
Master Thesis

Improving Reachability Analysis in Ltsmin
Guards, Read, Write and Copy Dependencies for mcrl2, Promela and Dve

Author:
Jeroen Meijer

Committee:
Prof. Dr. Jaco van de Pol

Dr. Stefan Blom
Gijs Kant, MSc.

A thesis submitted in fulfilment of the requirements
for the degree of Master of Science

in the

Formal Methods and Tools group,
department of Computer Science,

faculty of Electrical Engineering, Mathematics and Computer Science.

March 27, 2014

http://fmt.cs.utwente.nl/
http://ewi.utwente.nl/
http://fmt.cs.utwente.nl/

Abstract

To improve symbolic reachability analysis in the model checking toolset LTSmin, we present two improve-
ments to existing reachability algorithms. LTSmin uses a disjunctive partitioning scheme to efficiently
analyze models of asynchronous systems. In these models transitions can be partitioned into groups,
which modify only a small part of the state vector. Currently, there are no well defined notions, for
whether a transition group reads and/or writes to an element in the state vector, which can be used in
symbolic algorithms. Therefore, we present new definitions for read and write dependencies and show
how algorithms can exploit these. This improvement always results in faster state space generation and
many models such as 1-safe Petri nets highly benefit of these changes. A major issue we solved to sepa-
rate dependencies correctly is that we had to cope with copying values. We provide examples that were
intractable for LTSmin before, but can now be computed in a matter of minutes.

A transition in a model specification is often of the form “if condition(x1,...,xn) =⇒ A . X(x1’,...,xn’)”.
Our second improvement divides the condition into multiple conjuncts. These conjuncts can then be
evaluated separately. Symbolic algorithms can exploit this information and prevent computing successors
for large sets of states for only one conjunct evaluation. This greatly speeds up state space generation for
models such as Sokoban or dining philosophers. We provide examples that show a speedup ranging from
twice as fast to hundreds of times faster. An important issue in algorithms that exploit guard-splitting
is that they need to support a ternary logic for the evaluation of guards. This is due to the fact that a
guard can not only evaluate to true or false, but also to ‘maybe’. Consider for example a term rewriting
system that splits the term someterm ∧ false and rewrites both conjuncts individually.

We present clear benchmarking results in the form of scatter plots with time and memory usage as well
as tables with detailed information about the size of the data structures. We make some important
assumptions such as on the completeness of model specifications. We use these assumptions and the
benchmarking results to validate our work.

Contents

Introduction 5

1 Current Situation 9
1.1 The Monolithic Next-State Interface . 10
1.2 The Pins front-end . 12
1.3 The Partitioned Next-State Interface . 12
1.4 The Pins back-end . 15
1.5 Pins2Pins wrappers . 18
1.6 Implementation in LTSmin . 19

2 Research Method 21
2.1 Separating Read and Write Dependencies . 21
2.2 Guard-based Symbolic Reachability . 23
2.3 Related Work . 25

3 Symbolic Reachability Using Separate Read, Write and Copy Dependencies 29
3.1 The Partitioned Next-State Interface . 29
3.2 The Pins back-end . 33
3.3 Pins2Pins wrappers . 36
3.4 Implementation in LTSmin . 39
3.5 Benchmarks . 40
3.6 Future Work . 45
3.7 Conclusion . 45

4 Guard-based Symbolic Reachability 47
4.1 Background . 47
4.2 The Monolithic Next-State Interface . 47
4.3 The Partitioned Next-State Interface . 48
4.4 The Pins front-end . 51
4.5 Symbolic reachability for Partitioned Transition Systems 54
4.6 Pins2Pins wrappers . 57
4.7 Implementation in LTSmin . 57
4.8 Benchmarks . 59
4.9 Future Work . 63
4.10 Conclusion . 63

Bibliography 67

Appendices 69

A Acronyms 71

B Implementation in LTSmin 73

C Results 77
C.1 Separated Dependencies . 77
C.2 Guard-splitting . 81

3

Introduction

Testing software and hardware for correctness is traditionally a hard problem. To meet this problem
formal methods, such as model checking have been developed. Model checking suffers from the state space
explosion which is caused by the fact that modeling many parallel processes results in an exponential
increase in the amount of states. To cope with this problem one approach is to store states symbolically.
For some modeling languages such as mcrl2 improvements to symbolic reachability algorithms can be
made, such as analyzing read and write dependencies between transitions and state variables. Another
improvement we make is to split the guards (or enabledness) from the transition relation.

One model checking tool set the FMT chair at the University of Twente has chosen to develop is LTSmin
[3, 6]. This tool incorporates much research with regard to this topic, developed either in house or by
other research organizations such as the Technische Universiteit Eindhoven.

A key component in LTSmin is the Partitioned Interface to the Next State (pins) interface. This interface
allows for generic model checking algorithms such as symbolic, distributed or multi-core for modeling
languages such as mcrl2, Promela, divine, Uppaal and other. This is separated into a back-end
for the algorithms and a front-end for the languages. The Pins interface partitions the state vector
into individual state slots as well as the transition relation into multiple transition groups. With this
partitioning LTSmin can exploit the notion of event locality by letting every transition group modify
only a small part of the state vector.

We contribute two improvements to existing reachability algorithms. The first involves precise definitions
for dependencies between transition groups and state slots and algorithms which benefit hereof. These
precise definitions allow us to create smaller decision diagrams and less computations for successor states.
This first improvement speeds up symbolic reachability analysis for models such as 1-safe Petri nets. The
second improvement is a guard-splitting algorithm for symbolic reachability analysis. Guard-splitting
can improve the computation time for models of Sokoban games. In Sokoban games computing whether
the game is finished is expensive. With guard-splitting we can efficiently prevent computing successor
states for states that which do not satisfy the condition of a transition. We do this by implementing a
join (like in relational databases) operation on symbolic sets.

One major issue in separating dependencies is writing to an index of an array. To this end we will give
two notions of whether a transition group writes to a specific state slot. The first notion is may-write-
independent. Like the name says this notion handles cases in which it is uncertain whether a value is
purely written or copied. Suppose we have an array a of length 2 and we partition this array into two
state slots a0 and a1. Also suppose we have an index i to write to a position in array a. If we have a
statement a[i] = 1 then we do not know if we either write to a0 and copy the value for a1 or copy the
value from a0 and write to a1. Our algorithms together with the notion of may-write-independent can
handle this case. The second notion for writing to a state slot is must-write-dependent. This notion
covers simple cases such as b = 1 where b is simply an integer. The last important definition we provide
in the chapter about separating dependencies is read-independent. With this definition we can identify
whether a transition group writes to a state slot or not. With the notions for reading and writing to
state slots we can improve the projections used by symbolic algorithms to project to fewer short vectors
and thus reduce the amount computations for successor states. Furthermore we can reduce the size of
the transition relation, by removing read nodes if a state slot is not read and write nodes if a state slot
is not written. Removing nodes from the transition relation is an important improvement, because it is
a way of coping with bad variable orderings. Our results for separated dependencies are not only shown

5

in clear scatter plots with time and memory usage but also in tables with detailed information about for
example the size of the transition relation. The scatter plots can be found in Sections 3.5 and 4.8. The
tables with detailed information can be found in Appendix C. We have run experiments with three well
known modeling languages; mcrl2, Promela and Dve.

The major issue in guard-splitting is the need for a ternary logic. Guard-splitting splits the condition of
a transition group into multiple conjuncts (guards) so that an algorithm can evaluate guards for every
state individually. This however introduces a problem for term rewriting systems such as mcrl2 and lazy
evaluation in imperative programming languages such as Java. In mcrl2 we can have a condition of a
transition group represented by the term someterm ∧ false. Naturally, if we individually evaluate the
guard someterm then this does term does not rewrite to true or false. We say that such a term rewrites to
maybe. Algorithms that exploit guard-splitting can for efficiency reasons evaluate guards not in the same
order as they are expressed in a condition. In a Java statement such as ‘p != null && p.method()’
this is a problem when the pointer p is null. Because in that case p.method() neither evaluates to true
nor false. To cope with this ternary logic we developed algorithms that check if a model specification
is complete. That is, make sure a model specification does not have a term such someterm ∧ true in
the condition of a transition group. When our algorithms exploiting guard-splitting have checked that a
model specification is correct symbolic set operations such as the join operation can be used to efficiently
compute successor states. In Chapter 4 about guard-splitting we also show clear scatter plots for time
and memory usage. Additionally, we show tables which indicating that removing the condition from the
transition relation indeed produces smaller transition relations.

Our changes also affect other functionality in LTSmin. For example we discuss how operations as row
subsumption on the dependency matrix can be improved. Furthermore we will discuss how an advanced
reachability algorithm such as saturation can be improved with our notions of separated dependencies
and guard-splitting.

Acknowledgements

First of all I want to thank my committee. Jaco van de Pol for his excellent guidance; I feel I learned a
great many things while working on my thesis from you. Second, I want to thank Stefan Blom for always
making time to answer my questions. I really appreciate the time and patience you took to explain things
to me. From you I learned there are actually a great many things I do not know yet. From my committee
I would also like to thank Gijs Kant you were always available when I needed your help. Seeing you
work on you PhD thesis I decided that I would also like to do a PhD too. Alfons Laarman, other than
the fact that you are not on the front page of my thesis, I feel like you were part of my committee all the
same. Without your work and time (update matrix for Promela and other guidance) my results would
not have been as impressive as they are now.

List of Contributions

Along with this report we have contributed patches to several projects. We contributed to LTSmin,
divine and mcrl2. For analysing the results of our contributions we provide some scripts and urls to
these results.

General fixes

LTSmin (git@github.com:Meijuh/ltsmin.git next):

8af5ae6e a change to fix caching in the mdd_next operation.

divine (git@github.com:Meijuh/Divine2.git master):

6

git@github.com:Meijuh/ltsmin.git
git@github.com:Meijuh/Divine2.git

1d42067c a change to fix a bug in the dependency matrix were a read was incorrectly marked as a
write.

Changes for separated dependencies

LTSmin (git@github.com:Meijuh/ltsmin.git rw):

f4f24e32 add support for separated dependencies to LTSmin.

divine (git@github.com:Meijuh/Divine2.git rw):

eec89c58 add -W option to the divine compiler to over-approximate W to +.

Changes for guard-splitting

LTSmin (git@github.com:Meijuh/ltsmin.git guard):

37bf6c05 support for the update matrix for divine.

f91d722a support for guards for mcrl2.

a53bb4b3 symbolic reachability algorithms for LTSmin, including a fix for the state label matrix.

divine (git@github.com:Meijuh/Divine2.git guard):

8edcecd2 partially working update matrix.

A patch for guard-splitting for mcrl2 (version 2012-10): https://gist.github.com/Meijuh/9617728.

Scripts for benchmarking

Running experiments https://gist.github.com/Meijuh/9712862 — shell script to run experi-
ments. Place models in a folder and this script will run multiple reachability
algorithms on these models.

Analyse experiments https://gist.github.com/Meijuh/9712843 — PHP script to analyze the
standard out output from the experiments. Creates csv files and LATEX code.

Scatter plots https://gist.github.com/Meijuh/9712867 — creates scatter plots for time
and memory usage from the generated csv files.

Open online access to our benchmarking results

Zip file of our results https://drive.google.com/file/d/0B98nrOHB7d4Ab1UxZFNpSGJDcjg/edit?
usp=sharing

7

git@github.com:Meijuh/ltsmin.git
git@github.com:Meijuh/Divine2.git
git@github.com:Meijuh/ltsmin.git
git@github.com:Meijuh/Divine2.git
https://gist.github.com/Meijuh/9617728
https://gist.github.com/Meijuh/9712862
https://gist.github.com/Meijuh/9712843
https://gist.github.com/Meijuh/9712867
https://drive.google.com/file/d/0B98nrOHB7d4Ab1UxZFNpSGJDcjg/edit?usp=sharing
https://drive.google.com/file/d/0B98nrOHB7d4Ab1UxZFNpSGJDcjg/edit?usp=sharing

Chapter 1

Current Situation

LTSmin is a model checking tool set developed at the Formal Methods and Tools group at the University
of Twente. Over the last several years much research on model checking is incorporated into this software
package, making LTSmin a high performance model checker. In this chapter we will discuss the current
state of LTSmin. This background information allows us to accurately describe two improvements we
make to the tool set in this master thesis. First we will discuss the traditional notion of transition
systems. Then we will describe how language front-ends, which allow specifying these transition systems
are connected to LTSmin. The last part of this chapter shows how we can efficiently perform reachability
analysis on these transition systems.

In reachability analysis simply calculating the next state for each state in the entire state space is not
efficient because transitions may only affect a small part of the state space. This is also referred to as
event locality [2]. Therefore instead of a simple monolithic interface to the next-state function LTSmin
exploits the notion of event locality by partitioning the next-state function. Of particular interest in
the LTSmin tool set is the Pins interface, illustrated in Figure 1.1.

Specification
Languages

Pins2Pins
Wrappers

Reachability
Tools

mcrl2 Promela Dve Uppaal

Pins frontend

Pins backend

Transition
Caching

Variable Reordering,
Transition Grouping

Partial Order
Reduction

Distributed Multi-core Symbolic

Figure 1.1: Modular Pins architecture of LTSmin

The Pins interface allows for a partioned interface to the next-state function. Key components of the
Pins interface are the front-end, the back-end and the Pins2Pins wrappers. The front-end allows one
to implement the next-state function for modeling languages such as Promela, mcrl2 and many
more. The Pins2Pins wrappers allow for caching transition group vectors, reordering of variables and
transitions and partial order reduction. The back-end allows for storage in main memory and reachability
algorithms of the state space. Currently there exist three ways for storing the space space and performing
reachability, namely distributed, multi-core and symbolic. Our research focuses on improving symbolic
reachability algorithms for all modeling languages and enabling partial order reduction for mcrl2.

9

1.1 The Monolithic Next-State Interface

The monolithic next-state interface is not very different from the conventional notation for transition
systems and its transition relation.

Definition 1.1 (Transition System). A Transition System (ts) is a structure 〈S,→, s0〉, where S is a
set of states, → ⊆ S × S is a transition relation and s0 is the initial state. �

In order to understand our notion for tss consider the example 1-safe Petri net in Figure 1.2.

P0

P1 P3

P2 P4

T0

T2T1 T3 T4

T5

Figure 1.2: Example 1-safe Petri net

In this Petri net, if transition T0 fires then the token from place P0 moves to both place P1 and P3.
Firing transitions (T1..T4) move the token between P1 and P2 or P3 and P4. Firing transition T5 can
be done when there is a token in both P2 and P4. T5 removes the tokens from P2 and P4 and places
one in P0. Figure 1.3 on Page 10 illustrates the state space of the Petri net.

10000 01001

01010

00101

00110

Figure 1.3: State space of the Petri net in Figure 1.2

Example 1.2 (transition system). A ts for Figure 1.2 may be denoted as

TS = 〈{10000, 01010, 00110, 01001, 00101}, {(10000, 01010), . . .}, 10000〉

, with |S| = 5, |→| = 10. Note that a string such as 10000 encodes the initial state with a token at place
P0. N

In a monolithic interface, for a ts the initial state may be obtained with the function initial-state() =
s0. In the monolithic next-state interface successor states can be obtained with the next-state (s)
function for a ts where s is defined as s ∈ S, next-state(s) = {s′ | s→ s′}.

10

The monolithic next-state interface allows explicit state algorithms to be implemented for any language,
but it has very limited use in combination with symbolic techniques due to the fact that we need to call
the next-state function for every state.

1.1.1 Explicit Reachability for Transition Systems

We first give a set of definitions and an algorithm for explicit reachability in order to provide the
necessary background information on symbolic reachability analysis for Partitioned Transition System
(pts)s.

Definition 1.3 (Reachable states [2]). Given a transition system ts = 〈S,→, s0〉. The set of reachable
states is

R = {s ∈ S | s0 →∗ s}

a state s ∈ S is reachable if s ∈ R. The relation →∗ is recursively defined as

{
s→∗ s (symmetric closure)
s→∗ t ∧ t→ t′ =⇒ s→∗ t′ (transitive closure)

The set of reachable states for a pts is given by the set of reachable states of its ts. �

The set of reachable states is usually built using a Breadth First Search (bfs) strategy. Using bfs we
define a level l, denoted Ll such that the set of states with a distance l to s0 are in Ll. States with a
distance less or equal to l are in Rl.

Definition 1.4 (Explicit Reachability [2]). Given a transition system ts = 〈S,→, s0〉. Let

L0 = {s0} R0 = {s0}
Ll+1 = {s′ ∈ S | ∃s ∈ Ll : s→ s′ ∧ s′ 6∈ Rl} Rl+1 = Rl ∪ Ll+1

then

R =

∞⋃
l=0

Rl.

�

An algorithm to calculate the set R is presented in Algorithm 1. The algorithm calculates for each level
the next states until the set of states does not grow anymore, i.e. a greatest fixed point is reached. Note
however that sometimes state spaces may be infinite and a greatest fixed point is never reached and thus
the algorithm never terminates.

Algorithm 1: Reachability for tss [2]
Data: →, s0

Result: R
1 R← {s0};
2 L← R;
3 while L 6= ∅ do
4 L← {y | ∃x ∈ L : x→ y};
5 L← L \R;
6 R← R ∪ L;
7 end

11

1.1.2 Symbolic Reachability for Transition Systems

The advantage of using symbolic techniques to represent the state space is that the memory footprint is
very small. Thus instead of storing each element of the transition relation and state space explicitly, we
can somehow represent them in a boolean expression. Given a TS = 〈S,→, s0〉 we can represent a set
S′ ⊆ S by a boolean expression S ′(x) such that

x ∈ S′ ⇔ S ′(x)

where the expression is stored as a decision diagram and x stands for the vector x1, . . . , xN , i.e. we
assume the state space a cartesian product (S = S1 × . . . × SN). The transition relation is stored as a
boolean expression ↪→(x,x′), such that

x→ x′ ⇔ ↪→(x,x′).

Given a level as a formula L(x), we can compute the next level using the expression

(∃x.(L(x) ∧ ↪→(x,x′)))[x′ := x].

Which provides us the symbolic implementation of Line 4 of Algorithm 1. However, using this framework
we can not yet exploit the notion of event locality.

1.2 The Pins front-end

The Pins front-end allows one to implement a modeling language such as the process algebraic language
mcrl2. Other languages such as the state-based specification languages Promela and divine are also
supported.

The mcrl2 tool set is an implemented front-end for the Pins interface. The concept of the tool set is
to take a process algebra specification and compile it into a Linear Process System (lps). An lps is a
single recursive process.

Definition 1.5 (Linear Process System [1]).

X(x1, . . . , xN) =

K∑
i=1

∑
ei∈Ei

Ci =⇒ a(ti,0).X(ti,1, . . . , ti,N)︸ ︷︷ ︸
summand i

Where Ci and ti,j are expressions over ei, x1, . . . , xN . The intended meaning of this equation is that
to perform a step we first non-deterministically select 1 ≤ i ≤ K (determining a summand), then non-
deterministically select some ei ∈ Ei, evaluate the condition Ci to see if the transition is enabled and if
it is enabled then the label of the transition is the result of the expression a(ti,0) and the next state is
ti,1, . . . , ti,N . �

1.3 The Partitioned Next-State Interface

In symbolic techniques event locality can be exploited. Consider a ts consisting of several processes that
communicate using shared variables. While the behaviour of the entire ts depends on the whole state,
the behaviour of a single process depends only on its local variables and the relevant shared variables.
To exploit this the ts can be partitioned into groups.

Definition 1.6 (Partitioned Transition System [7]). A pts is a structure P = 〈〈S1, . . . , SN 〉, 〈→1, . . . ,
→K〉, 〈s01, . . . , s0N 〉〉.

The tuple 〈S1, . . . , SN 〉 defines the set of states SP = S1× . . .×SN , i.e. we assume that the set of states
is a Cartesian product. The transition groups →i ⊆ SP × SP for (1 ≤ i ≤ K) defines the transition

12

relation →P =
⋃K

i=1→i. The initial state is s0 := 〈s01, . . . , s0N 〉 ∈ SP . We write s →i t when (s, t) ∈ →i

for some 1 ≤ i ≤ K. Also we write s→P t when (s, t) ∈ →P and for single states we may also write the
vector (x) or the explicit vector (〈s1, . . . , sN 〉). The defined ts of P is 〈SP ,→P , s0〉.

�

A natural way to partition the transition groups is introducing a group for each transition. This is for
example done in the following Figure.

〈1, 0, 0, 0, 0〉 〈0, 1, 0, 0, 1〉

〈0, 1, 0, 1, 0〉

〈0, 0, 1, 0, 1〉

〈0, 0, 1, 1, 0〉

T0

T1

T3 T2

T4

T3

T4

T2

T1
T5

Figure 1.4: Example partitioning of the Petri net in Figure 1.2

Example 1.7. For the 1-safe Petri net in Figure 1.2 on Page 10 the pts P for this model is

〈{〈1, 0, 0, 0, 0〉, 〈0, 1, 0, 1, 0〉, 〈0, 0, 1, 1, 0〉, 〈0, 1, 0, 0, 1〉, 〈0, 0, 1, 0, 1〉},
{(〈1, 0, 0, 0, 0〉, 〈0, 1, 0, 1, 0〉), . . .}, 〈1, 0, 0, 0, 0〉〉,
with N = 5 and K = 6.

N

1.3.1 State slot dependencies

In a pts a transition group i is independent of slot j if none of the transitions in the transition group
can change the value of slot j and any transition in the group is enabled or disabled, regardless of the
value of slot j. Formally, this can be stated as follows.

Definition 1.8 (indepedent [1]). Given a pts P = 〈SP ,→P , s0〉 transition group i is independent on
state slot j if for all 〈s1, . . . , sN 〉, 〈t1, . . . , tN 〉 ∈ SP , whenever 〈s1, . . . , sj , . . . , sN 〉 →i 〈t1, . . . , tj , . . . ,
tN 〉 ∈ →P , then

1. sj = tj (i.e., state slot j is not modified in transition i)

2. for all rj ∈ Sj , we also have 〈s1, . . . , rj , . . . , sN 〉 →i 〈t1, . . . , rj , . . . , tN 〉. (I.e., the value of state slot
j is not relevant in transition group i.)

