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Abstract

In many graph transformation systems (local) confluence is a desired property.
For instance, if graph transformation is used for model transformation, then
confluence and termination ensure that the order in which rules are applied
does not matter, in other words, the final result will always be the same. In
this research we investigate sufficient conditions for local confluence of high-level
replacement (HLR) systems. Using the single-pushout high-level replacement
approach we define critical pairs (minimal conflicting situations). Our sufficient
condition for local confluence is based on the analysis of critical pairs. We
provide our proofs on a categorical level, therefore our theory cannot only be
applied to the category of graphs: we formulate requirements for the categories
for which our theorems hold, and we show that our theory is also applicable to
attributed graphs.

We also present some of the foundations for confluence analysis for HLR
systems with negative application conditions (NACs). In order to show local
confluence for a HLR system with NACs we will show that stricter conditions
must hold for the critical pairs with NACs (compared to the situation with-
out NACs). We show that HLR systems without NACs are locally confluent.
Further analysis of HLR systems with NACs is future work.

Our theory has been implemented in the graph transformation tool groove.
Using our implementation we can find all critical pairs for a graph transfor-
mation system, and analyse if these pairs are locally confluent. Using this
implementation we have performed some experiments on existing graph trans-
formation systems.
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Chapter 1

Introduction

In today’s world, models exist to help us represent and understand many things.
For example, maps or blueprints can model the world or a building. In com-
puter science, graphs are used as models almost everywhere; for example, data
and control flow diagrams, UML diagrams, Petri nets, and hardware and soft-
ware architectures are usually visualized with graphs. Many software develop-
ment approaches use graphs to model software under development [21, 28]. In
this area of model-based software development processes, we are witnessing a
paradigm shift, models are no longer mere (passive) documentation, but they
are used for code generation, analysis, and simulation as well [18]. Because so
many models in software engineering can be represented as graphs, we can use
graph transformation as a formalism to specify model transformation.

Graph grammars and graph transformations originated in the early 1970’s
[4, 7, 15, 29, 30, 34]. Since then the list of areas where graph grammars and
transformations have been useful has grown impressively: pattern recognition
[37], compiler construction [1], software specification and development [16],
database design [20], modelling of concurrent systems [17], visual languages
[3] and many others [36]. This wide applicability is due to the fact that graphs
are a very natural way of explaining complex situations on an intuitive level.
Graph transformation allows us to model the dynamics in these descriptions,
since it can describe the evolution of graphical structures [10]. Graph trans-
formation can also be useful if no (system) dynamics are involved, for example
in case graph transformations transform one model into another. For model
transformations, we can use the theory of graph transformation to verify the
correctness of these transformations [11, 12].

1.1 What is Graph Transformation

Graph transformation means changing a graph into another graph. In order to
give the graphs being transformed more meaning, we use graphs where every
edge has a label. This definition will be later be extended to attributed graphs.
Attributed graphs have special vertices that represent data such as booleans,
strings or integers; these data-vertices may only be the target of an edge and
the data-vertices be modified by transformations.

1



The changes in graph transformations are guided by rules (also called pro-
duction rules). Rules specify changes in a relatively small substructure of a
graph; these changes are modifications to that substructure, such as adding or
removing certain parts from the substructure.

The most important requirement for a rule to apply is the occurrence of
the substructure in the host graph. We call this substructure the left-hand side
(LHS) of the rule. An occurrence of the LHS in a host graph is called a match.
A rule also has a right-hand side (RHS) which (partially) overlaps with the LHS.
All vertices and edges that are both in the LHS and RHS are preserved after
applying the rule. The LHS can have vertices and edges which are not in the
RHS, these are the vertices and edges that are deleted by the rule. The RHS
can also have vertices and edges that are not in the LHS, these vertices and
edges are created after applying rule.

It is possible for a rule to have negative application conditions (NACs), which
can restrict applicability of a rule. A NAC is a graph that partially overlaps
with the LHS of the rule. When a match for a rule exists, the rule is a candidate
for application, however the rule may not be applied if one of the NACs of the
rule is not satisfied. A NAC is satisfied when there does not exist an occurrence
of the NAC in the host graph such that the overlapping part of the NAC and the
LHS also overlap in the occurrence of the LHS (the match) and the occurrence
of the NAC in the host graph

Figure 1.1 shows a rule with a NAC. This rule models a philosopher (Phil)
which grabs a Fork on his left. The rule is applicable to some host graph G
if G contains a Phil-vertex with has a hungry-self-edge and a left-edge to a
Fork vertex, however there may not exist a Phil-vertex which has a hold edge
to the same Fork. If there does exist such a vertex, the NAC is not satisfied.

In Figure 1.2 we show the same rule without the NAC, the graph L is the
left-hand side of the rule, and R is the right-hand side. The rule can be applied
to the graph G, the occurrence of L in G is shown by the dotted lines. We can
see that the NAC is satisfied because there exists no holds-edge which targets
the bottom fork in G.

The application of the rule results in the graph H. We can see that the rule
deletes the hungry-edge of the right philosopher. The rule also adds two edges,
namely an hasLeft-self-edge, and a hold edge. We can see that the top Fork

and the left Phil were not needed by the rule. These vertices are left untouched
in the resulting graph H.

A graph transformation system (GTS) consists of a set of rules. When a
rule is applicable to a graph G, and application of this rule gives the graph H,
then we say that G can be directly transformed to H. A transformation can
consist of multiple steps: if G can be (directly) transformed to H and H can be
(directly) transformed to X, then we say that G can be transformed to X.

1.2 Approaches to Graph Transformation

There exist many approaches to transform graphs, generally these approaches
can be divided into two categories: the algorithmic (or set theoretic) approaches
and the algebraic approaches. An overview and comparison between some of
these algorithmic and algebraic approaches can be found in [36].
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Figure 1.1: A Rule with a NAC. The LHS, RHS and the NAC are shown as one
graph: the thin and dashed (blue) edge (hungry) is in the LHS and NAC, but
not in the RHS; the wide (green) edges are in the RHS but not in the LHS or
NAC; the thick dashed (red) edges and vertices are in the NAC, but not in the
LHS or RHS. All other vertices and edges are in the NAC, LHS and RHS. The
texts Phil and Fork on the vertices can be considered self-edges with the text
as a label.
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Figure 1.2: Application of a rule. The overlappings of the graphs (morphisms)
are specified by the dotted lines.
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Two common algebraic approaches to graph transformation are the double-
pushout (DPO) approach and the single-pushout (SPO) approach. There are
two cases where these approaches yield different results.

• When a rule has a match, but straightforward application of the rule
would leave a dangling edge (an edge from which either the source or
target vertex has been deleted), the result is no longer a proper graph
(since every edge needs a source and a target vertex). Both approaches
solve this differently.

• When a rule is applied via a non-injective match (i.e., two vertices v1 and
v2 of the LHS are matched onto one vertex v of the host graph), and
the rule deletes one of these vertices, but keeps the other, a complicated
situation arises where the two approaches choose a different solution.

For both cases the rule would not be applicable in the DPO approach, whereas
the SPO approach prioritizes the deletion: in the first case the dangling edge is
deleted, and in the second case the vertex v of the host graph will be deleted
(with all incident edges). A detailed presentation and comparison of the SPO
and DPO approaches can be found in [13].

High-Level Replacement

The SPO approach (as well as other algebraic approaches) relies heavily on cat-
egory theory. This approach cannot only be used to transform graphs, but also
other structures. The transformation of these structures is also called high-level
replacement. A transformation system using high-level replacement is called a
high-level replacement system (HLR system). A graph transformation system
is an example of an HLR system.

We will prove our theorems on a categorical level; in order to do so we
define SPO categories, SPO categories fulfil several requirements which allow
us to prove our theorems. We will show that there exists an SPO category for
transformation of graphs, and we will show that our results can also be applied
to attributed graphs. It is very likely that our work can be extended to allow
transformation of other structures such as typed graphs, hypergraphs or Petri
nets.

1.3 Conflicts and Confluence

Graph transformation is commonly used for model transformation. When trans-
forming models it is important that there exists exactly one final result. Given
an HLR system, where the object G (such an object could be a graph) can be
transformed to some object X, we say that X is a normal form of G if no rules
in the HLR system can be applied to X. If every object has a unique normal
form, then the order in which rules are applied does not matter.

The property which we are looking for is confluence. The notion of confluence
is not only used for graph transformation (or high-level replacement), but it is
a general property of (abstract) rewrite systems [8]. An HLR system is called
confluent when every diverging pair of transfigurations can be joined again, e.g.,
if G can be transformed to both X and Y and the HLR system is confluent,
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then there must exist an object Z and transformations form X to Z and from
Y to Z. Confluence ensures that there exists at most one normal form [8].

A weaker version of confluence is called local confluence. An HLR system is
locally confluent if for all pairs of direct (single-step) transformations from an
object G to H1 and from G to H2, there is an object X such that both H1 and
H2 can be transformed to X after applying any number of rules.

We say that an HLR system is terminating when there do not exist infinite
transformation sequences. If an HLR system is locally confluent and terminat-
ing, then the HLR system is confluent [8]. The termination also ensures the
existence of a normal form. Therefore a locally confluent and terminating HLR
system has a unique normal form for every object.

It is a known fact that (local) confluence is an undecidable problem [31, 33].
It is also known that termination of an HLR system is undecidable [32]. Some
termination criteria for graph transformation systems have been shown in [9].

In this research we will investigate sufficient conditions for when an HLR sys-
tem is locally confluent. In order to investigate whether an HLR system is locally
confluent, we need to study conflicts: given a pair of rules with matches into the
same host object, the transformations induced by two rules with matches are in
conflict when after application of one of the rules, the other can no longer be
applied with the same match.

Conflict detection is an important part of our research. We want to find out
which pairs of rule applications can be used independently and which cannot.
We can distinguish two different kinds of conflicts.

• The most basic kind of conflict is the delete-use conflict. This type of
conflict can occur in any HLR system. A pair of rules is in delete-use
conflict when one rule deletes something that was in the match of the
other rule. In other words, a part of the host object that was needed by
the second rule was deleted by the first rule, and therefore the second rule
can no longer be applied via the same match.

• When we have rules with NACs in our HLR system, a conflict may arise
where one rule adds some structure to the host object that is forbidden by
the NAC of the other rule. We call this conflict a produce-forbid conflict.

The problem of conflict detection has been studied in some depth for the
DPO approach [19, 24, 25, 26]. In this thesis we want to extend the existing
results for DPO high-level replacement to the SPO setting.

In order to analyse conflicts efficiently, we search for conflict situations where
the host object is as small as possible. We call this a critical pair.

Critical pairs are useful because (as we prove) there exists a critical pair for
every conflict. Therefore critical pairs can be used to reason about all conflicts
in an HLR system. We will show that an HLR system is locally confluent when
all critical pairs fulfil a slightly stricter definition of local confluence.

1.4 Graph Transformation Tools

There exist many graph transformation tools. This section will discuss agg and
groove. Groove is important to us because have implemented our algorithms
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in groove. Agg is an interesting tool because it already supports conflict
detection, however it can only detect conflicts for DPO graph transformation.

The two tools are similar in the sense that they can both model graph
transformation systems. Both tools allow users to create graph transformation
rules and apply these to a host graph.

Agg (the Attributed Graph Grammar system) is a general development en-
vironment for algebraic graph transformation systems. Agg supports several
kinds of validations. The agg graph parser is able to check if a graph belongs to
a certain graph language determined by a graph grammar. Agg can check con-
sistency conditions that describe basic properties of graphs such as the existence
of certain elements. agg can also perform critical pair analysis, for each pair of
rules agg can find a minimal examples representing all conflicting situations.
[38]

Groove (GRaph based Object-Oriented VErification) is a graph transfor-
mation tool for software model checking of object-oriented systems. Groove
is able to generate the state space given a start graph and a set of rules. This
allows groove perform LTL and CTL model checking: groove can check
whether certain properties hold for all states. [35]

1.5 Related Work

A lot of research on conflict detection using DPO graph transformation has
already been done: an efficient method to compute the set of all critical pairs
for a graph transformation system has been proposed in [25]. This work is
continued in [26] where the author defines essential critical pairs as a subset
of critical pairs. Critical pair detection for graph transformation rules with
NACs has been discussed in [23, 24]. A method for conflict detection for typed
attributed graph transformation system is proposed in [19].

Many important concepts for the SPO transformation have been described
by Ehrig et al. [13]; for instance, the concept of parallel independence, but also
an embedding theorem, which we need later to show that local confluence of all
critical pairs implies local confluence of the graph transformation system. SPO
graph transformation for attributed graphs is also discussed.

Some work on SPO high-level replacement systems has been done by Ehrig
et al. [14]. Ehrig defines some requirements for categories which can be used
for SPO high-level replacement. Furthermore, parallel independence is defined,
and local confluence of parallel independent transformations is shown.

For SPO graph transformation, Löwe [27] proves that a GTS is locally con-
fluent if every critical pair is strictly confluent (also called transformation con-
fluent). Strict confluence is stronger than local confluence, the author explains
why local confluence of all critical pairs is not sufficient to show that a GTS is
locally confluent. This paper does not show completeness of critical pairs, and
the proof for the local confluence theorem is not completely clear.

1.6 Research Questions

As explained before, the existing methods for conflict detection are only defined
and proven for the double-pushout approach. The aim of this research is to
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extend these methods so they can be used in the single-pushout approach. Our
final goal is to implement an algorithm for critical pair detection and conflu-
ence analysis in groove. To reach this goal, we have broken it down into the
following sub-questions:

1. How can the existing theory on finding critical pairs using the double-
pushout approach be modified for the single-pushout approach?

2. How can we implement an algorithm to find critical pairs?

3. For which cases can we determine if a critical pair is locally confluent?

1.6.1 Modifying existing theory

The first important step is to come up with a definition for critical pairs and
prove that the local confluence of all critical pairs implies the local confluence
of an HLR system.

Our proofs are on an abstract categorical level: we define SPO categories,
and prove our results for these SPO categories. Therefore our results are not
only applicable for transformation of graphs. We will show that we can also
apply our results to attributed graphs. And it is very likely that our results can
also be applied to other structures.

Validation After every step, we will provide formal proofs to show that our
results are correct. We will show completeness of critical pairs and we will show
that the (strict) confluence of all critical pairs implies local confluence of the
graph transformation system.

1.6.2 Algorithm for Critical Pair Detection

Our second research question goes well together with our first question. Based
on the definition we have given for critical pairs, it was easy to come up with
a method to compute all critical pairs for a graph transformation system. We
have implemented this in an algorithm for groove.

Validation In order to test whether our algorithm is correct, we have reused
some existing test cases for critical pair detection which have been implemented
in agg. Since it is unclear whether the critical pair test cases for agg are only
for DPO critical pairs, we will have to build some SPO-specific test cases.

