++. There are some subtle differences, which
are not important for this project, though.

Mono is capable of running both safe and unsafe code. The first is code
that is executed by the virtual machine. The latter is compiled directly into
machine code. It may contain low-level constructs such as pointers, and
allocations of arbitrary and untyped blocks of memory. mmc is not capable
of checking unsafe code, so we do not discuss it here.

The c# source code is translated into a common (intermediate) language
(cil), which can be regarded a very high-level form of assembler code. We
shall (partially) introduce this language by example. For a full description
we again refer to [28].

The cil code example were extracted from the binary files using a small
tool written by us, cildump. Like mmc, it uses the Cecil library to inspect
assemblies and extract cil bytecode.

Example 1 (Counting characters). As a first example, we look at the cil
code for a simple routine that counts the number of occurrences of a char-
acter in a string, and returns it. The c# code for this method is listed in
listing 2.1.

The following code results from compiling2 and disassembling the result-
ing pe file.

2We used mcs version 1.1.13 when writing this document.

13 Mono and the CLI

Instruction Description
ldc.t.c Push constant c of the type t.
ldarg.x Push argument x.
ldloc.x Push local x.
ldelem.t Pop i and A. Push element i of array A as type t.
ldlen Pop A. Push the length of array A.
ldfld F Pop O. Push the value of field F of O.
conv.t Pop a. Push a, converted to type t.
add Pop element x and y, and push x+ y.
sub Pop element x and y, and push x− y.
mul Pop element x and y, and push x× y.
div Pop element x and y, and push x/y.
stloc.x Pop element, and store it in local x.
stfld F Pop v and O. Store v in field F of O.
br B (Unconditionally) jump to address B.
bne B Pop a and b. Jump to address B if a 6= b.
blt B Pop a and b. Jump to address B if a < b.
callvirt M Perform a virtual call to M .
call M Perform an instance call to M .
newobj M Allocate a block of memory on the heap to hold the

declaring class of M . Then call M, passing a reference
to the new allocation as its first argument.

ret Return from a called method. If the stack of the callee
contains a value, push this value on the stack of the
caller.

Table 2.1: Some common cil instructions and their description.

1 pub l i c s t a t i c i n t CountChar (char c , s t r i n g s t r) {
2

3 i n t count = 0 ;
4 char [] c h a r s = s t r . ToCharArray () ;
5

6 f o r (i n t i =0; i < cha r s . Length ; ++i)
7 i f (cha r s [i] == c)
8 ++count ;
9

10 re tu rn count ;
11 }

Listing 2.1: Counting characters in a string (c# code).

2.4 Languages 14

For a description of the individual cil instructions, we refer to table 2.1.
The push and pop actions described in the description are performed on the
evaluation stack of the method that executes the instruction.

0000: ldc.i4.0

0001: stloc.0

0002: ldarg.1

0003: callvirt ...

0008: stloc.1

0009: ldc.i4.0

0010: stloc.2

0011: br 0033

0016: ldloc.1

0017: ldloc.2

0018: ldelem.u2

0019: ldarg.0

0020: bne.un 0029

0025: ldloc.0

0026: ldc.i4.1

0027: add

0028: stloc.0

0029: ldloc.2

0030: ldc.i4.1

0031: add

0032: stloc.2

0033: ldloc.2

0034: ldloc.1

0035: ldlen

0036: conv.i4

0037: blt 0016

0042: ldloc.0

0043: ret

The numbers before the colon on each line give the instruction offset in
bytes, it is not a line number. Not all instructions are equally big. For exam-
ple, the ldc instruction at offset 0 is only one byte, whereas the callvirt
instruction takes 5 bytes. This is because it includes an operand, in this
case a reference to a method, that takes up space.

We will shortly describe the code by block. In instructions 0 to 8, the
two local variables count and chars are initialized. The method name that
was omitted in the code is of course ToCharArray. Instruction 8 and 11
set i to zero and branch to the block where the loop condition is checked
(instruction 33 through 37). Notice that although in c# the value of i is
only accessable in the for-construct, it is treated like any other local variable
in cil. Scoping is purely a compiler thing.

If the branch condition holds, the the ith element of chars is read onto
the stack, and compared to c, the first argument. If these are equal, i is
incremented in block 25–28. Notice that this simple operation takes four
cil instructions, and thus is not atomic. Finally, the step statement of the
for loop is executed in instructions 29–32, after which we arrive again at the
loop condition check.

Notice that the cil code does not allocate memory for its local variables
and evaluation stack. This is a task left to the vm. The reader might be
interested to know the code is not linked to any libraries. In fact, Mono does
not have a separate linker tool. So in this case, the code of ToCharArray is not
included in our assembly, and is to be loaded dynamically from mscorlib.dll
by the vm.

We will a more advanced example, introducting several c# language
features. The cil code will show some of them are mere syntactic sugar.

Example 2 (A simple singleton linked list). Please take a look at the c#
code in listing 2.2. It defines a class called ProcessList which is meant to be
used as a singleton. That is, it is meant to have just one instance, accessable
via a static member (line 5). To ensure no other instances are created, the
constructor is made private (line 34).

15 Mono and the CLI

1 namespace Pro c e s sCon t r o l {
2

3 sea led c l a s s P r o c e s s L i s t {
4

5 pub l i c s t a t i c readon ly P r o c e s s L i s t p l =
6 new P r o c e s s L i s t () ;
7

8 c l a s s Proce s s {
9

10 Proce s s m next = nu l l ;
11 pub l i c readon ly i n t PID ;
12

13 pub l i c Proce s s Next {
14 get { re tu rn m next ; }
15 set { m next = va l u e ; }
16 }
17

18 pub l i c Proce s s (i n t p id) {
19 t h i s . PID = p id ;
20 }
21 }
22

23 Proce s s m head = nu l l ;
24

25 pub l i c vo id AddProcess (i n t p id) {
26

27 Proce s s new proc = new Proce s s (p i d) ;
28 l ock (t h i s) {
29 new proc . Next = m head ;
30 m head = new proc ;
31 }
32 }
33

34 p r i v a t e P r o c e s s L i s t () {}
35 }
36 }

Listing 2.2: Process id List (c# code).

2.4 Languages 16

The process list holds a linked list of Process classes (lines 8–21). These
classes hold a process id and a reference to the next process in the list. The
PID is a readonly field, which means it can only be assigned in the instance
or type constructor. The constructor is translated into the following cil
code.

0000: ldarg.0

0001: call System.Object::.ctor()

0006: ldarg.0

0007: ldarg.1

0008: stfld ProcessList/Process::PID

0013: ret

First of all, it is important to know the this pointer (i.e. a pointer to the
object the method is invoked upon) is passed to each member function as
the first argument. The caller of the constructor is responsible for allocating
memory for the object to be instantiated, and passing it as the this pointer
to the constructor.

The process constructor implicitly calls the constructor of its base class,
which in this case is System.Object, the method of all classes in c#. It then
assigns its second argument, which is its first explicit argument pid, to its
field PID, and returns.

Method AddProcess constructs a new Process class, and prepends it to
the list. However, since multiple processes may be executing this code, it
applies locking to prevent two processes update the m head field at the same
time, corrupting the list. Locking is explained in detail in section 5.5. For
now, it is sufficient to know this solves the problem. Let us see how this is
translated into cil code (names of field and method have been shortened).

0000: ldarg.1

0001: newobj Process::.ctor

0006: stloc.0

0007: ldarg.0

0008: stloc.1

0009: ldloc.1

0010: call Monitor::Enter

0015: ldloc.0

0016: ldarg.0

0017: ldfld ProcessList::m_head

0022: callvirt Process::set_Next

0027: ldarg.0

0028: ldloc.0

0029: stfld ProcessList::m_head

0034: leave 0046

0039: ldloc.1

0040: call Monitor::Exit

0045: endfinally

0046: ret

Instructions at offsets 0–6 create a new Process, and stores it. New
objects are created by the newobj instruction. It creates a new allocation
on the heap, and passes it as the this pointer to the constructor, which is
called just like a normal method.

It then stores a local copy of the this pointer (instructions 7 and 8).
This may seem rather silly, but it does this because we will be locking on
it. The compiler always stores code to store a copy of whatever it is locking
on locally. This is quite sensible, since we need the same value again at the
end of the lock block. The expression between parenthesis on line 28 may

17 Mono and the CLI

have changed by then. Obviously not in this case, but there is no easy way
for the compiler to know this.

Next, it enters the protected block of code by calling the (static) Enter
method. It then loads and the m head field, and assigns it to the Next
property of the Process it created earlier. The property mechanism is an
example of syntactic sugar in c#, and no such thing exists in cil. The get
and set code blocks are translated into an explicit getter and setter method
by the compiler, in this case get Next and set Next.

As a short example, we give the cil code of set Next. We will not
elaborate on this code.

0000: ldarg.0

0001: ldarg.1

0002: stfld ProcessList/Process::m_next

0007: ret

After updating the m head field in instructions 27–29, we leave the lock
block. This is done by giving the offset of where to continue, but first we
have to execute the implicit finally clause the compiler has inserted for us.
This clause spans until the endfinally instruction, so instructions 39–45.
It unlocks this by calling the static Exit method in the Monitor class.

The reason the compiler put the unlocking code in a finally clause is
because that clause will always be executed, even when an exception was
raised in the protected block. We shall not discuss exceptions in this doc-
ument since the theory would span multiple pages, and is not essential to
understand this example. People familiar with the concepts of exceptions
will probably agree the compiler put the unlock code where it belongs.

This concludes our discussion of this example. We have not shown all
cil code, but the rest will most likely not give additional insights.

With these two example we hope to have given some insight in what cil
code looks like. Of course, lots of details are omitted. For the interested
reader, we refer to the cli standard [28] for an complete and precise overview
of cil and its file format.

This concludes our discussion of Mono. We have introduced the reader
to some of its history and relation to .Net, the architecture of the run-time
and the components that are bundled with Mono. In the last section we
gave two examples of c# code translated into cil to give the reader an
impression of what this code looks like.

3
Software Model Checking

The Mono Model Checker is a software model checker for Mono applications.
In this chapter, we will zoom in on the field of software model checkers, see
some of the underlying theory, and take a look at what other tools are
currently available, most notably the Java Pathfinder.

3.1 Introduction

A model checker is a software application that verifies formal systems. By
verify we mean checking that a number of desirable properties hold for the
given system. An important feature of model checkers is that this verification
process can run without any interaction from the user.

The formal system is usually a labelled transition system, i.e. an au-
tomaton that is an abstract mathematical model of a real system. This
automaton has a graph-like structure, where nodes coincide with the states
of a system, and directed edges coincide with transactions of one state to
another.

The goal of software model checkers is to bring the model checking good-
ness to the field of software development. That is, to provide tools to verify
software in an automated manner. This means the clean and mathematical
transition system is replaced by a complex and dynamic real product.

After shortly introducting traditional model checking in section 3.2, we
will give an overview of what the field of software model checking currently
looks like (section 3.3), and where mmc fits in.

3.2 Traditional Model Checking

First of all, let us stress this section only touches the surface of model check-
ing theory. Most notably, we do not discuss the most important algorithm
used in any model checker: the decision algorithm. For a fairly gentle in-
troduction into the theory we refer to [15]. Although this section deals with
classic model checking, we keep in mind that we ultimately want to develop
a software model checker, and not all theory is applicable to both fields.

18

19 Software Model Checking

Counterexample

s0

Model Checker

Formal System

s0

M, s0 |= ϕ ?

Valid

ϕ = AG EFψ

Temporal Formula

Figure 3.1: High-level overview of the model checking process.

As mentioned in the introductory section, traditional model checking
is the process of verifying formal model (of a system) in an automated,
algorithmically way. Formally, let M be the model with initial state s0, ϕ
a property that needs to hold on M , then model checking boils down to
checking whether M, s0 |= ϕ. The relation between the different players in
the model checking process is depicted in figure 3.2.

The model (or formal system) is usually a Kripke structure, a tuple
(S, I,R, λ) containing a countable set of states S, a subset I ⊆ S of initial
states, a transition relation R ⊆ S×S, and a labeling mapping λ : S → 2AP.

Intuitively, S models all states a system can have (e.g. on and off for
a simple light switch), I defines the state the system starts in (the light
switch is initially off) and R defines how the states relate, i.e. which states
follow from what other states (e.g. state on can follow from state off, and
vice versa). Mapping λ defines what propositions, or boolean facts, hold
for a given state. Continuing the light switch example, suppose we have
propositions s (the girl in the room can sleep) and e (electricity is being
used) mapped onto states as follows: λ = {on → {e}, off → {s}}.

The properties that need to hold in the model are typically given as tem-
poral formulae. Several dialects exist, varying greatly in expressive power,
succinctness, and complexity of validity checking. The formula used as an
example in figure 3.2 is ctl [8] and specifies that in each and every state
(AG), there should be at least one path to a state (EF) that satisfies some
formula ψ.

Completing our light-switch example, we might demand that “in any
given state, there is always a future state in which no electricity is being
used”. In ctl this is expressable as AG EFe.

We will not go into the details of temporal logic since we will not be
using them in the rest of the document. For a rather extensive coverage of
the theory of temporal logic we refer the reader to [3, 15].

The decision procedure, i.e. the algorithm that ultimately decides wether

3.3 Existing Tools 20

a given formula ϕ holds on a given model M , forms the very hearth of any
model checker. The internals vary greatly from one algorithm to the other,
depending on the logical dialect of ϕ.

At this time we only check implicit properties of the system. That is,
mmc does not accept arbitrary formulae, but checks for certain properties
hard-coded in the implementation. This is why we have chosen not to discuss
the decision procedure of e.g. ctl and ltl [32], as these algorithm are non-
trivial and do not necessarily give greater insight in how mmc works. We
refer instead to [15].

Many tools have been developed that implement the referred theories.
The interested reader might want to look at Spin [24] or NuSMV [7]. In
the next section we will introduce several software model checking tools.

3.3 Existing Tools

In this section several existing tools [38] in the field of software model check-
ing are introduced.

The tools differ greatly in the way to achieve their common goal, i.e.
to help the developer in improving the quality of software, especially in the
amount of detail that is included in the analysis. Some tools consider one
aspect of the software, e.g. the control flow, whereas others try to consider
as much detail as technically possible.

We will begin our discussion of related work with the tools that try to
check the entire code of an application, or at least most of it (section 3.3.1).
This is where mmc is to be categorized. After that, we will discuss several
other projects that take another aim at trying to find software errors, i.e.
tools based on translation (section 3.3.2) and on abstraction (section 3.3.3).

3.3.1 Full Code Coverage

Tools in this category aim preserve as much detail as possible of the software
to be checked, rather than concentrate on just one aspect. This makes full
code coverage tools very powerful and versatile since they can be universally
applied to software. However, as a jack of all trades, the analysis of one
particular aspect may fall short compared to the that of a tool that was
specifically designed for that aspect. We will discuss two software model
checkers here: jpf and xrt.

The Java PathFinder [39, 40], or jpf (currently at version 4) is a promi-
nent project in this category. It pioneered the concept of implementing a
software model checker as a virtual machine that simulates the (binary) code
of the application to be checked. In case of the jpf, this is Java bytecode.
The (Java) source code is not required.

The jpf is an explicit-state model checker that systematically explores
the state-space of a Java program, thereby generating it on-the-fly. It re-

21 Software Model Checking

duces the size of the state-space by applying partial order reduction (por)
techniques [17, 25, 36], as well as symmetry reduction [9, 18]. The size of
each individual state is reduced using the recursive indexing method, devel-
oped by Holzmann et al. [26]. By systematically exploring the state-space
the jpf aims to find deadlocks and uncaught exceptions.

The list of similarities between mmc and jpf is long, which is not sur-
prisingly, as jpf has served as both an example and an inspiration. When
discussing the implementation of mmc in chapters 4 and 5 we will point out
these similarities.

At Microsoft Research, xrt [19], an exploration framework for .Net is
being developed. Like mmc and jpf it is suitable for transactional explo-
ration, although the xrt allows arbitrary exploration strategies.

A notable difference between xrt and jpf and mmc is the first is based
on rewriting of the code. To achieve this, the framework uses instruction
rewriters which alter the code of a method, the basic entity of code in xrt.
An instruction rewriter can substitute instructions, or even rewrite the whole
control flow of the method. Another important difference is xrt allows
state extensions, most notably an extension that allows a state to be stored
symbolically.

Like mmc and jpf, xrt uses compression for stored states, although the
technique used (hash all components into a vector, [19]) is less sophisticated
than the recursive indexing used by jpf and mmc. And unlike jpf the
source code, and indeed a working implementation, of xrt is currently not
available.

Both xrt and jpf work on the bytecode generated by a compiler. In
the next section, we will see two tools that work with the uncompiled source
code.

3.3.2 Translation Based Tools

Tools that fall into this category re-use existing (traditional) model check-
ers. The software to check is translated into a model in the input language
of another tool. This tool is then used to do the actual checking. Both
Bandera [20, 10] and the first edition of the Java PathFinder [21] take this
approach.

jpf1 and Bandera both accept Java source code as input. The first
outputs a model described in Promela, the input language for the Spin [24]
model checker, the latter can output in several other languages as well.

However, as explained in [40, 22], there were two important disadvan-
tages to the approach of translating source code to (say) Promela. The
first of which is the source code actually needs to be available. This may
not be the case when the application to check uses third-party libraries that
are provided without source code, or if code is dynamically loaded over the
network.

3.3 Existing Tools 22

Another perhaps more immediate problem that was encountered was
there is no complete mapping of the input language (Java) to the output
language (Promela). Although the latter is a very expressive specification
language, it is not as rich as a real programming language such as Java.
For example, Promela lacks floating point numbers. This is why jpf1 was
abandoned, and superseded by the jpf discussed in section 3.3.1.

Bandera [20] is also based on the concept of source code to model lan-
guage translation. It focuses on an open modular design and the reuse of
existing technology [10]. Bandera’s approach resembles that of an optimizing
compiler: the Java source code is parsed and translated into an intermediate
language (Jimple). Given the property being checked, two optimizations are
performed on the Jimple code.

First of all, lines that are not relevant to the property being checked are
sliced out. Second, an abstraction engine specialized the Jimple code. For
example, for the specific property many possible values of a variable may be
equivalent. After these two analysis phases, the Jimple code is translated
into another intermediate language. This result is finally translated to the
input language on an existing model checker.