Whether some transition group i and state slot j is dependent may be over approximated as shown in
Example 1.11. �

Now, a formal definition of the Dependency Matrix (dm) is as follows.

Definition 1.9 (dependency matrix). A dependency matrix DMK×N for pts P is a matrix with K
rows and N columns containing {0, 1} such that if DM i,j = 0 then transition group i is independent on
state slot j.

For any transition group 1 ≤ i ≤ K we define πi as the projection πi : S → Π{1≤j≤N |DM i,j=1}Sj . �

13

To be able to perform reachability analysis on our Petri net we need to translate the Petri net to for
example mcrl2. Listing 1.1 contains the Petri net specified in the mcrl2 modeling language.

Listing 1.1: Petri net in mCRL2
1 act T0, T1, T2, T3, T4, T5;
2 init X(true, false, false, false, false);
3 proc X(P0, P1, P2, P3, P4: Bool) =
4 P0 =⇒
5 T0. X(P0=false, P1=true, P3=true) +
6 P1 =⇒
7 T1. X(P1=false, P2=true) +
8 P2 =⇒
9 T2. X(P1=true, P2=false) +

10 P3 =⇒
11 T3. X(P3=false, P4=true) +
12 P4 =⇒
13 T4. X(P3=true, P4=false) +
14 (P2 && P4) =⇒
15 T5. X(P0=true, P2=false, P4=false);

1.3.2 A Dependency Matrix for mcrl2

An lps admits a natural partitioning by assigning each summand its own group. Using this partitioning
we define the contents of the Pins dm for lps X DM (X) = DMX

K×N as follows.

DMX
i,j =

{
1 if ti,j 6= xj ∨ ∃0 ≤ k ≤ N, k 6= j : xj occurs in Ci or ti,k
0 otherwise.

We can now analyze the dependencies for the specification in Listing 1.1.

Example 1.10 (Dependency Matrix). The dm for the pts of Listing 1.1 on Page 14 is:



P0 P1 P2 P3 P4

T0 1 1 0 1 0
T1 0 1 1 0 0
T2 0 1 1 0 0
T3 0 0 0 1 1
T4 0 0 0 1 1
T5 1 0 1 0 1

.

Using this dm, reachability tools can use the fact that transition group T1 does not depend on all state
slots, e.g.

πT1 ({〈1, 0, 0, 0, 0〉, 〈0, 1, 0, 1, 0〉, 〈0, 0, 1, 1, 0〉,
〈0, 1, 0, 0, 1〉, 〈0, 0, 1, 0, 1〉}) =

{〈0, 0〉, 〈1, 0〉, 〈0, 1〉}.

N

Note that we do not define the elements of the matrix in terms of ones (1), because these values may be
approximated. I.e. if an element in a row contains a 1 it may actually be independent, but this can not
be determined in general with static analysis.

Example 1.11 (dependency approximation). In the simple recursive process

X(x, y) := if x ∨ y then a.X(y ← false) else b.X(y ← true), with initial state X(false, true)

14

static analysis – like in LTSmin – will notice that x is not independent. However good heuristics may
notice that the truth value of the condition (x ∨ y) does not depend on variable x, because the variable
x is always assigned false. Heuristics such as these are currently not built into LTSmin. N

Using the projection function πi we can redefine the next-state function for a pts. That is we extend
the definition of the function to get the next states for only the a particular transition group i.

Definition 1.12 (Partitioned Next-State function).

next-statei(s ∈ πi(SP)) = {s′ ∈ πi(SP) | s→i s
′}

�

1.4 The Pins back-end

The Pins back-end provide algorithms for state space exploration, including capabilities for checking
properties. The back-end provides two main ways of performing reachability. The first is symbolic
and the second is explicit. The latter can be performed distributed, multi-core or sequential. Currently
symbolic reachability can only be performed single-core, but attempts are currently being made to
parallelize symbolic algorithms [12]. In symbolic model-checking both the transition relation and the
state space is stored in some form of decision diagram. Our research focuses on improving symbolic
model-checking.

1.4.1 Symbolic reachability for Partitioned Transition Systems

The symbolic Pins back-end uses by default an List Decision Diagram (ldd) as an implementation for a
Multi-way Decision Diagram (mdd) to store sets of states and transition relations. It builds a symbolic
transition relation for each transition group and the set of reachable states in parallel. Transition relations
can not be built in advance, because the size of the domain of a state slot is often infinite. The transition
relation is instead extended at each level.

The transition relations are built by calling the next-state function for every unique combination of
relevant state slots and adding the transition with the identity relation for all irrelevant state slots
implicitly.

In terms of symbolic algorithms, we can partition the transition relation according to the transition
groups of the dm. That is we partition the transition relation into a disjunction – over separate groups
of conjunctions (collections of local transitions) as follows

↪→(x,x′) =

K∨
i=1

Di(x,x
′) =

K∨
i=1

(↪→i(πi(x), πi(x
′)) ∧

∧
{1≤j≤N |Di,j=0}

[xj = x′j]).

Heuristically conjunctively partitioned transition relations have been shown effective for synchronous
systems while disjunctively partitioned transition relations have been shown effective for asynchronous
systems [4].

For symbolic vector set operations we need to define a one step operation for a sub-vector.

step(S(x), ↪→((xi)Xi=1, (x
′
i)Xi=1), X) = (∃(xi)Xi=1(S(x) ∧ ↪→((xi)Xi=1, (x

′
i)Xi=1)))[x′i := xi | Xi = 1]

Using these redefined functions we can show an algorithm for symbolic reachability for ptss, which is
presented in Algorithm 2 on Page 16. In the algorithm presented we use a calligraphic font for variables
which are stored symbolically, such as the set of reachable states (R) and a normal font for variables

15

which are stored explicitly, such as the number of rows of the dm (K). The algorithm first initializes two
variables R and L which will contain the reachable states for the entire model and for a particular level
respectively. Then for each transition group a variable is initialized which contains the reachable states
(Rp

i) for that transition group and a variable which contains the transition relation for that transition
group (↪→p

i). After these initialization steps a loop starts which ends when no new states arise in a new
level. In this main loop the transition relation is built. The transition relation is built independently for
each transition group. First a state vector is initialized which only contains read and write dependent
state slots for transition group i. This state vector Lp is assigned the states of the last calculated level.
Then for every new state of this level the transition relation is extended, i.e. the successor states for the
new states are put in the transition relation. Next, the reachable states for the current transition group
extended with the states in the current level. Next the state space is built – again independently for
each transition group. The variable N is extended with all successor states using the one step function
step. Lastly all new states are assigned to L and R.

Algorithm 2: reach-bfs-prev [2]
Data: DM , K, s0

Result: R
1 R← {s0};
2 L ← R;
3 for 1 ≤ i ≤ K do
4 Rp

i ← ∅;
5 ↪→p

i ← ∅;
6 end
7 while L 6= ∅ do
8 for 1 ≤ i ≤ K do
9 Lp ← πi(L);

10 for sp ∈ Lp \ Rp
i do

11 ↪→p
i ← ↪→p

i ∪ {(s
p, dp) | dp ∈ next-statei(s

p)};
12 end
13 Rp

i ←R
p
i ∪ L

p ;
14 end
15 N ← ∅;
16 for 1 ≤ i ≤ K do
17 N ← N ∪ step(L, ↪→p

i ,DM i) ;
18 end
19 L ← N \R;
20 R ← R∪N ;
21 end
22

Build the tran-
sition relation

Build the state space

An alternative for reach-bfs-prev is an algorithm that learns the transition relation for transition
group i from the current level plus all the states in the transition groups < i. This is called chaining and

16

therefore the algorithm is called reach-chain-prev.

Algorithm 3: reach-chain-prev
Data: DM , K, s0

Result: R
1 R← {s0};
2 L ← R;
3 for 1 ≤ i ≤ K do
4 Rp

i ← ∅;
5 ↪→p

i ← ∅;
6 end
7 while L 6= ∅ do
8 for 1 ≤ i ≤ K do
9 Lp ← πi(L);

10 for sp ∈ Lp \ Rp
i do

11 ↪→p
i ← ↪→p

i ∪ {(s
p, dp) | dp ∈ next-statei(s

p)};
12 end
13 Rp

i ←R
p
i ∪ L

p ;
14 L ← L ∪ step(L, ↪→p

i ,DM i) ;
15 end
16 R ← R∪ L;
17 L ← L \ R;
18 end

A projection function on symbolic set is implemented as follows.

project(S(x), X) = ∃(xi)Xi=0.S(x),

where X is a row from a dependency matrix, e.g. πi(S(x)) = project(S(x),DM i).

1.4.2 A data structure for symbolic algorithms

For symbolic storage of the transition relation and the state space a form of Binary Decision Diagram
(bdd) is used, namely a ldd, which is defined as follows.

Definition 1.13 (List Decision Diagram [2]). An ldd is a Directed A-cyclic Graph (dag). A dag has
three types of nodes.

• {ε}: meaning true and does not have successors.

• ∅: meaning false and does not have successors.

• a node with label v and two successors (down, right) and is written as node(v,down, right).

The semantics JSK of an ldd S is as follows.

J{ε}K = {ε}
J∅K = ∅
Jnode(v, down, right)K = {vw | w ∈ JdownK} ∪ {JrightK}

�

1.4.3 Implementations of Decision Diagrams

The symbolic Pins back-end supports multiple implementations for decision diagrams, such as bdds,
mdds and other. All supported implementations are listed in Table B.2 on Page 74.

17

1.4.4 Symbolic Reachability Implementation in LTSmin

Currently the Pins back-end supports various reachability algorithms. One key variant is described in
Algorithm 2 is reach-bfs-prev. This algorithm can be found in pins2lts-sym.c.Algorithms 4, 5, 6, 7
and 8 on Page 18 show how actual vector set operations are implemented in the LTSmin back-end.

The way LTSmin performs reachability with ldds is by first initializing the cache with init-cache and
forwarding a call to step() to step-ldd(). To initialize the cache we define a vector P = 〈j | DM i,j = 1〉.
The algorithm init-cache creates a list of nodes – bottom up – with values indicating the projected
element. The recursive algorithm step-ldd first evaluates the base case – that is if the algorithm is
done. If not done then it first matches the values of the nodes in the set and relation. Then it tries to
look up the result in the cache for these values. If there is a cache miss then if the relation contains
an update for the current node then it writes the correct value of every linked node on the right. If
the relation does not contain an update than it simply copies the values already in the set – that is it
recursively calls step-ldd on the nodes below and to the right.

Algorithm 4: init-cache
Result: C

1 C ← {ε};
2 p← |P | − 1;
3 while p ≥ 0 do
4 C ← node(Pp, C,∅);
5 p = p− 1;
6 end

Algorithm 5: step-ldd
Data: C, S, R, s, r
Result: L

1 if R = ∅ ∨ S = ∅ then return ∅;
2 if r = |P | then return S;
3 if Pr = s then
4 S,R← match(S,R) ;
5 if R = ∅ ∨ S = ∅ then return ∅;
6 end
7 if in-op-cache(C, S,R) then return

cache-lookup(C, S,R);
8 L← ∅;
9 O ← R;

10 if Pr = s then
11 L← step-ldd(C,right(S),right(R), s, r);
12 R← down(R);
13 L← write(C, S,R,L, s, r);
14 else
15 L← copy(C, S,R, s, r);
16 end
17 add-to-cache(C, S,O,L) ;

Algorithm 6: match
Data: S,R
Result: S,R

1 while val(S) 6= val(R) do
2 if val(S) < val(R) then
3 S ← right(S);
4 if S = ∅ then return S,R;
5 end
6 if val(R) < val(S) then
7 R← right(R);
8 if R = ∅ then return S,R;
9 end

10 end

Algorithm 7: copy
Data: C, S, R, s, r
Result: L

1 Tr ← step-ldd(C,right(S), R, s, r);
2 Td ← step-ldd(C,down(S), R, s, r);
3 L← node(val(S), Td, Tr)

Algorithm 8: write
Data: C, S, R, L, s, r
Result: L

1 while R 6∈ {{ε}} do
2 T ← step-ldd(down(C),down(S),

down(R), s+ 1, r + 1);

3 T ← node(val(R), T,∅);
4 L← union(L, T);
5 R← right(R);
6 end

1.5 Pins2Pins wrappers

Due to the nice architecture of the Pins interface LTSmin allows many front-end and back-end indepen-
dent optimizations for model-checking which are shown as Pins2Pins wrappers in Figure 1.1 on Page
9. Three key wrappers are local transition caching, variable reordering, transition regrouping and partial
order reduction[7].

18

1.5.1 local transition caching

If a language module is slow the back-ends may benefit from caching the transition group vectors. The
cache uses the dm to only cache the short-vectors used by each transition group.

1.5.2 variable reordering, transition regrouping

This wrapper allows the reordering of transition groups and slots in the state vector. Optimizing both
may greatly speed up symbolic state space generation. For more detailed information about reordering
and regrouping please refer to [13]. The following reorderings and regroupings are implemented in Pins.
Note that some algorithms below use a cost function for heuristics.

column sort sorts columns such that 1s are placed leftmost.

column nub merges columns which have the same dependencies.

column swap with
simulated annealing

swaps columns based using simulated annealing [10] using the cost function.

column swaps swaps columns using the cost function.

column all
permutations

swaps columns using the cost function; tries every permutation.

row sort sorts rows such that 1s are placed leftmost.

row nub merges rows which have the same dependencies.

row subsume merges row i in row j if the dependencies of row i is a subset of the dependencies
of row j.

In our next chapters row subsumption poses some problems, we therefore provide a formal notion of row
subsumption.

Definition 1.14 (row subsumption). The row subsumption operator v is a binary operator and is
defined in terms of two different rows from the dm DMK×N . We put an ordering on the elements of the
dependency matrix as 0 < 1.

DM i′ v DM i =

{
DM i if ∀0 ≤ j ≤ N : DM i′,j ≤ DM i,j ,
DM i′ , DM i otherwise.

DM i′ v DM i reads as “row DM i′ is subsumed by row DM i” or “row DM i subsumes row DM i′ ”.

�

1.5.3 partial order reduction

Partial Order Reduction (por) is used to explore a subset of the state space. In symbolic state space
exploration por is not supported. Also for languages which do not have a guard-splitting implementation
por is not available. In this research we implement guard-splitting for mcrl2 in order to make por
available. Guard-splitting is however one step towards por for a language front-end. In Chapter 4 we
will explain what is also necessary to enable por.

1.6 Implementation in LTSmin

Our work is done on all three main components of LTSmin. Namely the Pins front-end, the Pins2Pins
wrappers and the Pins back-end.

19

1.6.1 The Pins front-end

A language front-end in the Pins interface only has to implement GreyBox interface (gb) methods.
These methods are always prefixed with the string gb and are defined in the C header file pins.h.
Table B.1 show a list of GreyBox methods and how they relate to the algorithms used in this Chap-
ter. The GBgetTransitionsShort and GBgetTransitionsLong relate closely together. Symbolic algo-
rithms such as the reach-bfs-prev use GBgetTransitionsShort to compute successor states. How-
ever, most language front-ends only support computing successor states for a long vector. Therefore
GBgetTransitionsShort expands a short vector to a long vector by using values from the initial state.
GBgetTransitionsShort accepts only states projected using π. In Chapter 3 we will explain how we
change these methods to improve reachability analysis. In chapter 4 we will mainly show how we added
functions to the Pins interface to support guard-splitting.

1.6.2 The Pins2Pins wrappers

Table B.1 also shows the regrouping function on the dm. This function takes a model and a regrouping
specification to apply transformations on the dm. We will show in Chapter 3 how we made modifications
to this function.

1.6.3 The Pins back-end

The variables used in algorithms such as reach-bfs-prev are shown in Table B.3. Furthermore the
operations on sets are listed in tables B.5 and B.6. In Chapter 3 we will discuss how the vset_next
function is changed to support separating read and write dependencies. In Chapter 4 we will add a join
operation on two sets. We thus get a new vset_join function in the symbolic back-end.

Every vector set implementation in a symbolic back-end contains not only the nodes which make up the
set, but also the projection it uses. Thus one key function call is init_domain to initialize the domain of
a set by using the projection information. After a set is initialized one can use all vector set operations
such as vset_minus. Initialization of sets with some projection is something we are going to change in
Chapter 3.

20

Chapter 2

Research Method

Separating read and write dependencies and guard-splitting are two distinct changes to existing reach-
ability algorithms. We thus have worked on these improvements separately. Both improvements have
separate chapters in this thesis and our approach will therefore also be discussed separately. Both prob-
lems will be discussed with the expected results and goals. To accurately conclude our work we will state
research questions and challenges we will face. Lastly will will make important assumptions to be able
to validate our work.

Comparing sizes of state spaces of a large amount of models is part of the validation of our work. This
means that instead of tweaking options to reachability algorithms such as the size of node tables and
cache sizes to get the best results for each model, we instead produce benchmarks for a large set of
models. There is one other decision that contributed to our choice to produce many results. Before
starting on the benchmarks we did not know in advance which models could benefit of our work. Only
clear scatter plots (such as Figure 3.4 on Page 43) helped us to see which models benefit of separating
dependencies and guard-splitting.

Our experiments are done on machines with Intel Xeon E5335 processors running at 2 GHz. The machines
have 24 GB of memory and run an up to date Scientific Linux distribution. Every experiment we do is
repeated three times and in the results we will show the standard deviation of both the time and memory
usage to show that our measurements are precise. The scatter plots of our experiments always show the
result without our changes on the horizontal axis and the result with our changes on the vertical axis.
That means if a result is plotted on the right half of the y = x line then the experiment with our changes
runs faster or uses less memory.

2.1 Separating Read and Write Dependencies

Separating read and write dependencies involves providing a more fine-grained view on dependencies
between transition groups and state slots. We will first describe this problem and then show how we
approach this problem. Separating read and write dependencies entail two key improvements. We always
have transition relations that are at least as large as without separating read and write dependencies.
Thus we can cope better with the explosion of nodes when using a bad variable ordering. Also, we can
perform less next-state calls if we only compute successor states for short vectors of read dependent
state slots. In order to validate our work we will make assumptions with relation to existing work on for
example dependency matrices and existing algorithms.

2.1.1 Problem

Currently the projection πi as in Definition 1.9 is defined as πi : S → Π{1≤j≤N |Di,j 6=−}Sj . This means
that when this projection is used every state vector of some transition group is projected to a short vector

21

where variables are read, written or both, e.g. on Line 9 of Algorithm 2. When building the transition
relation (Line 8 to 14 of Algorithm 2)

1. the value for the next level for a state slot that is only read is also calculated. Naturally this gives
much overhead, because the value of this state slot will not change.

2. the value for the current level for a state slot that is only written is also calculated. This gives
much overhead, because the value of the state slot in the current level is not relevant.

Example 2.1. Suppose we have a very simple recursive process

X(x, y, z) := x < 5 ∧ z > 0⇒ X(x+ 1, x+ 1, z)

Then we have a dm with three state slots and one transition group.

[x y z

g1 + w r
]
,

where + means that a variable is both read and written, w means that a variable is only written and r
means that a variable is only read. Then the transition relation for transition group g1 will – according
to πg1 – contain six variables: 〈x, x′, y, y′, z, z′〉, in which the primed variables are variables for the next
state. But since we know y is only written and z is only read we can reduce the transition relation to
the following variables: 〈x, x′, y′, z〉. N

2.1.2 Results & Quantitative Goals

Separating read and write dependencies entail two key improvements. The first improvement involves
obtaining a smaller transition relation. Especially useful is, when a transition relation uses a bad variable
ordering removing any node from the transition relation may significantly reduce the size of the transition
relation. The second improvement comes from using the new projection functions on the new dependency
matrices.]The set that a projection gives is used to compute successor states. So any improvement on
this projection such that it gives a smaller set greatly speeds up computing successors. On a dependency
matrix for read dependencies we can define a new projection which only projects to state slots which
are read. The set that the new projection gives is only as large as the set the current π projection gives.
When a row in the dependency matrix has many write dependencies and few read dependencies the set
by π can be significantly larger. Thus a smaller set given by the new projection will greatly improve
reachability analysis in terms of time. Removing nodes from the transition relation obviously improves
reachability in terms of space.

2.1.3 Qualitative Goals

In the part of separating dependencies in our research we have some concrete goals. We give precise
notions for read and write dependencies which can also cope with copying values. Also we will present
a precise notion for the transition relation which exploits these dependencies. This notion can be used
in general by all symbolic implementations (Buddy: A bdd package (buddy), ldd, etc.). Reachability
algorithms need to exploit the definitions of read and write dependencies, so we will also present abstract
forms of these algorithms (improvements on Algorithms 2, 3) in our thesis. To benchmark our work
against existing reachability algorithms we need to improve step-ldd (Algorithm 5). For better results
we will also show new algorithms on the dependency matrix and one improvement. The results of the
benchmarks will be given in scatter plots to quickly identify which models really benefit of our changes.
Next one can then look up detailed information of the benchmarks in tables with information about
memory usage etc. To be able to show benchmarks for Dve with our changes we will also fix a bug in
the dependency matrix of the Dve compiler for LTSmin. Lastly we will give a list of future work to be
done and discuss why — in some parts we did more work than described in our research proposal and
in other parts did less work.

22

2.1.4 Research Questions

We can conclude our research by answering the main research question.

How can precise notions for read and write dependencies improve symbolic reachability analysis?

Interesting sub questions include the following.

• How can we optimize how the transition relation is built?

• How can we improve projections with the notion of read and write dependencies?

• How much time and space do we save with this technique?

• To what extent can advanced reachability strategies such as saturation profit from our technique?