1.6.3 Determining local confluence

When we have shown that local confluence of all critical pairs implies the local
confluence of a graph transformation system, we will perform an analysis to
find out if a critical pair is locally confluent. To perform this local confluence
analysis, we will do a state-space search (limited to a certain depth) in groove
in order to find out if two diverging transformations can be joined again. When
this is the case then this critical pair is locally confluent.
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Validation We cannot decide local confluence for all cases. However we can
test our implementation on some of the many graph transformation systems that
are (supposedly) confluent that have already been implemented in groove. We
can then see how well we can decide confluence in practice.

1.7 A Last Minute Result

Just before finishing this thesis, we have discovered that pushouts (transforma-
tions) do not always exist in the category of simple graphs. The counterexample
(which we present in Appendix A.2) shows that a situation in which our pushout
construction (which defines how a graph is transformed) is not correct in all sit-
uations.

Because of this some of our propositions about graphs are no longer valid.
Our main proofs, however, are proven using abstract categories, for which we
have defined the properties required for the results to hold; the fact that the
category of simple graphs turns out not to satisfy those properties in no way
invalidates the results. For those propositions and proofs which are not valid, we
have added footnotes which state that this is the case. A more careful analysis
of the situation can be found in Section 8.3.

1.8 Structure

Chapter 2 will explain the basics of our work. We will formally define graphs,
provide an introduction to category theory, and we will show how objects (such
as graphs) can be transformed to other objects using high-level replacement.

In Chapter 3 we will define the concept of critical pairs and prove that
the (strict) local confluence of all critical pairs implies the local confluence of
the high-level replacement system. Most of the concepts we introduce in this
section already existed (for example for the DPO approach or for SPO graph
transformation), however the proofs in this section are all new work.

Chapter 4 will introduce rules with NACs. We will extend the definition for
critical pairs to allow rules with NACs, and we will show a sufficient condition
for when a high-level replacement system is locally confluent, however we believe
a better sufficient condition may be found in the future. The concept of NACs
has already been defined by Ehrig et al. [13], however to our knowledge no
research has been done on critical pair analysis for SPO high-level replacement
(or graph transformation) with NACs.

In Chapter 5 we will define attributed graphs. This definition is based on
the existing definition given by Ehrig et al. [10]. We will also show that the
theory we have developed in the previous chapters is applicable to attributed
graphs.

In Chapter 6 we will show that the local confluence of one critical pair can
imply the local confluence of a second critical pair. This can be used as an
alternative method to decide local confluence of a critical pair.

We end our thesis with a case study. In Chapter 7 we analyse some graph
transformation systems which have been implemented in groove, to find out
how well critical pair detection and local confluence analysis works in practice.
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Chapter 2

High-Level Replacement
and Graph Transformation
Systems

This chapter will introduce what graph transformation is and how it works. We
start by defining what graphs and graph morphisms are in Section 2.1. Graph
transformation relies heavily on category theory. In fact, the single-pushout
approach does not only allow transformation of graphs, but also other kinds
of objects, such as sets and attributed graphs. Because of this we will explain
how to transform objects in any category (for which certain requirements must
hold). We will cover the basics of category theory in Section 2.2. In Section 2.3
we will explain how we can apply a rule to an object, to transform it into
another object. In Section 2.4 we will define transformation systems for any
kind of object (called high-level replacement systems), we will also state the
requirements for categories which can be used in SPO high-level replacement
systems.

2.1 Graphs and Morphisms

The theory that we develop in this research will be applied in the context of
graphs. Even though our proofs are generalized so they can also be applied to
different objects, we will be using graphs as examples to make it clear how our
theory can be applied to graphs. We start by formally defining what a graph
is. We will be using graphs with labelled edges; these labels are elements of Lab
which is the universe of all possible labels.

Definition 2.1.1 (Graph and Subgraph). A graph is a tuple G = (VG, EG)
consisting of a set VG of vertices, and a set EG ⊆ VG × Lab × VG of (directed)
edges. Given an edge e = (v1, a, v2) ∈ EG, the source and target mappings
sG, tG : EG → VG and label mapping lG : EG → Lab are defined by sG(e) = v1,
tG(e) = v2, and lG(e) = a. We say that v1 (resp. v2, a) is the source vertex
(resp. target vertex, label) of e. A subgraph S of G, written S ⊆ G, is a graph
where VS ⊆ VG and ES ⊆ EG.
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Remark. Using this definition of graphs, we ensure that every pair of vertices
can be connected by at most one (directed) edge with a given label.

Now given two graphs, we want a way to specify how one graph relates to
the other. For this we use mappings between the sets of vertices and edges. We
will first define mappings for sets.

Definition 2.1.2 (Mappings between Sets). A partial mapping f from a set A
to a set B, denoted f : A→ B, maps elements of A to elements of B.

• We say that f is injective if for all a, a′ ∈ A, f(a) = f(a′) implies a = a′,

• We say that f is surjective if for all b ∈ B there is an a such that f(a) = b

• We say that f is total if f is defined for all a ∈ A

• Every mapping f : A → B is a total mapping from some subset dom(f)
of A to B. We call dom(f) the domain of f .

• We will sometimes write f(A) = C, where C = {f(a) | a ∈ dom(f)}.

• A pair of mappings (e1, e2) with ei : Ai → B for (i = 1, 2) is called jointly
surjective when e1(A1) ∪ e2(A2) = B.

• Two mappings f : A→ B and g : B → C can be composed which results
in a mapping g ◦ f : A→ C, composition is defined as follows:

(g ◦ f)(x) =

{
g(f(x)) if x ∈ dom(f) and f(x) ∈ dom(g)

undefined otherwise

Remark. From this definition we can conclude that composition of mappings is
associative i.e., h ◦ (g ◦ f) = (h ◦ g) ◦ f , for any f : A → B, g : B → C and
h : C → D.

A mapping between two graphs, called a graph morphism, allows us to show
that a graph contains a substructure of another graph.

Definition 2.1.3 (Graph Morphism). A partial graph morphism (also called
graph morphism) f : G → H between two graphs G,H is a pair f = (fV :
VG → VH , fE : EG → EH) of partial mappings, such that the sources, targets
and labels are preserved for every edge, i.e., fV ◦sG = sH ◦fE , fV ◦ tG = tH ◦fE
and lG = lH ◦ fE .

We say that a partial graph morphism f is total (resp. injective, surjective)
if both fV and fE are total (resp. injective, surjective). Two graph morphisms
f : L → G and g : H → G are jointly surjective if both (fV , gV ) and (fE , gE)
are jointly surjective. For a partial graph morphism g we say that dom(g) =
(dom(gV ),dom(gE)) is the domain of g. Graph morphisms can be composed:
given f : X → Y , g : Y → Z and h : X → Z we have g ◦ f = (gV ◦ fV , gE ◦
fE) (using the associativity of function composition and the fact that g and f
preserve sources, targets and labels, we know that g ◦ f is a graph morphism as
well).

Remark. We will often use the word morphism to denote partial graph mor-
phisms, we will also often use f instead of explicitly using fV and/or fE .
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The next proposition directly follows from the fact that graph morphisms
preserve sources and targets.

Proposition 2.1.4. Let g : G → H be a partial graph morphism. Then
dom(g) = (dom(gV ),dom(gE)) is a subgraph of G.

Proof. We know that dom(g) is a graph if dom(gE) ⊆ dom(gV )×Lab×dom(gV ),
this is the case because gV ◦ sG = sH ◦ gE , gV ◦ tG = tH ◦ gE . We know
by definition that dom(gV ) ⊆ GV and dom(gE) ⊆ GE , therefore dom(g) is a
subgraph of G.

Many concepts for algebraic graph transformation rely on category theory.
The next section will cover many basics of category theory using sets with
mappings and graphs with graph morphisms as examples.

2.2 Category Theory Basics

Before diving into the detail of SPO High-Level Replacement, we introduce some
basic definitions which are needed for our proofs. We will define categorical
generalizations of injective, surjective and jointly surjective morphisms. These
generalisations allow us to prove many of our theorems using category theory.

A large part of the definitions in this section is based on the definitions in
[2, 10]. We start by defining categories.

Definition 2.2.1 (Category). A category C = (ObC ,MorC , ◦, id) is defined by

• a class ObC of objects

• for each pair of objects A,B ∈ ObC , a set MorC (A,B) of morphisms

• for all objects A,B,C ∈ ObC , a composition operation ◦(A,B,C) :
MorC (B,C)×MorC (A,B)→ MorC (A,C)

• for each object A ∈ ObC , an identity morphism idA ∈ MorC (A,A)

such that the following conditions hold:

1. Associativity. For all objects A,B,C,D ∈ ObC and morphisms f : A →
B, g : B → C, h : C → D it holds that (h ◦ g) ◦ f = h ◦ (g ◦ f),

2. Identity. For all objects A,B ∈ ObC and morphisms f : A → B, it holds
that f ◦ idA = f and idB ◦ f = f .

Remark. Instead of f ∈ MorC (A,B), we write f : A → B. We also leave out
the index for the composition operation, since it is clear which one to use.

In the next two definition we define two categories, one is based on sets
and the other is based on graphs. In both categories the morphisms are partial
mappings.

Definition 2.2.2 (Category SetP ). SetP is the category with the class of all
sets as objects and all (partial) mappings f : A → B as morphisms. Compo-
sition is defined as in Definition 2.1.2. The identity is the identical mapping
idA = x 7→ x.

11



Definition 2.2.3 (Category GraphP ). The category GraphP consists of the
class of all graphs (as defined in Definition 2.1.1) as objects with all possible
graph morphisms (see Definition 2.1.3). Composition has been defined in Defi-
nition 2.1.3, and identities are the pairwise identities on the sets of vertices and
edges.

Next we define monomorphisms and epimorphisms. A monomorphism is a
categorical generalization of a total injective morphism, similarly an epimor-
phism is a categorical generalization of a surjective morphism.

Definition 2.2.4 (Monomorphism and Epimorphism). Given a category C , a
morphism m : B → C is called a monomorphism if, for all morphisms f, g :
A→ B it holds that m ◦ f = m ◦ g implies f = g.

A morphism e : X → A is called an epimorphism if, for all morphisms
f, g : A→ B, it holds that f ◦ e = g ◦ e implies f = g.

A f //
g // B m // C X e // A f //

g // B

Remark. We will often say that a morphism f is mono (resp. epi) to denote that
f is a monomorphism (resp. epimorphism).

In the following lemma and propositions, we will show for SetP , that the
monomorphisms are the injective and total mappings, and that the epimor-
phisms are the surjective mappings. Later, in Proposition 2.2.13 we show that
this is also true for GraphP .

Lemma 2.2.5. Every monomorphism in SetP is total.

Proof. Let m : A → B be a mapping which is not total. Then there exists an
x ∈ A such that m(x) is undefined. Let idA : A→ A be the identity morphism
of A, and construct f : A→ A as follows:

f(a) =

{
a if a 6= x

undefined otherwise

It is clear that f 6= idA, we also know that m ◦ idA = m, and by choice of f we
know that m ◦ f = m (since m(x) and f(x) are both undefined). Therefore we
have m◦f = m◦idA but f 6= idA, this means that m is not a monomorphism.

Now we can prove that a SetP -monomorphism is equivalent to an injective
and total set mapping.

Proposition 2.2.6. A SetP -morphism f : A→ B is a monomorphism if and
only if it is total and injective.

Our proof is based on a similar proof in [2].

Proof. (⇒) Let f : A→ B be a monomorphism, let a, a′ ∈ A such that a 6= a′,
and let {x} be a one-element set. Consider the mappings g, g′ : {x} → A where
g(x) = a and g′(x) = a′. Since g 6= g′ it follows, since f is a monomorphism,
that f ◦ g 6= f ◦ g′, therefore f(a) = (f ◦ g)(x) 6= (f ◦ g′)(x) = f(a′). Therefore
f is injective. Lemma 2.2.5 states that f must also be total.

(⇐) Conversely suppose that f is total and injective, and g, h : C → A are
mappings such that g 6= h and for some c ∈ C we have g(c) 6= h(c). Since f is
injective, it follows that f(g(c)) 6= f(h(c)), therefore f ◦ g 6= f ◦ h, which means
f is a monomorphism.
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Similarly we show for SetP that epimorphisms coincide with surjective set
mappings.

Proposition 2.2.7. A SetP -morphism f : A → B is an epimorphism if and
only if it is surjective.

We repeat the proof given in [2].

Proof. (⇒) Suppose f : A → B is not surjective. Then there is a b ∈ B such
that ∀a ∈ A : f(a) 6= b. Define g1, g2 : B → {0, 1} as follows: g1(x) = 0 for all
x ∈ B, and g2(x) = 1 if x = b and 0 otherwise. We have g1 ◦ f = g2 ◦ f but
g1 6= g2 therefore f is not an epimorphism.

(⇐) Conversely, suppose f : A→ B is surjective, and let g1, g2 : B → C be
mappings such that g1 6= g2. Then there is a b such that g1(b) 6= g2(b). Because
f is surjective, b has a preimage in a ∈ A such that f(a) = b. Therefore
g1(f(a)) 6= g2(f(a)) and g1 ◦f 6= g2 ◦f . It follows that f is an epimorphism.

Definition 2.2.8 (Isomorphism). A morphism i : A → B is called an isomor-
phism if there exists a morphism i−1 : B → A such that i ◦ i−1 = idB and
i−1 ◦ i = idA

A i //
B

i−1oo

Two objects A and B are isomorphic, written A ∼= B, if there is an isomor-
phism i : A→ B.

Remark. All the theory that is explained in this paper is supposed to work
modulo isomorphism; i.e., we want to consider isomorphic objects equal.

In the category GraphP it is well known that isomorphisms are injective,
total and surjective graph morphisms. We show that injective, total and sur-
jective graph morphisms are indeed isomorphisms in Proposition 2.2.13. First
we will show that for any category, an isomorphism is both a mono and an epi.

Proposition 2.2.9. Every isomorphism is both a monomorphism and an epi-
morphism.

Proof. See [2].

The converse does not hold for every category [2], however we will show for
SetP that an isomorphism is equivalent to a morphism which is both mono and
epi. We already know (Propositions 2.2.6 and 2.2.7) that every SetP -morphism
which is both mono and epi must be injective, total and surjective.

Proposition 2.2.10. A surjective, injective and total SetP -morphism f : A→
B is an isomorphism.

Proof. Because f is surjective we know that for every b ∈ B there exists an
a ∈ A such that f(a) = b, because f is injective we know that a is unique, and
because f is total we know that every element of f has an image in B. We
define the morphism f−1 : B → A as follows for all b ∈ B: f−1(b) = a where
a ∈ A such that f(a) = b. Now we have f−1(f(a)) = a for any a ∈ A, and
f(f−1(b)) = b for any b ∈ B. Therefore f ◦ f−1 = idB and f−1 ◦ f = idA, which
means f is an isomorphism.
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The next definition defines when a pair of morphisms with the same target
is called jointly epimorphic. This definition is taken from [10].

