Mix-and-Match: A Model-driven Runtime Optimisation Strategy for BFS on GPUs

Merijn Verstraaten1,2, Ana Lucia Varbanescu1 & Cees de Laat1

1 University of Amsterdam

2 Netherlands eScience Center

December 5, 2018
Breadth-First Search: Implementations

Edge-centric
- Vertex Push
- Vertex Pull

Useless Frontier Thread
- Updated Node
- Accessed Node

Useful Frontier Thread
- Frontier Node

Mix-and-Match BFS

M. Verstraaten, A.L. Varbanescu & C. de Laat
Relative Performance of Implementations

There is no “best”!
Relative Performance Within a Single Traversal

Sticking to one implementation costs us!

M. Verstraaten, A.L. Varbanescu & C. de Laat

Mix-and-Match BFS
Let’s Choose an Algorithm!

Choosing the best algorithm:
- Depends on algorithm + platform + graph
- Predict “best” implementation each level

Challenge?
- How to model the algorithm + graph + platform

Is it worth it? It depends on…
- …gain
- …prediction cost
- …data representation for implementations
Modelling the Problem

Analytical model:
1. Build a parametrised work model of the algorithm
2. Use graph properties as parameters
3. Calibrate using hardware microbenchmarking

Result: Prediction accuracy below 50%…
Intuition vs Results

Is it my intuition that is wrong?
Problem: Sequential workload \rightarrow Parallel GPU execution

But: Best implementation stable over several GPU generations

What now?
MACHINE LEARN ALL THE THINGS!
Training Parameters:
- Degree distribution
- Frontier size
- Percentage discovered
- Vertex count
- Edge count

Pros:
- Black-box approach
- Fast! (Training & prediction)
- Variable importance!

Cons:
- Can overfit on non-uniform parameters
- Bad with large numbers of parameters
Two Questions

Do the models actually work?

Do the models match our intuitions?
Trained Models

Feasibility:
Average Prediction Time: 144 ns ($\sigma = 165$ ns)
Minimum BFS Step: 20 ms
(Re)loading graph representation: Stupidly slow

Classic time-space trade-off.
Comparison with State-of-the-Art: Best & Worst

<table>
<thead>
<tr>
<th>Graph</th>
<th>Normalised Runtime</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Mix-and-Match</th>
<th>Gunrock</th>
<th>Lonestar</th>
<th>Non-switching Best</th>
<th>Optimal</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Even better if we include Gunrock in model?
Overall Results

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>1–2×</th>
<th>>5×</th>
<th>>20×</th>
<th>Average</th>
<th>Worst</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mix-and-Match</td>
<td>92%</td>
<td>2.5%</td>
<td>0.4%</td>
<td>2.04×</td>
<td>498×</td>
</tr>
<tr>
<td>Non-switching Best</td>
<td>65%</td>
<td>8%</td>
<td>0%</td>
<td>2.44×</td>
<td>37×</td>
</tr>
<tr>
<td>Edge List</td>
<td>49%</td>
<td>22%</td>
<td>2.2%</td>
<td>4.16×</td>
<td>61×</td>
</tr>
<tr>
<td>Rev. Edge List</td>
<td>39%</td>
<td>33%</td>
<td>8.8%</td>
<td>7.04×</td>
<td>108×</td>
</tr>
<tr>
<td>Vertex Pull</td>
<td>16%</td>
<td>58%</td>
<td>30%</td>
<td>48.41×</td>
<td>2,495×</td>
</tr>
<tr>
<td>Vertex Push</td>
<td>23%</td>
<td>53%</td>
<td>28%</td>
<td>55.61×</td>
<td>1,980×</td>
</tr>
<tr>
<td>Vertex Push Warp</td>
<td>18%</td>
<td>25%</td>
<td>4.9%</td>
<td>5.42×</td>
<td>88×</td>
</tr>
</tbody>
</table>

Averaged over 248 KONECT graphs.
Parameter importance matches intuition

Investigating “poor” predictions reveals new insights

Not investigated (yet):

- Handle implementations with similar results
- Minimising training data
- Model portability across datasets, hardware & algorithm
- Relating BDTs to analytical model
Summary

The Good:

- Prediction works!
- Predictions are fast enough at runtime
- Our Mix-and-Match outperforms state-of-the-art (on average)
- Models provide new insights

The Bad:

- Training set too big
- Training set non-uniformity
Takeaway

Large potential performance gains for graph algorithms

Significant performance improvement for many graphs

Method applicable to any BSP graph algorithm

Science would be less dull with less text and more memes…

Questions?