2.1.5 Challenges

For implementing the separation of read and write dependencies we will face four main challenges. The
first is to come up with precise notions for read and write dependencies and letting algorithms exploit
these. The second challenge is to make sure read and write dependency matrices for mcrl2, Dve and
Promela are correct. The third challenge is to make sure the read and write dependencies are in line
with the definitions for explicit reachability analysis with Partial Order Reduction. Lastly we need to
find models which can be used in benchmarking. Finding good models is hard because firstly, we do not
know models of the mentioned modeling languages very well. Let alone knowing whether or not they
benefit of our changes. Simply using all known models in for example the Beem [8] database can not be
done without precise measurements. We need to repeat experiments multiple times to see if standard
deviation of our measurements is not to large.

2.1.6 Validation & Assumptions

In our research we will not prove our algorithms correct using our definitions. This is because this is
also not done for what is already there in the current situation. We will however precisely explain how
our new definitions and algorithms work. But most importantly, we will provide an exhaustive list of
tables with many details of our experiments done. With this information one can see that all of our
experiments compute the same state spaces as without our changes. Naturally, wrong assumptions on
either the models or the environment in which we do our experiments will probably lead to false results
if we compare them to results which are known to be correct. Nevertheless, we assume that the work
which is already done and described in Chapter 1 is correct. This means that for example we assume
dependency matrices for mcrl2, Dve and Promela are correct. Moreover we assume that reachability
algorithms (2, 3) and their implementations in LTSmin produce the correct state space.

2.2 Guard-based Symbolic Reachability

Our work on guard-splitting uses the same approach as separating read and write dependencies. That
is, describing definitions for dependencies, dependency matrices and algorithms. Also both chapters will
have a discussion about the results. To validate our work we make one additional assumption on the
logic of term rewriting systems and the completeness of model specifications.

2.2.1 Problem

Although symbolic model checking works fine for many models, it highly depends on the so-called lo-
cality of transitions. It fails for systems with transitions that read or write many state variables in one
transition. Consider a transition of the following form.

23

Condition(xj . . . xk) => xi := Expression,

where 1 ≤ j ≤ k ≤ |x|.

It reads the whole state vector, but only modifies one variable xi. This is very inconvenient for symbolic
model checking. Often, the Condition can be split in many guards. Assume that the transition above is
of the following form.

G1(xj . . . xk) ∧ . . . ∧Gm(xo . . . xp) => xi := Expression,

where 1 ≤ j ≤ k ≤ |x| and 1 ≤ o ≤ p ≤ |x|.

The main research question is how to improve symbolic reachability, so that it can profit from the guard
structure. We expect big improvements in the efficiency, especially for synchronous models like hardware
models and combinatorial puzzles.

2.2.2 Results & Quantitative Goals

There are two main benefits to guard-splitting. The first one is that for some models we can greatly
reduce the amount of next-state calls. This is due to the fact that we also store which states satisfy
which guards separately from what the successor states are. We keep this information throughout the
computation of each level. This means if one guard in the condition evaluates to false we already know for
which states we do not have to compute successor states. This can not be done without guard-splitting.
The second benefit involves just like with separating read and write dependencies much smaller decision
diagrams. This is because instead of one transition relation for one transition group we have more smaller
ones for each guard. Again — if we have a bad variable ordering removing nodes from a single decision
diagram greatly reduces the bad effects of this ordering.

In symbolic reachability analysis we save time because operations on decision diagrams take less time
if we have smaller decision diagrams. Also, reducing the amount of next-state calls reduces the time
needed to complete reachability analysis. Since we now store extra decision diagrams, namely for the
guards we might not always save space, especially when there are many transitions which always satisfy
all guards for a transition group.

2.2.3 Qualitative Goals

Like with separating read and write dependencies we need to give formal definitions for independence of
guards. We will also give a precise notion of independence for only the update part of a transition group.
Along with the definitions for independence we will provide notions for dependency matrices and their
respective projections. For Dve and Promela guard-splitting is already (partially) implemented. So
we will look at how we can implement guard-splitting for mcrl2. This is especially interesting because
mcrl2 is a term rewriting system, unlike Dve and Promela. For mcrl2 we will thus illustrate how
to perform guard-splitting and how to evaluate guards. For reachability algorithms, to use guards we
have to show how we can reduce sets of states in the current level. This reduction can be efficiently
performed by a join operation on sets. We will thus give a precise notion for the join operation which
multiple symbolic back-ends can use. In order to benchmark our guard-splitting algorithm with this join
operation we implement the join operation in ldd. We tried to also benchmark guard-splitting for Dve
but due to time restrictions we are not able to show the results hereof. We will however discuss how
far we got benchmarking guard-splitting for Dve. The result of our experiments will also be given in
scatter plots and an exhaustive list of tables with detailed information. Guard-splitting poses problems to
dependency matrix operations because the knowledge of whether the front-end or back-end knows which
states satisfies which condition is switched. We will thus discuss this in a section about dependency

24

matrix operations. Like with our approach for separating read and write dependencies we will give a list
of future work and discuss why we did more or less work than described in our research proposal. For
example why we can not do Partial Order Reduction with our work as was expected when writing our
research proposal.

2.2.4 Research Questions

Analogous to our other research question we will answer the following.

To what extent can guard-splitting improve symbolic reachability analysis?

Interesting sub questions include the following.

• What is a good notion for guards usable in symbolic reachability analysis?

• How can guard-splitting be implemented for mcrl2?

• To what extent can saturation profit from guards?

• How much time and space do we save with our technique of guard-splitting?

2.2.5 Challenges

There is one main challenge in performing guard-splitting. That is, an individual guard may evaluate to
‘maybe’, i.e. not true or false. We give detailed information in Section 4.3 what is involved here. Unlike
in our research proposal we thought that guard-splitting would be much harder than separating read
and write dependencies. This is however not the case because algorithms involving guard-splitting can
be drafted quite easily on paper. Furthermore we experienced that guard-splitting for term rewriting
systems is rather easy; Section 4.4.

2.2.6 Validation & Assumptions

Validation of our work on guard-splitting is done much the same way as for separating read and write
dependencies (Section 2.1.6). We will give an abstract description of extensions to existing reachability
algorithms (Algorithms 2, 3). From these descriptions it should not be hard to identify whether or not
these algorithms are correct. Since — as a result we will have an exhaustive list of benchmarks we
can compare state spaces of experiments with and without our changes. So we can conclude that our
work is valid. We will however make some assumptions on existing work and on a specific element in
mcrl2. Our work with relation to guard-splitting will be benchmarked against our changes with read
and write separation, we thus assume that our work there is correct. Furthermore we assume that both
matrices which already exists in Dve and Promela for guard-splitting are correct. For mcrl2 we do one
important assumption which relates to the fact that a guard can evaluate to ‘maybe’. The assumption
is that we assume that either if a guard evaluates to maybe than the original condition evaluates to
false. Or, if all required guards for a transition group evaluate to ‘true’ than the original condition also
evaluates to ‘true’. Since we leave the ‘maybe check’ to future work — that is, checking whether if one
guard evaluates to ‘maybe’ there is another guard which evaluates to false. We assume that every model
with which we test has a complete specification.

2.3 Related Work

Our work presented in this thesis is based on some earlier work done at the University of Twente on
Promela and Partial Order Reduction [5, 7]. The work done on guards for Partial Order Reduction is
not completely compatible with symbolic algorithms and mcrl2 as a language front-end. The definition
for write dependent used in the work by Pater et al. [7] is inconvenient for symbolic algorithms, we will

25

thus extend this definition. In mcrl2 individual conjuncts of the condition (guards) may not evaluate
to true or false. Because Definition 2.2 does assume this we need to extend this definition.

LTSmin supports many front-ends. In our benchmarks we will measure if some of these front-ends
benefit of our changes. We will perform benchmarks for mcrl2, divine and Promela [11]. Guards
are already implemented for divine and Promela so benchmarking our work with these front-ends is
easy and it may give extra insights in whether our work is correct and whether it really speeds up the
computation of state spaces.

Ciardo et al. [4] implemented a partitioning for a saturation algorithm which can be applied to com-
pletely general asynchronous systems. This is implemented in the smart model checker. Saturation is a
technique which also recognizes and exploits the presence of event locality but recursively applies multi-
ple ’local’ fixed-point iterations instead of a single fixed-point in our ’traditional’ reachability algorithm.
Saturation is a hard algorithm but results in peak memory requirements and consequently run times of-
ten several orders of magnitude smaller than the traditional algorithms. Saturation is also implemented
in LTSmin by Tien Loong Siaw [9] in LTSmin. The saturation algorithm uses traditional reachability
algorithms such as described in Listing 2 to compute these local fixed-points. In our research it is relevant
to see how separating dependencies and implementing guard-splitting can improve saturation.

2.3.1 Guards for Pins

Typically a specification written in mcrl2 contains multiple guarded transitions; see Definition 1.5. A
guarded transition consists of a guard (or condition) and an assignment. When por was implemented
as a Pins2Pins wrapper guards were specifically designed to be used for por. The drawback of the
following definitions is that they can only be used for por and not for symbolic reachability. The reason
for this is that the definitions assume every state only has one successor state, like an lps without Σ.
Another drawback is that the write set in Definition 2.5 is only usable for por and not for symbolic
algorithms. In symbolic algorithms we must separate copying values from simply writing values. To
the best of our knowledge the need for two different notions for write dependent is quite unique. The
need arises from the fact that we have many front-ends in LTSmin for which some support arrays and
other do not. Also LTSmin supports both explicit reachability analysis with partial order reduction and
symbolic reachability analysis.

Definition 2.2 (guard [5]). A guard g : SP 7→ B is a total function that maps each state in a ts to a
boolean value, B = {true, false}. We write g(s) or ¬g(s) to denote that guard g is true or false in state
s ∈ SP . We also say that g is enabled or disabled. �

Definition 2.3 (structural transition [5]). A structural transition t ∈ T is a tuple (G, a) such that a
is an assignment a : SP 7→ SP and G is a set of guards. We denote the set of enabled transitions by
en(s) := {t ∈ T |

∧
g∈G g(s)}. We write s t−→ when t ∈ en(s), s t−→ s′ when s′ = a(s) and s t1t2...tk−−−−−→ sk

when ∃s1, . . . , sk ∈ SP : s
t1−→ s1

t2−→ s2 . . .
tk−→ sk. �

Besides guarded transitions, structural information is required on the exact involvement of state variables
in a transition. To define some guard g depends on index i, we test whether g(s) is different from g(s′)
for some state s and s′ that only differ at index i.

Definition 2.4 (disagree sets [5]). Given states s, s′ ∈ SP , for 1 ≤ i ≤ N , we define the set of indices
on which s and s′ disagree as δ(s, s′) := {i | si 6= s′i}. �

Definition 2.5 (affect sets [5]). For t = (G, a) ∈ T , the set of reachable states R and g ∈ G, we define

1. the test set of g is Ts(g) ⊇ {i | ∃r, r′ ∈ R : δ(r, r′) = {i} ∧ g(r) 6= g(r′)},

2. the test set of t is Ts(t) :=
⋃

g∈G Ts(g),

3. the write set of t is Ws(t) ⊇
⋃

r∈R{δ(r, a(r)) | r t−→ a(r)},

4. the read set of t is Rs(t) ⊇ {i | ∃r, r′ ∈ R : δ(r, r′) = {i} ∧ r t−→ ∧r′ t−→ ∧Ws(t)∩ δ(a(r), a(r′)) 6= ∅}
and

26

5. the variable set of t is V s(t) := Ts(t) ∪Rs(t) ∪Ws(t).

�

Just like over approximating variable dependencies these affect sets may be over approximated (⊇) by
the language front-end.

Example 2.6 (Guards). If we ignore the assumption that every state only has one successor state the
guard information of process p1() of Example 1.1 on Page 14 is as follows. The guard is g1 = (x==true),
the affect sets of the first transition group are Ts(g1) = {1}, Ts(t) = {1}, Ws(t) = {1, 3}, V s(t) = {1, 3}
and Rs(t) = {1} because it x is both read and written. N

Using conjunctive partitioning schemes in symbolic model checking is not new. Ciardo actually used this
scheme for saturation. In our work we use guards to reduce sets of states to prevent computing successor
states. We can not however take the intersection (∩) of a set of states that satisfy a guard and the set
of states for which we want to compute successors for. This is due to the fact that a guard often uses
only a small subset of state slots and the set of states for which we want to compute successors for uses
all state slots. We thus define a join like in relational databases. The join for symbolic sets is defined in
Section 4.5 on Page 54. The join is a conjunction between sets with different projections. It is thus a
special case of a conjunction.

27

Chapter 3

Symbolic Reachability Using Separate
Read, Write and Copy Dependencies

In Chapter 1 we saw that partitioning the next-state interface and defining dependencies between
transition groups and state slots can greatly speed up reachability analysis. We can however put an
even more fine-grained view on these dependencies. If we take into account that a transition group can
either read, write and copy values we can speed up reachability analysis even more. We first extend the
Pins interface with definitions for reading, writing and copying values. Then we show how the symbolic
back-end can profit from these definitions. Also, we show how Pins2Pins wrappers are updated to cope
with these new definitions.

3.1 The Partitioned Next-State Interface

In general a transition group can read, write and copy values in state slots. This is a more fine-grained
view on dependencies in Chapter 1. Here — a dependency means that a transition group both reads
and writes from and to a state slot. One can imagine that this is naturally not always the case. It is
however not easy to identify whether a transition group only reads or writes to a state slot. Even more
non evident is that a transition group can copy values in case a state slot represents an element in an
array. We provide three definitions; read-independent, must-write-dependent and may-write-independent.
With these definitions we can precisely identify the behavior of transition groups.

Our first definition can be used to state that a transition group does not read a state slot.

Definition 3.1 (read-independent). Given a pts P = 〈SP ,→P , s0〉 transition group i is read-independent
on state slot j if for all 〈s1, . . . , sN 〉, 〈t1, . . . , tN 〉 ∈ SP , whenever 〈s1, . . . , sj , . . . , sN 〉→i〈t1, . . . , tj , . . . ,
tN 〉 ∈ →P it holds that (sj = tj ∧ ∀rj ∈ Sj : 〈s1, . . . , rj , . . . , sN 〉→i〈t1, . . . , rj , . . . , tN 〉) ∨ (∀rj ∈
Sj : 〈s1, . . . , rj , . . . , sN 〉→i〈t1, . . . , tj , . . . , tN 〉). I.e. the value of state slot j is not relevant in transi-
tion group i. Whether some transition group i and state slot j is not read-independent may also be
over-approximated. �

This definition says that if there is a transition between two states s and t, then if state slot j is read-
independent then transition group i must always copy the value for state slot j, because it ignores state
slot j. Or, the transition group must for any value in state slot j, in state s go to state t, such that it
does not have to read state slot j. Note that this definition also correctly marks y as read-dependent in
the following nondeterministic case.

y = 1 =⇒ y ← {0, 1}.

This is because the definition handles both cases y = 1 =⇒ y ← 0 and y = 1 =⇒ y ← 1 separately.
In practice one can often easily see whether or not a state slot is read-independent or not. Suppose that
state slot j represents a variable x in a modeling language. Then x is often read-independent if it is not

29

on the right hand side of an assignment or in the condition of a transition group. This is also how we
fill the following matrix for an lps.

Definition 3.2 (read dependency matrix). A Read Dependency Matrix (rdm) RMK×N = RDM (P) for
pts P is a matrix with K rows and N columns containing {0, 1} such that if RM i,j = 0 then transition
group i is read-independent on state slot j. �

Recall Definition 1.5; the definition of an lps in mcrl2. We define the contents of the Pins rdm for lps
X RDM (X) = RMX

K×N as follows.

RMX
i,j =

{
1 if ∃0 ≤ k ≤ N : xj occurs in ti,k ∧ (j 6= k ∨ ti,j 6= xj) ∨ xj occurs in Ci

0 otherwise.

Analogous to whether or not a transition group reads a state slot we define whether or not a transition
group writes to a state slot.

Definition 3.3 (must-write-dependent). Given a pts P = 〈SP ,→P , s0〉 transition group i is must-write-
dependent on state slot j if for all 〈s1, . . . , sN 〉, 〈t1, . . . , tN 〉 ∈ SP , whenever 〈s1, . . . , sj , . . . , sN 〉 →i 〈t1,
. . . , tj , . . . , tN 〉 ∈ →P we actually have ∀s′j ∈ Sj : 〈s1, . . . , s′j , . . . , sN 〉 →i 〈t1, . . . , tj , . . . , tN 〉. Note
that whether a transition group i is must-write-dependent;unlike read-independent can not be over-
approximated. Transition group i either always writes the same value or there does not exist a transition.

�

This definition says that if we have a transition between two states s and t and state slot j is must-write-
dependent then we must be able to assign any value to state slot j and still go to state t. In practice
a state slot is not must-write-dependent if it is not on the left hand side of an assignment. With —
however the main exception being writing to an element in an array. To cope with this exception we will
give another write dependency definition in a moment. First we show the definition of a new matrix and
how we can fill this matrix for an lps.

Definition 3.4 (must-write dependency matrix). A Must-write Dependency Matrix (wdm) WMK×N =
WDM (P) for pts P is a matrix with K rows and N columns containing {0, 1} such that if WM i,j = 1
then transition group i is must-write-dependent on state slot j. �

The wdm WDM (X) = WMX
K×N for lps X is defined as follows.

WMX
i,j =

{
1 if ti,j 6= xj

0 otherwise.

Using both the definition of read-independent and write-dependent we can not efficiently cope with
arrays in modeling languages. Now, mcrl2 does not have arrays as a language construct, but for
example Promela and divine do. Consider the following Promela example.

Listing 3.1: Example producer-consumer Promela model
1 #define N 2
2 int b[N];
3 int i = 0;
4 proctype c() { // consumer
5 do
6 :: i > 0 −> atomic { i−−; b[i] = false; }
7 od
8 }
9 proctype p() { // producer

10 do
11 :: i < N −> atomic { b[i] = true; i++; }
12 od
13 }

30

14 init {
15 run c();
16 run p();
17 }

The state space of the model can be illustrated as follows.

〈0, 0, 0〉 〈1, 1, 0〉 〈2, 1, 1〉

p p

cc

Figure 3.1: State space of model Listing 1.1. Edge labels are transition groups.

The model contains a buffer of length 2 and a variable for writing and reading an element in this buffer.
The consumer writes false at index position i. The producer writes true at index position i. A natural
way of partitioning this model is to introduce two transition groups. One for the consumer and one for
the producer. The state vector is partitioned into three state slots; i, b0, b1. The key problem in this
model is that if we write to one position in the buffer we must copy the other values in the buffer. Two
major reasons to introduce a new definition for write independent are as follows.

1. There is a conflicting requirement for write dependent between por in explicit reachability analysis
and symbolic reachability analysis. I.e. Definition 3.3 does not match Definition 6 in [5]. Here the
write set says a transition group is write dependent on a state slot if that transition group only
supports a transition for some values, we will call this may-write dependent.

2. We do not want to over-approximate a may-write dependent state slot to read-dependent in sym-
bolic reachability analysis, because this is not efficient. I.e. values only have to be copied, not
read.

Now follows a definition in line with Definition 3.3 which can be used in both symbolic algorithms as
well as por in explicit algorithms.

Definition 3.5 (may-write-independent). Given a pts P = 〈SP ,→P , s0〉 transition group i ismay-write-
independent on state slot j if for all 〈s1, . . . , sN 〉, 〈t1, . . . , tN 〉 ∈ SP , whenever 〈s1, . . . , sj , . . . , sN 〉 →i 〈t1,
. . . , tj , . . . , tN 〉 ∈ →P it holds that sj = tj , i.e. state slot j is not modified in transition group i. Whether
some transition group i and state slot j is not may-write-independent may also be over approximated. �

This definition can be best explained by discussing its negation. If transition group i is may-write-
dependent on state slot j then there are some states s and t and a transition between them for which
the value in state slot j is changed (sj 6= tj). This is thus exactly the case when we have some array and
an index for which we write to state slot j. For all other values we do not do such a transition we must
copy those values. Naturally we can not copy those values if we replace the value for state slot j with
some other value.

For mcrl2 the May-write Dependency Matrix (mdm) is identical to the wdm, because mcrl2 does have
features such as arrays.

Definition 3.6 (may-write dependency matrix). A mdm MMK×N = MDM (P) for pts P is a matrix
with K rows and N columns containing {0, 1} such that if MM i,j = 0 then transition group i is may-
write-independent on state slot j. �

There are two ways to use may-write dependencies in the projections. First we can reserve special values
in the ldds or we can handle a may-write dependent state slot as if it were read. The latter option is
easier and we thus reserve the first options for future work. For the latter option we need to be able
to ‘merge’ the may-write and the must-write matrix. This can be done with the logical ∨ operation on
every element in both matrices.

31

Definition 3.7 (∨ on matrices). The logical or operation (∨) on two matrices is defined as M =
M ′ ∨M ′′ = ∀i, j : Mi,j = M ′i,j ∨M ′′i,j . �

We now have three new matrices for which we have to define a two projections.

Definition 3.8 (projections). For any transition group 1 ≤ i ≤ K, we define ρi as the projection ρi :
S → Π{1≤j≤N |RM i,j=1∨MM i,j=1}Sj and ωi as the projection ωi : S → Π{1≤j≤N |WM i,j=1∨MM i,j=1}Sj . �

In the following example we will give three dependency matrices for both the 1-safe Petri net in Figure
1.2 and the producer-consumer model in Listing 1.1. We omit giving a precise notion for dependency
matrices for Promela, they can be found in [11].

Petri net producer-consumer

rdm



P0 P1 P2 P3 P4

T0 1 0 0 0 0
T1 0 1 0 0 0
T2 0 0 1 0 0
T3 0 0 0 1 0
T4 0 0 0 0 1
T5 0 0 1 0 1


[i b0 b1

c 1 0 0
p 1 0 0

]

wdm



P0 P1 P2 P3 P4

T0 1 1 0 1 0
T1 0 1 1 0 0
T2 0 1 1 0 0
T3 0 0 0 1 1
T4 0 0 0 1 1
T5 1 0 1 0 1


[i b0 b1

c 1 0 0
p 1 0 0

]

mdm



P0 P1 P2 P3 P4

T0 1 1 0 1 0
T1 0 1 1 0 0
T2 0 1 1 0 0
T3 0 0 0 1 1
T4 0 0 0 1 1
T5 1 0 1 0 1


[i b0 b1

c 1 1 1
p 1 1 1

]

Example 3.9 (dependency matrices and projections). For the projections we have

• ρT1 ({〈1, 0, 0, 0, 0〉, 〈0, 1, 0, 1, 0〉, 〈0, 0, 1, 1, 0〉, 〈0, 1, 0, 0, 1〉, 〈0, 0, 1, 0, 1〉}) = {〈0〉, 〈1〉}.