Definition 2.2.11 (Jointly Epimorphic). A morphism pair (e1, e2) with ei :
Ai → B for (i = 1, 2) is called jointly epimorphic if, for all g, h : B → C with
g ◦ ei = h ◦ ei for i = 1, 2 we have g = h:

A1 e1 ,, B g //
h // C

A2
e2

22

Next we show that this constitutes a categorical generalization of a pair of
jointly surjective morphisms. Remember that we call a pair of SetP morphisms
(e1, e2) with ei : Ai → B for (i = 1, 2) jointly surjective when e1(A1)∪e2(A2) =
B.

Proposition 2.2.12. A pair of SetP -morphisms (e1, e2) with ei : Ai → B for
(i = 1, 2) is jointly epimorphic if and only if it is jointly surjective.

Our proof is fairly similar to the proof of Proposition 2.2.7 which originates
from [2].

Proof. (⇒) Suppose (e1, e2) are not jointly surjective. Then there is a b ∈ B
such that ∀a ∈ A1 : e1(a) 6= b, and ∀a ∈ A2 : e2(a) 6= b. Define g, h : B → {0, 1}
as follows: g(x) = 0 for all x ∈ B, and h(x) = 1 if x = b and 0 otherwise.
We have g ◦ ei = h ◦ ei for i = 1, 2 but g 6= h therefore (e1, e2) is not jointly
epimorphic.

(⇐) Conversely, suppose (e1, e2) is jointly surjective, and let g, h : B → C
be mappings such that g 6= h. Then there is a b such that g(b) 6= h(b). Because
e1 and e2 are jointly surjective, b must have a preimage in e1 or e2. Assume
(the other case is analogous) b has a preimage in e1 i.e., we have an a ∈ A1 such
that e1(a) = b. Then we know g(e1(a)) 6= h(e1(a)) and g ◦ e1 6= h ◦ e1, therefore
e1 and e1 are jointly epimorphic.

Proposition 2.2.13. For any morphism f : A → B in either, SetP , or
GraphP we have:

1. f is a monomorphism if and only if it is total and injective.

2. f is an epimorphism if and only if it is surjective.

3. f is an isomorphism if and only if it is total, injective and surjective.

4. Let g : A′ → B be a morphism in the same category as f , then the pair
(f, g) is jointly epimorphic if and only if it is jointly surjective.

Proof. We have already shown these properties for SetP -morphisms in Propo-
sitions 2.2.6, 2.2.7, 2.2.9, 2.2.10 and 2.2.12.

Recall (Definition 2.1.3) that a GraphP -morphism f is total (resp. injective,
surjective) if fV and fE are total (resp. injective, surjective). A pair of GraphP -
morphisms f, f ′ with the same target is jointly surjective if both pairs (fV , f

′
V )

and (fE , f
′
E) are jointly surjective. Now we can conclude that all properties of

this proposition hold for GraphP because they hold for SetP .
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2.3 Transformation by Pushout

In high-level replacement systems (HLR systems) objects are transformed to
other objects. The changes in these transformations are guided by rules. Every
rule has a morphism (the rule morphism) which belongs to a special subclass
R of rule morphisms. In the category GraphP we can use any partial graph
morphism as a rule morphism, i.e., R contains all GraphP -morphisms. For
some categories however, not all morphisms are allowed to be rule morphisms:
in Chapter 5 we will see that we cannot use every AGraphP -morphism to
transform AGraphP objects.

The definition presented here is applicable to any category C . Later on,
when we define SPO HLR systems in Section 2.4, we will specify what conditions
must hold the category C and the class of morphisms R.

Definition 2.3.1 (Rule). Given a category C with a class R of morphisms,

a rule (also called production) p = (L
r−→ R) is an R-morphism, called the

rule morphism. The objects L and R are called the left-hand side (LHS) and
right-hand side (RHS) of p, respectively.

Remark. The rules we have defined here are simple rules. For now we consider
only these simple rules. Later, in Chapter 4 we will cover rules with negative
application conditions (NACs).

In order to be able to apply a rule p = (L
r−→ R) to a object G, we need an

occurrence of the left-hand side of the rule in G. This occurrence is defined by
a morphism m : L→ G such that m belongs to a class of match-morphismsM.

The exact requirements on the class of morphisms M will be specified later
in Definition 2.4.1. For GraphP the class M is the class of total GraphP

morphisms. We do not allow all partial morphisms as matches because an M-
morphism m : L→ G should model an occurrence of the structure of L in G, if
m would be not be total, then it would only model the occurrence of a part of
the structure of L in G.

Definition 2.3.2 (Match). Given a category C with a morphism class M, a

match for a rule p = (L
r−→ R) is an object G with a morphism m : L → G

such that m ∈M.

In order to apply a rule p = (L
r−→ R) to a graph G via the match m : L→

G, we need a technique to glue the graphs G and R together over a common
substructure. Ideally we would take the common substructure and add all other
vertices and edges from G and R. The concept of a pushout formally defines
how this glueing construction works. It has been taken from category theory,
therefore pushouts can also be used to transform other kinds of objects.

Definition 2.3.3 (Pushout). Given a span of morphisms C
g←− A

f−→ B in a

category C , a pushout C
f ′−→ D

g′←− B over f and g is defined by

• a pushout object D

• a cospan C
f ′−→ D

g′←− B with f ′ ◦ g = g′ ◦ f

such that the following universal property is fulfilled: for all objects X and
morphisms h : B → X and k : C → X with k ◦ g = h ◦ f , there is a unique
morphism x : D → X such that x ◦ g′ = h and x ◦ f ′ = k.
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X

A B

C D

=

=

= g′

f ′

f

g

h

x

k

Remark. In the figure above the = sign means that the surrounding morphisms
commute, e.g., the = in the square means that f ′ ◦ g = g′ ◦ f .

Pushouts may not exist for all spans, some categories (such as GraphP )
have pushouts over all spans (we show this1 in Construction 2.3.4 and Propo-
sition 2.3.5). For some categories, a pushout over f : A → B and g : A → C
only exists if f and g belong to a certain subclass of morphisms. For a category
C with morphism classes R for rules, and M for matches, we know that the
category can be used for SPO high-level replacement if the pushout over f and
g always exists when f ∈ R and g ∈M (or vice versa).

Next we will show a construction1 for pushouts in GraphP . Throughout
this construction we write f(a) = ⊥ if f is not defined for a.

Construction 2.3.4 (Pushout in GraphP ). Let A, B, and C be graphs, let
f : A → B, and g : A → C be (partial) morphisms. We can construct the

pushout B
g′−→ D

f ′←− C as follows:

Define the relation ∼ on the disjoint union U = VB ∪̇ VC ∪̇EB ∪̇EC as follows:
for all a ∈ (VA ∪̇ EA) we have f(a) ∼ g(a) if f(a) 6= ⊥ and g(a) 6= ⊥.

Let [x] = {y ∈ U | x ≡ y} where ≡ is the equivalence relation generated by ∼.

Now we can construct VD as follows:

VD ={[x] | x ∈ VB ∪̇ VC
∧ @a ∈ VA : ((f(a) = ⊥ ∧ g(a) ≡ x) ∨ (f(a) ≡ x ∧ g(a) = ⊥))}

Before we can construct the set of edges, we first construct three sets: ED,add

(edges that are being added), ED,del (edges that are being removed) and ED,all ⊆
(VD × Lab × VD) (all edges where the source and target exist in VD).

ED,add = {([s], l, [t])|(s, l, t) ∈ (EB ∪̇ EC) \ (fE(EA) ∪̇ gE(EA))}

ED,del ={([s], l, [t])|(s, l, t) ∈ (EB ∪̇ EC) ∧ ∃a ∈ EA : (f(a) ≡ (s, l, t)

∧ g(a) = ⊥) ∨ (g(a) ≡ (s, l, t) ∧ f(a) = ⊥)}

ED,all = {([s], l, [t])|(s, l, t) ∈ (EB ∪̇ EC) ∧ [s] ∈ VD ∧ [t] ∈ VD}
1Actually this construction is incorrect, in Appendix A.2 we show that pushouts do not

exist over all spans.
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The set ED is constructed as follows:

ED = ED,all \ (ED,del \ ED,add)

The morphisms f ′V : VC → VD and f ′E : EC → ED) are defined as follows:
(g′V and g′E are defined analogously)

f ′V (c) =

{
[c] if [c] ∈ VD
⊥ otherwise

f ′E((s, l, t)) =


([s], l, [t]) if ([s], l, [t]) ∈ ED

∧(([s], l, [t]) ∈ ED,del ⇒ (s, l, t) /∈ gE(EA))

⊥ otherwise

Proposition 2.3.5. B
f ′→ D

g′← C as defined in Construction 2.3.4 is a pushout.2

Proof. The proof3 can be found in Appendix A.1

Next we state some important well known properties of pushouts.

Proposition 2.3.6 (Uniqueness, Composition and Decomposition of Pushouts).
Given a category C, we have the following:

1. The pushout object D is unique up to isomorphism.

2. The composition and decomposition of pushouts results again in a pushout,
i.e., given the following commutative diagram, the statements below are
valid:

A

��

//

(1)

B

��

//

(2)

E

��
C // D // F

• Pushout composition: if (1) and (2) are pushouts, then (1) + (2) is
also a pushout.

• Pushout decomposition: if (1) and (1) + (2) are pushouts, then (2) is
also a pushout.

Proof. See [10].

Proposition 2.3.7. Given a category C and a morphism f : A → B and an

isomorphism i : A→ C, the pushout over f and i is B
idB−→ C

f◦i−1

←− A.

Proof. Consider the diagram below:

A

i

��

f //

=

B

idB

��
C f◦i−1 // B

2Actually this construction is incorrect, in Appendix A.2 we show that pushouts do not
exist over all spans.

3Unfortunately this proof in incorrect, in Appendix A.2 we show a counterexample
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We need to show three things: (1) the pushout must commute, (2) for all objects
X and morphisms h : C → X and k : A → X with k ◦ i = h ◦ f , there is a
morphism x : B → X such that x ◦ idB = h and x ◦ f ◦ i−1 = k, and (3) the
morphism x is unique.

1. The diagram clearly commutes since f ◦ i−1 ◦ i = f = idB ◦ f .

2. Let x = h, then we have x ◦ idB = x = h and x ◦ f ◦ i−1 = h ◦ f ◦ i−1 = k.

3. We know that x is unique because idB is epimorphic.

As mentioned before, the pushout construction can be used to apply a rule
via a given match. We call the transformation of a graph G to a graph H using
a rule p : L

r−→ R and a match m : L→ G a direct transformation.

Definition 2.3.8 (Transformation). Given a rule p = L
r−→ R and a match

m : L → G for p, the direct transformation from G with rule p and match m,

written G
p,m
=⇒ H, is the pushout over r and m in GraphP . A sequence of

direct transformations of the form % = (G0
p1,m1
=⇒ . . .

pk,mk
=⇒ Gk) constitutes a

transformation from G0 to Gk by p1 . . . pk, abbreviated to G0
∗

=⇒ Gk. Given
a set of rules P , we say that a transformation G0

∗
=⇒ Gk is terminating when

there is no rule in P that can be applied to Gk.

Example 2.3.9. Figure 2.1 shows an example of a direct transformation. We
will explain how H was constructed by following Construction 2.3.4. In this
explanation we name edges and vertices by the numbers written next to them.
To avoid ambiguity, we will explicitly state in which graph the vertex or edge
is. For example by (1, 3)∈G we mean the top left vertex in G.

The first step of our construction is to define the relation ∼ as follows:

(1, 3)∈G ∼ 1∈R

(1, 3)∈G ∼ 3∈R

(2, 4)∈G ∼ 2∈R

(2, 4)∈G ∼ 4∈R

(5, 6)∈G ∼ 6∈R

Using ∼ we can form the following equivalence classes:

[(1, 3)∈G] = [1∈R] = [3∈R] = {(1, 3)∈G, 1∈R, 3∈R} = (1, 3)∈H

[(2, 4)∈G] = [2∈R] = [4∈R] = {(2, 4)∈G, 2∈R, 4∈R} = (2, 4)∈H

[(5, 6)∈G] = [6∈R] = {(5, 6)∈G, 6∈R}
[7∈R] = {7∈R} = 7∈H

[a∈G] = {a∈G}
[b∈R] = {b∈R}
[c∈R] = {c∈R}
[d∈G] = {d∈G}

The set of vertices VH does not contain {(5, 6)∈G, 6∈R}, this is because the vertex
5∈L has no image under r, which means that m(5∈L) = (5, 6)∈G is deleted.

VH = {[(1, 3)∈G], [(2, 4)∈G], [7∈R]}
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r′
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m m′

Figure 2.1: Direct transformation by pushout. All edges have the empty label ε,
the small letters (a-d) and the numbers show how vertices and edges are mapped
under the morphisms r, r′, m and m′.

We can see that r′V ((5, 6)∈G
) and m′V (6∈R) are both undefined since [(5, 6)∈G

] =
[6∈R] and [6∈R] /∈ H. All other vertices in G and R have an image under r′ or
m′.
Now we construct the sets of edges, note that all edges have the empty label ε.

EH,add = {([(1, 3)∈G], ε, [(5, 6)∈G]), ([3∈R], ε, [4∈R])}
EH,del = {([3∈R], ε, [4∈R])}
EH,all = {([3∈R], ε, [4∈R]), ([4∈R], ε, [7∈R])}
EH = {([3∈R], ε, [4∈R]), ([4∈R], ε, [7∈R])}

The edge d∈G has no image under r′, this edge would be transformed to the edge
([(1, 3)∈G], ε, [(5, 6)∈G]), which is in the set EH,add , however [(5, 6)∈G] /∈ VH (i.e.,
the edge has no target in VH), therefore the edge is not an element of EH,all and
also not an element of EH . We also have r′E(a∈G) undefined, because a∈G =
((1, 3)∈G, ε, (2, 4)∈G), and ([(1, 3)∈G], ε, [(2, 4)∈G]) = ([3∈R], ε, [4∈R]) ∈ EH,del ,
and d∈G ∈ m(L) therefore, by construction of the edge morphisms r′E(a∈G) is
undefined.

2.4 Single-Pushout High-Level Replacement Sys-
tems

In this section we present high-level replacement (HLR) systems using Single-
Pushout, we consider a category C with a morphism classes R and M, where
all morphisms in R are allowed as rule morphisms and all morphisms inM are
allowed as matches.