The techniques used in Bandera are advanced, but its approach differs
greatly from mmc. And as a translation based tool, Bandera suffers from
the same drawbacks as the first Java PathFinder.

3.3.3 Abstraction Based Tools

Tools in this category handle the complexity of software by (at least initially)
cutting away code (and thus behavior).

Tools based on abstraction construct an abstract over-approximated
model of the program to check, and analyze this model rather than the
original program. If an error is found, the tool has to check whether this
error is also present in the original program, or merely the result of over-
approximating the programs behavior. In the former case, the tool has
successfully identified an error in the program. In the latter case it needs to
adjust the abstract model to rule out the errornous behavior. This process
is called refinement.

Slam [2], developed at Microsoft Research, is a tool to do reachability
analysis for sequential c programs, specially device drivers. It consists of
three programs that together form the Slam toolkit.

The first program, c2bp, translates a c program into a boolean program,
which consists of the control graph of the original program, but with only
boolean variables and values. Next, another tool (Bebop) is used to check
for the reachability of a specific program statement (e.g. an error). If the
statement is not reachable, it is also not reachable in the c program, so the
work is done.

If the statement is reachable, Slam check if this path is indeed feasable

23 Software Model Checking

in the orginal c program using a third tool, Newton. Newton employs
a technique known as symbolic evaulation. If the path is feasable, Slam
reports the path to the user, and is done. If it is not, passes the infeasable
trace to c2bp, which refines its boolean program, and the checking cycle
can start again.

A big difference of Slam’s approach to that of mmc and jpf is that
it only works on sequential programs. It does not handle multi-threaded
applications.

Blast [23] takes an approach similar to Slam. That is, it uses a check-
and-refine loop on an abstract model, making it more concrete on every
iteration. However, Slam is freely available on the internet [4], including
source code.

This concludes our introduction in the field of software model checking.
We have given an impression of what traditional model checking looks like,
although we omitted relevant theory that cannot be applied to the field of
software model checking. After that we introduced and shortly described
several related tools. For a comprehensive overview of many tools currently
available, we refer the reader to [38].

In the next chapter we will discuss the design and implementation of our
own tool, mmc, in full detail.

4
Implementation of the Model Checker

To demonstrate the formal checking techniques described in chapter 3 can
be successfully applied to something as complex as software, we wrote a first
implementation of a software model checker. The design and implementation
were heavily inspired and influenced by the Java Path Finder 2 [40], a similar
project for the Java platform.

This chapter describes this implementation in detail, i.e. the architec-
ture, design, and its non-trivial data structures and algorithms. For each of
these topics, we will motivate the choices made, and discuss the strengths
and weaknesses of the chosen approach.

Note that at the moment the intended audience for this tool is other
software developers who want to contribute to and experiment with the
field of software model checking. The current implementation should be
regarded as a scaffolding to “plug” new ideas and methods into. As such,
extensibility and simplicity of design is a prime concern.

In the text, we shall often refer to graphical view of some part of the
design. The notation used is not standard, but should be easy to understand
to those who are used to reading class diagrams. For a description, refer to
figure 4.1.

In the following text, we first explain what the program actually does
(section 4.1), then describe the architectural overview (section 4.2), and
continue to describe the non-trivial parts of the implementation one by one.

4.1 What is it?

The Mono Model Checker (mmc), is a tool to aid a programmer in finding
bugs in his or her program. The name contains two important aspects: it
is a tool aimed at aiding Mono developers and is developed in Mono, and it
does this by applying model checking techniques.

As described in chapter 2, Mono applications are run on a virtual execu-
tion system (ves). The programmer writes the program in some language,
and a compiler then translates it to a common intermediate language (cil),
which the ves then executes.

24

25 Implementation of the Model Checker

Interface or abstract type.

Concrete type, method or property.

Return type or method or property.

Omitted description of overrided virtual methods.

Inheritance (is-as)

Aggregation (has-as)

. . .

concrete

abstract

return

Association

Grouping

Names

Arrows

Boxes

ReturnType

Type name

Method(ParameterType)

Repeated type name

Type:

Repeated type (definition elsewhere):

Figure 4.1: Legend for design diagrams.

The mmc simulates the execution of cil code by implementing its own
ves. This ves is not as fast as Mono, but it does give us full control over
everything a simulated application does. See figure 4.2 for a graphical view
where the mmc fits in.

The client application should see no difference between running on Mono
or the mmc, i.e. the mmc should behave exactly the same as the Mono ves
would.

Client application

Mono ves

(a) Normal execution (Mono)

Client application

Mono Model Checker

Mono ves

(b) Full exploration (mmc)

Figure 4.2: Placement of mmc in the computation model.

This is made easier by a large extend by the fact that the mmc itself runs
on the Mono ves. Calls and operations can be “passed down” by the mmc
by performing exactly the same action as the client application. The result
it gets from Mono can then be passed back to the client. Some examples of
such calls are arithmetic and system queries.

Mono supports multi-threaded applications, i.e. applications that have

4.1 What is it? 26

t2

t1

t1

(a) Execution (Mono)

t1

t1

t1

t1

t2

t2

t2

(b) Full exploration (mmc)

Figure 4.3: Execution vs. Exploration

multiple concurrent processes that have access to the same data, but run in
parallel. Since the number of threads may exceed the number of physical
processing units (cpus) in a system, the virtual machine should implement
some scheduling mechanism to divide blocks of execution time among the
threads. An ordered sequence of threads that are run in sequence is called

interleaving
an interleaving.

An important difference between the mmc and Mono virtual machines is
that the first is capable of systematically and completely executing all possi-
ble interleavings, whereas the first only executes one interleaving. Therefore,
the mmc is capable of finding errors that may stay invisible when running
the application on Mono.

The act of systematically running and checking interleavings is called
state space exploration

state
transaction

state space exploration. The model of a program’s execution is made up
of states (snapshots of the virtual machine data), and transactions between
those states modelling the (partial) execution of a thread.

To facilitate the state space exploration, the mmc is capable of storing its
state, and return there later to choose a different thread to run, exploring
all possible interleavings in the process. We shall illustrate this using an
example.

Example 3 (Exploration vs. Execution). Consider figure 4.3. In this ex-
ample the program to check consists of two threads t1 and t2. At this time,
we abstract from what is behind the states (the circles) or what is actually
being done in a transaction (the arrows), but we note that t1 has work for
two “steps”, and t2 for one. The transactions (or steps) are numbered to
clarify the order of execution.

The left model gives a graphical impression of what is being done in
a regular virtual machine, such as Mono. First, thread t1 does one step,
then t2 (thereby completing its work), and then t1 finishes. We write this
interleaving as (t1, t2, t1).

The right model is how mmc explores the same system. The system

27 Implementation of the Model Checker

starts by exploring interleaving (t1, t1, t2), but instead of stopping when all
work is done, it backtracks to the situation where another thread could be
run instead of the one chosen before. In this case, this is the situation
where only the first step of t1 has been executed, and continues to explore
the interleaving (t1, t2, t1). After that, the system backtracks again, this
time to the first state where it originally began, and explores last possible
interleaving (t2, t1, t1), thereby completing executing all interleavings.

By systematically exploring all interleavings, mmc is capable of finding
all (causes of) deadlocks and assertion violations. A deadlock is a situation
where the system has no runnable processes, but it is not terminated in
the intended way. A common cause of deadlocks is inproper use of locking
or synchronization. Assertions are checks the developer puts in the source
code to check if a specified condition holds. Exploiting the fact we explore all
possible behaviors of the system, this condition is checked for every situation.
Both checks are discussed further in section 4.3.3.

Now that a shallow overview has been given of the system, let us see
how this reflects in the architecture of the system.

4.2 Architectural Overview

In this section we will describe the architecture of the mmc, i.e. its high-
level structure, thereby abstracting away from design and implementation.
As described in section 4.1 we described that the tool runs applications like
a virtual machine (or ves), and is capable of restoring a previous state. This
reflects directly in the architecture of the system.

Consider figure 4.4, a schematic overview of the architecture, its most
important building blocks and interaction between those blocks. Central

explorer
to the architecture is the explorer. This component drives the state space
exploration.

On the left-hand side in the figure, the part of the mmc that provides the
virtual execution environment is depicted. It is based on two components:
an active state and instruction executors. The first holds the state of the

active state
virtual machine, i.e. the running threads, allocated objects, and so on. This
is rather a big component, and will be discussed in full in chapter 5.

The latter part of the ves, the instruction executors, are responsible
instruction executor

for executing a single cil instruction. A typical instruction executor queries
and update the active state. The construction and starting of the executors
is done by the explorer.

To the right we find the parts of the mmc that are used for storing and
restoring states: the state storage and a backtrack stack. Note that the two
have only been put together in the figure since they serve the same high-level
goal. There is no other immediate relation between the two.

At certain points in the execution path, the explorer has to store the
state store

4.2 Architectural Overview 28

Instruction

Executor

Active

State

query
update

ves

Backtrack
Stack

State
Storage

Restoration

create &
dispatch restore

store &

cil image

Explorer

st
o
re

to

M
o
n
o

M
o
d
el

C
h
ec

k
er

Figure 4.4: mmc architecture

active state in the state storage. This storage is used to check if a certain
state has already been explored in the past, so we do not need to explore it
again.

The backtrack stack contains the sequence of states (i.e. the path) that
backtrack stack

has been explored so far. It allows the explorer to restore a previously vis-
ited state. It contains scheduling related information, most importantly the
threads that have not yet been run from that state, and all data needed to
restore the previous state. The way steps are taken forward in the explo-
ration, and then reverted, is reflected in the last-in-first-out nature of the
stack.

Since most of the implemented functionality serves the explorer (sec-
tion 4.3), and more specifically the exploration algorithm (section 4.3.1),
this topic will be covered first. Next, the instruction executors will be dis-
cussed (section 4.4).

We will continue the chapter with a description of the state store (sec-
tion 4.5) and the backtracking mechanism (section 4.6).

As noted before, the active (or vm) state is discussed in chapter 5. Most,
if not all, of the theory in this chapter will be understandable with just basic
knowledge of a typical object-oriented computing environment. Otherwise,
the reader might want to read section 5.1 for a quick introduction what
structures are to be expected in the vm state.

29 Implementation of the Model Checker

ISchedulingData Reschedule()

Backtrack(ISchedulingData)RescheduleReturnValue

SelectRunnableThread(ISchedulingData)int

CheckDeadlock(ISchedulingData)bool

IExplorer

void Run()

InteractiveExplorerCLI

defines console menu interaction, I/O and parsing

Explorer

CheckVisit()ISchedulingData

GetInstructionExecIInstructionExec

InteractiveExplorer

defines generic interaction functionality SetBreakPoint()

RemoveBreakPoint()

RemoveBreakPoint(int)

IsBreakPoint()

bool

bool

bool

bool

IBreakPointHandler

BreakPointHandler

. . .

Figure 4.5: Design of the explorers.

4.3 Explorer

As described previously, the explorer’s task is to drive the exploration pro-
cess, i.e. it runs the exploration algorithm, which involves executing instruc-
tions, storing and restoring of the state, and checking for deadlocks.

In a few moments we will be stepping through the description of the
exploration algorithm (section 4.3.1) and its rescheduling algorithm (sec-
tion 4.3.2), which together are the engine of the explorer. But first, we will
shortly discuss the class structure of the explorer. The structure was intro-
duced to facilitate easy implementation of multiple exploration “modes”.

Please refer to figure 4.5. At the top of the figure, we see the interface
IExplorer containing just a Run member function. As the name suggests a
call to this function will start the exploration process.

Just below that very simple type is a class named Explorer. Please ig-
nore the member functions for now, they will become clear while advancing
through this section. This class implements an automated exploration al-
gorithm, i.e. one that systematically explores all interleavings without any
heuristic guidance or user interaction.

Just below that we find InteractiveExplorer, an abstract class that fa-
cilitates user guided exploration. That is, at points where the automated
explorer would make its own decisions, this class’ implementation will ask

4.3 Explorer 30

the user how to continue. To make life easier for the user, a break point
handler was added so the user can set certain points where the application
asks for user input, while the rest of the process remains automated.

A concrete implementation of this class, with the CLI suffix, is a command-
line interface implementation of the interactive explorer. Communication
with the user is done via a terminal application. More concrete sub-classes
are not implemented, but one could think about implementing a gui-based
implementation.

This completes our introduction to the different types of explorers. For
the rest of this section, assume we are talking about the Explorer class, i.e.
the automated unguided explorer. Up next is a description of how it explores
the state space.

4.3.1 Exploration Algorithm

We will get to the point immediately. Consider the exploration algorithm
pseudo code in listing 4.1.

This is the main exploration algorithm without many details that we
will fill in later in this document. Let us now take a closer look.

The exploration algorithm is a do-while loop that runs until the state
space has been fully explored, or a deadlock was encountered. Each iteration
in the loop corresponds to either a step forward, or a sequence of steps
backward. Taking a step forward may involve a rescheduling and an execution
phase. Stepping back only involves rescheduling.

Although the rescheduler will be discussed fully in section 4.3.2, it is
important to know a bit about its use already, since it heavily influences
the exploration algorihm heavily. Indeed most of the code in the algorithm
is concerned with when to call the rescheduler, and dealing with the conse-
quences.

The rescheduler will do the following. First, it will store the current state
of the vm somewhere, and it checks if it has seen it before. If this is the case,
it will guide the search backward by restoring a previous state. Finally, the
rescheduler may select a different thread to run in the next iteration. The
rescheduler can thus seriously mess with the line of execution, especially
replace the current vm state with another one, and we need to take this into
account.

Back to the pseudo code. Lines 11–16 declare and initialize several (lo-
cal) variables. The vm variable is a singleton value1, which in our pseudo
code means exactly one instance exists which is always accessable. The vm
variable holds the current state of the virtual machine (cf. chapter 5).

The only two fields in vm we use in this procedure is current thread (of
class thread), which is a reference to the thread we currently selected to run,

1The singleton keyword was chosen because it is the name of the design pattern that
is usually applied to implement such a construct.

31 Implementation of the Model Checker

1 s t r u c tu r e r e s c h e d u l e r e t u r n v a l u e
2

3 var n e x t t h r e a d : t h r ead
4 var back t r a c k coun t : i n t ege r
5 var c o n t i n u e e x p l : boolean
6

7 end r e s c h e d u l e r e t u r n v a l u e
8

9 procedure e x p l o r e ()
10

11 s i ng l e t on vm : s t a t e
12

13 var do r e s c h e d u l e : boolean
14 var do exe cu t e : boolean
15 var s k i p n e x t r e s : boolean
16 var r e s r e t v a l : r e s c h e d u l e r e t u r n v a l u e
17

18 do
19 i f vm . c u r r e n t t h r e a d . i s r u n n a b l e () then
20 do exe cu t e ← t rue
21 do r e s c h e d u l e ← ¬ s k i p n e x t r e s ∧
22 ¬vm . c u r r e n t t h r e a d . c u r r e n t i n s t r u c t i o n . i s s a f e ()
23 e l s e
24 do exe cu t e ← f a l s e
25 do r e s c h e d u l e ← t rue
26 s k i p n e x t r e s ← t rue
27 i f vm . c u r r e n t t h r e a d . t r d s t a t e = runn ing then
28 vm . t h r e a d p o o l . t e rm i n a t e (vm . c u r r e n t t h r e a d)
29 f i
30 f i
31

32 i f do r e s c h e d u l e then
33 r e s r e t v a l ← r e s c h e d u l e ()
34 s k i p n e x t r e s ← s k i p n e x t r e s ∨
35 r e s r e t v a l . b a c k t r a c k coun t > 0
36 do exe cu t e ← do exe cu t e ∧
37 r e s r e t v a l . b a c k t r a c k coun t = 0 ∧
38 r e s r e t v a l . c o n t i n u e e x p l
39 f i
40

41 i f do exe cu t e then
42 s k i p n e x t r e s ← f a l s e
43 ex e cu t e ()
44 f i
45

46 i f do r e s c h e d u l e then
47 vm . c u r r e n t t h r e a d ← r e s r e t v a l . n e x t t h r e a d
48 f i
49 od
50 whi le r e s r e t v a l . c o n t i n u e e x p l
51

52 end e x p l o r e

Listing 4.1: Main Exploration Loop

4.3 Explorer 32

and thread pool which manages all threads. The thread class contains the
member function is runnable, and two fields. Function is runnable returns
true if and only if the thread has an instruction to execute (referenced by
its field current instruction) and its state (field trd state) is set to running.
The thread pool contains a member function terminate, which properly ter-
minates a thread. Its work includes setting its state to stopped, the rest is
irrelevant here.

The variable res retval is a tuple (or structure) contains three values that
will be returned from a call to reschedule. The definition of this type is given
in lines 1–7. The first field contains the thread to run in the next iteration.
The next contains the number of backward steps the rescheduler performed.
The third field is a flag indicating if we should continue exploration.

The other three variables, i.e. do reschedule, do execute and skip next res
are boolean flags that control the execution of the two phases. The former
two are self-explanatory, the latter is a one-shot flag that prevents the next
rescheduling phase from taking place. For the moment, please ignore all
occurrences of this variable in the pseudo code. We will discuss its use at
the end of this section.

The rest of the procedure (lines 18–48) is executed until the condition
at line 50 is violated, which is the case if we encountered a deadlock, or we
completed exploring the state space.

We start the iteration by checking if the currently selected thread is still
runnable. This is for example not the case if the thread has just completed
executing all its code (current instruction points nowhere), or if it is now
waiting to enter some critical section (its state is not running). If it is, we
give a green light for execution (do execute is set), and we check if we should
call the reschedule routine. We call this routine if the current instruction
(i.e. the instruction that will be executed this iteration) is unsafe. What this
means exactly is discussed later, for now please assume some instructions
are safe and others are not.

If the currently selected thread is not runnable, reset do execute so no
execution will take place. Also, we want to reschedule this iteration, so we
set the do reschedule flag. If the thread is not properly terminated yet (i.e.
its state was not set to stopped, do this by calling terminate.

Now consider lines 32–39. If the do reschedule flag is set, the function
reschedule is called. As discusses before, a call to this function can mess up
our execution order if it decides to restore an old state, or if it encounters a
deadlock. We reset do execute if any of those conditions are true, since the
currently selected thread is not valid any more.