• ρc({〈0, 0, 0〉, 〈1, 1, 0〉, 〈2, 1, 1〉}) = {〈0, 0, 0〉, 〈1, 1, 0〉, 〈2, 1, 1〉}.

• ωT1 ({〈1, 0, 0, 0, 0〉, 〈0, 1, 0, 1, 0〉, 〈0, 0, 1, 1, 0〉, 〈0, 1, 0, 0, 1〉, 〈0, 0, 1, 0, 1〉}) = {〈0, 0〉, 〈1, 0〉, 〈0, 1〉}.

• ωc({〈0, 0, 0〉, 〈1, 1, 0〉, 〈2, 1, 1〉}) = {〈0, 0, 0〉, 〈1, 1, 0〉, 〈2, 1, 1〉}.

N

If one compares this example to Example 1.10 one can see that ρ may give smaller sets of states than π.
This greatly speeds up symbolic reachability analysis because we only have to compute successor states
for the set of states given by ρ. Using the projection functions ωi and ρi we can redefine the next-state
function for a pts. That is we extend the definition of the function to get the next states for only a
particular transition group i.

Definition 3.10 (Partitioned Next-State function).

next-statei(s ∈ ρi(SP)) = {s′ ∈ ωi(SP) | s→i s
′}

�

32

As a last extension to the Pins interface we — for writing convenience extend the definition of the dm
as follows.

Definition 3.11 (dependency matrix). A dependency matrix DMK×N for pts P is a matrix with K
rows and N columns defined in terms of the contents of RM , WM and MM with columns containing
{-, r, W, w, +}, such that:

DM i,j =



− (totally independent) if WM i,j = 0 and RM i,j = 0 and MM i,j = 0, else
r (read dependent) if WM i,j = 0 and MM i,j = 0, else
w (must-write dependent) if RM i,j = 0 and MM i,j = 0, else
W (may-write dependent) if RM i,j = 0 and WM i,j = 0, else
+ (totally dependent) .

�

The writing convenience follows for example from the fact that DM i,j = r =⇒ WM i,j = 0 and
MM i,j = 0.

3.2 The Pins back-end

To be able to let multiple symbolic back-ends exploit our new notions for independence we first provide
new notions for both the transition relation and the one step operation. Then we show how we can apply
the transition relation on a set of states with ldds. Other implementations such as Buddy do not yet
use our notion for independence, this is left as future work.

3.2.1 Symbolic reachability for Partitioned Transition Systems

The transition relation is changed such that a decision diagram only contains read nodes for a variable if
the state slot represented by that variable has a read dependency. The same holds for write nodes.

↪→(x,x′) =

K∨
i=1

Di(x,x
′) =

K∨
i=1

(↪→i($i(x), $′i(x
′)) ∧

∧
{1≤j≤N |DM i,j=−}

[xj = x′j]),

where $i(x) = (xj)j∈{j′|DM i,j′∈{r,W}} and $
′
i(x) = (xj)j∈{j′|DM i,j′∈{w,W}}

The one step operation on a subvector is changed such that it knows not every variable in the transition
relation has both a read and a write node.

step(S(x), ↪→((xi)Xi=1, (x
′
i)X′

i=1), X,X ′)

= (∃(xi)Xi=1∧X′
i=1(S(x) ∧ ↪→((xi)Xi=1, (x

′
i)X′

i=1)))[x′i := xi | X ′i = 1]

We extend our algorithm reach-bfs-prev and reach-chain-prev to incorporate the separation of read
and write dependencies as follows. We project the states in the current level only to the read variables.
Then to the transition relation ↪→p

i a tuple is added in which the update is a state projected down to
the write variables. Now, to make sure our ldd implementation can exploit the fact that elements in
a tuple in the transition relation uses different projections we supply rows from the read and the write

33

dependency matrix.

Algorithm 9: reach-bfs-prev-rw
Data: RM ,WM ,MM ,K, s0

Result: R
1 WM ←WM ∨MM ;
2 R← {s0};
3 L ← R;
4 for 1 ≤ i ≤ K do
5 Rp

i ← ∅;
6 ↪→p

i ← ∅;
7 end
8 while L 6= ∅ do
9 for 1 ≤ i ≤ K do

10 Lp ← ρi(L);
11 for sp ∈ Lp \ Rp

i do
12 ↪→p

i ← ↪→p
i ∪ {(s

p, dp) | dp ∈ next-statei(s
p)};

13 end
14 Rp

i ←R
p
i ∪ L

p ;
15 end
16 N ← ∅;
17 for 1 ≤ i ≤ K do
18 N ← N ∪ step(L, ↪→p

i ,RM i,WM i) ;
19 end
20 L ← N \R;
21 R ← R∪N ;
22 end

Our algorithm that uses chaining is changed similarly.

Algorithm 10: reach-chain-prev-rw
Data: RM ,WM ,MM ,K, s0

Result: R
1 WM ←WM ∨MM ;
2 R← {s0};
3 L ← R;
4 for 1 ≤ i ≤ K do
5 Rp

i ← ∅;
6 ↪→p

i ← ∅;
7 end
8 while L 6= ∅ do
9 for 1 ≤ i ≤ K do

10 Lp ← ρi(L);
11 for sp ∈ Lp \ Rp

i do
12 ↪→p

i ← ↪→p
i ∪ {(s

p, dp) | dp ∈ next-statei(s
p)};

13 end
14 Rp

i ←R
p
i ∪ L

p ;
15 L ← L ∪ step(L, ↪→p

i ,RM i,WM i) ;
16 end
17 R ← R∪ L;
18 L ← L \ R;
19 end

3.2.2 Symbolic Reachability Implementation in LTSmin

We changed the ldd implementation to support the separation of the read and the write dependencies
as follows. We changed the initialization of the cache (init-cache) to — starting from the bottom, first
make a ’write’ node for a variable and then make a ’read’ node for a variable. The algorithm step-ldd

34

is changed as follows. First matching a node value is done only if a variable has a read dependency.
Then again the cache is consulted. If there is a cache miss then it either writes all values in the relation
to all nodes in the set if the variable should be written or it continues with the next value if the variable
is only read. Then if a variable is both read and write dependent then we move down in the relation.
Then if a variable has a write dependency then the actual value is written, else it may continue down
the list. Again if the relation has no update or dependency on a variable it simply copies values from
below and to the right. To indicate which indices in the state vector have read and write dependencies
we provide two vectors; PR

i = 〈j | DM i,j ∈ {r, W}〉 and PW
i = 〈j | DM i,j ∈ {w, W}〉.

Algorithm 11: init-cache
Result: C

1 C ← {ε} ;
2 r ← |PR| − 1 ;
3 w ← |PW | − 1 ;
4 while r ≥ 0 ∨ w ≥ 0 do
5 if w ≥ 0 ∧ (r = −1 ∨ PW

w ≥ PR
r) then

6 C ← node(PW
w , C, {ε}) ;

7 w = w − 1;
8 end
9 if r ≥ 0 ∧ (w = −1 ∨ PR

r ≥ PW
w) then

10 C ← node(PR
r , C,∅) ;

11 r = r − 1;
12 end
13 end

35

Algorithm 12: step-ldd
Data: C, S, R, s, r, w
Result: L

1 if R = ∅ ∨ S = ∅ then return ∅;
2 if r = |PR| ∧ w = |PW | then return S;
3 if PR

r = s then
4 S,R← match(S,R) ;
5 if R = ∅ ∨ S = ∅ then return ∅;
6 end
7 if in-op-cache(C, S,R) then return

cache-lookup(C, S,R);
8 L← ∅ ;
9 O ← R ;

10 if PR
r = s ∨ PW

w = s then
11 if PR

r 6= s then
12 L← step-ldd(C,right(S), R, s, r, w) ;
13 else
14 L← step-ldd(C,right(S),right(R), s,

r, w) ;

15 end
16 if PR

r = s ∧ PW
w = s then

17 R← down(R) ;
18 C ← down(C) ;
19 end
20 if PW

w = s then
21 L← write(C, S,R, L, s, r, w)
22 else
23 L← read(C, S,R,L, s, r, w)
24 end
25 else
26 L← copy(C, S,R, s, r, w)
27 end
28 add-to-cache(C, S,O,L) ;

Algorithm 13: copy
Data: C, S, R, s, r, w
Result: L

1 Tr ← step-ldd(C,right(S), R, s, r, w) ;
2 Td ← step-ldd(C,down(S), R, s, r, w) ;
3 L← node(val(S), Td, Tr)

Algorithm 14: write
Data: C, S, R, L, s, r, w
Result: L

1 if PR
r = s then

2 r ← r + 1 ;
3 end
4 if PW

w = s then
5 w ← w + 1 ;
6 end
7 while R 6∈ {{ε}} do
8 T ← step-ldd(down(C),down(S),

down(R), s+ 1, r, w) ;

9 T ← node(val(R), T,∅) ;
10 L← union(L, T) ;
11 R← right(R) ;
12 end

Algorithm 15: read
Data: C, S, R, L, s, r, w
Result: L

1 if PR
r = s then

2 r ← r + 1 ;
3 end
4 if PW

w = s then
5 w ← w + 1 ;
6 end
7 T ← step-ldd(down(C),down(S),down(R),
s+ 1, r, w) ;

8 T ← node(val(R), T,∅) ;
9 L← union(L, T) ;

3.3 Pins2Pins wrappers

With the three definitions introduced in Section 3.1 we introduce three new operations on the dependency
matrix. Also we show how the existing row subsumption operation on the dependency matrix is changed.
Changing the row subsumption operation is not trivial, because w may not subsume -.

3.3.1 New Dependency Matrix Operations

We introduce three new operations on the dependency matrix, namely row-elm, col-elm and w < r.
The first two algorithms can remove rows and columns from the dependency matrix respectively. The
algorithm w < r can sort columns and rows in the dependency matrix more efficiently. We only illustrate
how these algorithms should work and in which cases they benefit reachability analysis. We leave the
implementation of these algorithms to future work.

Definition 3.12 (Row Elimination). We can remove rows from the dm if there are only reads in those
rows and one is only interested in the state space, not the transitions. The row-elm function returns al

36

row indices that can be removed from the dm:

row-elm = {0 ≤ i ≤ K | ∀0 ≤ j ≤ N : DM i,j ∈ {-, r}}.

�

One example in which this operation may prove useful is the Sokoban game. In a Sokoban game there
are typically transition groups which check if the state of the game is ‘finished’. This requires checking
if all the blocks are on goal positions. Computing this often takes a long time. Performing the row-elm
operation on the dependency matrix removes these checks. Note however that in the next chapter we will
show a guard-splitting algorithm which can efficiently check whether all the blocks are on goal positions.
With this algorithm we do not necessarily have to remove rows from the dependency matrix for a Sokoban
model.

Definition 3.13 (Column Elimination). We can remove columns from the dm if there are only writes
in those columns and one is interested in the bisimulation of the original pts. The col-elm function
returns al column indices that can be removed from the dm:

col-elm = {0 ≤ j ≤ N | ∀0 ≤ i ≤ K : DM i,j ∈ {-, w, W}}.

�

There does not come one specific model to mind in which the row-elm operation can be useful. However
one can imagine that performing reachability analysis on a bisimilar model is greatly improved w.r.t. to
time and space.

The third algorithm that can be implemented is an algorithm named ‘w < r’ that sorts columns in such
a way that {w, W} dependencies in the dm are put before + dependencies, + dependencies are put before r
dependencies and r dependencies are put before - dependencies. Future work may show if the relational
product operation in bdds profit from this sorting algorithm.

3.3.2 Row Subsumption

Since - dependencies are not read and w does not allow copying values, w dependencies may not subsume
- dependencies. In this section we describe how we can make row subsumption work with our new defi-
nitions for (in)dependence. The issue for row subsumption is illustrated in the following example.

Example 3.14 (row subsumption for w). Consider the process P :

P (x, y, z) =

x =⇒ a.P (x, 1, 1)+

x =⇒ b.P (x, y, 2),
with initial state P (1, 0, 0).

The dm DM of process P is:

[x y z

a r w w
b r − w

]
.

The state space of this process is as shown in Figure 3.3.

We can now show that if we let a w state slot subsume a - state slot we do not produce the same state
space. The dm with row subsumption applied DM ′ is:

37

100

111 102

112

a (y ← 1, z ← 1)

b (z ← 2)

b (z ← 2)

a (y ← 1, z ← 1)
b (z ← 2)a (y ← 1, z ← 1)

a (y ← 1, z ← 1)

b (z ← 2)

Figure 3.2: State space of process P using DM

[x y z

a r w w
b r w w

]
.

With this dm the dependency of state slot y in transition group b changes into a w. This means that
transition group b will always write a value from the initial state. Therefore the state space of P using
DM ′ is as follows.

100

111 102

a (y ← 1, z ← 1)

b (y ← 0, z ← 2)

b (y ← 0, z ← 2)

a (y ← 1, z ← 1)
b (y ← 0, z ← 2)a (y ← 1, z ← 1)

Figure 3.3: State space of process P using DM ′

Because the two state spaces are obviously not equal; w may not subsume -.

N

So we can not put a total ordering on the dependencies as we did in Chapter 1. We can however put a
partial ordering on the dependencies as follows, such that w can not subsume -:

+

r W

w-

38

3.4 Implementation in LTSmin

To support separating dependencies in LTSmin we have changed all three major components in LTSmin.
We have changed the Pins front-end, wrappers and back-end. In the front-end we have changed the
GBgetTransitionsShort and GBgetTransitionsLong. In the wrappers we have changed how trans-
formations can be done on three dms. In the back-end we have changed how the transition relation is
applied on a set of states using both read and write dependencies.

3.4.1 The Pins front-end

In Chapter 1 we stated that the GBgetTransitionsShort uses the projection π. We changed this to
support both the ρ and ω projection. So now a symbolic back-end has to ask successor states for sets
of states projected with ρ. The Pins front-ends mostly only implement the GBgetTransitionsLong
function so we have to expand the short vector to a long vector with more values from the initial state.
This is because in most cases short vectors projected with ρ are shorter than short vectors projected
with π. Also a successor state given by a result of GBgetTransitionsLong is projected in the current
situation with π. We now project successor states with ω. In our work we did not implement any rdm or
wdm for any language front-end, because this was already done. However, with the definitions presented
in this chapter it should be stated that one can get the rdm with GBgetDMInfoRead and the wdm with
GBgetDMInfoWrite.

3.4.2 The Pins2Pins wrappers

Much work is done on dm operations. Two key problems are solved in this area. The first problem is
that, since we have two new matrices we have to apply any transformation on three matrices. Namely
the classic dm from Chapter 1, the rdm and the wdm. Determining which transformations to do and
actually do them is a big architectural issue in the Pins2Pins wrapper. This issue can be solved in one
of two ways.

1. The first solution to see which transformations we can do is as follows. For every transformation
we create a new matrix. More specifically if we do an operation on rows we create a new matrix of
length N ∗ 3. If we do an operation on columns we create a matrix of height K ∗ 3. The values of
the rdm and wdm can be encoded in binary form in the new matrix. This is convenient because
with this encoding we do not have to change the cost function or the subsumption functions as
described in Chapter 1. The encoding for a state slot j and dependencies {-, w, W, w, +} is as follows.
The column r stands for read, w stands for write and c stands for copy.



r w c

- 0 0 1
r 0 1 1
w 1 0 0
W 1 0 1
+ 1 1 1


Note that this encoding precisely implements the partial ordering on dependencies described in
Section 3.3.2. The disadvantage of this approach is that after every transformation we have to
recreate an N ∗ 3 or a K ∗ 3 matrix.

2. The second solution is to compare values of all three matrices (rdm, wdm and mdm) and trans-
forming each matrix individually. This approach makes comparing values in the matrices a little
complex but we do not have to recreate an N ∗ 3 or a K ∗ 3 after each transformation. So we
implemented this latter approach.

39

3.4.3 The Pins back-end

Implementing the separation of dependencies does not require many changes in the symbolic back-end.
When initializing the sets (calling init_domain) we changed the projection from π to ρ and when
initializing the transition relation we added both the ρ and ω projection to the relation. The second
change we made was letting the ldd implementation of vset_next use the ρ and ω projection.

3.4.4 Compatibility

Our implementation of separating dependencies does not pose severe backward or forward compatibility
issues between language front-ends such as mcrl2 or Promela and the Pins interface. The reason
herefore is that if a language front-end does not support either the rdm or the wdm the symbolic
back-end uses the dm as both the rdm and the wdm. This can be done because every dependency
can be over-approximated to a +. The only issue w.r.t. compatibility is that the vset_prev for ldd
is not implemented. This means that currently one can for example not find traces to certain states.
Implementing vset_prev should not take more than a few hours.

3.4.5 Reproducablity

The experiments we did with our changes can be easily reproduced. To benchmark our changes we will
first explain how to reproduce an environment for the current situation. Next we will explain how to set
up an environment with our changes.

Environment for current situation

First compile and install LTSmin as described here: http://fmt.cs.utwente.nl/tools/ltsmin/.
When cloning the git repository use however the git repository at git@github.com:Meijuh/ltsmin.git
and checkout the next branch. This version namely contains a fix w.r.t. caching in the mdd_next function.
Install LTSmin with support for divine, Promela and mcrl2. Or install a subset of these languages
if you do not want to reproduce experiments with all these languages. If you want to do experiments
with mcrl2 make sure to install version 2012-10. Running an mcrl2 experiment can be done with the
command lps2lts-sym ––mcrl2="––rewriter=jitty" /some-path/1394-fin.lps.

Environment with separated dependencies

First compile and install LTSmin as described in the previous section. Use however the rw branch in
git@github.com:Meijuh/ltsmin.git. Also install a patched version for divine from the rw branch
in git@github.com:Meijuh/Divine2.git. To run a divine experiment with our changes execute for
example first the following command: divine compile -lW iprotocol.5.dve. This will compile a
Dve model for LTSmin with W dependencies over-approximated to +. Next you can execute the fol-
lowing command to perform symbolic reachability analysis on this model specification: dve2lts-sym
/some-path/iprotocol.5.dve2C. When running Promela experiments you must also over-approximate
W dependencies, thus run the command spins -W model.prom instead of spins model.prom.

3.5 Benchmarks

For a quick overview of our results please refer to the scatter plots in Figures 3.4 (run time) and 3.5
(memory usage) on Pages 43 and 44. Detailed information about our experiments are clearly given in
tables, these can be found in appendix C.1 on Page 77. Note that appendix C.1 contains a small subset
of our results. In this appendix only results for mcrl2 with chain-prev;no-sat are given. All other results
can be found online, see ‘Open online access to our benchmarking results’ on Page 7.

40

http://fmt.cs.utwente.nl/tools/ltsmin/
git@github.com:Meijuh/ltsmin.git
git@github.com:Meijuh/ltsmin.git
git@github.com:Meijuh/Divine2.git

One mcrl2 model that clearly benefits of separated dependencies is a model of the firewire protocol,
i.e. 1394-fin.lps. This model has an interesting dependency matrix, because many state slots have only
a ‘w’ dependency. Listing 3.2 shows a snapshot of this dependency matrix. Because the ρ projection
does not project to ‘w’ state slots the result is fewer next-state calls and shorter transition relations.
Another mcrl2 model that benefit of our changes is a large variation of our discussed 1-safe Petri net
in Figure 1.2. This model is vasy.lps. Note that vasy-init.lps is mostly the same model. In vasy-init.lps
the complex first step is omitted. With the results of these two models we see that the Petri net can
be computed with fewer next-state calls. The Petri net also has smaller transition relations, because
the plot of vasy-init.lps is put a little lower than the y = x line. This is confirmed when looking at
the detailed information in Table C.1 and Table C.2. With our changes the transition relation has 1374
nodes less.

Listing 3.2: Partial dependency matrix for 1394-fin.lps

...
23: ++ww+-rww-------------+wwwwwwwww-w
24: ++ww+-rww-------------+wwwwwwwww-w
25: ++ww+-rww-------------+wwwwwwwww-w
26: ++ww+-rww-------------+wwwwwwwww-w
27: ++ww+-rww-------------+wwwwwwwww-w
28: ++ww+-rww-------------+wwwwwwwwww-
29: ++ww+-rww-------------+wwwwwwwwww-
30: ++ww+-rww-------------+www+-wwwww-
31: ++ww+-rww-------------+w+ww-wwwww-
32: ++ww+-rww-------------+wwww-wwwww-
33: ++ww+-rww-------------+wwwwwwwwww-
34: ++ww+-rww-------------+wwwwwwwww--
35: ++ww+-rww-------------+wwwwwwwww--
...

The scatter plots on Page 43 show a small speedup (−29 seconds) for cambridge.7.dve2C. In the results
that can be found online one can see that the transition relation and the set of projected states are a
little smaller (−1%), this is interesting because the speedup is more than 1%. Another interesting aspect
of this model is the dependency matrix. Listing 3.3 shows a well represented snapshot of the original
dependency matrix. One can indeed see that the few w dependencies indeed result in the decrease of
the size of the transition relation and the set of projected states. Even more interesting is the series of
+ dependencies. These dependencies are actually W dependencies over-approximated to a +. In future
work where we support copying values, e.g. by reserving special node values in the symbolic back-end
we might get a much better result. Many Dve and also Promela models contain buffers and channels
modeled as an array. Therefore cambridge.7.dve2C is not at all the only model which may profit from
support for copying values.