A high-level replacement system consists of a set of rules. These rules al-
low transforming objects into other objects using rules, matches and pushouts.
However, given a rule p = (L

r−→ R) ∈ P and a match m : L → G for p,
we cannot be sure that the pushout over m and r exists. Therefore we give
a definition for SPO categories, one of the requirements for these categories is
that pushouts exist over M and R morphisms.
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Our definition for an SPO category differs from the definition given by Ehrig
and Löwe [14] in several ways. For example, [14] does not distinguish a class
for morphisms which are allowed as rule morphisms, however for the transfor-
mation of attributed graphs (see Chapter 5) we do need a separate class of rule
morphisms to ensure that pushouts exist. The reason why our definition of an
SPO category is different from the definition stated in [14] is because Ehrig and
Löwe use SPO categories to prove parallelism properties; we have not include
the requirements for those parallelism properties in this definition.

Definition 2.4.1 (SPO Category). Let C be a category with morphism classes
M and R, then we call (C ,M,R) an SPO category if the following properties
hold:

1. C has pushouts over any morphism span B
f←− A

g−→ C, if f ∈ M and
g ∈ R (or vice versa)

2. M and R are closed under composition, i.e., f : A → B ∈ M and
g : B → C ∈M implies g ◦ f ∈M (and the same for R)

3. M and R are closed under decomposition, i.e., g ◦ f ∈ M and g ∈ M
implies f ∈M

The property 1 is needed to ensure that the pushout over a rule morphism
and a match morphism always exists. Properties 2 and 3 are required for various
proofs in the next chapters.

Proposition 2.4.2. Let M be the class of all total GraphP -morphisms, and
let R be the class of all GraphP -morphisms, then (GraphP ,M,R) is an SPO
category4.

Proof. We prove every property of SPO categories separately:

1. GraphP has pushout over all morphisms4, see Proposition 2.3.5

2. The composition property follows from Definitions 2.1.2 and 2.1.3.

3. Every GraphP -morphism is an R-morphism, therefore the decomposition
property holds for R-morphisms. Let g ◦ f : A → C ∈ M, assume that
f /∈ M let a ∈ A such that f(a) = ⊥, then we know that (g ◦ f)(a) = ⊥,
a contradiction, therefore we can conclude that M-morphisms are closed
under decomposition.

Now that we know what an SPO category is, we formally define SPO HLR
systems.

Definition 2.4.3 (SPO HLR System). An SPO HLR system for an SPO cat-
egory (C ,M,R) consists of a set of rules P .

• Every rule p = (L
r−→ R) ∈ P consists of an R-morphism r.

• An object G can be directly transformed to an object H by a rule p =
(L

r−→ R) if there is a M-morphism m : L → G (called a match for p),

and a pushout (G
r′−→ H

m′←− R) of (r,m) in C . In this case we write

G
p,m
=⇒ H.

4Unfortunately, this is not true, see Section 8.3 and Appendix A.2.
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Example 2.4.4 (Graph Transformation System). We call an HLR system
which uses the category GraphP a graph transformation system (GTS). The
class M consists of all total graph morphisms and the class R consists of all
morphisms in GraphP .
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Chapter 3

Confluence, Conflicts,
Critical Pairs

In this chapter we will investigate sufficient conditions to decide if an HLR
system is locally confluent. Before doing so, we will recall the relevant (general)
notions of confluence, local confluence and termination.

We call a pair of transformations X
∗

=⇒ Y1, X
∗

=⇒ Y2 confluent when there
exist transformations Y1

∗
=⇒ Z and Y2

∗
=⇒ Z. In other words, two diverging

transformations are confluent when they can be joined again. An HLR system
is called confluent if all derivable transformations are confluent.

A weaker version of confluence is called local confluence, which essentially
restricts confluence to direct transformations. A confluent pair of transforma-
tions K

∗
=⇒ P1, K

∗
=⇒ P2 is called locally confluent when both transformations

are direct transformations i.e., K =⇒ P1, K =⇒ P2. The difference between
confluence and local confluence is illustrated in Figure 3.1.

X

∗
z�

∗
�$

Y1

∗
�$

Y2

∗
z�

Z

(a) A confluent pair of
transformations

K

z� �$
P1

∗
�$

P2

∗
z�

Z

(b) A locally confluent
pair of direct transforma-
tions

Figure 3.1: Confluence versus local confluence

We call an HLR system locally confluent when all pairs of direct transfor-
mations in the HLR system are locally confluent. Local confluence of an HLR
system alone does not imply confluence of the HLR system, the next example
demonstrates this.

Example 3.0.5. Consider the following locally confluent HLR system with four
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G0
+3

e0

��

G1
+3

e1

��

G2

e2

��
X0

+3 X1
+3 X2

Figure 3.2: An embedding of % = (G0 =⇒ G1 =⇒ G2) into δ = (X0 =⇒ X1 =⇒
X2)

different direct transformations.

A Bks "*
C +3bj D

There are two pairs of diverging direct transformations A ⇐= B =⇒ C and
B ⇐= C =⇒ D. We can reason that both pairs are confluent: A ⇐= B =⇒
C is confluent because there exists a transformation C

∗
=⇒ A and similarly

B ⇐= C =⇒ D is confluent because there exists a transformation B
∗

=⇒ D.
Since all pairs of direct transformations are confluent, we can conclude that the
HLR system is locally confluent. As a whole, however, the HLR system is not
confluent: for instance, the diverging pair of transformations A

∗⇐= C =⇒ D is
not confluent because both A and D cannot be transformed any more.

We call a transformation X
∗

=⇒ Y terminating if no rules (in the HLR
system) can be applied to Y . An HLR system is terminating when there exist no
infinite transformation sequences. An HLR system that is both locally confluent
and terminating is also confluent [8].

For a locally confluent and terminating HLR system, all pairs of terminating
transformation sequences X

∗
=⇒ Y1 and X

∗
=⇒ Y2 from the same start object,

have targets equal up to isomorphism, i.e., Y1
∼= Y2.

Confluence and local confluence of an HLR system is undecidable; however,
in this chapter we provide sufficient conditions for establishing that an HLR
system is locally confluent.

In order to prove our local confluence theorem we make use of so-called em-
beddings. An embedding shows that a transformation % is contained (embedded)
in another transformation δ, this means that for every (intermediate) object Gi
in % there exists an occurrence (M-morphism) to the (intermediate) object Xi

in δ (see Figure 3.2). Embeddings are used to show that the sequence of rules
that are applied in the transformation % are applied in the transformation δ,
and that the applications have the same effect.

In Section 3.1 we will formally define embeddings, and show when an em-
bedding exists. We will need these embeddings later to prove our sufficient
condition for local confluence of an HLR system. Section 3.2 will define what
conflicts and critical pairs are, and we will prove that critical pairs are complete
(in a sense defined below). In Section 3.3 we will investigate sufficient conditions
to decide if an SPO HLR system is locally confluent, based on analysis of the
critical pairs.

3.1 Embedding of Transformations

In this section we will formalize under which conditions a transformation in an
SPO HLR system using an SPO category (C ,M,R) can be embedded into a
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different (typically larger) context. Given a rule p = (L
r−→ R), a transforma-

tion % = (G0
p,m
=⇒ G1

∗
=⇒ Gn) and anM-morphism e0 : G0 → X0, then we know

that e0 ◦m is also anM-morphism, and therefore a match for p. In this section
we will investigate when we can conclude that there also exists a transforma-

tion X0
p,e0◦m
=⇒ X1

∗
=⇒ Xn such that there exist M-morphisms ei : Gi → Xi

for i = 0 . . . n (see Figure 3.2). We call the family or morphisms ei an embed-
ding. Embeddings allow us to place transformations in a different context, while
preserving the structure of the transformed objects in every transformation step.

Embeddings do not always exist: given the transformation t1 = (G0
p,m
=⇒ G1)

and t2 = (X0
p,e0◦m
=⇒ X1), we cannot be sure that there also exists an M-

morphism e1 : G1 → X1.
In Definition 3.1.1 we formally define embeddings, this definition is more

general than the definition for graph embeddings in [13], where an embedding
is a family of injective total graph morphisms (in our definition, the morphisms
are not necessarily monomorphisms). Later on we will state sufficient conditions
for the existence of an embedding.

Definition 3.1.1 (Embedding). Given an SPO category (C ,M,R) and trans-

formations % = (G0
p1,m0
=⇒ . . .

pk,mk−1
=⇒ Gk) and δ = (X0

p1,n0
=⇒ . . .

pk,nk−1
=⇒ Xk).

An embedding of % into δ is a family of M-morphisms e = (Gi
ei→ Xi)i∈{0,...,k}

such that for all i ∈ {0, . . . , k− 1} we have ei ◦mi = ni, see the diagram below.
The embedding of % into δ is denoted by e : % → δ, and the first morphism
e0 : G0 → X0 is called the embedding morphism of e.

L1

m0

�� n0

}}

r1 //

(1)

R1

m′0

��n′0

!!

... Lk

mk−1

�� nk−1

}}

rk //

(k)

Rk

m′k−1

��n′k−1

!!

G0

e0

��

r′1
//

(1′)

G1

e1

��

... Gk−1

ek−1

��

r′k
//

(k′)

Gk

ek

��
X0 r′′1

// X1
... Xk−1 r′′k

// Xk

Remark. Since % and δ are transformations, we know for all i = 1 . . . k that (i)
and (i)+(i′) are pushouts. Let n′j be the co-morphism of nj in the pushout over
nj and rj+1, then we know that ej+1 ◦m′j = n′j for all j = 0 . . . k− 1 because of
pushout the pushout composition property and uniqueness of pushouts modulo
isomorphism.

Example 3.1.2. In Figure 3.3 we see an embedding of the graph transformation

% = (G0
p1,m0
=⇒ G1

p2,m1
=⇒ G2) into δ = (X0

p1,n0
=⇒ X1

p2,n1
=⇒ X2) where ni = ei ◦mi

for i = 1, 2. We can see that 〈e0, e1, e2〉 : % → δ is an embedding because
e0, e1, e2 ∈M (i.e., e0, e1, e2 are total graph morphisms).

Given a transformation % = (G
∗

=⇒ H) in an SPO HLR system, and an
object X such that there exists anM-morphism e0 : G→ X (i.e., the structure
of G occurs in X), we want to find out when there exists a transformation

δ = (X
∗

=⇒ Y ) with an embedding e : % → δ. This would mean that the same
transformation as % can be applied to X without any additional side-effects.
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32 2

3

21

3

2

63

2

6

1

3

21

3

2

3

2

2

6

2

L1 R1 L2 R2

G2

X2X1

G1G0

X0

m0 m′0 m1 m′1

e2e1e0

r1 r2

Figure 3.3: An embedding of the transformation % = (G0
∗

=⇒ G2) into δ =

(X0
∗

=⇒ X2). The edges in the graphs have the empty label ε, the numbers
show how vertices are mapped under the morphisms.

In order to reason about what happens in transformation % = (G
∗

=⇒ H), we
need to know what the relation between G and H is, i.e., we need the morphism
%̂ : G→ H. We call this the transformation morphism.

Definition 3.1.3 (Transformation Morphism). Let (C ,M,R) be an SPO cat-

egory and let % = (G0
p1,m0
=⇒ . . .

pn,mn−1
=⇒ Gn) be a transformation using the

rules pi = (Li
ri−→ Ri) for i = 1, . . . , n, then the transformation morphism

%̂ : G0 → Gn is defined as %̂ = r′n ◦ · · · ◦ r′1 where r′1, . . . , r
′
n are the co-rule

morphisms in the pushouts (1), . . . , (n), see Figure 3.4.

In case of a zero step transformation % = (G
∗

=⇒ G), the transformation
morphism is defined as %̂ = idG .

L1

m0





r1 // R1

m′0

��

L2

m1





r2 // R2

m′1

��

... Ln

mn−1





rk // Rn

m′n−1

��
G0 r′1

// G1 r′2
// G2

... Gn−1 r′n
// Gn

Figure 3.4

Next we define a sufficient condition for when a transformation morphism is
an R-morphism.

Definition 3.1.4. Given an SPO category (C ,M,R), then we say that pushouts

in (C ,M,R) preserve R-morphisms if for any morphism span G
m←− L r−→ R,
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with m ∈M and r ∈ R, the co-morphism r′ of r in the pushout R
m′−→ H

r′←− G
over m and r is an R-morphism, i.e., r′ ∈ R.

Proposition 3.1.5. Given an SPO category (C ,M,R) where pushouts pre-

serve R-morphisms. Let % = (G
∗

=⇒ Gn), then the transformation morphism %̂
is an R-morphism.

Proof. Consider Figure 3.4, which shows the individual pushouts for the trans-
formations steps of %. By Definition 3.1.4 we know that the morphisms r′1 . . . r

′
n

are all R-morphisms. And since (by Definition 2.4.1) the composition of R-
morphisms is an R-morphism, we also know that transformation morphisms
are R-morphisms.

Proposition 3.1.6. Pushouts in the SPO category (GraphP ,M,R) preserve
R-morphisms.

Proof. Since every GraphP -morphism is an R morphism, we also know that
every morphism in a pushout must be an R-morphism.

At the end of this section we want to provide a sufficient condition for the

existence of an embedding. Given a transformation % = (G0
p1,m0
=⇒ . . .

pn,mn−1
=⇒

Gn) and an M morphism e0 : G → X0, then we could create a (potential)

embedding e = 〈e0, . . . , en〉 and a transformation δ = (X0
p1,e0◦m0

=⇒ . . .
pn,en◦mn−1

=⇒
Xn) by computing the pushouts (1) . . . (n):

G0 r′1
//

(1)e0

��

G1

e1

��

... Gn−1

(n)

r′n
//

en−1

��

Gn

en

��
X0

// X1
... Xn−1

// Xn

A problem that arises with this approach is that one of the morphisms in e
may not be an M-morphism. This would mean that e was not actually an
embedding, and this may also mean that not all pushouts (1) . . . (n) exist.

In order to ensure that e0 . . . en are all M-morphisms we will define mor-
phisms which are strictly M-preserving with relation to an M-morphism. Be-
fore we define what strictlyM-preserving means, we will first define the meaning
of M-preserving.

In the context of graphs, an M-preserving rule morphism r : L → R w.r.t.
m : L → G ∈ M ensures that all elements in m(L) are either meant to
be preserved or meant to be deleted, none of these elements will be deleted
implicitly.

Definition 3.1.7 (M-Preserving Morphism). Let C be a category with a mor-
phism class M, let m : A → B be a M-morphism and let f : A → C be a C -
morphism with the same source. Then we call the morphism f M-preserving

w.r.t. m if the pushout C
m′−→ D

f ′←− B over m and f exists, and the co-
morphism m′ is an M-morphism.

We show for which morphisms in GraphP this holds, where M is the class
of total graph morphisms.
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Proposition 3.1.8. Let r : L → R and m : L → G be GraphP -morphisms,
such that m ∈ M, where M is the class of total graph morphisms. Then r
is M-preserving w.r.t. m if and only m(x) = m(y) implies x, y ∈ dom(r) or
x, y /∈ dom(r)1.