Then there is still the matter of actually executing the instruction (lines 41–
44), if the do execute flag is set. We abstract the execution away for the
moment. The bottom line is it updates the vm state.

Finally, we set the current selected thread to the one the rescheduler
suggested (if we rescheduled). This will be picked up in the next iteration.

33 Implementation of the Model Checker

We perform this next iteration only if the rescheduler told us to continue
exploration.

This concludes the basic coverage of this part of the exploration algo-
rithm, but we need to address one more thing, and this thing involves the
skip next res variable we ignore until now.

Skipping the Rescheduler

The problem with the algorithm as described above is the following. If we
(intentionally) do not change the vm state between two consecutive calls
to reschedule, it concludes it has seen the state before, and will guide the
search backward. There are two cases where this is unwanted behavior, and
in those cases, we set the skip next res flag so the second reschedule call is
not executed.

The first case is when a state is restored by the rescheduler. It will have
chosen a runnable thread to resume our exploration. Suppose that thread
is currently pointing to an unsafe instruction. Because of this, reschedule
will be called before a part of the state is changed. Clearly, the state is
already in the state store, since it was just restored by the rescheduler. The
rescheduler will see this, and direct the search backward.

The other case is somewhat more tricky, and happens when a thread has
become no longer executable. It can be the case that a thread has executed
all its code (but is still marked as runnable), or it is now waiting for another
thread.

Suppose a thread is no longer runnable. We then set do reschedule so
another thread to run will be chosen by the rescheduler. We select another
thread, and return to the beginning of the iteration. Suppose this thread
starts with an unsafe instruction. We call reschedule again, before execute,
and the rescheduler will see the same state it saw one iteration ago, directing
the search back.

Setting the skip next res flag prevents both these cases, as do reschedule
will be false. Note that the thread selected after one of the above cases
will always be runnable, so including the flag in the condition on line 21 is
sufficient.

We hereby conclude our discussion of this part of the exploration algo-
rithm, and will describe the rescheduler in full in the next section.

4.3.2 Rescheduler

Let us now discuss the rescheduler we have already heard so much of in
section 4.3.1. Consider the pseudo code in listing 4.2.

The function definition on line 53 states the rescheduler will be returning
a reschedule return value structure, defined in listing 4.1 on page 31 in lines 1–
7. The semantics of the fields have already been discussed in section 4.3.1.

4.3 Explorer 34

53 f unct ion r e s c h e d u l e () : r e s c h e d u l e r e t u r n v a l u e
54

55 s i ng l e t on vm : s t a t e
56 s i ng l e t on bt : stack of (l i s t of t h r ead) × r da t a
57

58 var r unnab l e : l i s t of t h r ead
59 var r e s t o r e : r d a t a
60 var r e t v a l : r e s c h e d u l e r e t u r n v a l u e
61

62 r unnab l e ← ∅
63 r e s t o r e ← none
64 r e t v a l . n e x t t h r e a d ← none
65 r e t v a l . b a c k t r a c k coun t ← 0
66 r e t v a l . c o n t i n u e e x p l ← t rue
67

68 i f ¬seen (vm) then
69 r unnab l e ← vm . t h r e a d p o o l . r u n n a b l e t h r e a d s
70 r e s t o r e ← vm . g e t r e s t o r e d a t a
71 i f che ck dead l o ck () then
72 re tu rn (none , 0 , f a l s e)
73 f i
74 f i
75

76 whi le run . i s emp t y ∧ ¬bt . i s emp t y do
77 vm . r e s t o r e s t a t e (r e s t o r e)
78 (runnab l e , r e s t o r e) ← bt . pop ()
79 r e t v a l . b a c k t r a c k coun t ← r e t v a l . b a c k t r a c k coun t + 1
80 od
81

82 r e t v a l . c on t i nu e ← r e t v a l . c on t i nu e ∧ ¬ r unnab l e . i s emp t y
83

84 i f ¬ r unnab l e . i s emp t y then
85 r e t v a l . n e x t t h r e a d ← r u nna l e . dequeue ()
86 bt . push ((runnab l e , r e s t o r e))
87 f i
88

89 re tu rn r e t v a l
90

91 end r e s c h e d u l e

Listing 4.2: Rescheduler

35 Implementation of the Model Checker

As shortly discussed before, the rescheduler directs the search, which
begins with analysis of the current vm state. If the current vm state has
already been seen, we will guide the search back to avoid duplicate work,
and to short-citcuit cycles in the state space. If the state is new, we do let
the exploration continue forward. In either case we select a thread to run
next, and pass it back to the exploration algorithm.

The definition of the vm state needs some extension for this algortihm.
First of all the tandem get restore data and restore state. The first gets a
data structure to restore the current vm to the state it was in when the
previous call to get restore data was made, i.e. the data to undo what has
been done between two consecutive calls. The function restore state restores
the vm to a previous state, using that data.

Additionally, we extend the definition of thread pool, adding function
definitions all threads and runnable threads which return a list of all threads
and just the runnable threads respectively. Finally, we introduce the single-
ton bt, which is our backtrack stack. It contains tuples of runnable threads
and restore data.

In lines 58–66 three local variables are declared and initialized: runnable
will contain a list of (runnable) threads, restore will hold a piece of restore
data, and the latter is our return value.

The first thing to do is check if we have seen this state before (lines 68–
74). How exactly this is done will remain abstract for now. If the state is
found to be new (i.e. not seen before), we get all runnable threads in that
state and the data needed to restore the previous state. Then, we check for
deadlocks (line 71). If we find one, we will not continue the exploration.
The details of deadlock detection will be discussed in section 4.3.3.

The next step is backtracking, i.e. restoring a previous state if that
is necessary. The system will do this if there are no runnable threads,
i.e. if runnable is empty. To revert to a previous state, the algorithm calls
restore state (line 77) with the restore data it has gathered before. It then
pops a list of threads and restore data from the stack. This data was put
there before, as we shall see shortly. Of course, if the bt stack is empty, we
cannot continue doing this.

After the backtracking loop we hopefully have a list of runnable threads
in runnable, and some piece of restoration data in res. If runnable contains at
least one runnable thread we can continue the exploration process (line 82),
and we pick one thread from the list and store it in the return value structure.
Line 85 uses dequeue, which takes the first element, but we could also have
used another strategy. The resulting list (which may now be empty) is then
pushed on bt together with res for a future call to the rescheduler to find
(cf. line 78).

All work is done, we are ready to return three values to our caller. This
concludes our discussion of the rescheduler.

4.3 Explorer 36

92 f unct ion che ck dead l o ck () : boolean
93

94 s i ng l e t on vm : s t a t e
95 var p o s s i b l e : boolean
96

97 p o s s i b l e ← f a l s e
98 foreach t r d i n vm . t h r e a d p o o l . a l l t h r e a d s do
99 i f t r d . i s r u n n a b l e then

100 re tu rn f a l s e
101 e l s e
102 p o s s i b l e ← p o s s i b l e ∨ ¬ t r d . i s t e rm i n a t e d
103 f i
104 od
105

106 re tu rn p o s s i b l e
107

108 end che ck dead l o ck

Listing 4.3: Deadlock Detection

4.3.3 Deadlock Detection and Assertion Violations

At the moment mmc checks for deadlocks and assertion violations while
exploring. In this section we will describe how this is implemented.

As briefly noted before, a deadlock is a situation where there are no
deadlock

runnable processes in a system, but not all processes are terminated, i.e. at
least one process is waiting for an event that will never happen. This is an
undesirable situation, usually the cause of incorrect locking or synchroniza-
tion.

A process that is waiting for an event is in a state that in Mono is called
WaitSleepJoin. The name is a aggregation of a state in which the process is
waiting to acquire a lock, sleeping for a certain amount of time, or joining
with another thread. We cover the former and latter cases in section 5.5
and 5.6 respectively. Sleeping is currently not supported by mmc.

Consider the pseudo code found in listing 4.3. It defines a function
check deadlock that is called in the rescheduler at line 71. This is a very basic
check, that detects a deadlock only when the system is already deadlocked.
It iterates over all threads: if there is one runnable thread, the system
is not deadlocked (line 100), since that thread can be run. Else, it is only
deadlocked if not all threads have been properly terminated (line 102), which
means there is at least one waiting thread.

mmc is usually able to detects “deadlocks” earier, i.e. when the real
cause of the eventual deadlock happens. In this situation the system is not
yet deadlocked, but is already in a state where at least one process will be in
state WaitSleepJoin forever. This check is done when a thread is attempting
to acquire a lock, and when synchronizing threads. As noted above, this will
be covered in sections 5.5 and 5.6.

37 Implementation of the Model Checker

Next is the check for assertion violations. An assertion is a statement
assertion

that is entered explicitly inside the code by the developer to check a certain
property holds at that time. mmc checks these conditions like a normal run-
time would, but by the nature of mmc the condition is checked for every
possible situation, not just one.

One could consider assertions as a form of code annotation, i.e. the
adaption of the source code especially for the purpose of using mmc. How-
ever, assertions are a useful tool by themselves, so developers often use them
even if the code was never intended to be formally checked. The fact that
mmc can use them as well only makes them even more useful.

Assertions are checked in Mono by calling one of the static Assert meth-
ods defined in the Debug class, which in turn is defined in the System.Diagnostics
namespace. Calls to these methods are filtered out by name. The first ar-
gument will contain the (evaluted) condition to check, so we only see if this
is a true value. Otherwise, we report a violation.

4.4 Instruction Executors

The instruction executors (ies) are objects responsible for executing the
cil instruction. In figure 4.4 on page 28 we see the ies are created and
dispatched (started) by the explorer, and they query and update the vm
(active) state. In listing 4.1, the ies play a role in the is safe and execute
functions.

There are many ies: one for each type of cil instruction. Each ie is
in turn implemented in its own class. This approach closely resembles the
command design pattern discussed in e.g. [16].

Since there are many different instructions, some hierarchical ordering
is applied. Let us look at figure 4.6 for an (partial) overview of what this
looks like.

The lowest level of depicted classes (i.e. Call, CallVirt, LdC, and so on)
implement code to execute the instruction on an active state. One level
above that we find classes defining the functional groups of instruction ex-
ecutors, for example call instructions, load instructions, or (not depicted)
store, arithmetic and object-model instruction groups. A group class defines
common functionality used by its children, i.e. the executors. Finally, at

InstructionExec
the top we see the InstructionExec class. This class defines functionality
common to all instruction groups.

There are several advantages as well as disadvantages to the applied
pattern, most of which are described in the literature. We will motivate the
application of the pattern for this project.

The merit of the command pattern in the mmc is that code to execute
cil-instructions can be seen as first-class citizens.

First of all, this allows us to add more cil-instructions to the program

4.4 Instruction Executors 38

. . .

.

CallVirt

NewObj

LdArg

LdC

LdLoc

InstructionExec

CallInstructionExec LoadInstructionExec

Call

Figure 4.6: Instruction executor hierarchy.

without modifying existing code. All that needs to be done is define
Execute

a class with the same name as the instruction (in the correct name-space),
and overload the Execute method in that class. Reflection will automatically
find the class and use its code. Additionally, caching of executors is easily
done.

Finally, meta-data that is associated with the instructions can be added
to the executor classes, thereby eliminating the need for big look-up struc-
tures. An example of such meta-data is the list of exceptions an instruction
can throw, or instruction safety, as will be discussed in section 4.4.1.

The disadvantages of the chosen approach is somewhat larger code (e.g.
an operation as simple as a multiplication still needs a full class definition),
as well as some run-time overhead. Also, there is less room for “smart”
optimizations, e.g. skipping parts of the instruction interpretation that are
known to be unnecessary.

4.4.1 Safe and Unsafe Instructions

As described in the previous section, meta-data can be associated with each
instruction (executor). An important part of this meta-data is instruction
safeness. The concept of safe and unsafe instructions is used in the explo-
ration loop in listing 4.1, in the is safe function.

The rescheduler is only called if an instruction to be executed is unsafe.
Unsafe instructions are scheduling dependant, whereas safe instructions are
not. Scheduling dependant can in turn be interpreted as: the order in
which the threads were (and are going to be) executed is important for this
instruction.

39 Implementation of the Model Checker

t1 t1

t3 t3

t2 t2

Without por With por

Figure 4.7: Example State-Space with and without Partial Order Reduction.

Take for example a ldc instruction. This instruction is safe. It loads
some constant on the local evaluation stack. For other threads, it is not
visible if this instruction is executed or not. And in this case invisibility
means it is not relevant. So we do not need to carefully check all possible
orders of execution around this instruction.

Now, take another example, the ldsfld, which loads the value of some
static field on the local evaluation stack. This is an unsafe instruction.
Static fields are shared among all threads, so some other thread can write a
different value to the static field. In this case, it is important to know what
the exact order of execution is, so we run the scheduler, and systematically
check all possible behaviors.

The merging of safe instructions into one transaction can be considered
a mild form of partial order reduction (por) [17]. Spin employs a similar
technique [25], called statement merging. jpf also uses a form of partial
order reduction [40].

In mmc statement merging is not feature, but rather a necessity. In
Promela (Spin’s input language) one statement can do relatively much
work, whereas one cil instruction always does very little. As a result, even
a simple program contains many instructions (cf. section 2.4). Without
instruction merging the number of states would soon become unmanageable.
To illustrate this, consider figure 4.7.

An example state space is shown for a system consisting of three pro-
cesses t1, t2 and t3, each performing two safe instructions and one unsafe, in
that order. One can visualize this state space as a cube, where each of the
dimentions represent a process. In this example, an instruction executed
by t1 can be illustrated as taking a step to the right, t2 by taking a step
upward, and t3 by stepping into the depth. Note that we have not drawn
all lines of the 4× 4× 4 grid.

On the left-hand side a possible exploration path is shown if no partial
order reduction is used, i.e. if each of the thee instructions each thread must
execute calls the rescheduler. Adding one begin state, the number of state in

4.5 State Storage 40

a path equals 3×3+1 = 10, and the total number of state in the state-space
is 43 = 64 (cf. the volume of the cube).

On the right-hand side, the three instructions are merged into one trans-
action. Each exploration path visits exactly 4 states; one for the full execu-
tion of a thread plus one common begin state. The total number of states
equals 8 (cf. the number of corners of the cube).

Suppose the general case where t threads each execute n−1 safe instruc-
tions and one unsafe. Without por this state-space will contain (n + 1)t

states, whereas the same system with por contains 2t (n = 1). Even for
a relatively small n this is a very significant reduction in the size of the
state-space.

4.5 State Storage

Remember the pseudo code of the rescheduler (listing 4.2 on page 34). On
line 68 it calls the seen function. This function is used to check if we have
seen a vm state some time in the past. Behind the scenes this involves rather
a lot of work.

Essentially, seen simply stores all states it ever needed to check. It has
not seen a state before if it is not stored in its memory. However, a big
problem is: the states can get really big, and typically, there are many
states. Comparing the vm states in their original form is not efficient.

We will combat this problem by employing some compression technique,
called recursive indexing. This technique is discussed in section 4.5.1, but
first we will shortly illustrate the bigger picture.

Consider the left-hand side of figure 4.8, i.e. the “base” scenario. The
right-hand side shows an extension we will discuss later in this document.

The data flow of state storage is linear: the vm state is transformed into
a collapsed state by a module called the state collapser. This state collapser
employs the algorithm we shall describe shortly. The collapsed state is a
compressed version of the original state, suitable for storage. Specifically, it
is easier and less expensive to compute the hash value of a collapsed state
and to compare it to others. As a last component, we have the state storage.
This can be any structure capable of efficiently storing data. In our case, it
is an encapsulated hash table.

4.5.1 Recursive Indexing

As noted above, we aim to reduce the size and complexity of states, in order
to make them more efficiently storable and comparable. We will do this by
applying a compression technique. There are several to choose from. We
chose to use a technique called recursive indexing or collapsing, which is also
used by the jpf [30] and Spin [26].

41 Implementation of the Model Checker

Collapsed State

State Store

vm state

State Collapser

Backtrack Stack

base extension

State Restorer
Previous

Collapsed State

∆−1 Values

Figure 4.8: State Storage.

Holzmann et al compared several techniques, including several static
compression algorithms (run-length encoding, byte masking, Huffman com-
pression), a technique called recursive indexing and two-phase compres-
sion [26]. Of the investigated alternatives, recursive indexing was said to
give good reductions in state size at relatively modest run-time costs. Visser
et al decided to adapt the recursive indexing technique as well [40].

The principle of state collapsing is as follows. There is a data structure
called a pool that stores objects. Each stored object (O) is assigned a unique
indexing number by the pool (P). That is, the indexing number of two object
is the same if and only if the two objects are the same. Once an object is
stored, it is never removed, and once assigned, the index number remains
the same.

Assume we have a part of the state that consists of a number of objects
in a fixed order: L1 = [O1, O2, . . . On]. We store these n object in pool P,
and replace all object for their respective index numbers in P, giving us the
list of numbers C1 = [P(O1),P(O2), . . . ,P(On)]. We call this translation
collapsing. There is no loss of identity, since every object has a unique
number.

Now assume we want to compare a second list L2, to our previous list
L1. We could compare L1 to L2 by checking the objects at every index for
equality. An alternative approach is to collapse L2 to C2 in the same way as
we did for L1, using the same pool P, and check if C1 and C2 are equal. This
will be the case if and only if L1 and L2 are equal. Since both collapsed lists
consist solely of numbers, comparison is very straightforward and efficient.

An additional and important advantage of collapsing shows when we
want to store lists L1 and L2. The pool stores each object only once, so if

4.5 State Storage 42

vm

Fixed

Variable

Stored Elements

Containers / Lists

Figure 4.9: Worst case when collapsing the state.

both lists share objects, only one copy is actually stored. Both lists refer to
the same object in the pool. This means there is less memory required to
remember both lists than when keeping the two original copies.

Of course, we only safe memory when two lists share the same objects.
But luckily, this is very common when looking at vm states. Two consecutive
states in an exploration path usually differ in only a few parts, so most data
is shared.

So far, collapsing looks a lot like traditional hashing, and indeed the
hashing is probably being used inside the pool data structure. But, we will
take the collapse approach only level further. One that will account for the
name recursive indexing.