Listing 3.3: Partial dependency matrix for cambridge.7.dve2C

...
15: ++r---
16: +rr---
17: ---+--++++++++++++++++++++++------------------------
18: ---+-w++++++++++++++++++++++------------------------
19: ---+-w++++++++++++++++++++++------------------------
20: ---+-w++++++++++++++++++++++------------------------
21: ---+-w++++++++++++++++++++++------------------------
22: ---+w-++++++++++++++++++++++------------------------
23: ---+--++++++++++++++++++++++------------------------
24: ---+-w++++++++++++++++++++++------------------------
25: ---+--++++++++++++++++++++++------------------------

41

26: ---+-w++++++++++++++++++++++------------------------
27: ---+-w++++++++++++++++++++++------------------------
28: ---+rr--
29: ---+rr--
30: ---++r--
31: ---+rr--
32: ---++r--
...

In our scatter plots we only show one Promela model. There are many Promela models which do not
significantly benefit of our changes. There are however exceptions, for example the elevator2.3.prom.spins
model. The results for this model can be found online (see ‘Open online access to our benchmarking
results’, Page 7).

The Promela compiler for LTSmin appears to have a bug in the -W program option. This option should
add a read dependency for may-write (W) dependencies. In the case were the Promela compiler per-
forms internal reachability analysis with spins_simple_reach for atomic statements a problem occurs.
Some W dependencies are namely not correctly over-approximated. So, all the models on which internal
reachability analysis is performed we do not get correct state spaces. These results are thus omitted from
our figures. We might actually get interesting results if this bug is fixed in the Promela compiler.

Separating dependencies should in theory always produce faster computations. This appears to be indeed
the case. However, most of the results are not significant. There are probably two reasons herefore. First,
we find that the dependency matrices of most models are already sparse. Second, we believe that support
for copying values by reserving a special value in the transition relation may produce great speed ups.
Because dependency matrices are already sparse we might see better results if we re-run our experiments
with optimizations to the dependency matrix such as row subsumption. Row subsumption combines
transition relations into a larger ones. However, since we remove nodes from the transition relation with
our changes, these relations may actually become notably smaller.

42

●●

●
●●

●

.1.2.3.4.6.81234681020406010
0

20
0

35
0

60
0∞

.1
.2

.3
.4

.6
.8

1
2

3
4

6
8

10
20

40
60

10
0

20
0

35
0

60
0

∞
re

ac
h

tim
e

w
/o

 r
ea

d−
w

rit
e

se
pa

ra
tio

n
(s

ec
)

reach time w/ read−write separation (sec)
op

tio
ns

● ● ● ● ● ●

bf
s−

pr
ev

;n
o−

sa
t

bf
s−

pr
ev

;s
at

−
lik

e

bf
s−

pr
ev

;s
at

−
lo

op

ch
ai

n−
pr

ev
;n

o−
sa

t

ch
ai

n−
pr

ev
;s

at
−

lik
e

ch
ai

n−
pr

ev
;s

at
−

lo
op

m
od

el

●
ad

di
ng

.3
.d

ve
2C

bl
oc

ks
.3

.d
ve

2C

br
p.

lp
s

br
p.

su
m

in
st

.lp
s

ca
m

br
id

ge
.7

.d
ve

2C

co
nn

ec
t−

fo
ur

6x
4.

lp
s

●

●●
●

●●

.1.2.3.4.6.81234681020406010
0

20
0

35
0

60
0∞

.1
.2

.3
.4

.6
.8

1
2

3
4

6
8

10
20

40
60

10
0

20
0

35
0

60
0

∞
re

ac
h

tim
e

w
/o

 r
ea

d−
w

rit
e

se
pa

ra
tio

n
(s

ec
)

reach time w/ read−write separation (sec)

m
od

el

●
co

un
t.p

m
l.s

pi
ns

el
ev

at
or

.3
.d

ve
2C

fir
ew

ire
_l

in
k.

5.
dv

e2
C

fr
og

s.
3.

dv
e2

C

lif
t3

−
fin

al
.lp

s

m
cs

.5
.d

ve
2C

op
tio

ns

● ● ● ● ● ●

bf
s−

pr
ev

;n
o−

sa
t

bf
s−

pr
ev

;s
at

−
lik

e

bf
s−

pr
ev

;s
at

−
lo

op

ch
ai

n−
pr

ev
;n

o−
sa

t

ch
ai

n−
pr

ev
;s

at
−

lik
e

ch
ai

n−
pr

ev
;s

at
−

lo
op

● ● ● ●● ●

.1.2.3.4.6.81234681020406010
0

20
0

35
0

60
0∞

.1
.2

.3
.4

.6
.8

1
2

3
4

6
8

10
20

40
60

10
0

20
0

35
0

60
0

∞
re

ac
h

tim
e

w
/o

 r
ea

d−
w

rit
e

se
pa

ra
tio

n
(s

ec
)

reach time w/ read−write separation (sec)

op
tio

ns

● ● ● ● ● ●

bf
s−

pr
ev

;n
o−

sa
t

bf
s−

pr
ev

;s
at

−
lik

e

bf
s−

pr
ev

;s
at

−
lo

op

ch
ai

n−
pr

ev
;n

o−
sa

t

ch
ai

n−
pr

ev
;s

at
−

lik
e

ch
ai

n−
pr

ev
;s

at
−

lo
op

m
od

el

●
13

94
−

fin
.lp

s

pr
od

uc
tio

n_
ce

ll.
6.

dv
e2

C

ru
sh

ho
ur

.4
.d

ve
2C

so
ko

ba
n.

1.
dv

e2
C

so
ko

ba
n.

2.
dv

e2
C

sy
na

ps
e.

7.
dv

e2
C

●

.1.2.3.4.6.81234681020406010
0

20
0

35
0

60
0∞

.1
.2

.3
.4

.6
.8

1
2

3
4

6
8

10
20

40
60

10
0

20
0

35
0

60
0

∞
re

ac
h

tim
e

w
/o

 r
ea

d−
w

rit
e

se
pa

ra
tio

n
(s

ec
)

reach time w/ read−write separation (sec)

m
od

el

●
va

sy
−

in
it.

lp
s

va
sy

.lp
s

op
tio

ns

●
ch

ai
n−

pr
ev

;n
o−

sa
t

F
ig
ur
e
3.
4:

T
im

e
sc
at
te
r
pl
ot
s
1
–
20

fo
r
w
it
h
re
ad

/w
ri
te

se
pa

ra
ti
on

43

●● ●
●● ●

50000

1e+
05

2e+
05

5e+
05

1e+
06

2e+
06

5e+
06

1e+
07

2e+
07

5e+
07 ∞

50000
1e+

05
2e+

05
5e+

05
1e+

06
2e+

06
5e+

06
1e+

07
2e+

07
5e+

07
∞

m
em

ory usage w
/o read−

w
rite separation (K

B
)

memory usage w/ read−write separation (KB)
options

●●●●●●

bfs−
prev;no−

sat

bfs−
prev;sat−

like

bfs−
prev;sat−

loop

chain−
prev;no−

sat

chain−
prev;sat−

like

chain−
prev;sat−

loop

m
odel

●
adding.3.dve2C

blocks.3.dve2C

brp.lps

brp.sum
inst.lps

cam
bridge.7.dve2C

connect−
four6x4.lps

●●●●●●
50000

1e+
05

2e+
05

5e+
05

1e+
06

2e+
06

5e+
06

1e+
07

2e+
07

5e+
07 ∞

50000
1e+

05
2e+

05
5e+

05
1e+

06
2e+

06
5e+

06
1e+

07
2e+

07
5e+

07
∞

m
em

ory usage w
/o read−

w
rite separation (K

B
)

memory usage w/ read−write separation (KB)

m
odel

●
count.pm

l.spins

elevator.3.dve2C

firew
ire_link.5.dve2C

frogs.3.dve2C

lift3−
final.lps

m
cs.5.dve2C

options

●●●●●●

bfs−
prev;no−

sat

bfs−
prev;sat−

like

bfs−
prev;sat−

loop

chain−
prev;no−

sat

chain−
prev;sat−

like

chain−
prev;sat−

loop

●●●●● ●

50000

1e+
05

2e+
05

5e+
05

1e+
06

2e+
06

5e+
06

1e+
07

2e+
07

5e+
07 ∞

50000
1e+

05
2e+

05
5e+

05
1e+

06
2e+

06
5e+

06
1e+

07
2e+

07
5e+

07
∞

m
em

ory usage w
/o read−

w
rite separation (K

B
)

memory usage w/ read−write separation (KB)

options

●●●●●●

bfs−
prev;no−

sat

bfs−
prev;sat−

like

bfs−
prev;sat−

loop

chain−
prev;no−

sat

chain−
prev;sat−

like

chain−
prev;sat−

loop

m
odel

●
1394−

fin.lps

production_cell.6.dve2C

rushhour.4.dve2C

sokoban.1.dve2C

sokoban.2.dve2C

synapse.7.dve2C

●

50000

1e+
05

2e+
05

5e+
05

1e+
06

2e+
06

5e+
06

1e+
07

2e+
07

5e+
07 ∞

50000
1e+

05
2e+

05
5e+

05
1e+

06
2e+

06
5e+

06
1e+

07
2e+

07
5e+

07
∞

m
em

ory usage w
/o read−

w
rite separation (K

B
)

memory usage w/ read−write separation (KB)

m
odel

●
vasy−

init.lps

vasy.lps

options

●
chain−

prev;no−
sat

F
igure

3.5:
M
em

ory
scatter

plots
1
–
20

for
w
ith

read/w
rite

separation

44

3.6 Future Work

On the subject of separating dependencies there is still some work to be done on both the back-ends and
front-ends for LTSmin.

• Support for may-write dependencies in the symbolic back-ends, such that we do not have to over-
approximate these dependencies to a +. With this improvement we may see better results because
we can save many next-state calls. Consider for example Listing 3.3. This dependency matrix
contains lots of + dependencies, which are actually W dependencies. If we reserve a special node
value for copying in the transition relation then we do not have to project to these state slots and
thus get less states to compute successors for. Furthermore if we reserve a value for copying then
we get even smaller transition relations.

• Fix a bug in Promela where may-write dependencies are not correctly over-approximated to a +
when internal reachability is performed.

• Implement the vset_next function in all symbolic back-ends other than ldd.

• Implement the vset_prev function in all symbolic back-ends.

• Fix vset_least_fixpoint to support separated read and write dependencies.

• Investigate how saturation can profit from separated read and write dependencies.

• Re-do the experiments with optimizations to the dependency matrix. We expect improvements
when for example row subsumption is used.

3.7 Conclusion

The problem we approached in this chapter involves separating dependencies. Instead of simply looking
at whether a transition group is dependent on a state slot. We separate this into either a read or write
dependency. By handling these two dependencies distinctly we have shown that we can improve the time
and memory usage for the computation of the state space. Two key changes to symbolic reachability
algorithms entail these improvements. The first improvement is that using a projection (ρ) which only
looks at read dependencies we can greatly reduce the amount of next-state calls. Second, it is indeed
possible to remove read nodes from the transition relation if a state slot that is represented by that read
node is not read. Similarly we can remove write nodes if the state slot is not written. This latter change
results in smaller transition relations. If we would re-do our experiments with optimizations to the
dependency matrix, such as row subsumption we expect even better results. Removing nodes from the
transition relation namely reduces the chance of a blow up in the number of nodes when a bad variable
ordering is used. The effects of this blow up is probably reduced even more when row subsumption is
used.

Our benchmarks show that every computation of state spaces benefit of our improved algorithms. If a
model has w (must-write) dependencies in the dependency matrix then the transition relation is smaller.
This reduces the memory footprint as well as the time needed to compute the state space. Even better;
a model of a 1-safe Petri net shows a massive speed up. This is due to the fact that the amount of
next-state calls is significantly reduced to the extent that the model suddenly becomes tractable for
LTSmin.

Because Promela and Dve models often use buffers and channels modeled as an array, it is essential
that we provide better support for W (may-write) dependencies. We can do this by reserving a special
node value in the symbolic back-ends to support copying values. We believe that this improvement will
show great speed ups for many Promela and Dve models.

Working on separating dependencies was harder than expected in our research proposal. This is due to
the fact that Partial Order Reduction uses a different notion for write dependent than which is usable
in symbolic algorithms. The amount of time we spent on this issue prevented us from examining how
saturation can benefit from our work described in this chapter. We expect however that also saturation

45

can greatly benefit of our work here. An implementation of saturation such as reach_sat_like tries
to compute successors for subsets of transition groups. The saturation implementation tries to only
compute successors for transition groups that could possibly have successors because of interleaved
dependencies between transition groups [9]. This is opposed to our algorithm reach-chain-prev where
only every transition group is used to compute successors. When looking at interleaved dependencies
saturation looks at the dependency matrix described in Chapter 1. This means that saturation does not
look at separate read and write dependencies. It thus assumes that every dependent state slot writes.
If saturation would look at our more fine-grained notion of dependencies it may conclude that some
transition groups may not have successors because the interleaved dependencies are actually not write
dependencies.

46

Chapter 4

Guard-based Symbolic Reachability

In the previous chapter we saw how improved notions of dependencies can speed up symbolic reachability
analysis. This chapter focuses less on dependencies. In this chapter we show how we can extend reachabil-
ity algorithms reach-bfs-prev and reach-chain-prev with guard-splitting. Guard-splitting involves
evaluating individual conjuncts from a condition separately from the next-state computation.

4.1 Background

For this chapter we need to define a new operation on indexed sets. For this an indexed set for some
domain D is defined as follows. Typically in Pins the domain is the set of natural numbers (N).

Definition 4.1 (indexed set).

DI def
=
∏
i∈I

Di,

where I is the index set. �

The join relation between to sets is defined as follows.

Definition 4.2 (join on indexed sets). Let I1, I2 be index sets and S1 ⊆ DI1 , S2 ⊆ DI2 be indexed sets
then

SI1
1 on SI2

2 = {s ∈ DI1∪I2 | ΠI1(s) ∈ S1 ∧ΠI2(s) ∈ S2}.

�

Example 4.3. Let D = {a, b, c}, I = {1, 2, 3, 4, 5}, S1 = {(a, a, a), (a, b, c), (b, b, b)}, S2 = {(a, a, a), (a,
b, c), (b, b, b)}, I1 = {1, 2, 3}, I2 = {3, 4, 5} then S1 on S2 = {(a, a, a, a, a), (a, a, a, b, c), (b, b, b, b, b)}. N

In Section 4.5.1 we will show how the the join operation can be used on symbolic sets rather than on
indexed sets.

4.2 The Monolithic Next-State Interface

We first extend our definition of tss with guards. We do this so that we can also extend the definition
of ptss with guards.

Definition 4.4 (Transition System). A ts is a structure 〈S,→, s0, G〉, G are the set guards. A guard
is a total function that maps a state to false, maybe or true, i.e. g : S → {−, ?,+}. We write g(s) to
denote the evaluation of the guard g in state s ∈ S. The logical ∧ of two guards is defined as

47


∧ − ? +

− − − −
? − ? ?
+ − ? +

.
�

So, a guard can evaluate to − (false), + (true) or ? (maybe). Why we need to support that guards can
evaluate to maybe is illustrated in Example 4.7.

4.3 The Partitioned Next-State Interface

Here we extend the definition of ptss from Chapter 1 with guards. With the notion of guards we provide
two new dependency matrices for ptss. Furthermore we show how a variation on the next-state
function can benefit of these matrices.

Definition 4.5 (Partitioned Transition System). A pts is a structure P = 〈SP , ↪→P , s0P , 〈〈g1, . . . , gM 〉,
〈G1, . . . , GK〉〉〉. GP = 〈Γ, G〉 = 〈〈g1, . . . , gM 〉, 〈G1, . . . , GK〉〉. The vector 〈g1, . . . , gM 〉 contains the
guards and the vector 〈G1, . . . , GK〉 contains sets of indices (∀1 ≤ k ≤ K : Gk ⊆ N+

≤M) for the vector of
guards. A transition group →i is guarded by some vector G′ = (〈g1, . . . , gM 〉k)k∈Gi

if

1. ∀s ∈ R : (∃k ∈ Gi : gk(s) = −) =⇒ 6 ∃s′ ∈ R : (s, s′) ∈ →i, i.e. the existance of a false guard
implies there is no successor state.

2. ∀s ∈ R : (∀k ∈ Gi : gk(s) = +) =⇒ ∃s′ ∈ R : (s, s′) ∈ →i, i.e. all guards true implies at least
once successor state.

3. ∀s ∈ R : (∃k ∈ Gi : gk(s) = ?) =⇒ ∃k′ ∈ Gi : k 6= k′ ∧ gk′(s) = −, i.e. if a guard evaluates to
maybe then there must be another guard that evaluates to false, i.e. the guarded transition does
not depend on the evaluation of gk.

The defined ts of P is 〈SP ,→P , s0, GP〉.

�

We have extended the definition of ptss with two new vectors. One vector contains the guards which
are functions on states. The other vector contains sets of indices to denote which guard belongs to which
transition group. Typically in modeling languages a guard is a single conjunct in the condition of a
transition group. A guard can be evaluated separately from the next-state function. The vector 〈G1,
. . . , GK〉 indicates for each transition group which guard is conjunctively bound to which other guards.
The following example shows how we can identify guards in the 1-safe Petri net of Figure 1.2.

Example 4.6 (Guards in a pts). We denote the pts P of the Petri net as follows.

P = 〈{〈1, 0, 0, 0, 0〉, 〈0, 1, 0, 1, 0〉, 〈0, 0, 1, 1, 0〉, 〈0, 1, 0, 0, 1〉, 〈0, 0, 1, 0, 1〉},
{(〈1, 0, 0, 0, 0〉, 〈0, 1, 0, 1, 0〉), . . .}, 〈1, 0, 0, 0, 0〉,
〈〈[P0], [P1], [P2], [P3], [P4]〉, 〈{0}, {1}, {2}, {3}, {2, 4}〉〉〉,
with N = 5, K = 6 and M = 5.

N

In this example it may not be clear why a guard can evaluate to maybe. Consider Example 4.7.

48

〈1, 0, 0, 0, 0〉 〈0, 1, 0, 0, 1〉

〈0, 1, 0, 1, 0〉

〈0, 0, 1, 0, 1〉

〈0, 0, 1, 1, 0〉

[P0]

[P1]

[P3] [P2]

[P4]

[P3]

[P4]

[P2]

[P1][P2] ∧ [P4]

Figure 4.1: Example partinioning of the Petri net in Figure 1.2 with guards, transition groups are
omitted.

Example 4.7 (Guard evaluation to maybe).

someterm ∧ false (1)
if (p != null && p.method()) { // next state } (2)

N

Example 4.7.1 is a term with two conjuncts: ‘someterm’ and ‘false’. If a term rewriting system such as
mcrl2 tries to evaluate ‘someterm’ as a guard than the result will be ‘someterm’. Which we denote
as ? since the truth value of the whole term depends one the evaluation of ‘false’. The second example
is syntax we can find in languages such as Java. Since every element in the vector 〈G1, . . . , GK〉 is a
set we can evaluate the guard ‘p.method()’ before we evaluate ‘p != null’. If ‘p’ is a null pointer then
‘p.method()’ can not evaluate to true or false. A language front-end should therefore evaluate it to
maybe.

4.3.1 State slot dependencies

With our notion of guards we provide two new definitions of independence which closely relate to the read-
independent (Definition 3.1). Along with these definitions we will also give their respective dependency
matrices and projections. With this information we can efficiently evaluate guards and compute successor
states.

Definition 4.8 (guard-independent [7]). Given a pts P = 〈SP ,→P , s0, GP〉 state label i is independent
on state slot j if 〈g1, . . . , gi, . . . , gM 〉 for all 〈s1, . . . , sN 〉 ∈ R, whenever ∃v ∈ {−, ?,+}. gi(〈s1, . . . , sj , . . . ,
sN 〉) = v then

1. for all rj ∈ Sj , we also have gi(〈s1, . . . , rj , . . . , sN 〉) = v, i.e. the value of state slot j is not relevant
for the evaluation of state label i.

�

This definition says that if we have a state s and a state slot j we should be able to assign any value
to state slot j and not change the outcome of the evaluation of the guard. In practice we make guard i
dependent on state slot j if the variable that is represented by state slot j occurs in guard i.

The Guard Dependency Matrix (gdm) is defined as follows.

Definition 4.9 (guard dependency matrix). A gdm GM×N = GDM(P) for pts P is a matrix with M
rows and N columns containing {0, 1} such that if Gi,j = 0 then guard i is independent on state slot j.
For any guard 1 ≤ i ≤M , we define γi as the projection γi : S → Π{1≤j≤N |Gi,j=1}Sj . �

49

Recall Definition 1.5; the definition of an lps in mcrl2. The gdm for lps X GDM(X) = GMX
M×N , is

defined as follows.

GMX
k,j =

{
1 if xj occurs in gk,
0 otherwise.

Example 4.10 (Guard Dependency Matrix). The gdm for the the Petri net in Figure 1.2 is:



P0 P1 P2 P3 P4

[P0] 1 0 0 0 0
[P1] 0 1 0 0 0
[P2] 0 0 1 0 0
[P3] 0 0 0 1 0
[P4] 0 0 0 0 1


and γ[P0]({〈1, 0, 0, 0, 0〉, 〈0, 1, 0, 1, 0〉, 〈0, 0, 1, 1, 0〉, 〈0, 1, 0, 0, 1〉, 〈0, 0, 1, 0, 1〉}) = {〈0〉, 〈1〉}.

N

In the above example one can see that if we evaluate a guard for two states {〈0〉, 〈1〉} we know for which
states in the original pts the guard holds.

Definition 4.11 (update-independent). Given a pts P = 〈SP ,→P , s0〉 transition group i is update-
independent on state slot j if for all 〈s1, . . . , sN 〉, 〈t1, . . . , tN 〉 ∈ SP , whenever ∀k ∈ Gi : gk(〈s1, . . . ,
sN 〉) ∧ 〈s1, . . . , sj , . . . , sN 〉→i〈t1, . . . , tj , . . . , tN 〉 ∈ →P it holds that (sj = tj ∧ ∀rj ∈ Sj : 〈s1, . . . , rj , . . . ,
sN 〉→i〈t1, . . . , rj , . . . , tN 〉)∨ (∀rj ∈ Sj : 〈s1, . . . , rj , . . . , sN 〉→i〈t1, . . . , tj , . . . , tN 〉). I.e. the value of state
slot j is not relevant in transition group i. Whether some transition group i and state slot j is not
update-independent may be over-approximated. �

This definition is thus very similar to Definition 3.1. However, we do not look at dependencies for guards.
In practice the corresponding dependency matrix is very similar to the rdm but with the dependencies
for the guards omitted. A definition and example for the Update Dependency Matrix (udm) for mcrl2
will be given in Subsection 4.4.2.