Proof. The proof can be found in Appendix A.1

Next we define a more strict version of M-preserving morphisms, which
states that every prefix (x1 is a prefix of y of there exists a morphism x2 such
that x2 ◦ x1 = y) of a strictly M-preserving morphism (w.r.t. some morphism
x), must be M-preserving (w.r.t. x) as well.

Definition 3.1.9 (StrictlyM-Preserving Morphism). Let C be a category with
a class M of morphisms. Let m : A→ B be a M-morphism and let f : A→ C
be any morphism. We say that f is strictly M-preserving w.r.t. m if for every
pair of morphisms f1, f2 such that f2 ◦ f1 = f , f1 is M-preserving w.r.t. m.

From the definition it follows that if f is strictlyM-preserving w.r.t. m, then
f is M-preserving w.r.t. m (take f1 = f and f2 = idC ). The next proposition
shows a direct consequence of the definition we have just given.

Proposition 3.1.10. Let C be a category with a class M of morphisms. Let
m : A → B be a M-morphism and let f : A → C be any morphism such that
f is strictly M-preserving w.r.t. m, and let x1 and x2 be morphisms such that
x2 ◦ x1 = f , then x1 is strictly M-preserving w.r.t. m.

Proof. We know that x1 is strictly M-preserving w.r.t. m if for every pair or
morphisms y1, y2 with y2 ◦ y1 = x1, y1 is M-preserving w.r.t. m. We have
x2 ◦ y2 ◦ y1 = f . Let f2 = x2 ◦ y2 and f1 = y1, then f1 isM-preserving w.r.t. m
because f is strictly M-preserving w.r.t. m.

We show a sufficient condition for when a GraphP morphism is strictlyM-
preserving w.r.t. some morphism r. For M, we take the class of total graph
morphisms.

Proposition 3.1.11. Let r : L → R and m : L → G be GraphP -morphisms,
such that m ∈ M, where M is the class of total graph morphisms. Then r is
strictlyM-preserving w.r.t. m if m(x) = m(y) implies x = y or x, y ∈ dom(r)1.

Proof. Let m be a total morphism and r a morphism such that m(x) = m(y)
implies x = y or x, y ∈ dom(r). Let r1 and r2 be morphisms such that r2◦r1 = r.
We must show that r1 is M-preserving w.r.t. m i.e. (by Proposition 3.1.8)
m(x) = m(y) implies x, y ∈ dom(r1) or x, y /∈ dom(r1). Assume to the contrary
that r1 is notM-preserving w.r.t. m, i.e., there exist x, y ∈ L such that m(x) =
m(y), x ∈ dom(r1) and y /∈ dom(r1). This means that x 6= y and y /∈ dom(r),
which contradicts our conditions on r.

We can now answer the main question of this section: under which conditions
can we embed a transformation into a different context. Ehrig et al. [13] have
already given a similar proof (in the context of graphs) for embeddings where
every morphism in the embedding must be injective (i.e., a monomorphism),

1Unfortunately, we can not be sure that the pushout over r and m exist, therefore we can
not be sure if r is (strictly)M-preserving w.r.t. m, see Section 8.3 and Appendix A.2.

28



the following theorem is more general in the sense that we do not restrict to
monomorphisms, but allow our embeddings contain any M-morphism where
the transformation morphism is strictlyM-preserving w.r.t. the first morphism
in the embedding.

Theorem 3.1.12 (Embedding Theorem). Given an SPO category (C ,M,R)

where pushouts preserve R-morphisms, let % = (G0
p1,m0
=⇒ . . .

pk,mk−1
=⇒ Gk) be a

transformation, and e0 : G0 → X0 an M-morphism such that %̂ is strictly M-

preserving w.r.t. e0, then there is a transformation δ = (X0
p1,n0
=⇒ . . .

pk,nk−1
=⇒ Xk)

with an embedding e : %→ δ.
Furthermore, let ek : Gk → Xk be the last morphism of the embedding e.

Then X0
δ̂−→ Xk

ek←− Gk is the pushout over X0
e0←− G0

%̂−→ Gk.

Proof. By induction over the length k of %: Let k = 0 then the embedding
e : % → δ consists of only one morphism e0. Furthermore we have the trans-
formation morphisms %̂ : G0 → G0 = idG0 and δ̂ : X0 → X0 = idX0 ,

and Proposition 2.3.7 implies that X0

idX0−→ X0
e0←− G0 is the pushout over

X0
e0←− G0

idG0−→ G0.
Assume as induction hypothesis that this theorem holds for transformations

% of length k = n. Let %′ be a transformation of length k = n+ 1, let % be the
prefix of %′ consisting of the first n direct transformations, and let t% be the last
transformation of %′:

%′ = (G0
p1,m0
=⇒ . . .

pn,mn−1
=⇒ Gn

pn+1,mn
=⇒ Gn+1)

% = (G0
p1,m0
=⇒ . . .

pn,mn−1
=⇒ Gn)

t% = (Gn
pn+1,mn

=⇒ Gn+1)

L1

m0





r1 // R1

m′0

��

L2

m1





r2 // R2

m′1

��

... Ln

mn−1





rk // Rn

m′n−1

��

Ln+1

mn





rn+1//

(t)

Rn+1

m′n

��
G0

e0

��

r′1
//

(1)

G1

e1

��

r′2
//

(2)

G2

e2

��

... Gn−1

en−1

��

r′n
//

(n)

Gn

en

��

r′n+1
//

(n+1)

Gn+1

en+1

��
X0 r′′1

// X1 r′′2
// X2

... Xn−1 r′′n
// Xn r′′n+1

// Xn+1

Furthermore let e0 be an M-morphism such that %̂′ is strictly M-preserving
w.r.t. e0, this implies that %̂ is also strictlyM-preserving w.r.t. e0 (by Proposi-
tion 3.1.10). Now we apply our induction hypothesis, this gives us a transfor-

mation δ = (X0
p1,n0
=⇒ . . .

pn,nn−1
=⇒ Xn), an embedding e : % → δ and we know

that the pushout X0
δ̂−→ Xn

en←− Gn of X0
e0←− G0

%̂−→ Gn exists (depicted as
(1) + (2) + · · ·+ (n)), where en is the last morphism of e.

There is a transformation δ′ = (X0
p1,n0
=⇒ . . .

pn,nn−1
=⇒ Xn

pn+1,nn
=⇒ Xn+1) and an

embedding e′ : %′ → δ′ if there are embeddings e : %→ δ and 〈en, en+1〉 : t% → tδ
where en is also the last morphism of e, δ is the prefix of δ′ containing the first
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n direct transformations, and tδ is the last transformation of δ′:

δ′ = (X0
p1,n0
=⇒ . . .

pn,nn−1
=⇒ Xn

pn+1,nn
=⇒ Xn+1)

δ = (X0
p1,n0
=⇒ . . .

pn,nn−1
=⇒ Xn)

tδ = (Xn
pn+1,nn

=⇒ Xn+1)

The transformation t% is formed by the pushout (t), similarly the transfor-
mation tδ is formed by the pushout (t) + (n + 1). Using the pushout decom-
position property, we know that (n + 1) is a pushout. Now we can use the
pushout composition property to conclude that (1) + (2) + · · ·+ (n) + (n+ 1),

i.e., X0
δ̂′−→ Xn+1

en+1←− Gn+1, is the pushout over X0
e0←− G0

%̂′−→ Gn+1.
Because %′ is strictly M-preserving w.r.t. e0 we know that en+1 is an M-
morphism, en is anM-morphism because it is part of the embedding e. There-
fore 〈en, en+1〉 : tn+1 → t′n+1 is an embedding. And we have the embedding
e′ = 〈e0, . . . , en, en+1〉 : %′ → δ′.

3.2 Critical Pairs

In order to reason about local confluence of all pairs of direct transformations,
we will distinguish two types of direct transformations: those that are paral-
lel dependent, and those that parallel independent. A pair of transformations
(with rules p1 and p2) is parallel independent if p1 can still be applied when
p2 has been applied first (or vice versa). The reason for this distinction is that
parallel independent pairs of direct transformations are always locally confluent
(Theorem 3.3.3), whereas parallel dependent pairs of direct transformations may
not be locally confluent at all. In this section we will formally define parallel
independence and we will introduce critical pairs: a subset of all the parallel
dependent direct transformations.

A critical pair is a parallel dependent pair of direct transformations where the
matches m1 and m2 are jointly epimorphic. Critical pairs provide an easy way
to reason about conflicts, we will show that (if some conditions hold) there exists
a critical pair for every conflict. Furthermore, given an SPO HLR system for
(GraphP ,M,R) where the left-hand sides of all rules consist of a finite graphs,
the then the set of critical pairs is finite (the left-hand sides of two rules can be
overlapped in only finitely many ways), whereas the set of parallel dependent
pairs of direct transformations is not finite: for every parallel dependent pair
of direct transformations with matches m1 : L1 → G and m2 : L2 → G there
exists a graph H such that G ⊂ H, this means that there also must exist matches
m′1 : L1 → H and m′2 : L2 → H which form a different parallel dependent pair
of direct transformations.

In Section 3.3, we will use critical pairs for proving local confluence of an
HLR system. This section will formally define parallel independence, which will
be followed by the formal definition of conflicts and critical pairs. We start with
the definition of parallel independence.

Definition 3.2.1 (Parallel Independence). Given an SPO HLR system where

p1 = (L1
r1−→ R1) and p2 = (L2

r2−→ R2) are two rules, let t1 = (G
p1,m1
=⇒

H1) and t2 = (G
p2,m2
=⇒ H2) be two different direct transformations. Then
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t1 and t2 are parallel independent if m∗2 = r′1 ◦ m2 is a match for p2, and
m∗1 = r′2 ◦m1 is a match for p1, i.e., m∗1,m

∗
2 ∈ M (see Figure 3.5). We call a

pair of transformations parallel dependent, if they are not parallel independent.

R1

m′1
��

L1

m1

  

r1oo

m∗1

%%

L2

m2

��

r2 //

m∗2

yy

R2

m′2
��

H1 Gr′1
oo r′2

// H2

Figure 3.5: The direct transformations G
p1,m1
=⇒ H1 and G

p2,m2
=⇒ H2 are parallel

independent when m∗1 is a match for p1 and m∗2 is a match for p2

A parallel dependent pair of transformations is also called a conflict. Specif-
ically, a pair of transformation that is parallel dependent according to Defini-
tion 3.2.1 is called a delete-use-conflict . In particular, p2 deletes something that
p1 uses if m∗1 = r′2 ◦m1 is not total (see Figure 3.5) and/or p1 deletes something
that p2 uses if m∗2 = r′1 ◦ m2 is not total. In Chapter 4, we will see that a
different kind of conflict will arise when we redefine parallel independence for
rules with negative application conditions.

In order to reason about parallel dependent transformations, we define crit-
ical pairs. We will show that for SPO HLR systems where (C ,M,R) is an
SPO category, there exists a critical pair for every pair of parallel dependent
derivations.

Definition 3.2.2 (Critical Pair). Given an SPO HLR System, a critical pair is

a pair of parallel dependent direct transformations G
p1,m1
=⇒ H1 and G

p2,m2
=⇒ H2

such that m1 and m2 are jointly epimorphic.

A critical pair is a minimal conflict situation, in the sense that the object
G is as small as possible (G contains no elements that are not required for the
matches m1 and m2). We mentioned before that every conflict can be repre-
sented by a critical pair, in the sense that every pair of direct transformations
in conflict is an embedding of a critical pair in a different context. This is not
true for all SPO categories, therefore we will define some extra assumptions on
the SPO categories before we can prove that critical pairs are complete.

Definition 3.2.3 (Strict SPO Category). An SPO category (C ,M,R) is a
strict SPO category if the following properties hold:

1. Pushouts in (C ,M,R) preserve R morphisms.

2. All R-morphisms are strictly M-preserving w.r.t. any monomorphism in
M

3. For any pair ofM-morphisms m′1 : L1 → G and m′2 : L2 → G, there exists
an object K and M-morphisms m1 : L1 → K,m2 : L2 → K,m : K →
G, such that m1 and m2 are jointly epimorphic, m is a monomorphism,
m ◦m1 = m′1 and m ◦m2 = m′2:

L1
m1

**
m′1

))
K m // G

L2

m2

44

m′2

55
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Proposition 3.2.4. The SPO category (GraphP ,M,R) is a strict SPO cate-
gory2.

Proof. We prove the three requirements separately:

1. By Proposition 3.1.10, we know that pushouts preserve R-morphisms.

2. Since a monomorphism is an injective total graph morphism (Proposi-
tion 2.2.13), this follows from Proposition 3.1.11.

3. We can construct K ⊆ G containing only those edges and vertices of G
that are in the image of m′1 or m′2. Let m be the inclusion of K in G
(m is total and injective and therefore a monomorphism). For i = 1, 2,
mi : Li → K is the restriction of m′i to the codomain K. By construction
we know that m1 and m2 are total i.e., m1,m2 ∈ M. By construction of
m, m1 and m2 we know m◦m1 = m′1, m◦m2 = m′2 and the pair (m1,m2)
is jointly epimorphic.

Given an SPO HLR system with a strict SPO category, we can prove that
there exists a critical pair for every conflict. To our knowledge, completeness of
critical pairs has not been proven in any existing work on critical pairs in SPO
high-level replacement (or graph transformation).

Theorem 3.2.5 (Completeness of Critical Pairs). Given an SPO HLR system
where (C ,M,R) is a strict SPO category, for each pair of parallel dependent

direct transformations t′1 = (G
p1,m

′
1=⇒ H ′1) and t′2 = (G

p2,m
′
2=⇒ H ′2), there exists a

critical pair t1 = (K
p1,m1
=⇒ H1) and t2 = (K

p2,m2
=⇒ H2) and a monomorphism

m : K → G in M such that embeddings 〈m,m∗i 〉 : ti → t′i for i = 1, 2 exist.

Proof. By Definition 3.2.3, there exists an object K, with M-morphisms m1 :
L1 → K,m2 : L2 → K,m : K → G, such thatm1 andm2 are jointly epimorphic,
m is a monomorphism, m ◦m1 = m′1 and m ◦m2 = m′2. We form the critical

pair of direct transformations t1 = (K
p1,m1
=⇒ H1) and t2 = (K

p2,m2
=⇒ H2). Let

t̂1 : K
r′1−→ H1 and t̂2 : K

r′2−→ H2 be the transformation morphisms for t1 and
t2. Since m is a monomorphism inM, Definition 3.2.3 implies that both t̂1 and
t̂2 are M-preserving w.r.t. m. Therefore Theorem 3.1.12 implies the existence
of the embeddings 〈m,m∗i 〉 : ti → t′i for i = 1, 2.

3.3 Sufficient Condition for Local Confluence

Now that we have defined critical pairs, we can use these to reason about all
parallel dependent transformations. In this section we will show a sufficient
condition for when an HLR system is locally confluent. We will show by an
example (based on [27]) that the local confluence of all critical pairs is not
sufficient for an HLR system to be locally confluent. Therefore, we define a
stronger notion of local confluence with does suffice.