The pool stores objects, so why not store lists of numbers in it as well.
This will make the result of a collapse usable in a next collapse. By applying
this principle multiple times, we can eventually compress an entire tree into
one number. We do not actually do this in mmc, as explained in 4.5.2.

Of course, this all comes at a (computational) price. It is hard to give
exact numbers, since we have not yet discussed the precise structure of the
vm state. However, the vm state is structured hierarchically. That is, it is
a tree-like structure. This tree has a finite and fixed depth. We will call
the elements at the bottom leafs, and the others nodes. We have chosen
our collapse algorithm in such a way that each leaf can be collapsed in a
constant time.

Suppose the worst case where one leaf is put in one node. This node is
again put in another node, and so on. This structure will yield the highest
number of nodes for a given amount of leafs. The situation is depicted in
figure 4.9.

After collapsing the bottom row, we have paid a run-time cost propor-
tional to the number of leafs. Now, we collapse all the nodes, which will
become lists of numbers. Clearly, each list can be collapsed in a constant
amount of time, as it contains a fixed number of elements, i.e. exactly one.
Since the depth of the tree is fixed, the number of nodes is proportional to
the number of leafs.

43 Implementation of the Model Checker

39 31 49

314

Object Pool

idx object

. . .

List Pool

idx list

314

31

39, 31, 49

. . .

597 54

415· · ·

Figure 4.10: The principle of collapsing

Therefore, introducing a level of indirection by storing lists will not make
change the time complexity of the collapse algorithm, but it will probably
multiply its real run-time by a contant factor.

We will conclude our explanation of collapsing with a small example.
Since we have not yet revealed all the details of the vm state, we will use
countries and continents as data.

Example 4 (Countries and Continents). Someone is keeping a database
containing information about countries. Since there are quite a few coun-
tries, they are organized by continent. Consider the figure 4.10. Suppose we
want to check if two of those databases are identical. So we apply recursive
indexing.

To our left, we see a part of the tree structure organizing the data. The
first three objects belong to the same parent container, named “Europe”.
The last two are members of the group “South America”. On the right-hand
side we see a small part of two pools: one containing the countries, and one
containing lists.

First, we add all countries to the pool. We get a unique index for each
of the countries. For continent Europe, this will result in a list [39, 31, 49].
This list is then added to the list pool, and gets a unique number 314. The
group South America is collapsed in a similar way.

Once all continents have been collapsed, the list can be stored in the
list pool, which will give us a number that represents the entire database.
Comparing two databases can now be done by simply checking the equality
of two numbers.

One important aspect is still undiscussed. Who decides when an object
is an element to be stored in the pool, or when to disassemble it further and
store its parts instead? In the previous example,we put the countries in the

4.5 State Storage 44

pool as a whole, but assembly the continents out of their sub-parts (i.e. the
countries). Why not simply put the continents in the pool and not bother
with the individual countries? Indeed, why not put the entire database in
the pool and be done with it?

Or, in a different direction, why not disassemble the data of the countries
further, store the sub-parts, and assemble the countries again as a list of
collapsed sub-parts, which in turn can be collapsed into a single number?

The answer to these questions is hard to give. Storing too small parts
in the pool will greatly increase the percentage of overhead. As an extreme
case, storing individual numbers in the pool will gain us nothing. We just
substitute one number for the other. On the other side, storing too big
parts will kill the advantage we can take of common data. Again, to take an
extreme case, suppose we store the entire state (or database) in the pool. If
we change just a little part, and then collapse it, we need to store the entire
thing again. In this case our compression ratio drops to zero.

Where to draw the line and consider something an elemental object to be
put in the pool as a whole is heavily dependant on the data we are working
on. In the mmc we chose to use a rather fine-grained collapsing, i.e. we keep
the elemental objects relatively small.

4.5.2 Doing it Better

Although the collapse method is quite good at compressing the state there
is still an aspect that is not optimal. Every time we call the seen function,
we need to run the collapser on the entire current active state. That is, all
objects in the state need to be looked up in the pool, lists are constructed,
and probably looked up in some pool as well.

This is mostly redundant work. The seen function is typically called
quite often, and the as a result, two consecutive state S1 and S2 do not
differ that much.

A rather straightforward solution presented itself: keep a copy of the
previous collapsed state S1 (a vector containing numbers), and only collapse
the parts of S2 that differ from S1, i.e. those that have actually changed.
The rest of the data can simply be copied from the old vector. The right-
hand side of figure 4.8 shows this extension to the data flow, along with
several other optimizations we will discuss shortly.

Although conceptually simple, this involves keeping track of all changes
in the active state as code is being executed. However, most of the code is
concentrated in the container classes, and we can use this feature for another
nice optimization which we present in section 4.6. So we added code to keep
track of changed values, using a conveniently encapsulated bitmask.

After collapsing a state, we reset the vm state to be clean, preparing it
for the next transaction.

45 Implementation of the Model Checker

t0

∅

s0

s1

s3

s2(s4)
t0

t1

∅

t1

∅

→ ∅

→ s0

→ s1

run res b
ack

track
stack

Figure 4.11: Example state space and backtrack data.

4.6 Backtracking

Again, take another look at the rescheduler in listing 4.2, especially lines 76–
80. This is the part of the rescheduling algorithm that restores a previous
state in order to continue exploration there. The relevant pseudo code el-
ements here are restore state on line 77 and getting the restore data in the
first place on line 70.

We will give an example of a backtrack stack to give an intuitive idea of
how the backtrack stack is constructed. Next, we will discuss what exactly
this restore data is.

Consider figure 4.11 for an example state space and its corresponding
backtrack stack. Note that the stack grows down here, so the newest element
is at the bottom. The restore data that is pushed on the stack is used to
restore the previous state, i.e. the state at one level of depth less. So, if we
reach state s2, we store the data needed to return to state s1.

So what exactly is this data to restore the previous state (e.g. s1)?
We cannot really do the same as Spin, that is, put (the reverse of) the
executed operations on the stack. cil instructions are too fine-grained, and
a transaction usually consists of many of these instructions.

An approach we have chosen not to implement is to keep a stack of all
instruction executors that we execute in one transaction. An executor is
pushed on the stack upon execution, and popped from it when unwinding
the transaction. This requires that we implement the reverse of the Execute
for each instruction executor.

For several instructions the reverse cannot be executed without storing
additional data. For example, we cannot re-create the original two operands
of a multiply instruction (unless those operands are both prime numbers).
Storing of this additional data is possible due to our system of instruction
executors, although it requires one to be careful when combining this with
the caching of instruction executors.

Instead of storing the code that is executed, we have chosen to store
snapshots of the state on the stack. As we shall shorly see this allows

4.6 Backtracking 46

us to re-use functionality that we already implemented to facilitate state
compression.

A naive alternative approach would be to store a copy of s1 on the
stack. This would require making a full copy of the state. When calling
restore state, we can simply assign res (which comes fresh of the stack) to
the state variable. This approach requires us to make a full copy of the state.
Also, we have to keep the entire state in memory. This is bad as it seems,
since this is only the backtrack stack which is expected to be much smaller
than the state storage, however it is far from optimal.

A better approach was suggested by Willem Visser et al, which is to
store the collapsed state on the backtrack stack rather than the full state,
and provide a way to uncollapse the state [40]. If we reach a state we need
to collapse the state anyway, this would involve no extra work. Additionally,
the collapsed state is already stored in the state store, and never modified,
so we do not even have to make a copy, we can just keep a reference.

However, one problem remains. One that shows when we are actually
using the data, i.e. restoring a collapsed state. If we uncollapse, we have to
copy (or clone) the values out of the pool into the active state. So, we end
up doing the same amount of work as we did when storing a full copy, we
have just postponed the work. The only thing we have gained is that the
backtrack stack requires less memory.

We use a technique that exploits work we have done before to optimize
the collapse method. It is introduced in the following section.

4.6.1 Building the Delta

In section 4.5.2, we introduced a way to keep track of changes in the active
state, to optimize the collapsing of states. We can exploit this also for the
purpose of backtracking. Consider figure 4.8 on page 41 again, this time
paying attention to the right-hand side especially.

As seen, we extract an object called ∆−1 values from the collapsed state,
and store this on the backtrack stack. This “reverse delta” is a partially
collapsed state. It contains the old values of the fields that have been over-
written. From now on, we will simply call this object the delta, but be

delta
aware that it contains the old values.

When backtracking to rebuild the full state, these parts still need to be
copied from the pool, but at least we do not need to copy all of the state.
The problem remains how to construct the delta in an efficient way, but this
problem will prove not to be very hard.

We have implemented a utility number vector (an array that can grow)
that remembers its old values, by wrapping two lists of numbers (new and
old) into one. This way, we can relatively easy get the delta when we con-
struct the new collapsed state.

For the sake of completeness, (partial) pseudo code for the vector is given

47 Implementation of the Model Checker

new

old3 5214

write back get reverse delta

new

old

new

old3 5298 = = =

∆−1

copy of Cp

Cn

loc 1 ← 8
loc 2 ← 9

8 9 new

old3 5214

4 1

Figure 4.12: Creation of the new collapsed state and delta.

in listing 4.4, although this data structure will probably not be too hard to
grasp with the aid of the example given in figure 4.12. We have omitted the
(trivial) definitions of get value, set value and get length. The pseudo code
should be self-explanatory.

The following is happening in this figure. Function seen has just been
called so we need to collapse the current state. To speed this up, we use
a copy of the previously collapsed state Cp (cf. section 4.5.2). Analysis of
the active state shows two altered parts, which map on locations 1 and 2 of
the vector. These are written in the copy of Cp, but instead of overwriting
the old values (in old), we keep them in a separate list (new). Once we are
done updating, we can create two vectors: the new collapsed state Cn and
the delta ∆−1. The former is constructed by overwriting the old values with
the new ones. The latter is created by assembling all old values at locations
that have a new value assigned.

The altered parts of the vm state are found by keeping track of changes
dirty

as we execute code. All values that are written are compared to their old
value, and if these two differ the part is marked as dirty. This technique is
used throughout the state.

For this book-keeping process there is a trade-off between overhead and
precision. For example, for a list we could keep a record of all elements
that are altered, which requires us to allocate a set of dirty elements, and
keep it up to date. Or, as a cheap but less precise alternative, we could just
remember whether any element has been altered or not. This requires just
one boolean flag, and once one alteration has been done, we no longer need
to keep track of additional changes.

4.6 Backtracking 48

1 s t r u c tu r e i n t v e c t o r
2 var new va l u e s : l i s t of i n t ege r
3 var o l d v a l u e s : l i s t of i n t ege r
4 end i n t v e c t o r
5

6 f unct ion g e t w r i t e b a c k (v e c t : i n t v e c t o r) : i n t v e c t o r
7 var r e t v a l : i n t v e c t o r
8 foreach i i n 0 . . . g e t l e n g t h (v e c t) do
9 r e t v a l . o l d v a l u e s = g e t v a l u e (vect , i)

10 od
11 re tu rn r e t v a l
12 end wr i t e b a c k
13

14 f unct ion g e t r e v e r s e d e l t a (v e c t : i n t v e c t o r) : i n t v e c t o r
15 var r e t v a l : i n t v e c t o r
16 foreach i i n 0 . . . g e t l e n g t h (v e c t) do
17 i f vex t . new va lue = none then
18 r e t v a l . o l d v a l u e s [i] = unchanged va lue
19 e l s e
20 r e t v a l . o l d v a l u e s [i] = vec t . o l d v a l u e s [i]
21 od
22 re tu rn r e t v a l
23 end wr i t e b a c k

Listing 4.4: Memento Integer Vector

We have chosen to be precise up to the point where elements are stored
as a whole when collapsing the state. That is, for those elements we only
know if they are dirty or not. For all parts, we know specifically which
elements or sub-part is dirty.

There is one little problem that until now remains unsolved: combin-
ing the optimized collapsing technique and backtracking. In the case of a
straight sequence of explored states, the Cp is trivially available in the col-
lapser: we just keep a copy of a newly collapsed state before returning it to
the explorer. The next time the collapser is called, we use this copy. But,
how do we get the Cp if we backtrack to a state?

This problem is easily solved by pushing the collapsed state Cn on the
stack in line 86, together with run and res. This requires almost no ex-
tra memory, since the state is already stored in the state store. When we
backtrack, we overwrite Cp in the state collapser using a copy of the col-
lapsed state we just popped off the stack. This should happen right after
backtracking, i.e. just after line 80. Note that we only have to copy the
vector, no elements from the pool. Also, we do not use the collapsed state
for anything other than resetting the state collapser.

This concludes our discussion and explanation of four parts of the mmc.
In the next chapter, we will talk about the last one: the active state.

5
Implementation of the Active State

Looking back at figure 4.4 on page 28, we see the active state in the left box,
i.e. it plays a role in the virtual machine function of the mmc. Indeed, the
active state holds the current state of that virtual machine.

In this document we sometimes refer to the active state as the vm state
or, if no confusion with collapsed states can arise, simply “state”. The active
state is rather big, and consists of several subcomponents, which will all be
discussed in depth in this chapter.

The state is mostly a big collection of data. We will introduce the reader
to several algorithms later, but its raison d’être is to hold the state of the
vm. It is being queried and updated by the instruction executors, and it
can be stored in a state storage.

Although at a design level the active state is not too hard to grasp, it is
its size and complexity that gives us a hard time managing the structure at
run-time. This is where the mentioned algorithms come into play.

The active state can functionally be divided into several parts, which we
shall describe in the next section. After that, we will discuss the three most
important parts of the active state one by one.

A
llo

c
a
t
io

n
s

Heap Classes

L
o
a
d
e
d

c
la

s
s
e
s

C
a
ll

s
t
a
c
k
s

C1

C2

F1

F2

F3

F4

Thread pool

T1 T2 T3

F3

D1

O1

A1

...
...

Figure 5.1: Active state of the virtual machine.

49

5.1 The Aggregation of Parts 50

5.1 The Aggregation of Parts

Let us consider figure 5.1 for an example of a somewhat randomly assembled
active state. Three component (separated by dotted lines) can be identified,
i.e. the heap, classes and thread pool. We will describe each of these com-
ponents briefly. A little while later we shall go into more detail about the
design of each individual component.

The heap holds dynamic allocations. There are three kinds of allo-
heap

cations: objects, arrays and delegates. These allocations are created at
run-time by means of the newobj or newarr cil instructions. The number
of allocations in the heap can in theory grow infinitely. We shall go into
more detail in section 5.3.

So called static fields are stored in the classes component. Static fields
classes

are data members of a type that are not associated with an allocated object,
but instead with the type itself. As a result exactly one exists in a run-time
environment. The class storage, or static area, is described in section 5.4.

The thread pool contains the concurrent processes that have been
thread pool

spawned, and a stack of methods called by that thread. The thread pool is
explained in section 5.6.

Before going into more detail about the above components, let us first
introduce the data element, a data structure used throughout the vm.

5.2 Data Elements

The most common data structure used in the vm is the data element. All
integer and floating point numbers, references, pointers, and strings are
data elements. Take a look at figure 5.2 to see a hierarchical overview of
these data elements. Not all types have been depicted, notably the run-time
handles (pointers to a method or type).

First we look at the top interface IDataElement. It contains declarations
for common comparison and conversion methods, as well as a property called
WrapperName. This property specifies which class in the class library to use
for boxing (wrapping) the data element. For example, an plain old int value
is wrapped as a System.Int32 object.

IDataElement has several specializations: INumericElement, IReference-
Type and IManagedPointer. The first interface declares several arithmetic
and conversion (e.g. integer to float) methods. The second is a common
interface to all references to heap objects, and declares a property Location,
which is a location in the heap (cf. section 5.3). The latter interface, IMan-
agedPointer, is the interface to all managed pointers in mmc. These pointers
all point to some data element, which is accessable through the interface.

We shall not describe the rest of the figure in more detail, as the names
of the classes are self-explanatory. The exact details of what fields and

51 Implementation of the Active State

bool

bool

string ToString()

ToBool()

Equals(IDataElement)

IDataElement

string WrapperName

IReferenceType

uint Location ObjectReference

. . .

ISignedNumericElement

ISignedNumericElement Neg()

IIntegerElement

logical operations

shift operations

Int4

int Value

Float8

double Value

Float4

float Value

UnsignedInt8

ulong Value

UnsignedInt4

uint Value

IManagedPointer

int

IMethodState Method

Index

MethodMemberPointer

INumericElement

arithmetic operations

conversion operations

Int8

long Value

IComparable

int CompareTo(object)

LocalVariablePointer

ArgumentPointer

IDataElement Value

ConstantString

. . .

. . .

. . .

Figure 5.2: Hierarchy of elemental data in the virtual machine.

operation are defined is only of interest to those who plan on working on
mmc. For those readers we refer to the code documentation.

The reason for introducing the concept of a data element is mostly a
practical one. It wraps value types (cf. section 2.3.1) used by our vm,
thereby introducing typing information. Also it allows us to define additional
functionality to otherwise primitive types. Data elements are implemented
as structs rather than classes to reduce overhead.

Without this typing information, we would be forced to deduce the type
of element from the context every time that element is used in the execution
of an instruction. For example, when executing an add instruction, we would
need to check if we are dealing with two integers (long or short, signed or
unsigned), or floating point numbers (again, long or short). Now, we can
just assume both operands are of the INumericElement type, and call the

5.3 Dynamic Allocations: the Heap 52

addition method defined for those classes.
Additionally, we defined two common containers of data elements: the

data element list and stack. Both implementations are straight-forward, but
using them in favor of one of Mono collection classes, or even plain arrays,
has the advantage that we can easily add functionality to them. Aside from
adjusted comparison and hashing methods, we keep track of changes to
the contents of the containers, and support reference counting, a technique
explained as a part of the following section.

5.3 Dynamic Allocations: the Heap

The heap is the part of the active state where dynamic allocations, i.e. data
structures created at run-time, are stored. It is used often, since many
modern (object-oriented) programming languages use dynamic allocations
(objects) for everything more complex than a simple number, and even those
are sometimes modelled as an object.

We shall first describe the design of the heap (section 5.3.1), and then
describe two algorithms that play an important role in checking equivalence
of two heaps (i.e. garbage collection in section 5.3.2 and allocation placement
in section 5.3.3).

5.3.1 Design of the Heap

Consider figure 5.3, it depicts the design of the heap. It may look a bit
confusing at first sight, but much of that is caused by abstracting each
concrete class using an interface. This interface is commonly named the
same as the concrete implementation, with an I prefix.