Definition 4.12 (update dependency matrix). A udm UMK×N = UDM(P) for pts P is a matrix
with K rows and N columns containing {0, 1} such that if UM i,j = 0 then transition group i is update-
independent on state slot j. For any transition group 1 ≤ i ≤ K, we define υi as the projection
υi : S → Π{1≤j≤N |UM i,j=1}Sj . �

Using the projection functions υi and ωi we can define the next-update function for a pts. That
is, we base the definition on the next-state function and accept only projected states which are not
update-independent on a transition group.

Definition 4.13 (Partitioned Next-Update function).

next-updatei(s ∈ υi(SP)) = {s′ ∈ ωi(SP) | s→i s
′}

Note: calling the next-update function requires that all the relevant guards for s evaluate to +. �

For writing convenience we change the definition of the dm as follows.

Definition 4.14 (dependency matrix).

DM i,j =



− if WM i,j = 0 and UM i,j = 0 and MM i,j = 0, else
r if WM i,j = 0 and MM i,j = 0, else
W if UM i,j = 0 and WM i,j = 0, else
w if UM i,j = 0 and MM i,j = 0, else
+ .

�

50

The writing convenience follows from the fact that dependencies from the guards are not included.

4.4 The Pins front-end

To support guard-splitting for an lps we refine Definition 1.5; the definition of an lps. The definition
shows how the vector Γ and the vector G for an lps is built.

Definition 4.15 (Linear Process System).

X(x1, . . . , xN) =

K∑
i=1

∑
ei∈Ei

Ci =⇒ a(ti,0).X(ti,1, . . . , ti,N) =

K∑
i=1

∧
g∈Gi

g =⇒
∑
ei∈Ei

C ′i =⇒ a(ti,0).X(ti,1, . . . , ti,N),

where g is a boolean expression over x1, . . . , xN . Note that indeed Ci =
∧

g∈Gi g ∧ C
′
i, for a summand i.

But not always Ci =
∧

g∈Gi g, because an expression ei in the summation
∑

ei∈Ei
may introduce local

variables which occur in Ci. More precisely

∀ei ∈ Ei.∀v ∈ vars(ei) : v occurs in Ci =⇒ v occurs in C ′i ∧ (∀g ∈ Gi : v does not occur in g), also

Ci =
∧
g∈Gi

g =⇒ C ′i = true.

Let SX
P be all the states in process X. To make sure all guards 〈g1, . . . , gM 〉 in Γ are unique we guarantee

the following.

Let U =
⋃

1≤i≤K

Gi, then

∀g, g′ ∈ U.∀s ∈ SX
P : g(s) = g′(s) =⇒ g ∈ Γ ∧ g′ 6∈ Γ.

�

Note that in term rewriting systems such as mcrl2 it is easy to show that two guards are equal, because
when testing the equality of two terms (guards) the equation rewrites to true (and terminates) when
guards are equal (or false when they are not). Even when – for example – the operands in a binary
operation are in different order.

4.4.1 Dependency Matrices for mcrl2

We define the contents of the Pins udm for lps X UDM(X) = UMX
K×N as follows.

UMX
i,j =

{
1 if ∃0 ≤ k ≤ N : xj occurs in ti,k ∧ (j 6= k ∨ ti,j 6= xj) ∨ xj occurs in C ′i,
0 otherwise.

Example 4.16 (Update Dependency Matrix). The udm for the Petri net in Figure 1.2 is:



P0 P1 P2 P3 P4

T0 0 0 0 0 0
T1 0 0 0 0 0
T2 0 0 0 0 0
T3 0 0 0 0 0
T4 0 0 0 0 0
T5 0 0 0 0 0

.

51

and υT1 ({〈1, 0, 0, 0, 0〉, 〈0, 1, 0, 1, 0〉, 〈0, 0, 1, 1, 0〉, 〈0, 1, 0, 0, 1〉, 〈0, 0, 1, 0, 1〉}) = {}. N

In this example the udm does not contain any dependency. The reason herefore is that the value of state
slots of successor states in the Petri net do not require reading P0 . . . P4. Variables P0 . . . P4 are simply
assigned true or false.

4.4.2 Guard-splitting algorithms for mcrl2

Finding an optimal guard splitting algorithm such that calculating the state space using this algorithm
is as fast as possible is hard. The problem is inherently hard because splitting guards is like trans-
forming a propositional formula to Conjunctive Normal Form (cnf). The following example shows that
transforming a certain formula to CNF blows up the number of conjuncts.

Example 4.17. Transforming the non-cnf formula (X1 ∧ Y1) ∨ (X2 ∨ Y2) ∨ . . . ∨ (Xn ∨ Yn) into cnf
formula (X1 ∨ . . . ∨ Xn−1 ∨ Xn) ∧ (X1 ∨ . . . ∨ Xn−1 ∨ Yn) ∧ . . . ∧ (Y1 ∨ . . . ∨ Yn−1 ∨ Yn) results in 2n

conjuncts; each conjunct contains either Xi or Yi for each i. N

There exists however a method to linearly increase the size of the formula, but it introduces a new
variable. We can transform the formula above in cnf by adding variables Z1, . . . , Zn as follows (Z1 ∨
. . . ∨ Zn) ∧ (¬Z1 ∨X1) ∧ (¬Z1 ∨ Y1) ∧ . . . ∧ (¬Zn ∨Xn) ∧ (¬Zn ∨ Yn). We suspect however that finding
Z1, . . . Zn is just as hard as calculating the entire state space.

Transforming any propositional formula to cnf is done by using certain laws of logic, namely the follow-
ing:

double negative law ¬¬P ≡ P .

de Morgan’s laws ¬(P ∧Q) ≡ (¬P) ∨ (¬Q) and ¬(P ∨Q) ≡ (¬P) ∧ (¬Q).

Distributive laws (P ∧ (Q∨R)) ≡ ((P ∧Q)∨ (P ∧R)) and (P ∨ (Q∧R)) ≡ ((P ∨Q)∧ (P ∨R)).

We provide descriptions of algorithms which use none, some or all of these laws to transform all conditions
(Ci) into a conjunctively joined set of guards Gi and adds them (unique guards only) to Γ.

A|Gi|=1 The algorithmA|Gi|=1 views the entire condition Ci of a summand as one guard. This algorithm
does not require the use of any of the above laws.

A|Gi|≥1 The algorithmA|Gi|≥1 splits the condition into guards on every ∧ operator without transforming
Ci first.

Acnf The algorithm Acnf transforms Ci into cnf such that Gi is as large as possible.

A+1 The algorithm A+1 introduces an extra variable to Ci to make sure the size of the formula
increases linearly.

Ah The algorithm Ah uses heuristics to find a good set Gi.

A¬ The algorithm A¬ pushes the negation in Ci as much inwards as possible by using ¬¬P ≡ P
and ¬(P ∧ Q) ≡ (¬P) ∨ (¬Q). This algorithm assumes that Ci already an efficient condition
and only uses the laws to obtain the conjuncts.

Currently the Spins [11] compiler uses algorithm A|Gi|=1, so optimizations can be made here. We have
implemented algorithm A|Gi|≥1 for mcrl2 as shown in Algorithm 16 and leave the other algorithms for
future work.

• split(T) = {t0, . . . , tn |
∧

t∈{t0,...,tn} t = T} we use to split a term into multiple terms connected
by a ∧.

• conditions(L) returns a vector of all conditions in lps L.

• condition(L, i, T) sets term T as the condition in summand i in lps L.

• condition(L, i) gets the condition in summand i in lps L.

52

• proc-vars(L) returns a set of process variables in lps L.

• vars(T) returns a set of variables in term T .

Algorithm 16: A|Gi|≥1

Data: lps L
Result: Γ, G, L

1 C ← conditions(L) ;
2 Γ← 〈〉;
3 G← 〈〉;
4 for 0 ≤ i ≤ |C| do
5

∧
← split(Ci);

6 J ← {n ∈ N | 1 ≤ n ≤ |Γ|};
7 condition(L, i, true);
8 Gi ← ∅;
9 for g ∈

∧
do

10 if vars(g) \ proc-vars(L) 6= ∅ then
11 c← condition(L, i);
12 c← c ∧ g;
13 condition(L, i, c);
14 else
15 n← |Γ|+ 1;
16 for j ∈ J do
17 if Γj = g then
18 n← j;
19 break;
20 end
21 end
22 Gi ← Gi ∪ {n};
23 if n = |Γ|+ 1 then
24 Γn ← g;
25 end
26 end
27 end
28 end

For convenience we define the following function.

• rewrite(t, σ) rewrites the term t using substitution σ.

Algorithm 17: eval-guard
Data: i, s ∈ γi(SP)
Result: r

1 for v ∈ vars(Γi) do
2 σ(v)← sv;
3 end
4 t← rewrite(Γi, σ);
5 if t = > then
6 r ← +;
7 else if t = ⊥ then
8 r ← −;
9 else

10 r ← ?;
11 end

53

4.5 Symbolic reachability for Partitioned Transition Systems

LTSmin supports many symbolic back-ends. We first define the join relation as a symbolic set operation.
Then we provide improvements to both reach-bfs-prev and reach-chain-prev, which use the join
operation. All symbolic back-ends can implement the join operation and use the algorithms we provide in
this section. In this thesis we however only implement the join operation in ldd. We leave implementing
the join operation for other symbolic back-ends such as Buddy as future work.

join(S1($1(x)), S2($2(x))) = $1+2(x) 7→ S1($1(x)) ∧ S2($2(x)),

where $1, $2 and $1+2 are projections and $1+2 is well defined.

To support guard-splitting in reach-bfs-prev we change the algorithm as follows. For each level we
evaluate guards we do not know yet. We keep track of the set Fi so we do not have to re-evaluate
states in Fi for guard i. Then we reduce the states in the current level by checking which states have
the necessary guards evaluated to true. This reduction of set Li is exactly the key improvement guard-
splitting brings. The set Li will in many cases be smaller then the set L which we used in previous
versions of reach-bfs-prev. Note that checking whether there are states which have guards evaluated
to maybe is not done here. In the Section 4.9 it is shown how this can be done in future work.

54

Algorithm 18: reach-bfs-prev
Data: UM ,WM ,MM ,K,M ,s0,Γ,G
Result: R

1 WM ←WM ∨MM ;
2 R← {s0};
3 L ← R;
4 for 1 ≤ i ≤ K do
5 Rp

i ← ∅;
6 ↪→p

i ← ∅;
7 Li ← ∅;
8 end
9 for 1 ≤ i ≤M do

10 T p
i ← ∅;

11 Fp
i ← ∅;

12 end
13 while L 6= ∅ do
14 for 1 ≤ i ≤M do
15 Lp ← γi(L);
16 for sp ∈ Lp \ T p

i \ F
p
i do

17 if gi(sp) = + then
18 T p

i ← T
p
i ∪ {sp};

19 else
20 Fp

i ← F
p
i ∪ {sp};

21 end
22 end
23 end
24 for 1 ≤ i ≤ K do
25 Li ← L;
26 for l ∈ Gi do
27 if Li = ∅ then break;
28 Li ← T p

l on Li;
29 end
30 if Li 6= ∅ then
31 Lp ← υi(Li);
32 for sp ∈ Lp \ Rp

i do
33 ↪→p

i ← ↪→p
i ∪ {(s

p, dp) | dp ∈ next-updatei(s
p)};

34 end
35 Rp

i ←R
p
i ∪ L

p;
36 end
37 end
38 N ← ∅;
39 for 1 ≤ i ≤ K do
40 if Li 6= ∅ then
41 N ← N ∪ step(Li, ↪→p

i ,UM i,WM i);
42 end
43 end
44 L ← N \R;
45 R ← R∪N ;
46 end
47

Evaluate guards

Reduce current level

Build the tran-
sition relation

Build the state space

Our chaining algorithm can not learn all the guards at once per level. We need to learn relevant guards

55

when we expand the transition relation for each transition group.

Algorithm 19: reach-chain-prev
Data: UM ,WM ,MM ,K,M ,s0,Γ,G
Result: R

1 WM ←WM ∨MM ;
2 R← {s0};
3 L ← R;
4 for 1 ≤ i ≤ K do
5 Rp

i ← ∅;
6 ↪→p

i ← ∅;
7 Li ← ∅;
8 end
9 for 1 ≤ i ≤M do

10 T p
i ← ∅;

11 Fp
i ← ∅;

12 end
13 while L 6= ∅ do
14 for 1 ≤ i ≤ K do
15 Li ← L;
16 for l ∈ Gi do
17 if Li = ∅ then break;
18 Lp ← γi(Li);
19 for sp ∈ Lp \ T p

l \ F
p
l do

20 if gl(sp) = + then
21 T p

l ← T
p
l ∪ {sp};

22 else
23 Fp

l ← F
p
l ∪ {sp};

24 end
25 end
26 Li ← T p

l on Li;
27 end
28 if Li 6= ∅ then
29 Lp ← υi(Li);
30 for sp ∈ Lp \ Rp

i do
31 ↪→p

i ← ↪→p
i ∪ {(s

p, dp) | dp ∈ next-updatei(s
p)};

32 end
33 Rp

i ←R
p
i ∪ L

p ;
34 L ← L ∪ step(Li, ↪→p

i ,UM i,WM i) ;
35 end
36 end
37 R ← R∪ L;
38 L ← L \ R;
39 end

4.5.1 Symbolic Reachability Implementation in LTSmin

For guard-splitting we have added one new operation on two sets. The join operation takes two sets as
input and returns a new set with new projection information. On common state slots between the input
sets we find matching values. If set B is ‘behind’ set A on the state slots we walk over then we take all

56

values from the state slot of set B. If set A is ‘behind’ on set A we do the same for set A.

Algorithm 20: join-ldd
Data: X, Y , A, B, a, b
Result: C

1 if A = ∅ ∨B = ∅ then return ∅;
2 if A = B then return A;
3 if a = |PA| then return B;
4 if b = |PB | then return A;
5 if PA

a = PB
b then

6 if in-op-cache(∅, A,B) then return cache-lookup(∅, A,B);
7 if val(A) = val(B) then
8 R← join-ldd(X,Y,right(A),right(B), a, b);
9 D ← join-ldd(down(X),down(Y),down(A),down(B), a+ 1, b+ 1);

10 C ← node(val(A), D,R);
11 else if val(A) < val(B) then
12 C ← join-ldd(X,Y,right(A), B, a, b);
13 else
14 C ← join-ldd(X,Y,A,right(B), a, b);
15 end
16 add-to-cache(∅, A,B,C);
17 else if PA

a > PB
b then

18 if in-op-cache(X,A,B) then return cache-lookup(X,A,B);
19 R← join-ldd(X,Y,A,right(B), a, b);
20 D ← join-ldd(X,down(Y), A,down(B), a, b+ 1);
21 C ← node(val(B), D,R);
22 add-to-cache(X,A,B,C);
23 else
24 if in-op-cache(Y,A,B) then return cache-lookup(Y,A,B);
25 R← join-ldd(X,Y,right(A), B, a, b);
26 D ← join-ldd(down(X), Y,down(A), B, a+ 1, b);
27 C ← node(val(A), D,R);
28 add-to-cache(Y,A,B,C);
29 end

4.6 Pins2Pins wrappers

When using guard-splitting implementing regrouping functions on the dependency matrix becomes chal-
lenging. This is due to the fact that determining whether a state has successors moves from a language
front-end to the symbolic back-end. Thus the behaviour of regrouping functions can not be hidden well in
a Pins2Pins wrapper. We leave it for future work to implement regrouping functions on the dependency
matrix in combination with guard-splitting.

4.7 Implementation in LTSmin

4.7.1 The Pins front-end

Since guard-splitting for Promela and Dve is already done in previous work [7, 11]. The following Pins
gb functions already exist, but have been implemented for mcrl2.

57

Pins method Input arguments Return value description
GBgetGuard model, group index set of indices Returns all guard

numbers for a tran-
sition group. More
precisely, it returns
an element in the
vector G = 〈G1, . . . ,
GK〉.

GBgetStateLabelShort model, guard index,
state

{−, ?,+} Returns the evalua-
tion of a guard for a
state.

GBgetStateLabelGroupInfo model Returns the Guard
Dependency Matrix

Returns the gdm for
a model.

Table 4.1: Pins GreyBox interface functions for guard-splitting in pins.h

Function Input arguments Return value Description
vset_join vset_t, vset_t vset_t joins two sets with the relational

on operation and returns a new set
with new projection information.

Table 4.2: Pins state vector operations for guard-splitting

4.7.2 The Pins2Pins wrappers

Currently we have inhibited any operation on dependency matrices, because they do not work yet with
guard-splitting.

4.7.3 The Pins back-end

To implement guard-splitting in the symbolic back-end we thus changed the reach-bfs-prev and the
reach-chain-prev algorithm. To this end we added some functions to the symbolic back-end and we
will also show how the symbols in the algorithms map to variables used in the symbolic back-end. This
information can be found in the Tables 4.2 and 4.3.

4.7.4 Compatibility

The symbolic back-end by default uses guards and thus guard-splitting in the reachability algorithms if
a language front-end provides these guards. However there are some compatibility issues. The first issue
is that all dependency matrix operations are not supported if we use guard-splitting. The main reason
herefore is that the responsibility of what knows whether a condition holds for a state is moved from
the front-end to the back-end. This change is not at all supported by the Pins2Pins wrapper. And
we thus leave it for feature work to come up with a good design approach to enable dependency matrix
operations in combination with guard-splitting. The other — not so large of an issue is that there are
many symbolic back-ends which do not yet implement the relational join operation. Currently, if a user

Variable Symbol Type Description
level_reduced Li vset_t Symbolically stored set of states in a particular level, reduced

with a join operation

Table 4.3: Pins variables for symbolic reachability w/ guard-splitting

58

performs symbolic reachability analysis with any symbolic back-end other than ldd the user will get an
error.

4.7.5 Reproducablity

The experiments we did with our changes can be easily reproduced. Please refer to Section 3.4.5 to see
how to set up an environment with separation of dependencies.

Environment with guard-splitting

First compile and install LTSmin as described in Section 3.4.5. Use however the guard branch in
git@github.com:Meijuh/ltsmin.git. Note that the udm for divine is not completely implemented
thus one can not run all Dve models from the BEAM database with guard-splitting. When running
experiments with Promela do not forget to add the -W option as described in the previous chapter.
To run experiments with mcrl2 install version 2012-10 with a patch (for guard-splitting) applied. This
patch can be found at https://gist.github.com/Meijuh/9617728. Now without any specific options
for guard-splitting one can perform reachability analysis with the following command: lps2lts-sym
––mcrl2="––rewriter=jitty" /some-path/1394-fin.lps.

4.8 Benchmarks

We expected that guard-splitting would improve the computation of state spaces of models such as
Sokoban. For larger models of Sokoban, such as screen.1 this appears to be indeed the case. However,
not all experiments seem to benefit our guard-splitting in terms of run time. Memory usage is however
improved.

If one looks at Table C.3 and Table C.4 one can see that the values in the column Jπ(R)K are significantly
lower with guard-splitting. Lower values in this column mean that there are fewer states to compute
successors for (because we know some guards do not hold). Furthermore the amount of nodes in the
transition relation is less, but now the sets JFK and JT K also use some nodes. It is yet inconclusive if
we can reduce the total amount of nodes in the transition relation, the set of states which evaluate to
false for guards and the set of states which evaluate to true for guards when row subsumption is used.
Currently the amount is not significantly lower because in many models the transition relation is already
relatively small.

The most interesting results for guard-splitting are larger Sokoban models in mcrl2, such as screen.1-
deadlock.lps and the model of the firewire protocol; 1394-fin.lps. For Promela the most interesting
results are the models of the dining philosophers (phil-10.pr and phil-15.pr). For Dve there are more
interesting results such as: iprotocol.7.dve2C, firewire_link.5.dve2C and peg_solitaire.5.dve2C. Both
1394-fin.lps and firewire_link.5.dve2C are models of the firewire protocol. If we look at the detailed
results that can be found online (see ‘Open online access to our benchmarking results’, Page 7) we see
that there is a good ratio between the number of guards and the number of transition groups. In both
models the transition relation contain about 1000 nodes less. The amount of nodes to store the set of
projected states is in both cases 99% less. The mcrl2 model for the firewire protocol (1394-fin.lps) has
a strange result. The experiment with guard-splitting shows an increase in the amount of nodes to store
the set of reachable states. We believe this may be due to a bad variable ordering which becomes notable
when using guard-splitting.

The Dve model ‘peg_solitaire.5.dve2C’ is considerably slower with guard-splitting. If one looks at the
results which can be found online one can see that the amount of guards is almost equal to the number
of transition groups. This is very inefficient, because for every transition group we have to evaluate a
guard. And if this guard in most cases evaluate to true then we have to do both a guard evaluation
and a next-state call. The amount of nodes to store all the states that evaluate to true for a guard is
very large. The amount of nodes is half that of the amount of nodes to store the projected set of states

59

git@github.com:Meijuh/ltsmin.git
https://gist.github.com/Meijuh/9617728

without guard-splitting. This is a bad result and explains why we do not see a run time improvement
for peg_solitaire.5.dve2C.

A good explanation for why guard-splitting is not beneficial to the computation of models such as
WMS.lps and WMS.suminst.lps is that almost all states in the current level satisfy all guards. This
means that in these cases there is an overhead of calls to the language front-end.