In Section 3.1 we have shown that transformations can be embedded in a
different context. Now intuitively, it would seem that given a locally confluent

2This is actually not true because (GraphP ,M,R) is not an SPO category, see Section 8.3
and Appendix A.2.

32



p1

p2

p3

L1 R1

L2

L3

R2

R3

35 5

3 4

2

3

1

3

21

3

2

3

2

6

1

3

2, 5

6 3

4, 5

6

5

6

5

6

3

21

3 4, 53

2, 5

5

p1 p2

p3p3
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G

H1 H2

G′

X

Y1 Y2

X ′1 X ′2

Figure 3.6: A situation where a critical pair is locally confluent, but an embed-
ding of this critical pair in a larger context is not. The rules are shown on the
left, the critical pair in the middle, and the larger context on the right. We have
numbered the vertices to show how they are mapped under their matches, the
morphisms for the edges are defined by their source and target, and edges have
the empty label ε.

critical pair, all embeddings of this critical pair are locally confluent too. This is
not the case, as was already noted by Löwe [27]; the next example demonstrates
this.

Example 3.3.1. In Figure 3.6, we show three rules on the left: p1 = (L1
r1−→

R1), p2 = (L2
r2−→ R2) and p3 = (L3

r3−→ R3). In the middle we show a critical
pair of p1 and p2 that is locally confluent (up to isomorphism). The right part
of Figure 3.6 shows an embedding of the critical pair in a larger context. We can
see that the embedding is not confluent, even though we apply the same rules
with the same matches. We can conclude that not all embeddings of a locally
confluent critical pair are locally confluent, in other words, local confluence is
not preserved by the embedding.

Clearly the edge (5, ε, 6) ∈ X ′1 (and the absence of a similar edge in X ′2) is the

reason why X ′1 and X ′2 are not isomorphic. Let δ̂1 and δ̂2 be the transformation
morphisms of δ1 = (X =⇒ Y1 =⇒ X ′1 and δ2 = (X =⇒ Y2 =⇒ X ′2, respectively.

We can see that δ̂1 is defined the vertex 2 ∈ X (i.e., the vertex is not deleted

in the transformation δ1), but 2 ∈ X is not defined under δ̂2 (i.e., the vertex is
deleted in the transformation δ2). The fact that the transformation morphisms
are not equivalent seems to be the reason that the embedding of the critical pair
is not locally confluent.

In this example we can see that the rule morphisms of the transformations
do not commute, since one transformation deletes the vertex 2 ∈ X, while the
other transformation preserves this vertex. We will formulate a stronger notion
of local confluence, which requires that the transformation morphisms must
commute.

Definition 3.3.2 (Strict Local Confluence). Let p1 = (L1
r1−→ R1) and p2 =

(L2
r2−→ R2) be two rules. A pair of direct transformations P1

p1,m1⇐= K
p2,m2
=⇒ P2

is called strictly locally confluent (modulo isomorphism) if we have the following:
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1. Confluence: the pair of direct transformations is locally confluent, i.e.,
there are transformations P1

∗
=⇒ K ′, P2

∗
=⇒ K ′.

2. Strictness: The transformations %1 = (K
p1,m1
=⇒ P1

∗
=⇒ K ′) and %2 =

(K
p2,m2
=⇒ P2

∗
=⇒ K ′) commute, i.e., given the transformation morphisms

%̂1 and %̂2, we have %̂1 = %̂2.

In order to show that all pairs of direct transformations in an HLR system
are (strictly) locally confluent, we need to show that all parallel independent
transformations and all parallel dependent transformations are (strictly) locally
confluent. We will first show that all parallel independent direct transformations
are strictly locally confluent.

Theorem 3.3.3 (Local Confluence of Parallel Independent Direct Transforma-
tions). Given an SPO HLR system where (C ,M,R) is an SPO category, let

t1 = (G
p1,m1
=⇒ H1) and t2 = (G

p2,m2
=⇒ H2) be two parallel independent direct

transformations. Then t1 and t2 are strictly locally confluent.

Our proof is based on the proof given by Ehrig et al. [13].

Proof. Consider the diagram below. Subdiagrams (1) and (2) depict the trans-
formations t1 and t2, respectively.

L1 r1 //

m1

��

R1

m′1
��

L2 m2 //

r2

��

G r′1
//

r′2
��

(1)

(3)(2)

H1

r′′2
��

R2 m′2
// H2 r′′1

// X

The pushout diagram (2) + (3) is the pushout over r2 and r′1 ◦m2, which forms

the transformation H1
p2,r

′
1◦m2

=⇒ X provided that r′1 ◦ m2 is a match, i.e., r′1 ◦
m2 ∈ M. But this is ensured since t1 and t2 have been required to be parallel

independent. Analogously we obtain a transformation H2
p1,r

′
2◦m1

=⇒ X using the
pushout (1) + (3). Using the pushout decomposition property we know that
(3) is a pushout (over r′1 and r′2), the uniqueness of pushouts ensures that X is
unique up to isomorphism.

It is clear that the transformations %1 = (G
p1,m1
=⇒ H1

p2,r
′
1◦m2

=⇒ X) and %2 =

(G
p2,m2
=⇒ H2

p1,r
′
2◦m1

=⇒ X) commute because %̂1 = r′′2 ◦ r′1 = r′′1 ◦ r′2 = %̂2.

Now that we have seen that all parallel independent transformations are
locally confluent, we will now formulate a requirement for when all parallel
dependent transformations are locally confluent. The next theorem we provide
a sufficient condition for when an SPO HLR system is (strictly) locally confluent.
For graph transformation systems, some of this theory has already been worked
out by Löwe [27], however the proof for the local confluence theorem in that
paper is very concise.
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��
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Figure 3.7: A pair of direct transformations which is strictly locally confluent
because the critical pair is strictly locally confluent

Theorem 3.3.4 (Local Confluence Theorem for SPO HLR systems). An SPO
HLR system for a strict SPO category (C ,M,R) is strictly locally confluent if
and only if all its critical pairs are strictly locally confluent.

Proof. (⇒) Assume that the SPO HLR system is strictly locally confluent i.e.,

every pair of direct transformations H1
p1,m1⇐= G

p2,m2
=⇒ H2 with the same source is

strictly locally confluent. Since the set of critical pairs of the SPO HLR system
is a subset of all the pairs of direct transformations with the same source, we
can conclude that all critical pairs are strictly locally confluent.

(⇐) Given a pair of direct transformations H1
p1,m1⇐= G

p2,m2
=⇒ H2 we have

to show the existence of transformations δ1 = (G
p1,m1
=⇒ H1

∗
=⇒ G1) and δ2 =

(G
p2,m2
=⇒ H2

∗
=⇒ G2) such that G1 = G2 and δ̂1 = δ̂2. If the given pair is

parallel independent, then this follows from Theorem 3.3.3. If the given pair
is parallel dependent, Theorem 3.2.5 implies the existence of a critical pair

P1
p1,m

′
1⇐= K

p2,m
′
2=⇒ P2 and an M-monomorphism m : K → G (see Figure 3.7).

By assumption the critical pair is strictly locally confluent, leading to trans-
formations t1 = (P1

∗
=⇒ K ′) and t2 = (P2

∗
=⇒ K ′) such that the transforma-

tions %1 = (K
p1,m

′
1=⇒ P1

∗
=⇒ K ′) and %2 = (K

p2,m
′
2=⇒ P2

∗
=⇒ K ′) commute, i.e.,

%̂1 = %̂2.
Since m is a monomorphism inM we know (by Definition 3.2.3) that %̂1 and

%̂2 are strictly M-preserving w.r.t. m. Theorem 3.1.12 implies the existence of

transformations δ1 = (G
p1,m1
=⇒ H1

∗
=⇒ G1) and δ2 = (G

p2,m2
=⇒ H2

∗
=⇒ G2), with

embeddings e1 : %1 → δ1 and e2 : %2 → δ2. Let x1 be the last morphism of e1 and

let x2 be the last morphism of e2 then (by Theorem 3.1.12) G
δ̂1−→ G1

x1←− K ′

is the pushout over G
m←− K %̂1−→ K ′, and G

δ̂2−→ G2
x2←− K ′ is the pushout over

G
m←− K

%̂2−→ K ′. Because %̂1 = %̂2, G1 and G2 are pushout objects over the
same span, therefore we can assume w.l.o.g. that G1 = G2 and δ̂1 = δ̂2. We can

conclude that the pair of direct transformations H1
p1,m1⇐= G

p2,m2
=⇒ H2 is strictly

locally confluent.
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Chapter 4

Negative Application
Conditions

Up to this point we have considered HLR systems where the rules only consisted
of a rule morphism. In this chapter we introduce rules with negative application
conditions (NACs). With NACs it is possible to specify when a rule may not
be applied. In Figure 4.1 we see an graph L and a NAC l : L → L̂. Assuming
that L is the left-hand side of some rule p then a match m : L → G for p is
applicable only if there does not exist a morphism n : L̂→ G such that n◦l = m;
informally, the structure of L̂ must not exist in G.

We call an SPO HLR system where rules are allowed to have NACs an SPO
HLR system with NACs.

L̂ Ll

1

eating

philosopher

left

fork

2

3

2 1

eating

philosopher

left

fork

philosopher

holds

Figure 4.1: L̂ is a NAC over L

First we will formally define what rules with NACs are. We will see that
there are two possible types of NACs, namely left NACs and right NACs. In
Section 4.2 discuss the conversion from right NACs to equivalent left NACs:
we conjecture that this is possible in GraphP . Assuming that right NACs can
be converted to left NACs, we will be able to formulate a new version of the
embedding theorem for SPO HLR systems with NACs in Section 4.3. Finally in
Section 4.4 we will define parallel independence and we will show some properties
which must hold for critical pairs for SPO HLR systems with NACs. We will
define critical pairs, and show that an SPO HLR system is (strictly) locally
confluent if there are no critical pairs. Investigation of a necessary and sufficient
condition for (strict) local confluence is future work.
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4.1 Rules with NACs

In this section we will introduce (rules with) NACs, and we will prove some
basic properties of NACs. We will start with a formal definition of NACs and
rules with NACs.

Definition 4.1.1 (Negative Application Conditions). Given an SPO category
(C ,M,R) and a rule p with rule morphism r : L→ R we define the following:

1. A negative application condition (NAC) over L (resp. R) is anR-morphism
l : L → L̂ (resp. l′ : R → R̂). We call l (resp. l′) a left (resp. right) NAC
on p.

2. An M-morphism m : L → X satisfies a left NAC l : L → L̂, written
m |= l, if there is no M-morphism n : L̂→ X such that n ◦ l = m.

3. An M-morphism m : L → X satisfies a right NAC l′ : R → R̂, written

m |= l′, if, given the pushout X
r′−→ Y

m′←− R over r and m, if there is no
M-morphism n : R̂→ Y such that n ◦ l′ = m′.

4. A (left or right) NAC l : L→ L̂ is falsifiable if there exists anM-morphism
m : L̂→ X such that m 6|= l.

5. A (left or right) NAC l : L→ L̂ is consistent (or satisfiable) if there exists
an M-morphism m : L→ X such that m |= l.

6. A rule with negative application conditions p = (L
r−→ R,A,B), or rule

for short, consists of an R-morphism r, a set A of NACs over L (left
NACs) and a set B of NACS over R (right NACs).

7. Given a rule with NACs p = (L
r−→ R,A,B), anM-morphism m : L→ X

satisfies a set A (resp. B) of NACs, written m |= A (resp. m |= B) , if m
satisfies all NACs in A (resp. B) .

8. Given a rule with NACs p = (L
r−→ R,A,B), we say that p is applicable

to an object X at m : L → X (written m |= p) if m ∈ M, m |= A and
m |= B.

Let p = (L
r−→ R,A,B) be a rule and let l ∈ A be a NAC for p. If l is not

falsifiable (i.e., every match m for p satisfies the NAC l), then this means that

the rule p′ = (L
r−→ R,A \ {l}, B) is applicable in the exact same situations as

p. In the next proposition we will show when a left NAC is falsifiable.

Proposition 4.1.2 (Falsifiability of Left NACs). Let (C ,M,R) be an SPO

category; given a rule p = (L
r−→ R,A,B), a left NAC l : L → L̂ ∈ A is

falsifiable if and only if l ∈M.

Proof. (⇒) Let l be falsifiable, then there exist M-morphisms m : L̂ → X
and n : L̂ → X such that n ◦ l = m. Since M-morphisms are closed under
decomposition we can conclude that l ∈M.

(⇐) Let l ∈ M. If we take m = l and n = idL̂, then we have n ◦ l = m, i.e.
m 6|= l. We can conclude that l is falsifiable.
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Remark. This does not hold for right NACs: given a rule p = (L
r−→ R,A,B)

and an M-morphism m : L → G then given the pushout X
r′−→ Y

m′←− R over
r and m, the morphism m′ may not be an M-morphism.

If a NAC l is not falsifiable, then it does not add anything to the rule, since
the same rule without the NAC l is applicable in exactly the same situations.
From this point we will assume that every left NAC is falsifiable, which means
that every left NAC l is both an R- and an M-morphism.

The next proposition states exactly when a NAC is consistent.

Proposition 4.1.3 (Consistency of NACs). A (left or right) NAC l : L→ L̂ is
consistent if and only if there does not exist an M-morphism n : L̂ → L such
that n ◦ l = idL.

Remark. Given morphisms l : L→ L̂ and n : L̂→ L such that n ◦ l = idL, then
we say that n is a left inverse (or retraction) of l.

Our proof is based on a similar proof in [13].

Proof. (⇐) If there does not exist anM-morphism n : L̂→ L such that n ◦ l =
idL, then idL |= l, i.e., l is consistent by Definition 4.1.1.

(⇒) Let n : L̂→ L be an M-morphism such that n ◦ l = idL. Since for any
given morphism m : L→ X we have m = m◦idL, this implies that m◦n◦l = m,
i.e., m does not satisfy the NAC l, therefore l is not consistent.

4.2 Converting Right NACs to Left NACs

Given a match m for a rule p = (L
r−→ R,A,B), then deciding if the match

satisfies all left NACs is easier than deciding if the match satisfies all right
NACs. This is because for right NACs we need to compute the transformation
(i.e., the pushout over m and r) before we can decide if the match satisfies the
right NACs.

If there would exist a rule p′ = (L
r−→ R,A′,∅) with the same rule morphism

r, which has only left NACs, such that for any M-morphism m : L → X we
have m |= p iff m |= p′ then it would be much easier to decide whether a rule is
applicable. In this section we will investigate if there exists an equivalent rule p′

(without right NACs) for any rule p such that p and p′ are applicable in exactly
the same situations.