Let us take a very quick tour through the essentially hierarchical struc-
ture of the heap in the following paragraph.

The top element is an implementation of the IDynamicArea interface,
which owns a list of allocations in a type implementing the IAllocationList.
An implementation of this list interface in turn contains zero or more IAllo-
cation objects.

Derived from the IAllocation interface are the IObject, IArray and IDele-
gate types1, representing the three types of allocations that live on the heap.
Implementations of the IObject and of the IArray types contain a list of data
elements in the form of an IDataElementList type.

This summarizes the design of the heap. The last mentioned type, the
IDataElementList, may contain an element that references an allocation on
the heap. This reference is a normal value type however, and does not make
our heap itself a cyclic structure.

1The actual class names in the application are AllocatedObject, AllocatedArray and
AllocatedDelegate, to prevent mix-up with the same classes in the System namespace.

53 Implementation of the Active State

IDataElementList Elements

Lengthint

IArray

IDelegate

ObjectReference

MethodPointer

Object

Method

IAllocation

IAllocation

IDirtyList

int

int

this[int]

this[ObjectReference]

Count

Length

DirtyLocations

IAllocationList

Allocation

. . .

IObject

ValueFieldOffset

NonStaticFieldCount

ClearFields()void

int

int

IDataElementList Fields . . .

Object

void Dispose()

IMustDispose

. . .

Array

IDataElementList

IDataElement

int

IDataElementList StorageCopy()

Length

this[int]

. . .

Delegate

ICleanable

AllocationTypeint

ReferenceCount

Marked

Pinned

int

bool

bool

ITypeDefinition

IAllocation

Type

ICleanable

IsDirty()

Clean()void

bool

void

IStorageVisitable

Accept(IStorageVisitor)

IContained

AllocationList

. . .

IEnumerable

IEnumerator GetEnumerator()

DynamicArea

. . .

IActiveState Container

IContained

ObjectReference

ObjectReference

ObjectReference AllocateDelegate(int, ObjectReference, MethodPointer)

DisposeAllocation(ObjectReference)

int

void

IncRefCount(ObjectReference)

DecRefCount(ObjectReference)

void

void

SetPinnedAllocation(ObjectReference, bool)void

RunGarbageCollection()int

IDynamicArea

AllocateObject(int, ITypeDefinition)

DeterminePlacement(IInstruction)

AllocateArray(int, ITypeDefinition, int)

Figure 5.3: Design of the heap.

5.3 Dynamic Allocations: the Heap 54

The fact we chose to implement the “heap” as a list may seem confusing
because there is also a tree-like data structure called a heap. This has
nothing to do with our heap, which emulates a pool of memory used to
store allocations. It is sometimes referred to as the free store, mainly by
c++ developers.

We will now describe the separate parts of the design one by one in a
somewhat slower and more detailed fashion.

The heap type is called IDynamicArea (cf. the jpf), which contains
all needed functionality to manage allocations, i.e. determine the place of
new allocations, create them, keep track of reference counts, pin and unpin
(explained in section 5.3.2) allocations, run garbage collection algorithms
and finally, dispose allocations.

The allocations themselves are kept in an IAllocationList type, which is
essentially a container class that holds IAllocation types, and nothing more.

The IAllocation type is a top-level type that has four derived types: three
to represent the different kinds of allocation as described above, and one
abstract type containing common functionality and reasonable defaults.

All allocations contain run-time type information, a constant defining the
type of allocation, a reference count, and flags for being marked or pinned
down. For explanation of the reference count and flags, see section 5.3.2.

The Object class contains the data of a dynamic allocation created with
the newobj instruction. In essence, an object is a typed ordered list of data
elements (fields) stored in a data element list. All meta-data of the fields is
stored within the type definition.

Note that possibly not all fields of an object are stored on the heap,
only the non-static ones. Static fields are not associated with an object, but
rather with a type. We will talk about static data in section 5.4. However,
even for the fields that are not stored on the heap, space is reserved. This
is done to keep the direct mapping of field number and storage in the data
element list.

An Array allocation is a fixed-size list of elements of the same type. Like
objects, the elements are stored in a data element list, but unlike objects the
length of this list is not known a priori2 so this data needs to be provided at
allocation time. Other than that, arrays behave quite similarly to objects.

The last allocation type, the Delegate supports type-safe function point-
ers. It can be stored on the heap like an object, and “called” later. The
only data contained in a delegate is a reference to the method to call, and
reference to the object to call this method on.

2Many languages that target the cli (e.g. c#) support dynamic arrays, so the length
is only known at run-time, unlike objects where the number of fields is intrinsic to the
type.

55 Implementation of the Active State

5.3.2 Garbage Collection

Looking at the rescheduling algorithm in listing 4.2 on page 34, we see that
at line 68 the algorithm needs to check if it has seen some state before. We
have already talked quite a lot about this function. Without repeating all
that has already been said, seen involves checking if two states and, as a
part of those states, two heaps are equal.

Comparing two heaps H1 and H2 can be done by checking if a location
in both heaps contains the same allocation. Assume the largest occupied
location in both heaps is n (if this number is different for the two heaps they
are trivially different), ∀i ∈ {0 . . . n}H1(i) = H2(i).

There is a problem here, and that is the rather unforgiving = sign. Sup-
pose at some location i, H1 is empty, but H2 contains an unused allocation.
For example, an allocation that has been used as a temporary value in a
calculation, that is no longer needed or visible anywhere. This allocation is
called garbage.

Clearly, an empty place and one occupied by garbage are not equal
according to the equality sign. For the behavior of the client application
however, those places are indeed equal. A way to make the heap comparison
better at checking equivalences, we should remove garbage allocations before
comparing two heaps. This process is called garbage collection.

Note that the concept of collapsing the state, introduced in section 4.5.1
on page 40, is orthogonal to this theory. Storing a state in an efficient way
does not solve this problem. Indeed, one of the properties of collapsing is
that states do not loose their identity, so if two heaps are considered to be
different in their original form, the collapsed version will also be different.

Two separate garbage collection algorithms are implemented in mmc, i.e.
reference counting and mark and sweep. We shall explain these two algo-
rithms here. Even before explaining any of them, note that using reference
counting is superfluous if mark and sweep is applied, and is only available
as a (possibly) faster but less rigorous technique.

Regardless of the garbage collection algorithm, allocations can be pinned.
Pinned allocations are never deleted from the heap. Pinning is done by
simply setting a flag in the allocation. Currently, the only example of objects
that are pinned are the Thread objects: the heap object representation of
the running processes.

Reference Counting

An allocation is garbage if no reference to it exists anywhere in the active
state. The reference counting (rc) mechanism is (as the name suggests)
based on the idea of keeping track of how many references point to an
allocation. If this number reaches zero, the allocation can be removed.

Of course, we do not want to adjust each line of code that touches object

5.3 Dynamic Allocations: the Heap 56

references. Instead, we constructed a reference counting variation of the data
element container and the call stack classes. These adapted classes behave
exactly the same as the ones that do not count the references. A factory
class for the containers and call stack was added to assure an instance of
the correct type is created.

The rc-enabled data element list keeps track of adding and removal
of object references. Upon adding an object reference, the count is incre-
mented, upon deletion it is decremented. To actually update the count, a
call is made to the heap. The data element stack works similarly: if an
object reference is pushed on the stack, increment the reference count of the
object pointed to, and if it is popped, decrement that count.

The pseudo code in listing 5.1 illustrates how a setter in an rc-enabled
data element list is implemented. A little note about the code: the type
of each of the locations in a data element list is fixed by the compiler of
the client application. So if we are assigning an object reference to some
location, the old value at that location, if it exists, is also an object reference.
Also note that the type of the referenced allocation is irrelevant; we are only
interested in the location and its reference count.

1 procedure s e t v a l u e (l s t : l i s t of data e l ement ,
2 l o c : i n teger , v a l : d a t a e l emen t)
3

4 s i ng l e t on s t a t e : s t a t e
5

6 i f v a l i s o b j e c t r e f e r e n c e then
7 s t a t e . heap . i n c r e f c o u n t (v a l)
8 i f l s t [l o c] 6= none then
9 s t a t e . heap . d e c r e f c o u n t (l s t [l o c])

10 f i
11 f i
12 l s t [l o c] ← v a l
13

14 end s e t v a l u e

Listing 5.1: Reference counting in a data element list.

The sole purpose of the rc code in the call stack is to make sure a
method frame that is popped off the stack is properly disposed. That is,
the data element stack (evaluation) and two lists (locals and arguments) of
that frame properly decrease the count of all objects pointed to in those
containers.

The heap structure is responsible for updating the reference counts. All
allocations with reference count zero can be removed. Ideally this should be
done immediately when the reference count reaches zero. An alternative is
doing this in one big sweep just before the heap needs to be canonical. This
is not quite as ideal.

When performing one sweep to delete allocations we increase its time-
complexity. Normally, updating the count requires a constant time to com-

57 Implementation of the Active State

plete, i.e. its complexity is in O(1), but doing this sweep to delete unused
allocations makes the time complexity proportional to the number of ele-
ments in the heap n, i.e. it is now in O(n). What is worse, if we delete
an allocation this way, other reference counts may be updated. This re-
quires that we do the sweep again, a worst case time complexity in O(n2),
as illustrated in example 5.

134 2

1110

1

0 0 0

10 0 0

0

12

110 0

12

110

3

0
S
w

eep
itera

tio
n
s

Figure 5.4: rc with a sweep phase is a bad idea.

Example 5 (Removing a linked list using rc). Please consider the situation
depicted in the top of figure 5.4. It illustrates a linked list containing four
objects. The objects appear in the list in the opposite order in which they
appear in the heap, i.e. the object with the highest heap offset is at the
head of the list.

We delete the only reference to the head of the list, and are now sweeping
the heap using reference counts. The process is shown below the dotted line.

First, we find object 4 with reference count zero after iterating through
the entire heap, so we delete it. This updates the reference count of object
3, which becomes zero. We again sweep the entire heap, eventually deleting
object 3. This process continues until eventually all four objects are deleted.

So we sweep the heap, which has a time cost proportional to n, and
we do this n times, so the time complexity in this worst case scenario is in
O(n2). We would rather not do work in quadric time that can be done in
constant time.

There is one big drawback of reference counting as a way to dispose of
unused allocations. That is, it is inapt to delete cyclic structures. Consider
the situation illustrated in figure 5.5.

The situation at the left-hand side shows a thread pointing to a linked
list of two elements. We assume no other references to any of the objects
O1 and O2 exist. The number of counted references is displayed below the
objects.

5.3 Dynamic Allocations: the Heap 58

2

O1 O2

thread

1

O1 O2

thread

1 1

Figure 5.5: rc and cyclic structures do not mix.

Now suppose the thread returns from the method that had the only
reference to the head of the linked list. This situation is depicted on the
right-hand side. Since we assumed there are no other references, both objects
in the list are now inaccessable, and considered garbage. However, they will
not be disposed; none of the reference counts equals zero because the objects
are still pointing to eachother.

We cannot fix this problem with reference counting, but we can try
another way to dispose of our garbage. In the next section we will introduce
a technique that is capable of removing such cyclic structures.

Concluding this section, we note that there is one big advantage of refer-
ence counting, other than its nice time complexity, which is indeed a strong
reason to use it in certain cases. This will become apparent in section 5.3.3.

Mark and Sweep

An alternative garbage collection algorithm that has been implemented in
the mmc is mark and sweep. This algorithm does not require constant
bookkeeping, but instead all the work is done when canonicalising the heap.
We shall describe the algorithm using pseudo code in listing 5.2.

In lines 5–11 four local variables are declared and initialized. ref and alloc
are just temporary storage. The other two, todo and marked are essential.
The former is the all important stack to perform the dfs-like algorithm
we will discuss shortly. The latter is a mapping of data elements (more
specifically, references to allocations) to a boolean. By default, all references
are mapped to false.

The algorithm consists of two phases: the first phase marks all allocations
that need to be preserved (lines 13–37), the second deletes (sweeps) all
allocations that have not been marked (lines 39–43).

The marking phase can be further divided into two sub-phases: mark-
ing the roots (lines 13–24) to bootstrap the marking process, and recursive
marking (lines 26–37).

The roots are allocations that are immediately visible to running pro-
cesses, i.e.: those referenced in the stack frames of running threads (as local
variable, arguments or on the evaluation stack), as well as all static fields.
Additionally, pinned locations are considered as roots. The roots are not

59 Implementation of the Active State

1 procedure mark and sweep ()
2

3 s i ng l e t on s t a t e : s t a t e
4

5 var todo : stack of da ta e l emen t
6 var marked : map da ta e l emen t to boolean de f au l t f a l s e
7 var r e f : d a t a e l emen t
8 var a l l o c : a l l o c a t i o n
9

10 todo ← ∅
11 marked ← ∅
12

13 foreach t r d i n s t a t e . t h r e a d s do
14 foreach meth i n t r d . c a l l s t a c k do
15 p u s h r e f s (meth . l o c a l s , todo)
16 p u s h r e f s (meth . arguments , todo)
17 p u s h r e f s (meth . e v a l s t a c k , todo)
18 od
19 od
20 foreach c l s i n s t a t e . c l a s s e s do
21 p u s h r e f s (c l s . s t a t i c f i e l d s , todo)
22 od
23 p u s h r e f s (s t a t e . heap . p i n n e d l o c a t i o n s)
24

25

26 whi le ¬todo . i s emp t y do
27 r e f ← todo . pop ()
28 i f ¬marked [r e f] then
29 marked [r e f] ← t rue
30 a l l o c ← s t a t e . heap . a l l o c a t i o n s [r e f]
31 switch a l l o c . t ype
32 ca se ” o b j e c t ” : p u s h r e f s (a l l o c . f i e l d s , todo)
33 ca se ” a r r a y ” : p u s h r e f s (a l l o c . e l ements , todo)
34 ca se ” d e l e g a t e ” : todo . push (a l l o c . o b j e c t)
35 end switch
36 f i
37 od
38

39 foreach r e f i n s t a t e . heap . l o c a t i o n r e f e r e n c e s do
40 i f ¬marked [r e f] then
41 s t a t e . heap . d e l e t e (r e f)
42 f i
43 od
44

45 end mark and sweep
46

47 procedure p u s h r e f s (l s t : l i s t of data e l ement ,
48 todo : stack of da ta e l emen t)
49

50 foreach elem i n l s t do
51 i f elem i s o b j e c t r e f e r e n c e then
52 todo . push (elem)
53 f i
54 od
55

56 end mark r e f s

Listing 5.2: Mark and Sweep

5.3 Dynamic Allocations: the Heap 60

actually marked, but instead pushed on todo, giving the next sub-phase a
place to start.

The code in lines 26–37 processes the todo stack, and marks them as
reachable. Accessibility is a transitive property, so if an allocated pointed
to by a reference on the stack (line 30) has references to other allocations,
those are pushed on todo, and will be processed as well in a later iteration.

As a final sweeping step, lines 39–43 delete all unmarked locations.

The design of this algorithm is depicted in figure 5.6. The RecusiveMarker
class implements the two phases of the marking procedure. It uses the visitor
pattern instead of the switch block found in the pseudo code.

The interface to client classes is just one method which runs both phases
consecutively. The recursive marker is a utility class that hides the details
of the actual marking process, and is called from the RunGarbageCollection
method in the DynamicArea class. This method also initiates the sweep
phase, implemented in the heap class, by calling the SweepUnmarked method.

DynamicArea

. . .

int SweepUnmarked()

RecursiveMarker

int MarkRecusive()
int MarkRoots()

ActiveState

. . .

IActiveState

. . .

IRecursiveMarker

int MarkReachable()

IDynamicArea

int RunGarbageCollection()

. . .

BaseStorageVisitor

void

void

void

. . .

VisitAllocatedObject(. . .)

VisitAlloctedDelegate(. . .)

VisitAllocatedArray(. . .)

Figure 5.6: Design of the mark and sweep mechanism.

The time complexity of mark and sweep is somewhat higher than that
of reference counting. In the first step we mark all roots. The cost of this
step is linear in the size of the number of roots r, O(r). Next, we need
to iterate through the heap, recursively marking reachable objects. Since
we never visit an allocation more than once and each visit takes a constant
amount of time, this is linear in the number of allocations n, O(n). In the
final sweep, we visit each allocation again, deleting unmarked allocations (in
O(1)). We also clear the marks on reachable objects, but this is done in the
same sweep, and clearly its time-complexity constant and even neglectable.

61 Implementation of the Active State

This gives us total run-time complexity of O(r + n).
In the case of real software, r is likely to be much smaller than n. Typ-

ically r is more or less constant, so not even a constant fraction of n. If
a heap contains many objects, most of them are likely to be member of a
collection or array. It is not very likely that all n objects are referenced by
locals, arguments, and so on. We could therefore argue the time-complexity
of mark and sweep will be close to linear in n.

5.3.3 Allocation Placement

As mentioned before, the mmc needs to be able to check two heaps for
equivalence. Simply comparing the two allocation lists location by location
sometimes gives too pessimistic results. In this section we will discuss a
technique to make the result more optimistic which is to be used in con-
junction garbage collection. At the end of this section we will discuss an
alternative approach used by the model checking framework Bogor.

As explained in section 5.3, the heap contains dynamically allocated
data. This data is ordered in a fixed way, i.e. allocations have a unique
offset in the allocation list. One could see this offset as a pointer where
the allocation is put in memory. For a normal execution of the system the
offset is irrelevant. References in the cli differ from pointers in c in that no
arithmetic is allowed on the value of the reference (cf. references in Java).

However, in a system like the mmc where we need to compare two states,
the offset suddenly becomes relevant, because that is the order in which two
heaps are compared. We shall illustrate this using the following example.

1 2

A B first run

AB second run

1 2

put A on 1

S0

S1

put B on 2

t1

t2

t2

t1

put B on 1

put A on 2

S2

restore

Heap:

Figure 5.7: Different states after different execution order.

Example 6 (Two threads, two allocations). Consider the state space de-
picted in figure 5.7. The system starts in state S0, where the explorer can
run two threads t1 and t2. Assume t1 (t2) wants to allocate an object A (B).
First, the explorer selects t1 to run. It allocates its object A on location 1.
Next, t2 is selected to run, and it allocates its object B on location 2. We
are now in state S1.