In our implementation of guard-splitting in LTSmin there is a memory leak. This is the reason why
we did not include scatter plots for memory usage. Because of the memory leak we must make the
note that the measurements for run time may be a little biased. This is because our implementation
spends less time on freeing memory. We were however able to come up with a quick and dirty solution
to this problem. With this solution we did not re-do all our experiments, because this would take to
long. We did however run a large Sokoban model which previously would run out of memory due to the
memory leak. The model is screen 38 without deadlock situations of the Sokoban game. With guard-
splitting reachability analysis took about 1800 seconds, without guard-splitting it took 9000 seconds.
Our experiment with guard-splitting used about 250 MB of memory while without guard-splitting 140
MB of memory was used. The Sokoban screen without deadlock has 2.604.179.766 states.

60

●●

●
● ●

●

.1.2.3.4.6.81234681020406010
0

20
0

35
0

60
0∞

.1
.2

.3
.4

.6
.8

1
2

3
4

6
8

10
20

40
60

10
0

20
0

35
0

60
0

∞
re

ac
h

tim
e

w
/o

 g
ua

rd
−

sp
lit

tin
g

(s
ec

)

reach time w/ guard−splitting (sec)
op

tio
ns

● ● ● ● ● ●

bf
s−

pr
ev

;n
o−

sa
t

bf
s−

pr
ev

;s
at

−
lik

e

bf
s−

pr
ev

;s
at

−
lo

op

ch
ai

n−
pr

ev
;n

o−
sa

t

ch
ai

n−
pr

ev
;s

at
−

lik
e

ch
ai

n−
pr

ev
;s

at
−

lo
op

m
od

el

●
ad

di
ng

.3
.d

ve
2C

an
de

rs
on

.6
.d

ve
2C

an
de

rs
on

.8
.d

ve
2C

bo
pd

p.
3.

dv
e2

C

br
p.

5.
dv

e2
C

br
p.

6.
dv

e2
C

●

● ●

●
● ●

.1.2.3.4.6.81234681020406010
0

20
0

35
0

60
0∞

.1
.2

.3
.4

.6
.8

1
2

3
4

6
8

10
20

40
60

10
0

20
0

35
0

60
0

∞
re

ac
h

tim
e

w
/o

 g
ua

rd
−

sp
lit

tin
g

(s
ec

)

reach time w/ guard−splitting (sec)

op
tio

ns

● ● ● ● ● ●

bf
s−

pr
ev

;n
o−

sa
t

bf
s−

pr
ev

;s
at

−
lik

e

bf
s−

pr
ev

;s
at

−
lo

op

ch
ai

n−
pr

ev
;n

o−
sa

t

ch
ai

n−
pr

ev
;s

at
−

lik
e

ch
ai

n−
pr

ev
;s

at
−

lo
op

m
od

el

●
ca

m
br

id
ge

.7
.d

ve
2C

el
ev

at
or

.3
.d

ve
2C

el
ev

at
or

.4
.d

ve
2C

fir
ew

ire
_l

in
k.

5.
dv

e2
C

fir
ew

ire
_t

re
e.

4.
dv

e2
C

fir
ew

ire
_t

re
e.

5.
dv

e2
C

●
●●

● ●●

.1.2.3.4.6.81234681020406010
0

20
0

35
0

60
0∞

.1
.2

.3
.4

.6
.8

1
2

3
4

6
8

10
20

40
60

10
0

20
0

35
0

60
0

∞
re

ac
h

tim
e

w
/o

 g
ua

rd
−

sp
lit

tin
g

(s
ec

)

reach time w/ guard−splitting (sec)

op
tio

ns

● ● ● ● ● ●

bf
s−

pr
ev

;n
o−

sa
t

bf
s−

pr
ev

;s
at

−
lik

e

bf
s−

pr
ev

;s
at

−
lo

op

ch
ai

n−
pr

ev
;n

o−
sa

t

ch
ai

n−
pr

ev
;s

at
−

lik
e

ch
ai

n−
pr

ev
;s

at
−

lo
op

m
od

el

●
ip

ro
to

co
l.6

.d
ve

2C

ip
ro

to
co

l.7
.d

ve
2C

la
nn

.7
.d

ve
2C

le
ad

er
_e

le
ct

io
n.

5.
dv

e2
C

le
ad

er
_e

le
ct

io
n.

6.
dv

e2
C

m
cs

.5
.d

ve
2C

● ●●
●●●

.1.2.3.4.6.81234681020406010
0

20
0

35
0

60
0∞

.1
.2

.3
.4

.6
.8

1
2

3
4

6
8

10
20

40
60

10
0

20
0

35
0

60
0

∞
re

ac
h

tim
e

w
/o

 g
ua

rd
−

sp
lit

tin
g

(s
ec

)

reach time w/ guard−splitting (sec)

op
tio

ns

● ● ● ● ● ●

bf
s−

pr
ev

;n
o−

sa
t

bf
s−

pr
ev

;s
at

−
lik

e

bf
s−

pr
ev

;s
at

−
lo

op

ch
ai

n−
pr

ev
;n

o−
sa

t

ch
ai

n−
pr

ev
;s

at
−

lik
e

ch
ai

n−
pr

ev
;s

at
−

lo
op

m
od

el

●
pe

g_
so

lit
ai

re
.5

.d
ve

2C

pe
te

rs
on

.7
.d

ve
2C

pr
od

uc
tio

n_
ce

ll.
5.

dv
e2

C

pu
bl

ic
_s

ub
sc

rib
e.

4.
dv

e2
C

re
th

er
.6

.d
ve

2C

re
th

er
.7

.d
ve

2C

F
ig
ur
e
4.
2:

T
im

e
sc
at
te
r
pl
ot
s
1
–
24

fo
r
w
it
h
gu

ar
d-
sp
lit
ti
ng

61

● ●
●

● ●
●

.1 .2 .3 .4 .6 .8 1 2 3 4 6 8 10 20 40 60

100

200

350

600 ∞

.1
.2

.3
.4

.6
.8

1
2

3
4

6
8

10
20

40
60

100
200

350
600

∞
reach tim

e w
/o guard−

splitting (sec)

reach time w/ guard−splitting (sec)
options

●●●●●●

bfs−
prev;no−

sat

bfs−
prev;sat−

like

bfs−
prev;sat−

loop

chain−
prev;no−

sat

chain−
prev;sat−

like

chain−
prev;sat−

loop

m
odel

●
rushhour.3.dve2C

rushhour.4.dve2C

sokoban.1.dve2C

sokoban.2.dve2C

synapse.7.dve2C

szym
anski.5.dve2C

● ● ●● ● ●

.1 .2 .3 .4 .6 .8 1 2 3 4 6 8 10 20 40 60

100

200

350

600 ∞

.1
.2

.3
.4

.6
.8

1
2

3
4

6
8

10
20

40
60

100
200

350
600

∞
reach tim

e w
/o guard−

splitting (sec)

reach time w/ guard−splitting (sec)

options

●●●●●●

bfs−
prev;no−

sat

bfs−
prev;sat−

like

bfs−
prev;sat−

loop

chain−
prev;no−

sat

chain−
prev;sat−

like

chain−
prev;sat−

loop

m
odel

●
1394−

fin.lps

phil−
10.pr

phil−
15.pr

screen.17−
deadlock.lps

screen.1−
deadlock.lps

X
.509.prm

.spins

●

●
●

●

●
●

.1 .2 .3 .4 .6 .8 1 2 3 4 6 8 10 20 40 60

100

200

350

600 ∞

.1
.2

.3
.4

.6
.8

1
2

3
4

6
8

10
20

40
60

100
200

350
600

∞
reach tim

e w
/o guard−

splitting (sec)

reach time w/ guard−splitting (sec)

m
odel

●
krebs.4.prom

.spins

options

●●●●●●

bfs−
prev;no−

sat

bfs−
prev;sat−

like

bfs−
prev;sat−

loop

chain−
prev;no−

sat

chain−
prev;sat−

like

chain−
prev;sat−

loop

F
igure

4.3:
T
im

e
scatter

plots
25

–
37

for
w
ith

guard-splitting

62

4.9 Future Work

We can also bring the following improvements to LTSmin.

• Implement the update matrix correctly in divine.

• Implement the vset_join function in all symbolic back-ends other than ldd.

• Implement guard-splitting in reach-chain and reach-bfs.

• Implement other guard-splitting algorithms for mcrl2.

• Implement the maybe check as described in Algorithms 21 and 22. Note that these algorithms
do not check if the models are correct under lazy evaluation for languages such as Java. E.g.
the algorithms assume no transition of the form ‘if (p.method() && p != null) { // next
state }’ exist in the model and in some point in time ‘p.method()’ is called with ‘p == null’.
In the future this may be solved by checking each conjunction of guards is never equal to ‘maybe’.
More precisely if a transition contains the condition g1 ∧ . . . ∧ gn and we have a state s, then we
must check: g1(s) 6= ? and g1(s)∧ (g2(s) 6= ?) and . . . and g1(s)∧ . . .∧ (gn(s) 6= ?). This check can
be built into front-ends for languages that use lazy evaluation.

• In our benchmarks we have found that the default options to the symbolic back-end may not always
produce the best results. For example, if we increase the size of the node table and cache then we
see much better run times. As future work we can investigate what more optimal options are to
the symbolic back-end.

• Like in Chapter 3 it is interesting to see what the results are like if we re-do our experiments with
optimizations to the dependency matrix such as row subsumption.

• Fix the apparent issue with the garbage collector for the vset_join function in ldd.

• Implement the Do-Not-Accord (dna) matrix in mcrl2 to support Partial Order Reduction.

4.10 Conclusion

In our problem statement in Chapter 2 we showed that the condition could be removed from the transition
relation and stored separately. In our approach we have exactly done that. Results show that there are
some models which benefit in terms of time and memory usage of guard-splitting. There are however
also models which do not benefit of guard-splitting. Models which do not benefit of guard-splitting often
have conditions which are satisfied by many or all states in the current level when computing the state
space.

In this chapter we have given a notion for ptss (Definition 4.5) with support for guard-splitting. The
definition extends the original notion of ptss with guards and sets which indicate which guard is relevant
to a transition group. We have also given two notions of independence for guards and the update part of a
transition group. In this chapter we described in detail how to perform guard-splitting for mcrl2.

While working on guard-splitting for mcrl2 we noticed that we had to support a ternary logic for the
evaluation of guards (Example 4.7). Together with the new join algorithm (Algorithm 20) for ldd is
what makes guard-splitting an interesting extension to symbolic reachability analysis.

Our benchmarks indicate there are clearly models which benefit of guard-splitting, such as models of
Sokoban, a model of the firewire protocol and models of dining philosophers. For these models we see
great run-time improvements because we can prevent many calls to language front-ends. These calls can
be prevented, because with guard-splitting we know which states can not have successors. This is also
shown in Table C.3 and Table C.4 in the latter table the amount of nodes to represent states for which
successors have to be computed (Jπ(R)K) is significantly smaller for all models. Furthermore, since we
do not have to store the evaluation of the condition in the transition relation one can also see in the
same table that in all models the size of the transition relation is also smaller.

63

Algorithm 21: reach-bfs-prev w/ maybe check

Data: UM ,WM ,MM ,K,M ,s0,Γ,G
Result: R

1 . . . ;
2 while L 6= ∅ do
3 for 1 ≤ i ≤M do
4 Mp

i ← ∅;
5 Lp ← γi(L);
6 for sp ∈ Lp \ T p

i \ F
p
i do

7 if gi(sp) = + then
8 T p

i ← T
p
i ∪ {sp};

9 else if gi(sp) = − then
10 Fp

i ← F
p
i ∪ {sp};

11 else if gi(sp) = ? then
12 Fp

i ← F
p
i ∪ {sp};

13 Mp
i ←M

p
i ∪ {sp};

14 end
15 end
16 end
17 for 1 ≤ i ≤ K do
18 Li ← L;
19 for l ∈ Gi do
20 if Li = ∅ then break;
21 Li ← T p

l on Li;
22 end
23 if Li 6= ∅ then
24 for l ∈ Gi() do
25 if Li onMp

l 6= ∅ then error;
26 end
27 end
28 . . . ;
29 end
30 . . . ;
31 end

Because work on Chapter 3 took more work than anticipated we were not able to examine in detail how
advanced reachability strategies such as saturation can profit from guard-splitting. It is however the case
that we store the evaluation of guards globally. This means that also in saturation — where we only look
at subsets of transition groups, we can prevent computing successor states for these transition groups.
Investigation is however necessary to see if saturation can profit on a ‘higher level’ from guard splitting,
i.e. before performing reach-chain-prev on a subset of transition groups.

When writing our research proposal we incorrectly expected that simply implementing guard-splitting
for mcrl2 we would also have Partial Order Reduction for mcrl2. This appeared to not be the case.
For mcrl2 the dna matrix has to be implemented [7].

To make guard-splitting in LTSmin production ready quite some work has to be done as described in
Section 4.9. Most notable future work to be done is checking whether model specifications are complete.
This is shown with the maybe check in Algorithms 21 and 22. Furthermore the vset_join operation
should be implemented in all symbolic back-ends.

64

Algorithm 22: reach-chain-prev w/ maybe check

Data: UM ,WM ,MM ,K,M ,s0,Γ,G
Result: R

1 . . . ;
2 while L 6= ∅ do
3 for 1 ≤ i ≤ K do
4 Li ← L;
5 for l ∈ Gi do
6 if Li = ∅ then break;
7 Mp

l ← ∅;
8 Lp ← γi(Li);
9 for sp ∈ Lp \ T p

l \ F
p
l do

10 if gl(sp) = + then
11 T p

l ← T
p
l ∪ {sp};

12 else if gl(sp) = − then
13 Fp

l ← F
p
l ∪ {sp};

14 else if gl(sp) = ? then
15 Fp

l ← F
p
l ∪ {sp};

16 Mp
l ←M

p
l ∪ {sp};

17 end
18 end
19 Li ← T p

l on Li;
20 end
21 if Li 6= ∅ then
22 for l ∈ Gi() do
23 if Li onMp

l 6= ∅ then error;
24 end
25 end
26 . . . ;
27 end
28 . . . ;
29 end

65

Bibliography

[1] S. C. C. Blom, J. C. van de Pol, and M. Weber. Bridging the Gap between Enumerative and
Symbolic Model Checkers. Technical Report TR-CTIT-09-30, Centre for Telematics and Information
Technology University of Twente, Enschede, June 2009.

[2] Stefan Blom and Jaco Pol van de. Symbolic Reachability for Process Algebras with Recursive
Data Types. In J.S. Fitzgerald, A.E. Haxthausen, and H. Yenigun, editors, Theoretical Aspects
of Computing, volume 5160 of Lecture Notes in Computer Science, pages 81–95, Berlin, Germany,
August 2008. Springer Verlag.

[3] Stefan Blom, Jaco van de Pol, and Michael Weber. LTSmin: Distributed and Symbolic Reachability.
In Tayssir Touili, Byron Cook, and Paul Jackson, editors, CAV, volume 6174 of Lecture Notes in
Computer Science, pages 354–359. Springer, 2010.

[4] Gianfranco Ciardo and Andy Jinqing Yu. Saturation-based symbolic reachability analysis using
conjunctive and disjunctive partitioning. In Correct Hardware Design and Verification Methods,
pages 146–161. Springer, 2005.

[5] Alfons Laarman, Elwin Pater, Jaco van de Pol, and Michael Weber. Guard-Based Partial-Order
Reduction. In Ezio Bartocci and C. R. Ramakrishnan, editors, SPIN, volume 7976 of Lecture Notes
in Computer Science, pages 227–245. Springer, 2013.

[6] Alfons Laarman, Jaco van de Pol, and Michael Weber. Multi-Core LTSmin: Marrying Modularity
and Scalability. In Mihaela Gheorghiu Bobaru, Klaus Havelund, Gerard J. Holzmann, and Rajeev
Joshi, editors, NASA Formal Methods, volume 6617 of Lecture Notes in Computer Science, pages
506–511. Springer, 2011.

[7] Elwin Pater. Partial Order Reduction for PINS. Master’s thesis, University of Twente, March 2011.

[8] Radek Pelánek. Beem: Benchmarks for explicit model checkers. In Dragan Bosnacki and Ste-
fan Edelkamp, editors, SPIN, volume 4595 of Lecture Notes in Computer Science, pages 263–267.
Springer, 2007.

[9] Tien Loong Siaw. Saturation for LTSmin. Master’s thesis, University of Twente, 2012.

[10] Steven Skiena. The Algorithm Design Manual: Text, volume 1. Springer, 1998.

[11] Freark I. van der Berg and Alfons W. Laarman. SpinS: Extending LTSmin with Promela through
SpinJa. In Proceedings the Sixth International Workshop on the Practical Application of Stochastic
Modelling (PASM) and the Eleventh International Workshop on Parallel and Distributed Methods
in Verification (PDMC)., volume 296, pages 95 – 105. 2013.

[12] T. van Dijk, A. W. Laarman, and J. C. van de Pol. Multi-Core BDD Operations for Symbolic
Reachability. In K. Heljanko and W. J. Knottenbelt, editors, 11th International Workshop on
Parallel and Distributed Methods in verifiCation, PDMC 2012, London, UK, Electronic Notes in
Theoretical Computer Science, Amsterdam, September 2012. Elsevier.

[13] Kirsten Winter. Optimising Ordering Strategies for Symbolic Model Checking of Railway Inter-
lockings. Leveraging Applications of Formal Methods, Verification and Validation. Applications and
Case Studies, pages 246–260, 2012. Section 3.

67

Appendices

69

Appendix A

Acronyms

Notation Description
bdd Binary Decision Diagram.
bfs Breadth First Search.
buddy Buddy: A bdd package.

cnf Conjunctive Normal Form.

dag Directed Acyclic Graph.
dm Dependency Matrix.
dna Do-Not-Accord.

gb GreyBox interface.
gdm Guard Dependency Matrix.

ldd List Decision Diagram.
lps Linear Process System.

mdd Multi-way Decision Diagram.
mdm May-write Dependency Matrix.

pins Partitioned Interface to the Next State.
por Partial Order Reduction.
pts Partitioned Transition System.

rdm Read Dependency Matrix.

ts Transition System.

udm Update Dependency Matrix.

wdm Must-write Dependency Matrix.

71

Appendix B

Implementation in LTSmin

Pins method Input arguments Return value description
GBgetDMInfo model matrix Returns the dm.
GBgetInitialState model state Returns the initial

state.
GBgetTransitionsShort model, group number

(1 ≤ i ≤ K),
source state (as pro-
jected state vector, ac-
cording to πi), call
back function

number of successors For a given model,
enumerate the tran-
sitions of the given
transition starting
from the source state.
The callback function
together with the
context information
is used to return
a list of successor
states, as a list of
projected indexed
state vectors. This
function is mostly an
implementation of the
next-state function.

GBgetTransitionsLong model, group number
(1 ≤ i ≤ K), source
state (as indexed state
vector)

of successors Idem, but now using a
normal state vector.

GBregroup model, regroup specifi-
cation

– applies variable
reordering and transi-
tion regrouping to the
dm of a model.

Table B.1: Pins GreyBox interface in pins.h

73

Name Library Description
list ATermDD Full-fledged implementation of ldds using linked-lists with integer as node

value and building on ATerm objects.
tree ATermDD Full-fledged implementation of mdds using binary trees with integer as node

value and building on ATerm objects.
fdd BuDDy Wrapper around BuDDy library.
ddd LibDDD Wrapper around libDDD library.
ldd listDD Full-fledged implementation of ldds with integer as node value.
sylvan Sylvan multi-core BDD library using task-based work-stealing algorithms and scalable

data structures [12]

Table B.2: Pins gb example

Variable Symbol Type Description
current_level, new_states L vset_t Symbolically stored set of

states in a particular level
next_level N vset_t Symbolically stored set of

states up to and including a
particular level

visited R vset_t Symbolically stored set of
reachable states.

nGrps K int Number of transition groups.
group_next ↪→p

i vrel_t Symbolically stored transition
relation per transition group i

group_explored Rp
i vset_t Symbolically stores set of states

per transition group i
domain vdom_t a type for a domain
projs P , i.e. 〈j | DM i,j = 1〉 proj_info information about projections

of symbolically stored set of
states

Table B.3: Pins variables for symbolic reachability

Function Input arguments Description
expand_group_next transition group number, vset_t Build the transition relation for transition

group number. This corresponds to Line
11 in Algorithm 2.

Table B.4: Pins functions for symbolic reachability

74

Function Input arguments Return value Description
vset_create vdom_t, length of state vector

(N), projections of state vec-
tors

vset_t new instance of state vector
with a length according to N ,
also contains auxiliary projec-
tion data.

vset_add vset_t, state (as indexed state
vector)

vset_t the vset_t with the given state
added.

vset_is_empty vset_t boolean returns whether the given
state vector is empty.

vset_equal vset_t src,dst boolean returns whether the two given
state vectors are equal.

vset_copy vset_t src,dst void copies state vector src into dst.
vset_project vset_t src, dst void makes a projection of src into

dst ; dst already contains a list
of state slots to project to.

vset_union vset_t src,dst void dst := dst ∪ src
vset_intersect vset_t src, dst void dst := dst ∩ src
vset_minus vset_t src, dst void dst := dst− src
vset_enum vset_t, callback function, con-

text
void Enumerate every state of the

given state vector and use
the callback function and con-
text to perform operations on
these states.

vset_zip vset_t src, dst void dst := (dst ∪ src) ∪ src− dst
vset_clear vset_t void Removes all states in the state

vector.
vset_reorder vdom_t void Reorder the variables in the

state vector?.
vset_next vset_t src, dst, vrel_t void dst := {y | ∃x ∈ src.x rel y}

Table B.5: Pins state vector operations

Function Input arguments Return value Description
vrel_create vdom_t, length of state vector,

projections of state vector
vrel_t Returns a new transition rela-

tion with two times the size of
the state vector and projection
information.

vrel_add vrel_t, source state (as indexed
state vector), successor state (as
indexed state vector)

void Adds a source and successor
state to vrel_t

Table B.6: Pins transition group operations

75

Appendix C

Results

This section contains a subset of our results. The results here are separated into two sections. One for
read and write separation (results for Chapter 3) and one for guard-splitting (results for Chapter 4).
Each section contains a list of models which do not show significant differences. The detailed results of
these models are however shown in Tables C.1 and C.2 for separated dependencies and C.3 and C.4 for
guard-splitting. The results in these tables show slight differences which are not visible in the scatter
plots. Along with the tables we give a legend with an explanation for the header of each table. All
our benchmark results can be downloaded online, see Section ‘Open online access to our benchmarking
results’ on Page 7.