One way to find such an equivalent rule, is to convert every right NAC into
a number of left NACs. Consider a rule p = (L

r−→ R,A,B), where B is non-
empty. Then we want to find a set of left NACs A′ = {l1 : L→ L̂1, . . . , ln → L̂n}
such that for every M-morphism m we have m |= A′ if and only if m |= p. To
construct the set A′ we will use pushout complements.

Definition 4.2.1 (Pushout Complement). Given morphisms f : A → B and
h : B → D, a pushout complement of (f, h) is an object C and morphisms

g : A→ C and i : C → D such that the cospan C
i−→ D

h←− B is the pushout
over f and g. Two pushout complements Cj with morphisms gj : A → Cj
and ij : Cj → D for j = 1, 2 are isomorphic when there exists an isomorphism
x : C1 → C2 such that x ◦ g1 = g2 and i2 ◦ x = i1.
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Pushout complements may not always exist, even in categories where pushouts
over all morphisms exist. In Figure 4.2 we show three situations where pushout
complements do not exist in GraphP .

A

D

B

1
f

h

1 2

1,2

(a)

A

D

B

1
f

h

1 2

1 2

(b)

A

D

B
f

h

1

(c)

Figure 4.2: Examples of situations where no pushout complement exists

We conjecture that the non-existence of pushout complements does not cause
any problems, because if there would not exists a pushout complement for a
right NAC l′ : R → R̂ and a rule morphism r : L → R, then we conjecture
that l′ is not falsifiable. Consider any of the examples in Figure 4.2. If the
morphism f would be a rule morphism, and h would be a right NAC, then we
see that there is no way to falsify h, because (in all three examples) h models
an additional side effect to one of the vertices which was added by the rule. We
can conclude that h is not falsifiable.

Unfortunately this reasoning does not hold in general for all categories, the
following example will illustrate this.

Example 4.2.2. Consider a category C with set of objects {L,R, R̂,X, Y } the
morphisms are the identity morphisms for every object, the morphisms in the
figure below, and their compositions.

L

m

��

r // R

l′

��
R̂

n′

��
X r′′ // Y

Assume that every morphism is both an M- and an R-morphism. We claim
(without proof) that (C ,M,R) is an SPO category.

We can see that there exists no pushout complement for r, l′ however there
does exists an M-morphism m, such that m |= l′, i.e., l′ is falsifiable.

Next we will propose a construction which transforms a rule with right NACs
to a rule with no right NACs. The purpose of this construction is that the rules
are equivalent, meaning that they are applicable in the same situations and that
they transform the same source graphs in the same target graphs.

Construction 4.2.3. Given a rule p = (L
r−→ R,A,B), we convert p to a rule

p′ = (L
r−→ R,A,∅) in the following way:
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1. Construct the set A′r = {l : L → L̂ ∈ M | there exists a pushout R
l′−→

R̂
r′i←− L̂ over l and r such that l′ ∈ B}

2. A′ = A′r ∪A

The first step for showing that this fits the purpose, is proving that m |= p
implies m |= p′.

Proposition 4.2.4. Given a rule p = (L
r−→ R,A,B) and a match m : L→ X.

Let p′ = (L
r−→ R,A′,∅) be the rule where all right NACs have been converted

to left NACs as in Construction 4.2.3, then m |= p implies m |= p′.

Proof. Consider Figure 4.3, let m 6|= p′, then there exists a left NAC l : L →
L̂ ∈ A′ such that m 6|= l. If l ∈ A then m 6|= A, otherwise l was part of a

pushout complement of a right NAC in B, let R
l′−→ R̂

r∗←− L̂ be the pushout
(1) over l and r. We know that l′ ∈ B because l is part of a pushout complement
of r and l′. Because m 6|= l, there exists an M-morphism n : L̂→ X such that
n ◦ l = m. Let (2) be the pushout over r∗ and n, then (1) + (2) is the pushout
over r and n ◦ l = m. We can conclude that l′ ◦ n′ 6|= l′ therefore m 6|= p.

Unfortunately the converse is not true for all categories, as the following
example illustrates.

Example 4.2.5. Consider a category C with set of objects {L,R, L̂, R̂,X, Y }
the morphisms are the identity morphisms for every object, the morphisms in
the figure below, and their compositions.

L

l
��

r //

(1)

m

��

R

l′

��
L̂ r′ // R̂

n′

��
X r′′ // Y

Assume that every morphism is both an M- and an R-morphism. We claim
(without proof) that (C ,M,R) is an SPO category.

Let p = (L
r−→ R,∅, B) be a rule where B = {l′} (i.e., p has a right NAC).

Using Construction 4.2.3 we can derive the rule p′ = (L
r−→ R,A′,∅) where

A′ = {l} and p′ has no right NACs. We can see that m 6|= p since the pushout

over m and r is X
r′′−→ Y

n′◦l′←− R. However there does not exist anM-morphism
n : L̂ → X such that n ◦ l = m, and therefore m |= l and m |= p′. We can
conclude that m |= p′ does not imply m |= p.

Definition 4.2.6 (NAC equivalence property for SPO categories). Given an
SPO category (C ,M,R), we say that (C ,M,R) satisfies the NAC equivalence

property if for any rule p = (L
r−→ R,A,B), there exists a rule p′ = (L

r−→
R,A′,∅) such that for any match m : L→ X we have m |= p′ iff m |= p.

We conjecture that the NAC equivalence property holds for the SPO cat-
egory (GraphP ,M,R). In fact, we came up with a stronger property called

41



L

l
��

r //

(1)

m

��

R

l′

��
L̂ r∗ //

(2)n

��

R̂

n′

��
X r′ // Y

Figure 4.3

the pushout/pullback property which we will define next. We will also show that
the pushout/pullback property implies the NAC equivalence property. This
property uses pullbacks, the dual of a pushout. More details on definitions and
properties of pullbacks can be found in [10]. It is future work to find out if
pullbacks exist for GraphP , and if the pushout/pullback property holds for
(GraphP ,M,R).

Definition 4.2.7 (Pushout/Pullback property). Let (C ,M,R) be an SPO cat-
egory, then (C ,M,R) satisfies the pushout/pullback property (PO/PB prop-
erty) if for any pushout (1) + (2) over m : L → X and r : L → R where
m,n′ ∈ M and r ∈ R, there exists a pullback (2) over r′ and n′ such that
n ∈M, n ◦ l = m, and (1) is a pushout (where l : L→ L̂ is the mediating mor-
phism: since n′ ◦ l′ ◦ r = r′ ◦m there must exist a unique morphism l : L → L̂
by the universal pullback property) (see Figure 4.3).

Now we will show that the PO/PB property indeed implies the NAC equiv-
alence property.

Proposition 4.2.8. Let (C ,M,R) be an SPO category where the PO/PB prop-

erty holds. Given a rule p = (L
r−→ R,A,B) and a match m : L → X. Let

p′ = (L
r−→ R,A′,∅) be the rule where all right NACs have been converted to

left NACs as in Construction 4.2.3, then m |= p if and only if m |= p′ (i.e. the
NAC equivalence property holds for (C ,M,R)).

Proof. (⇒) This follows from Proposition 4.2.4.
(⇐) Consider Figure 4.3. Assume that m 6|= p. If there is a left NAC l∗ ∈ A

such that m 6|= l then m 6|= p′ (because l∗ ∈ A′). Otherwise there must be a right
nac l′ : R → R̂ ∈ B and an M-morphism n′ : R̂ → Y such that n′ ◦ l′ is the

co-morphism of m in the pushout X
r′−→ Y

n′◦l′←− R over r and m. By the PO/PB

property, there exist a morphism l : L→ L̂ and a pullback X
n←− L̂ r∗−→ R̂ over

r′ and n′ such that n ∈M and L̂
r∗−→ R̂

l′←− R is the pushout over l and r. We
have n ◦ l = m ∈ M and n ∈ M therefore l ∈ M. Because (1) is a pushout we
have found a pushout complement of r and l′, therefore (by Construction 4.2.3)
l ∈ A′ and m 6|= l we have m 6|= p′.

From this point onwards we assume that every rule has only left NACs. In-
stead of writing p = (L

r−→ R,A,∅) we leave out the empty set of right NACs

and denote the rule as p = (L
r−→ R,A).
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In the next section, most of our proofs will require that the NAC equivalence
property holds. Proving that this property holds for (GraphP ,M,R) is future
work.

4.3 Derived Rules and Embeddings

In this section we will formulate a new embedding theorem which allows rules
with NACs. In order to be able to do so we will define derived rules. Similarly
to transformation morphisms (as defined in Definition 3.1.3), a derived rule is
derived from a transformation. In fact, the rule morphism of a derived rule is
the transformation morphism of the transformation. A derived rule also has a
set of left NACs, which we will explain in more detail at a later point.

First we will define another assumption that we must make, namely that the
SPO category that we use is closed under pushouts over M-morphisms. The
meaning of this is defined below.

Definition 4.3.1. Given an SPO category (C ,M,R), we say that M-mor-
phisms are closed under pushouts if for any f : A→ B ∈ M, g : A→ C ∈ M
and g ∈ R (g is both an M- and an R-morphism) then the pushout over (f, g)
is also a pushout in the category with the same class of objects as C and the
class of M-morphisms1.

Proposition 4.3.2. In the SPO category (GraphP ,M,R), M-morphisms are
closed under pushouts.

Proof. M-morphisms are total graph morphisms. We can use Construction 2.3.4
1 to construct the pushout of two total graph morphisms, we can repeat the proof
of Proposition 2.3.5 to show that pushouts exist in the category with the object
class of all graphs and morphisms in the class M.

Next we will define derived rules. First we will define a so-called single-
step derived rule. This is a rule (with a set of NACs), which is derived from a
single-step transformation.

Definition 4.3.3 (Single-Step Derived Rule with NACs). Given an SPO cate-

gory (C ,M,R) where M is closed under pushouts. Let p = (L
r−→ R,A) be

a rule where A = {l1, . . . , ln} and let % = (X
m,p
=⇒ Y ) be a transformation. The

single-step derived rule %̄ = (X
%̂−→ Y,A′) of % is defined as follows:

• %̂ is the transformation morphism of %;

• A′ = {l′1, . . . , l′n} such that, for i = 1 . . . n, l′i is the co-morphism of li :

L→ L̂i in the pushout L̂i
m̂′i−→ X̂i

l′i←− X over m and li.

Remark. We know that every l′i ∈ A is anM-morphism becauseM-morphisms
are closed under pushouts.

Next we will show that the definition we have just given is correct, in the
sense that the NACs for the derived rule are satisfied under precisely the right
circumstances.

1Unfortunately, our pushout construction is incorrect, therefore we our not sure if this
proof is still valid, see Section 8.3 and Appendix A.2.
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Proposition 4.3.4. Let (C ,M,R) be an SPO category where M is closed

under pushouts. Given a rule p = (L
r−→ R,A), a transformation % = (G

m,p
=⇒

H) with derived rule %̄ = (G
%̂−→ H,A′), and an M-morphism t : G → X then

we have t |= A′ if and only if m ◦ t |= A.

Proof. (⇒) Suppose m ◦ t 6|= A then there exists a NAC l : L→ L̂ ∈ A and an

M-morphism n : L̂ → X such that n ◦ l = t ◦m. Let L̂
m′−→ Ĝ

l′←− G be the
pushout (1) over l and m. By definition we know that l′ ∈ A′. Because (1) is a
pushout we know that there exists a morphism n′ : G→ X such that t = n′ ◦ l′,
we know that n′ is anM-morphism because by Definition 4.3.1 the pushout over
m and l is a pushout in the category with all C objects andM-morphisms. We
can conclude that t 6|= l′ which implies t 6|= A′.

L̂

m′

��
n

��

(1)

Lloo r //

m

��

R

m′′

��
Ĝ

n′

��

Gl′oo %̂ //

t

��

H

X

(⇐) Suppose t 6|= A′ then there exists a NAC l′ : G → Ĝ ∈ A′ and an M-
morphism n′ : Ĝ → X such that t = n′ ◦ l′. By definition there exists a NAC
l ∈ A such that l′ is the co-morphism in the pushout (1) over m and l. The
morphism n = n′ ◦ m′ is an M-morphism because M-morphisms are closed
under composition and pushouts. We have n ◦ l = t ◦ m (because (1) is a
pushout) and therefore t ◦m 6|= l which implies t ◦m 6|= A.

In the next construction we will show how we can construct a derived rule
from any finite transformation sequence. This process requires converting all
intermediate NACs in the transformation sequence to left NACs for the derived
rule.

Construction 4.3.5 (Derived Rule with NACs). Let (C ,M,R) be an SPO
category whereM is closed under pushouts and the NAC equivalence property

holds, let % = (G0
p1,m0
=⇒ . . .

pk,mk−1
=⇒ Gk) be a finite transformation sequence

consisting of direct transformations ti = (Gi−1
pi,mi−1

=⇒ Gi) where t̄i = (Gi−1
t̂i−→

Gi, Ai) are the single-step derived rules (for i = 1, . . . , n). Then the derived rule

%̄ = (G0
%̂−→ Gk, A

′) constructed as follows:

1. %̂ is the transformation morphism of %.

2. Let t̄′n = t̄n, and repeat the following for all i = 1, . . . n− 1 in descending
order:

(a) Let A′i+1 be the set of left NACs of the rule ¯t′i+1, and let Ai be the
set of left NACs for t̄i.

(b) Create the rule t̄∗i = (Gi−1
t̂i−→ Gi, Ai, A

′
i+1).
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(c) Since the NAC equivalence property holds, we can construct the rule

t̄′i = (Gi−1
t̂i−→ Gi, A

′
i) which is equivalent to t̄∗i .

3. A′ = A′1 is the set of left NACs for %̄.

Remark. For a zero-step transformation δ = (X
∗

=⇒ X) the derived rule has no

NACs, i.e., δ̄ = (X
idX−→ X,∅).

Before we formulate and prove our new embedding theorem, we will first
prove a lemma that will aid our induction proof for the embedding theorem.

We will show that given two transformation sequences % and %′, such that % is
a prefix of %′ (i.e., if % has n transformation steps, then the first n transformation
steps of %′ are the same as %), then the derived rule of %′ has all the NACs of
the derived rule of % (and possibly more).

Lemma 4.3.6. Let %′ = (G0
p1,m0
=⇒ . . .

pn,mn−1
=⇒ Gn

pn+1,mn
=⇒ Gn+1) be a transfor-

mation of length n+ 1 and let % = (G0
p1,m0
=⇒ . . .

pn,mn−1
=⇒ Gn) be a a prefix of %′.

Then given the derived rules %̄′ = (G0
%̂′−→ Gn+1, A

′) and %̄ = (G0
%̂−→ Gn, A),

we have A ⊆ A′.