After that the execution of the system continues, until at some point all
further explorations have been completed, and the system is restored to S1,
and later to S0. The explorer now chooses a different order of execution, i.e.

5.3 Dynamic Allocations: the Heap 62

thread t2 is the first to go. It allocates its allocation B on some free place
in the heap, which will be location 1! Next, t1 is allowed to run, and it puts
A on location 2, resulting in state S2.

States S1 and S2 are different. But what exactly is different? The
internal value of the reference thread t1 (t2) has to its allocation A (B). But
this value should be irrelevant, so the two states should not be different.

We can combat this effect by avoiding the creation of symmetric heaps,
as explained in [30]. The same technique is applied in the jpf.

The idea is as follows: the first run (or exploration) of the program
defines the place an allocation will be stored in the heap. This place is
stored in a mapping, and does not change during the rest of the exploration.
If, after backtracking and choosing a different path, the same allocations (in
order) are put in the previously defined places.

The prime problem here is to specify a minimal but sufficiently discrim-
inating set of parameters to correctly distinguish between allocations. We
call these parameters the key. First of all, we include the instruction ob-
ject, including a reference to the assembly and an offset (or “line-number”3)
in that assembly. In the pseudo code this information is contained in the
instruction type.

This is not sufficient to distinguish allocations that are executed more
than once, e.g. it is in the body of a method that is (recursively) called
multiple times, or it is part of a loop. So we add an incrementing counter
to the key. That leave the problem of multiple threads executing the same
instruction.

We have to discriminate between threads in the key. Without it, i.e.
when just including the instruction and a counter, the locations would be
determined in a first-come first-serve fashion. This will result in different
states if a different order of thread execution is chosen, such as illustrated
in example 6. So, we need the thread id as a final parameter.

Consider the pseudo code in listing 5.3. The key discussed above is de-
fined in lines 1–7. We define plmap as a persistent mapping of placement key
to a number (line 12). This value is not part of the state, i.e. it is not stored
and restored during the exploration. In line 16–18 we initialize the key tp
identify this allocation. The counter field is initially set to zero.

We now try to find a suitable place for this allocation to put (lines 20–
30), incrementing the counter as long as no suitable place is found. We first
check plmap for an existing mapping of our current key, assigning the result
to place (line 21). If such a mapping does not exist (line 22), we will create
one. This is done by querying the heap object for a place that is still unused

3Note that we are talking about cil instructions here, not the source code of some high-
level programming language, in which it is often possible to write multiple allocations on
the same line.

63 Implementation of the Active State

1 s t r u c tu r e p l acement key
2

3 var t h r e a d i d : i n t ege r
4 var l i n e : i n s t r u c t i o n
5 var coun t e r : i n t ege r
6

7 end p l acement key
8

9 f unct ion d e t e rm i n e p l a c e () : i n t ege r
10

11 s i ng l e t on vm : s t a t e
12 s i ng l e t on plmap : p l a cement key to i n t ege r de f au l t none
13 var key : p l a cement key
14 var p l a c e : i n t ege r
15

16 key . coun t e r ← 0
17 key . t h r e a d i d ← vm . c u r r e n t t h r e a d . i d
18 key . l i n e r ← vm . c u r r e n t t h r e a d . c u r r e n t i n s t r u c t i o n
19

20 do
21 p l a c e ← plmap [key]
22 i f p l a c e = none then
23 p l a c e ← vm . heap . g e t n ew s l o t ()
24 plmap [key] ← p l a c e
25 e l s e i f ¬vm . heap . s l o t i s f r e e (p l a c e) then
26 p l a c e ← none
27 key . coun t e r ← key . coun t e r + 1
28 f i
29 od
30 whi le p l a c e = none
31

32 re tu rn p l a c e
33

34 end d e t e rm i n e p l a c e

Listing 5.3: Allocation Placement

5.3 Dynamic Allocations: the Heap 64

until now using get new slot. This place has never been used before, it is
not a place that was once used and was cleaned by the garbage collector.

If we do find a number in the mapping, we check if that location is free
(line 25) by using slot is free. If it is, we are done, and return place. Else, we
increment counter for the next iteration, and reset place so the loop condition
holds and we can try again.

Note that the algorithm requires garbage collection to run efficiently. In
mmc, by default, the mark and sweep collector is only run before storing the
state because of its non-trivial time complexity. However, reference counting
goes hand in hand with this algorithm, as unused allocations are freed as
soon as they are no longer needed, allowing us to re-use the slot immediately.

Let us now revisit the previous example, only this time, we are armed
with the new placement algorithm. After that, we will discuss some related
work in this field.

Example 7 (Two threads, two allocations, revisited). Again, the system
starts in state S0, and t1 is selected to run. It allocates A on the heap,
still on location 1, but by doing so, it creates the following entry in plmap:
(1, 1, IA) ↔ 1. Next, t2 allocates B on location 2, adding (2, 1, IB) ↔ 2 to
the mapping. The resulting state is S1, nothing different so far.

The system continues execution, and at some time returns to state S0.
This time, t2 is to run first. Being thread 2 it executes IB for the first time,
and it finds the allocation key is already mapped to some location, namely
location 2. So, B is put on location 2. Next, t1 is selected, which will find
a mapping as well, and put A on location 1. The result is state S1.

Related Work

Although the algorithm devised by the jpf team works nicely and is actu-
jpf

ally implemented as described above, we would like to make a small remark
about its explanation in [30]. In section 2.4 (Exploiting Symmetries) the
authors refer to an “occurence number”, which is the number of times an
instruction is executed before. This number is to be incremented after exe-
cuting an instruction, and decremented upon backtracking.

This is not entirely correct, since the mapping is not stored or restored
together with the state. There are several drawback of the approach of stor-
ing the occurence number along with the state. Perhaps most importantly,
it increases the size of the state, introducing more states that are found to
be different while in fact they are equivalent. This is contra-productive.

Secondly, it does not properly handle any of situations described (in c#
code) in listing 5.4. First of all, please look at the Loop, which indefinitely
allocates an object, overwriting a previous allocation. Each time line 4 is
executed, the occurence count is incremented. This will result in a new key,
and a new location to put the object every time. The situation where a
method is called mulitiple times (cf. method Caller) fails in a similar way.

65 Implementation of the Active State

1 vo id Loop () {
2 ob ject o ;
3 wh i l e (t rue)
4 o = new object () ;
5 }
6 vo id C a l l e r () {
7 wh i l e (t rue)
8 Ca l l e e () ;
9 }

10 vo id Ca l l e e () {
11 ob ject o = new object () ;
12 }
13 vo id Recu r s i v e () {
14 ob ject o = new object () ;
15 Recu s i v e () ;
16 }

Listing 5.4: Infinite Allocations

Provided the garbage collector is run before an allocation placement is
determined, or allocations are deleted once their reference count reaches
zero, both situations are correctly handled by our algorithm, which is also
implemented in jpf.

Notice that both approaches fail to handle infinite recursion, such as
given the Recursive method. This is because the object allocated at line 14
can only be garbage collected after returning from the method, which will
not happen. However, the infitely growing heap is not the only problem
here. This code will also result in an infinitely growing call stack, so it will
crash anyway.

A different approach to heap symmetry reduction was explored by the
Bogor

Bogor [5] team. Instead of always keeping the heap in a canonical format,
as both the jpf and mmc do, they introduce an algorithm to compare states
that does not depend explicitly on the chosen locations in the heap.

Specifically, the Bogor team introduced a technique to compare two
threads or objects called the k-bounded thread symmetry (kbots) algo-
rithm [36]. The algorithm defines a partial order on threads and objects.
By sorting the elements of two states using the same criterion, they can be
easily compared on by one. Because we are discussing the heap in this sec-
tion, we will concentrate on the comparison fo two objects. The algorithm
uses this functionality to compare two threads.

The heap can be seen as a directed graph, where the nodes coincide with
the allocations, and the directed edges are formed by one allocation pointing
to another via a reference. This graph defines the shape of the heap. kbots
is a dfs-based algorithm working on this shape graph, in a sense similar to
our mark and sweep garbage collector which we explained in section 5.3.2.

Put very succinctly, the kbots algorithm works as follows. Suppose we

5.4 Static Data: Classes 66

want to compare Oa and Ob, living in heaps Ha and Hb respectively (note
thatHa andHb may be the same heap). We start by comparing the type and
primitive values (value types) of Oa and Ob. If this data is equal, recursive
calls are made to compare the successors of Oa and Ob, one by one. This
results in the shape graphs of Ha and Hb being explored simultaneously in
a depth-first fashion. To make sure cyclic structures are handled correctly,
we mark allocations we visit at the start of each iteration, and return if we
visited any of the two nodes before.

The algorithm can be bounded to not recurse more than k times. If a
difference is still not found at a depth k, the two allocations are said to be
equal. Note that kbots always terminates, even without a bound. If we
specify k = ∞, kbots defines a total order.

We did not implement kbots in mmc. We feel the algorithm might be
useful to detect thread symmetry, which we do not use at all at the moment.
Although thread symmetry reduction is very helpful when checking systems
consisting of many identical processes (e.g. the dining philosophers problem
used as an example in [36]), it is questionable this is a common scenario in
real software.

This concludes our discussion of alternative approaches to the allocation
placement problem.

5.4 Static Data: Classes

In this section, we will describe how we implemented static data, especially
the loading and initialization of that data, in the mmc. Static data is data
that is not associated with a specific object on the heap, but instead with
a type. In object oriented environments, these types are represented by
classes. For each instance of a program, there exists exactly one class for
each type.

From a distance, a class looks a lot like a normal object. That is, it has
a type, fields and code. There is one important difference however: since
the data is not associated with an object instance, it can be used without
a reference. As an immediate consequence, the static data is by definition
shared between threads.

This little fact makes class loading and initialization a whole lot more
complicated than simple object allocation. In case of a dynamic allocation, it
is always clear which thread is responsible for the allocation (making space)
and initialization (running the constructor), namely the same thread that
executes the newobj instruction. With classes this is different. We shall
discuss this topic next (section 5.4.1). After that, we will discuss shortly
how the classes are stored.

67 Implementation of the Active State

1 c l a s s S t a t i c I n i t T e s t {
2

3 s t a t i c i n t f s t = snd ;
4 s t a t i c i n t snd = 2 ;
5

6 pub l i c s t a t i c vo id Main (s t r i n g [] a r g s) {
7

8 System . Conso l e . Wr i t eL i n e (” f s t ={0} , snd={1}” , f s t , snd) ;
9 }

10 }

Listing 5.5: Class Loading example.

5.4.1 Class Loading and Initialization

As multiple threads can read or write the data at the same time, access to
the data should be properly guarded. This is the task of the programmer
of the tested application, and the ves provides support for it in the form
of monitor classes. We do not implicitly provide any locking mechanism
whatsoever. To the contrary, it is our task to spot errors and report them,
so we surely do not want to prevent them by introducing mechanisms the
normal virtual machine does not have.

There is one important exception to this: the initialization of the class,
which is implicitly done before the first access to a static variable. The
code to do this is contained in a special method called the class constructor
(cctor). It exists if at least one static member should be initially set to a
value other that zero or null.

Typically, a class is loaded upon first access, i.e. a load (ldsfld) or store
(stsfld) instruction. After loading, the same thread is responsible for running
the class constructor to set the correct initial values. It is not too hard to see
a different thread accessing the same static fields while the class constructor
is still being executed can easily yield incorrect results4.

Suppose we implement a naive locking mechanism that states all accesses
to the data of a class is blocked while some thread is still executing the cctor.
Unfortunately, this introduces a deadlock in certain cases. One of these cases
is listed in listing 5.5. Note this is a simplified example that could easily be
fixed, but it illustrates the point.

When executing line 8, the data for class StaticInitTest is loaded. This
class does have a cctor, and the main thread will be the one responsible for
executing it. In the class constructor, the initial value of fst is evaluated,
which requires the value of snd. Since the class containing the value of snd is

4In fact, this was one of the first bugs found in a small example case: one thread sets
a static value to 1 in the class constructor, while the other reads, increments and writes
back the same value. There is an interleaving of threads where the resulting static variable
will be one instead of the expected 2.

5.4 Static Data: Classes 68

not fully initialized yet, we call its class constructor. This cctor is currently
locked, since some thread is already executing it (i.e. the same main thread).
By the locking mechanism we introduced, the main thread is now forced to
wait for itself, which results in a deadlock.

So this approach will not do. Now what if we relax our lock a little, and
do not block a thread if it is that thread that is already executing the cctor.
Clearly, this is also incorrect, as it will result in the cctor being recursively
called ad infinitum.

A last option is to simply allow the thread that is executing the cctor to
access all static data. If this data is already initialized (by itself) the thread
is in luch. If it is not, it will have to use the uninitialized data. This is
not a perfect situation, but from a stability point of view it is better than a
deadlock or a crash (from infinite recursion).

The ecma standard actually specifies we should use this last option.
There is probably a good reason why the folks at Microsoft chose to do
it like that. We would have preferred a severe crash, preferably with an
error message what went wrong. The code in listing 5.5 thus prints fst=0,
snd=2.

Pseudo code for the class loading algorithm used in the mmc is given in
listing 5.6. The loading procedure starts by checking if a class definition has
already been loaded into the class storage (lines 14–20). If not, a new class
is constructed, with all its fields set to nil. The class is now loaded, but
unless the class does not have a class constructor, it is not yet initialized.

The initialization is done in lines 22–37. We check if there is already a
thread initializing the class. If this is not the case, the current thread (me)
will do this job, and the class constructor is pushed on the call stack of me.

If there is already a thread initializing the class, the current thread pa-
tiently waits (line 33) and is suspended (line 34) for the time being. Unless
that would result in a deadlocked situation. Such a situation will arise if
we wait for ourselves (checked on line 28) or a thread that is waiting for us
(checked in lines 29–31). In this case, the thread is not suspended, and is
free to use any field in the class.

Note that after executing the class constructor, the initializing thread
will have to awaken all threads that were waiting for it to be initialized.

5.4.2 Class Storage

As said before classes can be referenced without a reference. All they have
to identify themselves is their name. The way we store resembles the heap
in some sense that we also use a placement mapping, and a linear list to
actually store the data. The class store is depicted in figure 5.8.

The first of these structures is a hash table that maps a class name to
a unique location. Entries in this mapping are, just like the ones in the
mapping used in the heap allocation placement algorithm, never removed.

69 Implementation of the Active State

1 procedure l o a d c l a s s (type : type , t h rd : t h r ead)
2

3 s i ng l e t on vm : s t a t e
4

5 var me : th r ead
6 var c l a s s s t o r e : map t ype to c l a s s de f au l t none
7 var c l s : c l a s s
8 var l o c k e r : t h r ead
9 var wa i t s a f e : boolean

10

11 c l a s s s t o r e ← vm . c l a s s s t o r e
12 me ← vm . c u r r e n t t h r e a d
13

14 c l s ← c l a s s s t o r e [t ype]
15 i f c l s = none then
16 c l s ← new c l a s s
17 c l s . f i e l d s . c l e a r ()
18 c l s . i n i t i a l i z e d ← ¬t ype . h a s c c t o r
19 c l a s s s t o r e [t ype] = c l s
20 f i
21

22 i f ¬ c l s . i n i t i a l i z e d then
23 l o c k e r ← c l s . l o c k i n g t h r e a d
24 i f l o c k e r = none then
25 c l s . l o c k i n g t h r e a d = me
26 me . c a l l s t a c k . push (type . c c t o r)
27 e l s e
28 wa i t s a f e ← l o c k e r 6= me
29 foreach wa i t i n g f o r me i n me . wa i t i n g do
30 wa i t s a f e ← wa i t s a f e ∧ l o c k e r ¬= wa i t i n g f o r me
31 od
32 i f wa i t s a f e then
33 c l s . w a i t i n g . append (me) ;
34 me . suspend () ;
35 f i
36 f i
37 f i
38

39 end l o a d c l a s s

Listing 5.6: Class Loading and Initialization

5.5 Locking 70

AllocatedClass

ITypeDefinition

IDataElementList

Type
Fields
State
Initializer
WaitingThreads

int

int

IIntSet

1

0

Name

System.String

System.Threading.Thread

0

Offset

1
...

...

Figure 5.8: Overview of the the class store.

The first run determines the place a class will get in the class store: if no
place has already been assigned, a free slot at the end of the list is returned.
Else the old assignment is used.

The actual classes are stored in a linear fashion, e.g. in a vector. For each
class, we store its fields, both static and non-static ones (again, to keep the
one-on-one mapping of the field offset and its place in our data structure),
locking information (see section 5.5), and the data needed for class loading
(section 5.4.1): whether it is initialized, the thread initializing it, and the
threads that are waiting for the class to be fully initialized.

5.5 Locking

In this section we will discuss the locking mechanism the mmc implements.
The locking mechanism is implemented inside the Mono run-time environ-
ment. It is not cil code we can simply simulate. Therefore, we implemented
this functionality in our virtual machine as well.

The following description deals with locks, which are data structures
associated with both heap and static elements. Of course, there is only
one implementation that is shared by both the dynamic allocations and the
classes.

Locking is used in multi-threaded environments to get exclusive access
a protected section of code (called the crtical section). The process is as
follows. First, the thread that wishes to access to the critical section acquires
a lock l. This makes it the owner of l. While the lock is being held by its
owner, no other threads can acquire it. Threads that attempt to do so
are suspended and placed in a list called the wait queue until l becomes
available. Suspended threads do not execute code, but instead rest dormant

71 Implementation of the Active State

in the background.
When the owner finishes executing the code in the critical section, and

no longer needs the lock l, it first send a pulse to one or more suspended
threads in the wait queue. This pulse is a heads-up signal that places the
thread(s) in a another list called the ready queue. Finally, the owner gives
up l by releasing it. Upon releasing, ownership is immediately transferred
to the first thread in the ready queue.

Note that while we talked about one critical section, there can indeed
be multiple blocks of code that are protected by the same lock. While one
thread is executing code in one of these block, no other thread can enter
any of the protected blocks.

The cli states that the virtual machine should implement a locking
mechanism, so programmers are relieved of writing their own locking im-
plementation. This locking mechanism is used via calls to the Monitor class
in the System.Threading namespace. Usually, these calls are generated by
the compiler. For example, in c# the programmer only has to write a lock
statement followed by the block code that is the critical section. In Java a
similar keyword exists, called synchronized.