C.1 Separated Dependencies

List of results for read/write separation with insignificant differences:

• anderson.6.dve2C

• anderson.8.dve2C

• at.5.dve2C

• bke.lps

• bopdp.3.dve2C

• brp.5.dve2C

• brp.6.dve2C

• brp.prm.spins

• cyclic_scheduler.3.dve2C

• cyclic_scheduler.4.dve2C

• dbm.prm.spins

• dining_10.lps

• dining_10.suminst.lps

• elevator2.3.prom.spins

• elevator.4.dve2C

• exit.4.dve2C

• extinction.3.dve2C

• extinction.4.dve2C

• fgs.promela.spins

• firewire_tree.4.dve2C

• firewire_tree.5.dve2C

• fischer.5.dve2C

• fischer.6.dve2C

• iprotocol.6.dve2C

• iprotocol.7.dve2C

• krebs.3.dve2C

• krebs.4.dve2C

• krebs.4.prom.spins

• lamport.6.prom.spins

• lamport_na.5.dve2C

• lamport_nonatomic.3.prom.spins

• lann.5.dve2C

• lann.7.dve2C

• leader_election.5.dve2C

• leader_election.6.dve2C

• leader_filters.6.dve2C

• loyd.2.dve2C

• magic_square.lps

• p319.pml.spins

• peg_solitaire.5.dve2C

• peterson.7.dve2C

• phil-10.pr

• phil-15.pr

• phils.5.prom.spins

• phils.7.dve2C

• phils.8.dve2C

• pouring.2.prom.spins

• production_cell.5.dve2C

• public_subscribe.4.dve2C

• reader_writer.3.prom.spins

• rether.6.dve2C

77

• rether.7.dve2C

• rushhour.3.dve2C

• schedule_world.3.dve2C

• screen.17-deadlock.lps

• screen.1-deadlock.lps

• SMS.lps

• SMS.suminst.lps

• snake.lps

• snake.suminst.lps

• sorter.4.dve2C

• szymanski.5.dve2C

• tree.lps

• tree.suminst.lps

• WMS.lps

• WMS.suminst.lps

• X.509.prm.spins

Legend for detailed results for read/write separation:

model name of the model

options options to the reachability algorithm

backend the reachability algorithm

frontend the language front-end

n number of times the experiment is repeated

N length of the state vector

K number of transition groups

checks number of times next-state is called

ns number of times the transition relation is applied

rt average time in seconds for the reachability algorithm excluding set-up time

rt-σ standard deviation for the reachability algorithm excluding set-up time

|R| amount of reachable states

JRK amount of nodes to store the reachable states

J↪→K amount of nodes to store the transition relation

Jπ(R)K amount of nodes to store the projected reachable states

at average time in seconds for the reachability algorithm including set-up time

at-σ standard deviation for the reachability algorithm including set-up time

mem average amount of memory in kilobytes needed for the experiment

mem-σ standard deviation for the memory needed for the experiment

- the experiment ran out of time.

78

m
od

el
ba

ck
en
d

n
N

K
ch
ec
ks

ns
rt

rt
-σ

|R
|

JR
K

J↪→
K

Jπ
(R

)K
at

at
-σ

m
em

m
em

-σ
13
94
-fi
n.
lp
s

sy
m

3
34

92
5

49
95
0

49
95
0

25
.6
67

0.
11
3

1.
89
e+

05
73
84

11
07
9

79
13
64

25
.9
2

0.
10
7

12
32
44

0
SM

S.
su
m
in
st
.lp

s
sy
m

3
18

54
64
8

64
8

0.
08
7

0.
00
5

3.
64
e+

04
12
66

82
5

22
27

0.
12

0
94
44
8

0
W

M
S.
lp
s

sy
m

3
30

56
24
64

24
64

28
0.
01
7

0.
35
1

2.
51
e+

10
15
36
8

56
96

68
32

28
0.
15
7

0.
35
1

13
67
84

0
W

M
S.
su
m
in
st
.lp

s
sy
m

3
30

10
1

43
43

43
43

30
8.
42
7

0.
63

2.
51
e+

10
15
36
8

83
69

13
95
5

30
8.
55
7

0.
63

13
69
36

0
bk

e.
lp
s

sy
m

3
19

17
11
9

11
9

13
.2
93

0.
05
4

1.
11
e+

04
78
16

54
93

13
30
1

13
.3
77

0.
05
6

10
59
32

0
br
p.
lp
s

sy
m

3
20

18
37
8

37
8

0.
27
7

0.
00
5

1.
40
e+

04
18
23

19
52

24
27

0.
31
3

0.
00
5

95
81
2

0
br
p.
su
m
in
st
.lp

s
sy
m

3
20

78
16
38

16
38

0.
26
7

0.
00
5

1.
40
e+

04
18
23

26
32

12
12
6

0.
30
3

0.
00
5

95
73
2

0
di
ni
ng

10
.lp

s
sy
m

3
30

21
0

42
00

42
00

0.
34

0
9.
37
e+

05
56
9

54
0

27
08

0.
38
3

0.
00
5

94
07
2

0
di
ni
ng

10
.s
um

in
st
.lp

s
sy
m

3
30

50
10
00

10
00

0.
23

0
9.
37
e+

05
56
9

38
0

62
8

0.
24
7

0.
00
5

93
37
2

0
lif
t3
-fi
na

l.l
ps

sy
m

3
30

36
54
0

54
0

2.
33
3

0.
01
2

7.
57
e+

03
99
16

66
51

25
71
2

2.
42
7

0.
01
7

99
67
6

90
.5
1

m
ag
ic

sq
ua

re
.lp

s
sy
m

3
1

1
2

2
46
.9
33

0.
38
7

2.
00
e+

00
4

4
4

46
.9
47

0.
38
6

45
66
18
.6
67

42
2.
37
8

sc
re
en
.1
-d
ea
dl
oc
k.
lp
s

sy
m

3
56

22
2

29
30
4

29
30
4

55
7.
03
3

0.
49
3

4.
37
e+

07
11
37
7

13
89

25
25

55
7.
07

0.
49

94
12
4

0
sn
ak

e.
lp
s

sy
m

3
6

4
52

52
81
.1
17

0.
33
4

7.
60
e+

04
74
73
1

12
45
03

23
27
50

81
.2
73

0.
33
3

30
96
13
.3
33

1.
88
6

sn
ak

e.
su
m
in
st
.lp

s
sy
m

3
6

10
13
0

13
0

79
.0
13

0.
04
7

7.
60
e+

04
74
62
1

13
47
13

61
25
34

79
.2
43

0.
04
7

31
00
66
.6
67

1.
88
6

tr
ee
.lp

s
sy
m

3
1

2
22

22
0.
28
7

0.
00
5

1.
02
e+

03
10
27

20
52

20
54

0.
30
3

0.
00
5

94
31
2

0
tr
ee
.s
um

in
st
.lp

s
sy
m

3
1

2
22

22
0.
28
3

0.
00
5

1.
02
e+

03
10
27

20
52

20
54

0.
30
3

0.
00
5

94
31
2

0
va
sy
-i
ni
t.
lp
s

sy
m

3
48
4

77
5

26
35
0

26
35
0

23
4.
85

0.
96
7

9.
79
e+

21
81
82

67
54

77
33

23
5.
13
7

0.
96
7

25
24
56

0
va
sy
.lp

s
sy
m

0
-

-
-

-
-

-
-

-
-

-
-

-
-

-

T
ab

le
C
.1
:
R
es
ul
ts

w
/o

re
ad

-w
ri
te

se
pa

ra
ti
on

fo
r
m

cr
l2

(c
ha

in
-p
re
v-
no

-s
at
)

79

m
odel

backend
n

N
K

checks
ns

rt
rt-σ

|R
|

JR
K

J↪→
K

Jπ
(R

)K
at

at-σ
m
em

m
em

-σ
1394-fin.lps

sym
3

34
925

49950
49950

3.513
0.009

1.89e+
05

7384
7157

203103
3.747

0.012
105500

0
SM

S.sum
inst.lps

sym
3

18
54

648
648

0.087
0.005

3.64e+
04

1266
524

1285
0.127

0.005
94452

0
W

M
S.lps

sym
3

30
56

2464
2464

281.813
0.471

2.51e+
10

15368
4212

6287
281.953

0.471
137752

0
W

M
S.sum

inst.lps
sym

3
30

101
4343

4343
315.347

0.258
2.51e+

10
15368

6304
12137

315.48
0.262

138352
0

bke.lps
sym

3
19

17
119

119
12.37

0.028
1.11e+

04
7816

4675
7888

12.45
0.028

106122.667
3.771

brp.lps
sym

3
20

18
378

378
0.23

0
1.40e+

04
1823

1328
1001

0.267
0.005

95540
62.225

brp.sum
inst.lps

sym
3

20
78

1638
1638

0.09
0

1.40e+
04

1823
1222

1675
0.127

0.005
94868

62.225
dining

10.lps
sym

3
30

210
4200

4200
0.403

0.005
9.37e+

05
569

500
2311

0.453
0.005

94236
0

dining
10.sum

inst.lps
sym

3
30

50
1000

1000
0.25

0
9.37e+

05
569

340
551

0.267
0.005

93376
0

lift3-final.lps
sym

3
30

36
540

540
1.803

0.012
7.57e+

03
9916

5154
7852

1.893
0.012

99496
90.51

m
agic

square.lps
sym

3
1

1
2

2
46.933

0.34
2.00e+

00
4

4
4

46.947
0.344

456388
276.512

screen.1-deadlock.lps
sym

3
56

222
29304

29304
557.57

0.318
4.37e+

07
11377

1383
2525

557.603
0.323

94156
0

snake.lps
sym

3
6

4
52

52
80.87

0.653
7.60e+

04
74731

115209
232750

81.037
0.653

309617.333
1.886

snake.sum
inst.lps

sym
3

6
10

130
130

79.123
0.327

7.60e+
04

74621
125329

612534
79.353

0.327
310072

0
tree.lps

sym
3

1
2

22
22

0.29
0

1.02e+
03

1027
2052

2054
0.307

0.005
94316

0
tree.sum

inst.lps
sym

3
1

2
22

22
0.283

0.005
1.02e+

03
1027

2052
2054

0.303
0.005

94316
0

vasy-init.lps
sym

3
484

775
26350

26350
196.39

0.253
9.79e+

21
8182

5380
4294

196.693
0.253

251504
0

vasy.lps
sym

3
485

776
26384

26384
200.893

0.42
9.79e+

21
9387

5444
4340

201.203
0.428

252078.667
29.273

T
able

C
.2:

R
esults

w
/
read-w

rite
separation

for
m

cr
l2

(chain-prev-no-sat)

80

C.2 Guard-splitting

List of results for guard-splitting with insignificant differences:

• at.5.dve2C

• bke.lps

• blocks.3.dve2C

• brp.lps

• brp.prm.spins

• brp.suminst.lps

• connect-four6x4.lps

• count.pml.spins

• cyclic_scheduler.3.dve2C

• cyclic_sc_heduler.4.dve2C

• dbm.prm.spins

• dining_10.lps

• dining_10.suminst.lps

• elevator2.3.prom.spins

• exit.4.dve2C

• extinction.3.dve2C

• extinction.4.dve2C

• fgs.promela.spins

• fischer.5.dve2C

• fischer.6.dve2C

• frogs.3.dve2C

• krebs.3.dve2C

• krebs.4.dve2C

• lamport.6.prom.spins

• lamport_na.5.dve2C

• lamport_nonatomic.3.prom.spins

• lann.5.dve2C

• leader_filters.6.dve2C

• lift3-final.lps

• loyd.2.dve2C

• magic_square.lps

• p319.pml.spins

• phils.5.prom.spins

• phils.7.dve2C

• phils.8.dve2C

• pouring.2.prom.spins

• production_cell.6.dve2C

• reader_writer.3.prom.spins

• schedule_world.3.dve2C

• SMS.lps

• SMS.suminst.lps

• snake.lps

• snake.suminst.lps

• sorter.4.dve2C

• tree.lps

• tree.suminst.lps

• vasy-init.lps

• vasy.lps

• WMS.lps

• WMS.suminst.lps

Legend for detailed results for guard-splitting:

M number of guards

JFK amount of nodes needed to store all projected reachable states that do not satisfy guards

JT K amount of nodes needed to store all projected reachable states that satisfy guards

81

m
odel

backend
n

N
K

checks
ns

rt
rt-σ

|R
|

JR
K

J↪→
K

Jπ
(R

)K
at

at-σ
m
em

m
em

-σ
M

JF
K

JT
K

1394-fin.lps
sym

3
34

925
49950

49950
3.513

0.009
1.89e+

05
7384

7157
203103

3.747
0.012

105500
0

-1
-1

-1
SM

S.sum
inst.lps

sym
3

18
54

648
648

0.087
0.005

3.64e+
04

1266
524

1285
0.127

0.005
94452

0
-1

-1
-1

W
M
S.lps

sym
3

30
56

2464
2464

281.813
0.471

2.51e+
10

15368
4212

6287
281.953

0.471
137752

0
-1

-1
-1

W
M
S.sum

inst.lps
sym

3
30

101
4343

4343
315.347

0.258
2.51e+

10
15368

6304
12137

315.48
0.262

138352
0

-1
-1

-1
bke.lps

sym
3

19
17

119
119

12.37
0.028

1.11e+
04

7816
4675

7888
12.45

0.028
106122.667

3.771
-1

-1
-1

brp.lps
sym

3
20

18
378

378
0.23

0
1.40e+

04
1823

1328
1001

0.267
0.005

95540
62.225

-1
-1

-1
brp.sum

inst.lps
sym

3
20

78
1638

1638
0.09

0
1.40e+

04
1823

1222
1675

0.127
0.005

94868
62.225

-1
-1

-1
dining

10.lps
sym

3
30

210
4200

4200
0.403

0.005
9.37e+

05
569

500
2311

0.453
0.005

94236
0

-1
-1

-1
dining

10.sum
inst.lps

sym
3

30
50

1000
1000

0.25
0

9.37e+
05

569
340

551
0.267

0.005
93376

0
-1

-1
-1

lift3-final.lps
sym

3
30

36
540

540
1.803

0.012
7.57e+

03
9916

5154
7852

1.893
0.012

99496
90.51

-1
-1

-1
m
agic

square.lps
sym

3
1

1
2

2
46.933

0.34
2.00e+

00
4

4
4

46.947
0.344

456388
276.512

-1
-1

-1
screen.1-deadlock.lps

sym
3

56
222

29304
29304

557.57
0.318

4.37e+
07

11377
1383

2525
557.603

0.323
94156

0
-1

-1
-1

snake.lps
sym

3
6

4
52

52
80.87

0.653
7.60e+

04
74731

115209
232750

81.037
0.653

309617.333
1.886

-1
-1

-1
snake.sum

inst.lps
sym

3
6

10
130

130
79.123

0.327
7.60e+

04
74621

125329
612534

79.353
0.327

310072
0

-1
-1

-1
tree.lps

sym
3

1
2

22
22

0.29
0

1.02e+
03

1027
2052

2054
0.307

0.005
94316

0
-1

-1
-1

tree.sum
inst.lps

sym
3

1
2

22
22

0.283
0.005

1.02e+
03

1027
2052

2054
0.303

0.005
94316

0
-1

-1
-1

vasy-init.lps
sym

3
484

775
26350

26350
196.39

0.253
9.79e+

21
8182

5380
4294

196.693
0.253

251504
0

-1
-1

-1
vasy.lps

sym
3

485
776

26384
26384

200.893
0.42

9.79e+
21

9387
5444

4340
201.203

0.428
252078.667

29.273
-1

-1
-1

T
able

C
.3:

R
esults

w
/o

guard-splitting
for

m
cr

l2
(chain-prev-no-sat)

82

m
od

el
ba

ck
en
d

n
N

K
ch
ec
ks

ns
rt

rt
-σ

|R
|

JR
K

J↪→
K

Jπ
(R

)K
at

at
-σ

m
em

m
em

-σ
M

JF
K

JT
K

13
94
-fi
n.
lp
s

sy
m

3
34

92
5

10
91

10
91

0.
71
3

0.
00
5

1.
89
e+

05
80
13

61
98

16
40

1.
00
3

0.
00
5

12
09
20

24
8.
90
2

24
9

70
05

96
6

SM
S.
su
m
in
st
.lp

s
sy
m

3
18

54
39
4

39
4

0.
1

0
3.
64
e+

04
12
66

45
9

24
5

0.
14

0
94
54
4

0
60

39
7

21
8

W
M
S.
lp
s

sy
m

3
30

56
21
14

21
14

26
6.
13
7

0.
21
9

2.
51
e+

10
15
36
8

41
53

45
85

26
6.
28

0.
21
8

83
18
00

62
.2
25

46
23
7

13
6

W
M
S.
su
m
in
st
.lp

s
sy
m

3
30

10
1

31
26

31
26

27
8.
68
3

0.
73
2

2.
51
e+

10
15
36
8

61
65

56
42

27
8.
81
7

0.
73
6

13
04
06
4

0
83

49
7

24
1

bk
e.
lp
s

sy
m

3
19

17
67

67
11
.8
1

0.
03
3

1.
11
e+

04
78
16

46
24

38
11

11
.9
1

0.
03
3

10
58
40

0
19

10
7

56
br
p.
lp
s

sy
m

3
20

18
27
3

27
3

0.
29

0
1.
40
e+

04
18
23

12
84

63
0

0.
32
7

0.
00
5

95
62
0

0
18

11
9

54
br
p.
su
m
in
st
.lp

s
sy
m

3
20

78
79
6

79
6

0.
08

0
1.
40
e+

04
18
23

91
2

24
7

0.
12

0
94
99
2

0
47

31
8

19
4

di
ni
ng

10
.lp

s
sy
m

3
30

21
0

23
73

23
73

0.
47
7

0.
00
5

9.
37
e+

05
56
9

43
0

83
0

0.
57

0
95
10
0

0
13
0

50
0

23
9

di
ni
ng

10
.s
um

in
st
.lp

s
sy
m

3
30

50
82
3

82
3

0.
36
3

0.
00
5

9.
37
e+

05
56
9

23
0

50
0.
38
3

0.
00
5

93
89
6

0
90

34
7

27
0

lif
t3
-fi
na

l.l
ps

sy
m

3
30

36
27
6

27
6

2.
23
3

0.
00
9

7.
57
e+

03
99
16

51
09

56
71

2.
33
3

0.
00
9

99
21
2

0
32

40
8

15
0

m
ag
ic

sq
ua

re
.lp

s
sy
m

3
1

1
1

1
53
.4
9

0.
32
4

2.
00
e+

00
4

3
1

53
.5
1

0.
32
4

41
39
05
.3
33

15
9.
64
4

1
3

3
sc
re
en
.1
-d
ea
dl
oc
k.
lp
s

sy
m

3
56

22
2

22
94
0

22
94
0

44
3.
91
7

0.
16
1

4.
37
e+

07
11
37
7

90
2

22
2

44
3.
96
7

0.
16
9

53
27
00
8

32
9.
26
6

15
3

55
2

44
3

sn
ak

e.
lp
s

sy
m

3
6

4
42

42
88
.7
8

0.
58
9

7.
60
e+

04
74
73
1

10
36
22

62
87
7

88
.9
07

0.
58
8

31
25
38
.6
67

1.
88
6

4
40
51
4

11
59
1

sn
ak

e.
su
m
in
st
.lp

s
sy
m

3
6

10
10
9

10
9

11
7.
11
3

0.
52

7.
60
e+

04
74
62
1

11
37
40

66
04
3

11
7.
27
7

0.
51
5

31
94
64

0
20

14
84
58

66
68
6

tr
ee
.lp

s
sy
m

3
1

2
20

20
0.
3

0
1.
02
e+

03
10
27

20
52

10
28

0.
31
3

0.
00
5

94
38
2.
66
7

1.
88
6

1
51
5

51
4

tr
ee
.s
um

in
st
.lp

s
sy
m

3
1

2
20

20
0.
3

0
1.
02
e+

03
10
27

20
52

10
28

0.
31

0
94
38
4

0
1

51
5

51
4

va
sy
-i
ni
t.
lp
s

sy
m

3
48
4

77
5

10
14
9

10
14
9

20
1.
48
7

0.
38
2

9.
79
e+

21
81
82

40
02

77
5

20
1.
97
7

0.
38
6

34
55
06
8

54
9.
89

48
4

14
38

14
52

va
sy
.lp

s
sy
m

3
48
5

77
6

10
15
0

10
15
0

20
4.
80
3

0.
53
4

9.
79
e+

21
93
87

40
65

77
6

20
5.
29
3

0.
53
2

34
55
78
1.
33
3

76
6.
15
3

48
5

14
53

14
55

T
ab

le
C
.4
:
R
es
ul
ts

w
/
gu

ar
d-
sp
lit
ti
ng

fo
r
m

cr
l2

(c
ha

in
-p
re
v-
no

-s
at
)

83

	Introduction
	Current Situation
	The Monolithic Next-State Interface
	The Pins front-end
	The Partitioned Next-State Interface
	The Pins back-end
	Pins2Pins wrappers
	Implementation in LTSmin

	Research Method
	Separating Read and Write Dependencies
	Guard-based Symbolic Reachability
	Related Work

	Symbolic Reachability Using Separate Read, Write and Copy Dependencies
	The Partitioned Next-State Interface
	The Pins back-end
	Pins2Pins wrappers
	Implementation in LTSmin
	Benchmarks
	Future Work
	Conclusion

	Guard-based Symbolic Reachability
	Background
	The Monolithic Next-State Interface
	The Partitioned Next-State Interface
	The Pins front-end
	Symbolic reachability for ptss
	Pins2Pins wrappers
	Implementation in LTSmin
	Benchmarks
	Future Work
	Conclusion

	Bibliography
	Appendices
	Acronyms
	Implementation in LTSmin
	Results
	Separated Dependencies
	Guard-splitting