Although the cli and the compilers make the locking process easier, the
concept of locking has proven to be prone to human error. mmc employs
checks to help the developer debug these cases.

In the vm state, each object and class has an associated lock. Consider
the lock structure (lines 1–8) pseudo code in listing 5.7. This lock is owned
by at most one thread, owner. The owner own the lock multiple times, which
is stored in count. Furthermore, each allocation has an associated wait and
ready queue.

The process of lock acquisition is given in function acquire lock. It is a
quite straith-forward translation of the above description into pseudo code.
However, notice line 26. Here, we call a procedure that checks if we have
introduced deadlock situation by suspending our currently running thread.

Let the graph W = (V,E) be the graph where the nodes in N coincide
with the threads in the thread pool, and let (ta, tb) be an element of E if
and only if thread ta is waiting for tb. We can now check for deadlocks by
checking for cycles in graph W.

The implementation is described in procedure check deadlock from. It
steps through the graph, starting at the newly waiting thread, which is the
only argument to the procedure. It keeps track of the nodes (or threads)
it has seen in the seen bit vector (line 42). If it encounters a node twice
(checked at line 39), a deadlock is found and a warning message is issued to
the user.

Finally, the pseudo code of pulse and release lock is given in listing 5.8.
Accompanied by the informal description both methods in the beginning of
this section the code should be self-explanaroty.

In the next section we will discuss the thread pool, the last of the data

5.5 Locking 72

1 s t r u c tu r e l o c k
2

3 var owner : t h r ead
4 var count : i n t ege r
5 var wa i t queue : l i s t of t h r ead
6 var r eady queue : l i s t of t h r ead
7

8 end l o c k
9

10 f unct ion a c q u i r e l o c k (o : o b j e c t) : boolean
11

12 s i ng l e t on vm : s t a t e
13 var me : th r ead
14

15 me ← vm . c u r r e n t t h r e a d
16 i f o . l o c k . owner = me then
17 o . l o c k . count ← o . l o c k . count + 1
18 e l s e
19 i f o . l o c k . owner = none then
20 o . l o c k . owner ← me
21 o . l o c k . count ← 1
22 e l s e
23 o . l o c k . wa i t queue . append (me)
24 me . w a i t i n g f o r ← o . l o c k . owner
25 me . suspend ()
26 che ck dead l o ck f r om (me)
27 f i
28 f i
29 re tu rn o . l o c k . owner = me
30

31 end a c q u i r e l o c k
32

33 procedure che ck dead l o ck f r om (wa i t i n g t h r e a d : t h r ead)
34

35 s i ng l e t on vm : s t a t e
36 var seen : map t h r ead to boolean de f au l t f a l s e
37

38 whi le wa i t i n g t h r e a d 6= none do
39 i f seen [w a i t i n g t h r e a d] then
40 e r r o r ”we i n t r o du c ed a dead l ock¬”
41 f i
42 seen [w a i t i n g t h r e a d] ← t rue
43 wa i t i n g t h r e a d ← wa i t i n g t h r e a d . w a i t i n g f o r
44 od
45

46 end che ch dead l o ck

Listing 5.7: Locking 1/2: Acquire and Deadlock Checking

73 Implementation of the Active State

47 procedure pu l s e (o : o b j e c t)
48

49 s i ng l e t on vm : s t a t e
50 var me : th r ead
51 me ← vm . c u r r e n t t h r e a d
52 i f o . l o c k . owner 6= me
53 e r r o r ” cannot pu l s e , not owner”
54 e l s e
55 i f o . l o c k . wa i t queue 6= ∅ then
56 o . l o c k . r eady queue . enqueue (
57 o . l o c k . wa i t queue . dequeue ())
58 f i
59 f i
60

61 end pu l s e
62

63 procedure r e l e a s e l o c k (o : o b j e c t)
64

65 s i ng l e t on vm : s t a t e
66 var me : th r ead
67

68 me ← vm . c u r r e n t t h r e a d
69 i f o . l o c k . owner 6= me
70 e r r o r ” cannot r e l e a s e , not owner”
71 e l s e
72 o . l o c k . count ← o . l o c k . count − 1
73 i f o . l o c k . count = 0 then
74 i f o . l o c k . r eady queue 6= ∅ then
75 o . l o c k . count ← 1
76 o . l o c k . owner ← o . l o c k . r eady queue . dequeue ()
77 o . l o c k . owner . w a i t i n g f o r ← none
78 o . l o c k . owner . awaken ()
79 e l s e
80 o . l o c k . owner ← none
81 f i
82 f i
83 f i
84

85 end r e l e a s e l o c k

Listing 5.8: Locking 2/2: Releasing and Pulsing

5.6 Thread Pool 74

structures used in our virtual machine.

5.6 Thread Pool

The design of the thread pool is given in figure 5.9. The design reflects the
hierarchical structure of the thread pool: a higher layer generally contains
some meta-data and a container with zero or more lower-level elements.

Specifically, a thread pool contains a list of threads, which have a stack
of method states. All the layers have an abstracting interface type.

Aside form being a container for individual threads, the thread pool is
responsible for creating and terminating threads, and joining two threads.
The latter is directly related to terminating a thread, and is therefore im-
plemented in the same class.

The process of joining two threads t1 and t2 means the execution of
joining

the first thread is blocked until the latter thread is terminated. This may
be done if one thread can only continue if the work of another thread has
finished.

A nasty situation that may arise when joining threads is that a number
of blocking threads is waiting for another blocking thread to terminate. For
example, t1 is waiting for t2 to finish, which is waiting for t1 to terminate.
The two threads will never continue, and if there are no other runnable
threads the system is deadlocked.

We can check for this situation by analysis on the wait graph W we
introduced in section 5.5. As a reminder, the nodes of the graph coincide
with the threads, and there is an edge from thread ta to tb if and only if ta
is waiting for tb.

mmc checks for potential deadlocks when joining two threads using sim-
ple cycle detection in W. The pseudo code for this algorithm is given in
listing 5.7 on page 72.

75 Implementation of the Active State

ICleanable

IsDirty()

Clean()void

bool

SparseThreadList

. . .

ICallStack

. . .

. . .

IMethodState

. . .

CallStack

IContained

IActiveState Containervoid

IStorageVisitable

. . .

ISparseThreadList

IThreadState

int

this[int]

IThreadPool

ISparseThreadList Threads

CurrentThreadId

CurrentThread

RunnableThreads

RunnableThreadCount

DirtyThreads

int

int

IThreadState

Queue

IDirtyList

int

TerminateThreads(int)

JoinThreads(int, int)void

void

int

DirtyFrames

ThreadObject

CurrentMethod

CallStack

IsRunnable

IsAlive

WaitingFor

State

ObjectReference

int

int

IThreadState

bool

bool

ICallStack

IMethodState

IDirtyList

. . .

ThreadState

IContained

Accept(IStorageVisitor)

NewThread(IMethodState, ObjectReference)

FindOwningThread(IDataElement))

Add(IThreadState)

ThreadPool

Figure 5.9: Design of the thread pool

6
Testing and Benchmarking

In this chapter, we will present experimental measurements of mmc being
run on several examples written in c#. To give an impression of the per-
formance of a similar tool, we translated these examples into Java, and run
these on jpf. We made sure not to introduce more complexity in the trans-
lation of c# to Java. The two languages are very similar, so usually the
translation is trivial.

In the rest of this chapter, we will first describe the test setting (sec-
tion 6.1). Then, we will present some test results, and discuss what lessons
can be learned from them (section 6.2).

6.1 Test Setting

The mmc and jpf tests performed for this chapter were run on a single cpu
personal computer running Linux on an amd Thunderbird 700 cpu with
768mb of ram. We are running Mono and mcs version 1.1.13.6, which is
the latest development version at the time of writing. For jpf we use the
Sun Java Runtime standard edition, version 1.5.0 07-b03.

Of course, the measurements given in this chapter are to be interpreted
relatively. The exact numbers individually do not carry much meaning.

For the automation of the tests, we have used the m4 macro processor.
This software is avaiable on most Unices, or can be obtained at [31]. We
will not discuss m4 here, but refer the reader to the same website for a full
documentation.

Listing 6.1 contain an m4 macro, taken straith from the m4 documenta-
tion [31], that allows us to evaluate a body of text multiple times. We will
use it to print multiple copies of the same text, substituting an incrementing
number for a placeholder. The result m4 prints out is translated as usual
by mcs.

76

77 Testing and Benchmarking

1 d e f i n e (‘ f o r l o op ’ ,
2 ‘ pushde f (‘ $1 ’ , ‘ $2 ’) f o r l o o p (‘ $1 ’ , ‘ $2 ’ , ‘ $3 ’ , ‘ $4 ’)
3 popdef (‘ $1 ’) ’)
4 d e f i n e (‘ f o r l o o p ’ ,
5 ‘ $4 ‘ ’ i f e l s e ($1 , ‘ $3 ’ , ,
6 ‘ d e f i n e (‘ $1 ’ , i n c r ($1)) f o r l o o p (‘ $1 ’ , ‘ $2 ’ , ‘ $3 ’ , ‘ $4 ’) ’) ’)

Listing 6.1: m4 macro for expanding a loop.

10 functions 100 functions
10 100 1000 1 10 100 1000

Mono 0.095 0.097 0.097 0.13 0.12 0.13 0.15
mmc 0.22 0.51 3.9 0.47 0.79 4.1 36
mmc w/o cache 0.88 5.8 58 0.69 7.1 56 –
jpf 0.29 0.73 2.8 0.35 0.73 2.8 24

Table 6.1: Run-time of power calculator in seconds.

6.2 Test Results

In this section we will present the tests we have done to analyse the perfor-
mance of mmc. We have only been able to perform two tests, described in
sections 6.2.1 and 6.2.2 respectively.

6.2.1 Execution Performance

First of all, we tested how much of the performance of the application was
taken away by running it on mmc rather than directly on Mono. We con-
structed a simple application that calculates bas to the power of exp, found
in listing 6.2.

We varied the number of iterations and functions (using m4). The results
in table 6.1. Below “10 functions” (FUNCTION COUNT) are the results of
performing 10, 100 and 1000 iterations (ITER COUNT) of calling CalcPower1,
CalcPower2, . . . CalcPower10 consecutively. All tests have been run twice,
and then averaged. For mmc, only the exploration times are measured.

From the table, we can conclude mmc is many times slower than Mono.
This does not come as a surprise, since Mono is specially optimized for speed.
It translates the cil image to native code, which makes it scale much better
than mmc. But of course, omparing a model checker tool to a run-time
environment, notably the run-time that model checker run on, in terms of
speed is not a fair competition.

By default mmc caches the instruction executor for each instruction it
executes, thus preventing a new one needs to be allocated for each instruc-
tion. We have shown what happens when this functionality is switched off.
This example is quite an extreme case in terms of how many times each line

6.2 Test Results 78

1 d e f i n e (‘ func name ’ , ‘ CalcPower$1 ’)
2

3 s t a t i c c l a s s Powe rCa l cu l a t o r {
4

5 f o r l o o p (‘N’ , 1 , FUNCTION COUNT, ‘
6 pub l i c s t a t i c l ong func name (N) (l ong bas , i n t exp) {
7

8 l ong r e s u l t = 1 ;
9 wh i l e (exp > 0) {

10 wh i l e ((exp & 1) == 0) {
11 bas = bas ∗ bas ;
12 exp = exp >> 1 ;
13 }
14 r e s u l t = r e s u l t ∗ bas ;
15 exp−−;
16 }
17 re tu rn r e s u l t ;
18 }
19 ’)
20 pub l i c s t a t i c vo id Main (s t r i n g [] a r g s) {
21

22 l ong r e s u l t = 0 ;
23 f o r (i n t i =0; i < ITER COUNT ; ++i) {
24 f o r l o o p (‘N’ , 1 , FUNCTION COUNT, ‘
25 r e s u l t = func name (N) (14 , 8) ; ’)
26 }
27 }
28 }

Listing 6.2: c# code of the power calculator example.

of code is executed, but we even see a speed-up when we only perform one
call to CalcPower. This can be explained by the fact that this method itself
contains a loop, so we benefit from caching these instruction executors.

jpf performs very similar to mmc on this example. The somewhat faster
run-times could be ascribed to Java being a faster run-time environment
than Mono. jpf suffers from the same scalability problems as mmc, and
run-times are more or less linear to the size of the executed code.

6.2.2 Locking: Dining Philosophers

The problem of the dining philosophers is a traditional example often used
to explain deadlocks. The deadlock happens because of incorrect nesting of
locking code. The c# code of the example can be found in listing 6.3.

The performance of mmc and jpf when running this example is highly
dependant on the scheduling algorithm used. mmc scheduler does not con-
sider fairness at the moment, which gives us very good results on this par-
ticular test.

79 Testing and Benchmarking

Number of threads 2 3 5 10
mmc 0.35 / 65 0.39 / 37 0.44 / 182 0.70 / 372
mmc w/o sharing 0.34 / 26 0.35 / 106 0.37 / 59 0.46 / 114
jpf 0.84 / 20 1.11 / 64 2.3 / 376 82 / 14204
Number of threads 12 20 50 80
mmc 0.90 / 448 1.53 / 752 7.7 / 1892 19 / 3032
mmc w/o sharing 0.50 / 136 0.85 / 224 2.7 / 554 6.4 / 884
jpf 19.2 / 57188 – – –

Table 6.2: Run-time and number of states for dining philosophers example.

This is what happens. The main thread is run until it terminates, spawn-
ing n threads t1 . . . tn. Next, t1 is run until it re-visits a state, which will
happen after one iteration, and the first lock has been acquired. Then, t2
is scheduled, which does the same, i.e. it is rescheduled the moment it has
acquired its “left” lock. Eventually, all threads will own one lock. The mo-
ment t1 is scheduled in again, it tries to pick up its right fork, which is taken
by t2, so it waits for t2 to release the lock. Next, t2 is run, which has to wait
for t3, and so on. Eventually, tn will wait for t1 (which is waiting for t2) and
the system is deadlocked.

Even though the results are not entirely fair, we present them anyway.
The reader has been warned that this example turns out to be very well
suited for mmc. The results are presented in table 6.2. For each test we
varied the number of threads (DINER COUNT), and measured the run-time
of the exploration as well as the number of states. The data is presented as
“time in seconds / number of states”.

We also measured what happens when we consider all access to the heap
safe. That is, we assume no objects are shared. This is a very optimistic
setting, but it safe for this example. Not surprisingly, it results in a serious
reduction in run-time and the number of states.

We aborted jpf’s exploration of a system of 20 philosophers after it
demanded 1.3gb or ram, upsetting our test system. jpf produces backtraces
that take several minutes to be printed in a typical terminal application. The
presented run-times do not include the time it took to print these backtraces.
It may be interesting for the practical use of both mmc and jpf to investigate
how to create more succinct error traces.

We investigated how mmc performs when it does not stop when a dead-
lock is found. Note that these measurements are not comparable to the jpf,
since like mmc it does stop if it finds a deadlock. For a system of 3 philoso-
phers, and with sharing disabled it took mmc 29 seconds to explore a state
space of 11564 states. We tried a system of 4 philosophers, but aborted the
exploration after 23 minutes and more than 220500 states.

6.2 Test Results 80

1 us ing System . Thread ing ;
2 c l a s s D in i n gPh i l o s o ph e r {
3 const i n t ph i l o s o p h e r c o u n t = DINER COUNT ;
4 s t a t i c ob ject [] m fo rk s ;
5

6 c l a s s Ph i l o s o ph e r {
7 i n t m l e f t ;
8 i n t m r i gh t ;
9 pub l i c vo id Dine () {

10 wh i l e (t rue) {
11 l ock (m fo rk s [m l e f t]) {
12 l ock (m fo rk s [m r i gh t]) {
13 System . Conso l e . Wr i t eL i n e (” e a t i n g . . . ”) ;
14 }
15 }
16 }
17 }
18 pub l i c Ph i l o s o ph e r (i n t i d) {
19 m l e f t = i d ;
20 m r i gh t = (i d +1) % ph i l o s o p h e r c o u n t ;
21 }
22 }
23

24 pub l i c s t a t i c vo id Main (s t r i n g [] a r g s) {
25 m fork s = new object [p h i l o s o p h e r c o u n t] ;
26 Thread [] p h i l o s o p h e r t h r e a d s =
27 new Thread [p h i l o s o p h e r c o u n t] ;
28 f o r (i n t i =0; i < ph i l o s o p h e r c o u n t ; ++i) {
29 m fork s [i] = new object () ;
30 Ph i l o s o ph e r p = new Ph i l o s o ph e r (i) ;
31 p h i l o s o p h e r t h r e a d s [i] =
32 new Thread (new ThreadSta r t (p . Dine)) ;
33 }
34 f o r (i n t i =0; i < ph i l o s o p h e r c o u n t ; ++i)
35 p h i l o s o p h e r t h r e a d s [i] . S t a r t () ;
36 }
37 }

Listing 6.3: c# code of the dining philosophers example.

81 Testing and Benchmarking

This already concludes our chapter on experimental results. We feel
that far more experimentation is needed to get a clear picture of where mmc
stands in terms of performance. However, from the examples we tested, we
can conclude mmc’s performance is more or less equivalent with that of jpf.

Also, it has become very clear that partial order reduction techniques
are a necessity rather than an optimalization for model checking ever to
be feasible on real software. We would encourage further development and
experimentation of these techniques.

7
Future Work

At the time of writing a decent amount of work has already gone into the
mmc. A vm capable of checking for deadlocks and assertion violations has
been developed, and several techniques have been applied to cut back the
number of generated states, as well as compress both the stored states and
the backtracking data.

However, there are still several things that could use improvement. And
several things that could really help mmc become a better tool to find bugs
have not been implemented at all.

This chapter suggests a couple of ideas for future developers of mmc to
focus their attention on. It is to some extend a reflection of our personal view
on the project, and where problems and bottle-necks are to be expected.

7.1 Partial Order Reduction

In multi-threaded environments, one of the hardest problems is controlling
access to shared data. This is traditionally a field where human developers
often fail to get all the detail straight, and model checkers come in handy
to check if the system behaves as expected in even the rarest of cases. This
is why mmc calls the rescheduler when a thread performs an operation on a
non-local variable, introducing a state.

Although this is necessary in the general case, we do not want to state-
space to grow more than necessary. Unfortunately, many applications use
the operations that get or set a field very often. However, in many cases,
there is only one thread having access to (for example) an object, and it is
perfectly safe to access it without the introduction of a new state.

Aalysis of the code is needed to see which interleaving can safely be
skipped in the exploration, and which are still necessary to check. Holz-
mann and Peled explored the approach of static code analysis in [27]. Here,
identifying statements that are unconditionally safe (cf. safe and unsafe in-
structions in mmc) yields impressive improvements in both the size of the
state space, and run-time of the verification process.

In the jpf, sharing analysis is done in the mark and sweep algorithm.
Although both concerns are not strictly related, the first (marking) phase

82

83 Future Work

of the garbage collector already checks all threads for object references.
While the marking process is executed, its easy to see if an allocation has
already been seen by another thread. During the recursive marking phase, all
allocations reachable via shared allocation are also marked as being shared.

Although this is pragmatically a nice solution, it is not very elegant from
a design viewpoint, and we would have implemented this differently. The
idea, however, is probably easier to implement than static code analysis, and
is very promising in reducing the generated state space.

Implementing one of the above techniques to detect sharing of allocations
should severely reduce the number of times a load or store field instruction
is found to be unsafe, thus reducing the number of times the rescheduler
needs to be called. This will reduce the number of created states, and in
turn allow the mmc to check bigger client applications.

7.2 Detailed Back Traces

At the moment, if the mmc finds a deadlock or assertion violation, a call
stack is presented to the user. This is perhaps somewhat too concise. Print-
ing the backtrack stack yields a trace to the bug. It could be sugar-coated
in many ways, but tracing the bug back will probably stay tedious.

To allow more detailed, user-readable traces, we need to be able to trans-
late the cil code back to the original programming language (programming
directly in cil is possible, but is a game best played by compilers), as well
as “play back” what happened, printing line numbers as we go. Once the
first of these two requirements is implemented, the other should be easy to
add.

The Mono c# compiler can output dwarf [12] debugging information.
This file can probably be used to get the required data. We currently do not
know of any dwarf reader library written in c# or another cli-language,
but there is a library written in c, and bindings are probably easily created.

Many available tools (notably gdb and its front-ends) are able read
dwarf debugging data, so it might be interesting for mmc to output an
error trace in that format. This allows the user to use an existing debugger
to step through the program to the error.

7.3 Exception handling

At the moment we do not handle exceptions (raising and handling) at all.
Of course, this is a feature that we certainly would like to have, since thrown
exceptions may cause behavior the programmer did not forsee.

cil instructions can throw exceptions, documented in [28]. For example,
an dd or convert operation may throw an overflow exception. The following
is a suggestion how to implement this in the mmc.

7.4 Data and I/O Abstraction 84

Each instruction executor declares a method that checks the conditions
for throwing an exception. This can easily be done on a per instruction basis
because each instructions is defined in a separate class (see section 4.4). If
an exception is to be thrown (by an instruction such as add, or an explicit
throw or rethrow instruction), an exception object should be allocated on
the heap, and a reference to it should be pushed on the evaluation stack of
the caller.

Next, the return value of the executor should move the program counter
to the handling block in the method. The Cecil (cf. section 2.2) library
provides us with a convenient list of exception handlers, so we can easily
search for the correct handler. If such a handler is not found, we issue a
warning to the user, because this is probably unwanted behavior.

7.4 Data and I/O Abstraction

Currently, mmccan only check closed systems. That is, user interaction is
not supported, as well i/o operation. This is a big handicap, since the larger
part of applications perform some kind of i/o.

A possible way to elimiate this limitation is to provide a framework for
writing stubs for simulation of i/o. The implementation of a write stub
could for example log its arguments, and then return. Simulating a read
operation is somewhat harder. The approach implemented in the jpf is to
provide a code instrumentation class, called Verify, which is used to non-
deterministically choose a value [40].

The following is a suggested implementation of such a class for mmc,
based on the implementation of jpf’s Verify.

To get an actual non-deterministic value in the instrumentation class, it
should instruct the vm like the class library does, i.e. by calling a method
that is only declared but not fully defined. These declarations are to be
marked as internal call. We then add a handler for this internal call to
mmc.

The implementation of a handler that returns a non-deterministically
chosen value requires that we adjust our scheduler. We store the state on
the backtrack stack, just like we do when we choose a thread to run, and
choose the first possible return value for the handler. Later, if we backtrack
to this state, we choose the next possible value. We continue this process
until all possible values have been explored.

For a boolean this means the execution is branched into two possible
continuations, i.e. one where the value is true, and one where it is false. For
an integer this is somewhat more troublesome, as trying all 232 possibilities
is clearly not feasable.

A nicer option (at least from a formal point of view) is data abstraction,
or symbolic execution [1, 29]. In this case, the data is not “real” but rather

85 Future Work

a placeholder, say x. This placeholder would point back to the place where
it was declared, for the purpose of providing useful feedback to the user.

This involves quite a few changes to the mmc. Not in the least of which,
it requires changes in the explorer. The following is a sketch of what impli-
cations adding data abstraction to the model checker would have.

We already have an object structure of data elements, so we can add
abstract versions of the data we want to abstract. For example, we could
add an AbstractInt4 as a sub-class of Int4. This abstract version should
behave exactly like a normal number. For example, if we add the abstract x
to an integer 4, the result should be the abstract y = x+4. This is probably
the least of our problems.

Now let us assume the program uses this abstract value y for a condi-
tional branch, for example the check y > 1 is made. We should introduce
a scheduling point here (i.e. introduce a state where we can backtrack to),
and let the explorer explore the path where this condition holds, and the
one where it does not. Choosing any of these path (e.g. the case y > 1
holds) restricts (or refines) the value of x (in this case, x > −3).

Analysis and refining of these abstract values could become an art on its
own, although the person adding such functionality to the mmc can probably
find help in the work that has already been done in this field, e.g. by using
the Omega library [35], which is also used in [1].

Additionally, the explorer needs to be adjusted so it is able to schedule
not only based on which thread is to be run, but also which path is chosen
when doing a conditional branch based on abstract values. Our example
case was quite simple, but this could really become a problem when multiple
abstract values are involved.

In this chapter we have given some suggestions on possible improvements for
the mmc, ranging from easy ones (exception handling) to very difficult (data
abstraction). The current design allows all but the last suggestion to be
implemented without causing too much fuss. The latter (data abstraction)
would involve a lot of work and will probably open up a whole world of
interesting work to be done on its own.

8
Conclusion

We have written a software model checker for Mono (mmc). The approach is
heavily based on and inspired by the Java PathFinder, developed by Willem
Visser et al. At the moment, mmc is capable of early deadlock detection
and checking for assertion violations.

We adopted the concept of implementing a model checking virtual ma-
chine (vm) pioneered by jpf, capable of systematically exploring the state
space of a software application. The exploration is performed by iteratively
executing instructions that are read from the compiled (binary) code. To
have full control over this process, we manage all vm structures ourselves.

The exploration is done in a depth-first fashion. To detect cycles in the
exploration graph, we store visited states, and compare each new state to
all stored ones. Backtracking is done by keeping a stack of the states that
form the current path being explored.

To make state storage and comparison more efficient, we implemented a
technique called recursive indexing. We optimized this technique by keeping
a record of each changed part in the vm. The improvements are two-fold.
First, we only collapse the changed parts when storing a state. Second, we
only store the changed values on the backtrack stack, thereby reducing the
number of structures we need to restore. jpf takes a similar approach, but
does not optimize the backtrack as severely.

Even with this technique on board, storing the state after every in-
struction will result in an infeasible number of states. We implemented a
rudimentary form of partial order reduction by only storing the state if we
perform an instruction that is observable outside of its thread. That is, if
it reads or changes shared data. We call such an instruction unsafe. In-
structions that only touch local structures are safe to be executed at any
time.

We group one unsafe instruction together with zero or more unsafe ones,
and treat this whole set as one instruction, thereby severely reducing the
number of stored states. This technique is also applied in jpf, although for
this feature, we were inspired by Microsoft’s xrt.

The number of states can be further reduced by applying a technique
called heap symmetry reduction. The heap is a data structure that hold

86

87 Conclusion

dynamically allocated objects. It is a linear list of addressable allocations.
We aim to keep this list in a canonical form, so symmetric heaps are never
created.

The chosen approach is two-fold. First, garbage collection is used to
detect unused allocations, which are removed from the vm. We implemented
both the mark and sweep and reference counting mechanism. Second, when
we create a new allocation on the heap for the first time, we remember where
we put it. The next time we create that allocation, we put it in the same
place. This way, the order in which the allocations are created yield the
same heap. This will result in more identical states, and therefore a smaller
state-space.

The heap symmetry reduction we apply is also implemented in the jpf.
Further reductions might be possible using the kbots algorithm imple-
mented in Bogor, but this has not been investigated yet.

We feel that the codebase of mmc is quite readable for people that are
not familiar with it. In fact, readability and ease of design has been high on
our list of priorities. We have re-factored the source code several times to
keep it easy to understand as the amount of functionality grew.

The applied idiom for each task is the same every time, and we tried to
keep entanglement of classes to a bare minimum. Most, if not all, classes
can be substituted by different implementations. Subsituting new imple-
mentations is currently not possible, though. This is an aspect that could
use improvement.

As a result, we feel mmc is a useful tool in an academic environment
where ease experimentation with different implementations is an important
virtue. Specifically, mmc can serve as an exploration engine for new tech-
niques to be tested. We would stronly encourage further research in the field
of partial order reduction applied to software, since we feel it is to a large
extend these techniques that will make model checking of large and realistic
software projects feasible in the future.

Bibliography

[1] Saswat Anand, Corina S. Pasareanu, and Willem Visser. Symbolic ex-
ecution with abstract subsumption checking. In Antti Valmari, editor,
SPIN, volume 3925 of Lecture Notes in Computer Science, pages 163–
181. Springer, 2006.

[2] Thomas Ball and Sriram K. Rajamani. The Slam Project: Debugging
System Software via Static Analysis. In POPL ’02: Proceedings of the
29th ACM SIGPLAN-SIGACT symposium on Principles of program-
ming languages, pages 1–3, New York, NY, USA, 2002. ACM Press.

[3] Patrick Blackburn, Maarten de Rijke, and Yde Venema. Modal Logics.
Cambridge University Press, 2002.

[4] Blast website. http://embedded.eecs.berkeley.edu/blast, 2006.

[5] Bogor Website. http://bogor.projects.cis.ksu.edu, 2006.

[6] Cecil Website. http://www.mono-project.com/Cecil, 2006.

[7] A. Cimatti, E. Clarke, E. Giunchiglia, F. Giunchiglia, M. Pistore,
M. Roveri, R. Sebastiani, and A. Tacchella. Nusmv 2: An opensource
tool for symbolic model checking, 2002.

[8] E. M. Clarke, E. A. Emerson, and A. P. Sistla. Automatic verification
of finite-state concurrent systems using temporal logic specifications.
ACM Trans. Program. Lang. Syst., 8(2):244–263, 1986.

[9] Edmund M. Clarke, E. Allen Emerson, Somesh Jha, and A. Prasad
Sistla. Symmetry reductions inmodel checking. In CAV ’98: Proceed-
ings of the 10th International Conference on Computer Aided Verifica-
tion, pages 147–158, London, UK, 1998. Springer-Verlag.

[10] James C. Corbett, Matthew B. Dwyer, John Hatcliff, Shawn Laubach,
Corina S. Păsăreanu, Robby, and Hongjun Zheng. Bandera: extracting
finite-state models from java source code. In International Conference
on Software Engineering, pages 439–448, 2000.

[11] Edd Dumbill and Niel M. Bornstein. Mono: A Developer’s Notebook.
O’Reilly, July 2004.

[12] The DWARF Debugging Standard. http://dwarf.freestandards.
org, 2005.

[13] C# Language Specification. http://www.ecma-international.org/
publications/standards/Ecma-334.htm, June 2006.

88

http://embedded.eecs.berkeley.edu/blast
http://bogor.projects.cis.ksu.edu
http://www.mono-project.com/Cecil
http://dwarf.freestandards.org
http://dwarf.freestandards.org
http://www.ecma-international.org/publications/standards/Ecma-334.htm
http://www.ecma-international.org/publications/standards/Ecma-334.htm

89 BIBLIOGRAPHY

[14] Common Language Infrastructure. http://www.
ecma-international.org/publications/standards/Ecma-335.htm,
June 2006.

[15] E. Allen Emerson. Automated Temporal Reasoning about Reactive
Systems. In Banff Higher Order Workshop, pages 41–101, 1995.

[16] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides.
Design Patterns: Elements of Reusable Object-Oriented Software.
Addison-Wesley, 1995.

[17] Patrice Godefroid. Partial-Order Methods for the Verification of Con-
current Systems – An Approach to the State-Explosion Problem. PhD
in computer science, University of Liege, November 1994.

[18] Patrice Godefroid. Exploiting Symmetry when Model-Checking Soft-
ware. In FORTE XII / PSTV XIX ’99: Proceedings of the IFIP TC6
WG6.1 Joint International Conference on Formal Description Tech-
niques for Distributed Systems and Communication Protocols (FORTE
XII) and Protocol Specification, Testing and Verification (PSTV XIX),
pages 257–275, Deventer, The Netherlands, The Netherlands, 1999.
Kluwer, B.V.

[19] Wolfgang Grieskamp, Nikolai Tillmann, and Wolfram Schulte. Xrt:
Exploring runtime for .net - architecture and applications. SoftMC
2005, 2005.

[20] John Hatcliff and Matthew Dwyer. Using the Bandera tool set to model-
check properties of concurrent Java software. Lecture Notes in Com-
puter Science, 2154, January 2001.

[21] K. Havelund and T. Pressburger. Model checking Java programs using
Java PathFinder. International Journal on Software Tools for Technol-
ogy Transfer, 2(4), April 2000.

[22] K. Havelund and W. Visser. Program model checking as a new trend,
2002.

[23] Thomas A. Henzinger, Ranjit Jhala, Rupak Majumdar, and Grégoire
Sutre. Software verification with blast. Lecture Notes in Computer
Science, 2648:235 – 239, January 2003.

[24] Gerard J. Holzmann. The model checker SPIN. Software Engineering,
23(5):279–295, 1997.

[25] Gerard J. Holzmann, Patrice Godefroid, and Didier Pirottin. Coverage
preserving reduction strategies for reachability analysis. In Proceedings
of the twelth international symposium on protocol specification, testing
and verification, pages 349–363. North-Holland, 1992.

http://www.ecma-international.org/publications/standards/Ecma-335.htm
http://www.ecma-international.org/publications/standards/Ecma-335.htm

BIBLIOGRAPHY 90

[26] Gerard J. Holzmann Holzmann. State compression in SPIN: Recursive
indexing and compression training runs. In Proc. of the 3th Interna-
tional SPIN Workshop, 1997.

[27] G.J. Holzmann and Doron Peled. An improvement in formal verifica-
tion. In Proc. Formal Description Techniques, FORTE94, pages 197–
211, Berne, Switzerland, October 1994. Chapman & Hall.

[28] ECMA International. Common Language Infrastruc-
ture (CLI), Partitions I to VI, 2005. http://www.ecma-
international.org/publications/standards/Ecma-335.htm.

[29] S. Khurshid, C. Pasareanu, and W. Visser. Generalized symbolic exe-
cution for model checking and testing, 2003.

[30] Flavio Lerda and Willem Visser. Addressing Dynamic Issues of Program
Model Checking. Lecture Notes in Computer Science, 2057:80–??, 2001.

[31] M4 macro processor, version 1.4.5. httP;//www.gnu.org/software/
m4, 2006.

[32] Zohar Manna and Amir Pnueli. The temporal logic of reactive and
concurrent systems. Springer-Verlag New York, Inc., 1992.

[33] The Mono Project. http://www.mono-project.com.

[34] Microsof .Net. http://www.microsoft.com/net.

[35] Omega library. http://www.cs.umd.edu/projects/omega.

[36] Robby, Matthew B Dwyer, John Hatcliff, and Radu Iosif. Space-
Reduction Strategies for Model Checking Dynamic Software. Electronic
Notes in Theoretical Computer Science, 3, 2003.

[37] Peter Sestoft and Henrik I. Hansen. C# Precisely. The MIT Press,
2004.

[38] Elisabeth A. Strunk, M. Anthony Aiello, and John C. Knight . A survey
of tools for model checking and model-based development. Technical
Report CS-2006-17, University of Virginia, June 2006.

[39] W. Visser, K. Havelund, G. Brat, and S. Park. Java pathfinder - second
generation of a java model checker, 2000.

[40] Willem Visser, Klaus Havelund, Guillaume Brat, SeungJoon Park, and
Flavio Lerda. Model Checking Programs. Automated Software Enge-
neering, 10(2):203–232, April 2003.

httP;//www.gnu.org/software/m4
httP;//www.gnu.org/software/m4
http://www.mono-project.com
http://www.microsoft.com/net
http://www.cs.umd.edu/projects/omega

	Introduction
	Mono and the CLI
	The Mono Project
	Mono Overview
	Machine Model
	Computing Environment
	Tasks of the Virtual Machine

	Languages

	Software Model Checking
	Introduction
	Traditional Model Checking
	Existing Tools
	Full Code Coverage
	Translation Based Tools
	Abstraction Based Tools

	Implementation of the Model Checker
	What is it?
	Architectural Overview
	Explorer
	Exploration Algorithm
	Rescheduler
	Deadlock Detection and Assertion Violations

	Instruction Executors
	Safe and Unsafe Instructions

	State Storage
	Recursive Indexing
	Doing it Better

	Backtracking
	Building the Delta

	Implementation of the Active State
	The Aggregation of Parts
	Data Elements
	Dynamic Allocations: the Heap
	Design of the Heap
	Garbage Collection
	Allocation Placement

	Static Data: Classes
	Class Loading and Initialization
	Class Storage

	Locking
	Thread Pool

	Testing and Benchmarking
	Test Setting
	Test Results
	Execution Performance
	Locking: Dining Philosophers

	Future Work
	Partial Order Reduction
	Detailed Back Traces
	Exception handling
	Data and I/O Abstraction

	Conclusion