Proof. In Construction 4.3.5, we see that all intermediate NACs in a sequence
of transformations are moved to the left (step by step). We also see that Con-
struction 4.2.3 adds left NACs (and preserves the existing left NACs) i.e., given

equivalent rule t̄′i = (Gi−1
t̂i−→ Gi, A

′
i) of t̄∗i = (Gi−1

t̂i−→ Gi, Ai, A
′
i+1) we see

that Ai ⊆ A′i.
Now since the transformation % is a prefix of %′, we see that Construc-

tion 4.3.5 has to iterate over all single-step derived rules of %, even when
computing the derived rule for %′. Therefore A ⊆ A′ follows from Construc-
tion 4.3.5.

Next we prove the new embedding theorem which allows rules with NACs.
The theorem itself is very similar to Theorem 3.1.12 (the embedding theorem
without NACs), the difference is, that the morphism e0 must now also satisfy
all the NACs of the derived rule %̄.

Theorem 4.3.7 (Embedding Theorem for Rules with NACs). Let (C ,M,R)
be an SPO category whereM is closed under pushouts and the NAC equivalence

property holds, let % = (G0
p1,m0
=⇒ . . .

pk,mk−1
=⇒ Gk) be a transformation, let %̄ =

(G0
%̂−→ Gk, A

′) be the derived rule for %, and let e0 : G0 → X0 be an M-
morphism such that %̂ is strictly M-preserving w.r.t. e0 and e0 |= %̄, then there

is a transformation δ = (X0
p1,n0
=⇒ . . .

pk,nk−1
=⇒ Xk) with an embedding e : %→ δ.

Furthermore, let ek : Gk → Xk be the last morphism of the embedding e.

Then X0
δ̂−→ Xk

ek←− Gk is the pushout over X0
e0←− G0

%̂−→ Gk.

Proof. Analogous the proof of Theorem 3.1.12. The only difference is the fact
that we have NACs here. We will show that the induction step can still be

applied. Given transformations %′ = (G0
p1,m0
=⇒ . . .

pn,mn−1
=⇒ Gn

pn+1,mn
=⇒ Gn+1)

and % = (G0
p1,m0
=⇒ . . .

pn,mn−1
=⇒ Gn) and an M morphism e0 such that %̂′ is

strictly M-preserving w.r.t. e0 and e0 |= %̄′, this implies that %̂ is also strictly
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M-preserving w.r.t. e0 (by Proposition 3.1.10) and we also know that e0 |= %̄
because of Lemma 4.3.6.

Because we have e0 |= %̄ we can apply the induction step. The rest of the
proof (including the base case for the induction, where we do not have any NACs
at all) is analogous to Theorem 3.1.12.

4.4 Critical Pairs and Confluence

In Section 3.3 we have seen that the embedding theorem is important for proving
that an HLR system (without NACs) is strictly locally confluent if all critical
pairs are strictly locally confluent.

Given a transformation % = (G0
∗

=⇒ Gn) and an M-monomorphism e0 :
G0 → X0, all conditions of the original embedding theorem (Theorem 3.1.12)
are satisfied (because all R-morphisms are strictly M-preserving w.r.t. any
monomorphism in M). We cannot say the same for our new embedding theo-
rem, since the fact that e0 is a monomorphism does not necessarily mean that
e0 satisfies all NACs of the derived rule %̄. Because of this, finding a sufficient
condition for strict local confluence for HLR systems with NACs is not easy.

In this section we will define parallel independence for transformations with
NACs. We will define critical pairs with NACs. We will also show that it is not
easy to prove strict local confluence of an HLR system based on analysis of the
critical pairs, since critical pairs do not only depend on a pair of transformations,
but they should take other rules in the HLR system into account.

Definition 4.4.1 (Parallel Independence). Let t1 = (X
p1,m1
=⇒ Y1) and t2 =

(X
p2,m2
=⇒ Y2) be two direct transformations using p1 = (L1

r1−→ R1, A1) and

p2 = (L2
r2−→ R2, A2). Then t1 and t2 are parallel independent if m∗1 = r′2 ◦m1

is a match for p1, and m∗2 = r′1 ◦ m2 is a match for p2 with m∗1 |= p1 and
m∗2 |= p2. We call a pair of transformations parallel dependent, if they are not
parallel independent.

From this definition we can see that there can be different reasons why a
pair of transformations is parallel dependent. First of all, it can be the case
that m∗1 = r′2 ◦m1 is not a match for p1, or m∗2 = r′1 ◦m2 is not a match for p2

(i.e., m∗1 /∈M or m∗2 /∈M). This is a delete-use conflict, which we have already
seen in Section 3.2 on page 31. The other reason why a pair of transformations
can be parallel dependent is the situation where m∗1 6|= p1 or m∗2 6|= p2. Such a
situation is called a produce-forbid conflict, since one rule produces something
which is forbidden by one of the NACs of the other rule.

It is possible that a parallel dependent pair of transformations has both a
delete-use conflict and a produce-forbid conflict, for instance if m∗1 /∈ M and
m∗2 ∈M but m∗2 6|= p2.

Given the new definition for parallel independence, we can prove that all parallel
independent pairs of transformations in a HLR system with NACs are strictly
locally confluent.

Theorem 4.4.2 (Strict Local Confluence of Parallel Independent Direct Trans-

formations). Given an SPO HLR system with NACs, let t1 = (G
p1,m1
=⇒ H1) and
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t2 = (G
p2,m2
=⇒ H2) be two parallel independent direct transformations. Then t1

and t2 are strictly locally confluent.

Proof. This follows from Definition 4.4.1 and Theorem 3.3.3.

Analogously to what we have done in Section 3.2, we will give a definition for
critical pairs with NACs, we call these conditional critical pairs. This definition
is based on an existing definition for critical pairs with NACs for DPO graph
transformation systems [24].

Definition 4.4.3 (Conditional Critical Pair). Given an SPO HLR System with

NACs, a conditional critical pair is a pair of direct transformations G
p1,m1
=⇒ H1

and G
p2,m2
=⇒ H2 where p1 = (L1

r1−→ R1, A1) and p2 = (L2
r2−→ R2, A2), such

that

1. m1 and m2 are jointly epimorphic and

(a) m∗1 = r′2 ◦m1 is not an M-morphism
or

(b) m∗2 = r′1 ◦m2 is not an M-morphism

or

2. (a) m∗1 = r′2 ◦m1 is an M-morphism, but for one of the NACs l1 ∈ A1

there exists an M-morphism n1 : L̂1 → H2 such that n1 ◦ l1 = m∗1
(i.e., m∗1 6|= l1) and the pair (n1,m

′
2) is jointly epimorphic

or

(b) m∗2 = r′1 ◦m2 is an M-morphism, but for one of the NACs l2 ∈ A2

there exists an M-morphism n2 : L̂2 → H1 such that n2 ◦ l2 = m∗2
(i.e., m∗2 6|= l2) and the pair (n2,m

′
1) is jointly epimorphic

L̂1

n1

%%

L̂2

n2

yy

R1

m′1
��

L1

m1

  

r1oo

l1

OO

L2

m2

��

r2 //

l2

OO

R2

m′2
��

H1 Gr′1
oo r′2

// H2

Remark. In cases 2(a) and 2(b) m1 and m2 may fail to be jointly epimorphic.

In order to be able to prove the completeness theorem for conditional critical
pairs we have to make some assumptions. The next definition is an extension to
strict SPO categories (Definition 3.2.3). The third part of this definition is fairly
similar to what we have already defined in Definition 3.2.3 only the implications
at the end (m1 ∈M and m′2 ∈M) are new.

Definition 4.4.4. A strict SPO category (C ,M,R) is a NAC SPO category
if the following properties hold:

1. The PO/PB property (see Definition 4.2.7) holds for (C ,M,R);
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2. Pullbacks preserve monomorphisms, i.e., for morphisms f : B → D and

g : C → D where f is a monomorphism and the pullback B
g′←− A f ′−→ C

over f and g exists, it must follow that f ′ is a monomorphism.

3. For any pair of m′1 : L1 → G and m′2 : L2 → G, there exists an object K
and morphisms m1 : L1 → K,m2 : L2 → K,m : K → G, such that m1

and m2 are jointly epimorphic, m is a monomorphism inM, m◦m1 = m′1
and m ◦m2 = m′2, furthermore m′1 ∈ M implies m1 ∈ M and m′2 ∈ M
implies m2 ∈M.

L1
m1

**
m′1

))
K m // G

L2

m2

44

m′2

55

The following shows that every conflict (i.e., every pair of parallel dependent
transformations) can be “explained” by a conditional critical pair. This is called
completeness; it is the extension of the analogous result without NACs, see
Theorem 3.2.5.

Theorem 4.4.5 (Completeness of Conditional Critical Pairs). Given an SPO
HLR system with NACs where (C ,M,R) is a NAC SPO category, for each

pair of parallel dependent direct transformations t′1 = (G
p1,m

′
1=⇒ H1) and t′2 =

(G
p2,m

′
2=⇒ H2), there exists a conditional critical pair t1 = (K

p1,m1
=⇒ C1) and

t2 = (K
p2,m2
=⇒ C2) and a monomorphism e : K → G in M such that embeddings

〈e, e′i〉 : ti → t′i for i = 1, 2 exist.

Proof. Let r′′1 = t̂′1 and r′′2 = t̂′2, in case r′′2 ◦ m1 /∈ M or r′′1 ◦ m2 /∈ M the
situation is a delete-use conflict and our proof follows from Theorem 3.2.5.

It is also possible that (a) r′′2 ◦m1 ∈M and r′′2 ◦m1 6|= p1, or (b) r′′1 ◦m2 ∈M
and r′′1 ◦m2 6|= p1. In this case we have a produce-forbid conflict. We assume
the case (a) holds, the other case is analogous.

L̂1

n1

%%

n′1

$$

R1

m′′1

��

m∗1
��

L1

m1

  

m′1

��

r1oo

l1

OO

(3)

L2

m2

~~

m′2

��

r2 //

(1)

R2

m∗2
��

m′′2

��

C1

e′1
��

(4)

Kr′1
oo

e

��

r′2
//

(2)

C2

e′2
��

H1 Gr′′1
oo r′′2

// H2

We have r′′2 ◦ m′1 is an M-morphism, but for one of the NACs l1 ∈ A1

there exists an M-morphism n′1 : L̂1 → H2 such that n′1 ◦ l1 = r′′2 ◦ m′1 (i.e.,
r′′2 ◦m′1 6|= l1).

We know by Definition 4.4.4 that there exists an object C2 with morphisms
e′2 : C2 → H2, m∗2 : R2 → C2 and n1 : L̂1 → C2 such that n1 ∈ M and
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e′2 ∈ M which is, moreover, mono. By the PO/PB property there exists a

pullback G
e←− K

r′2−→ C2 over e′2 and r′′2 with a morphism m2 : L2 → K such

that e ◦ m2 = m′2 and K
r′2−→ C2

m∗2←− R2 is a pushout (1) over m2 and r2.
We know that e is a monomorphism because e′2 is mono and pullbacks preserve
monomorphisms (Definition 4.4.4).

We must still show that there exists an M-morphism m1 : L1 → K such
that e ◦m1 = m′1. We have the morphisms m′1 : L1 → G and n1 ◦ l1 : L1 → C2

such that r′′2 ◦ m′1 = e′2 ◦ n1 ◦ l1. Because (2) is a pullback this means that
there exists a unique morphism m1 : L1 → K such that r′2 ◦m1 = n1 ◦ l1 and
e ◦m1 = m′1. Because e and m′1 are M-morphisms, we know that m1 is also
an M-morphism (by the decomposition property of M-morphisms), similarly,
because e and m′2 = e ◦ m2 are M-morphisms, we know that m2 is also an
M-morphism.

Before we can show that an embedding indeed exists, we will first show that
m1 and m2 satisfy the NACs of p1 and p2. We show this by contradiction,
assume that m1 6|= p1 (the proof for m2 6|= p2 is analogous) then there exists a
NAC l∗1 : L1 → L̂∗1 and an M morphism n∗ : L̂∗1 → K such that n∗ ◦ l∗1 = m1.
This means that n∗ ◦ l∗1 ◦ e = m1 ◦ e = m′1, but then m′1 6|= l∗1 which would mean
that the transformation t1 could not exist, a contradiction.

We know that the pullback (2) is also a pushout because (1) and (1) + (2)
are pushouts. We can construct the pushouts (3) and (4). Because e is a
monomorphism, we know (by Definition 3.2.3) that e′1 is an M-morphism (we
have already shown that e′2 is an M-morphism).

Now we have conditional critical pair of transformations ti = (K
pi,mi
=⇒ Ci)

(for i = 1, 2) and embeddings 〈e, e′i〉 : ti → t′i.

Now that we have shown that conditional critical pairs are complete, we can
provide a sufficient condition for strict local confluence of an HLR system with
NACs.

Theorem 4.4.6. An SPO HLR system with NACs and a NAC SPO category
(C ,M,R) is strictly locally confluent if there are no conditional critical pairs.

Proof. Since there exists a conditional critical pair for every pair of parallel
dependent pair of transformations, we know that every pair of transformations
in the HLR system must be parallel independent. Therefore by Theorem 4.4.2
we know that all transformations are strictly locally confluent.

One thing that we still need to find out is when an SPO HLR system with
NACs is locally confluent if there are conditional critical pairs. Unfortunately
it turns out that the strict local confluence of all conditional critical pairs does
not imply strict local confluence of an SPO HLR system with NACs. We will
illustrate this in the next example.

Example 4.4.7. Consider a graph transformation system with NACs, which
has the rules p1 = (L1

r1−→ R1,∅), p2 = (L2
r2−→ R2,∅) and p3 = (L3

r3−→
R3, {l}) as depicted in Figure 4.4 on the left side; and consider the pair of

transformations a = (Y1
p1⇐= X

p2
=⇒ Y2) depicted in Figure 4.4 on the right

which is in delete-use conflict. The conditional critical pair for this pair of

transformations is c = (H1
p1⇐= G

p2
=⇒ H2) as depicted in Figure 4.4. We also

see that there exists a monomorphism e0 : G→ X.
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e0

Figure 4.4: A situation where a critical pair is strictly locally confluent, but the
same sequence of rules is not applicable to an embedding in a larger context.
The rules are shown on the left, the critical pair in the middle, and the larger
context on the right. We have numbered the vertices to show how they are
mapped under their matches, the morphisms for the edges are defined by their
source and target, and edges have the empty label ε.

We can see that the conditional critical pair c is strictly locally confluent,

since there exists a transformation H2
p3

=⇒ H1 such that the transformation

morphisms for G
p1

=⇒ H1 and G
p2

=⇒ H2
p3

=⇒ H1 commute (both transformation
morphisms are empty morphisms).

One way to show that the pair of transformations a is strictly locally con-
fluent, is by showing that there exists an embedding for the locally confluent
transformations of the critical pair c into the transformations of a, however this

is not the case, because the derived rule %̄ for % = (G
p2

=⇒ H2
p3

=⇒ H1) has a
NAC which is not satisfied by e0 : G→ X. We can conclude that the embedding
theorem cannot be satisfied because e0 6|= %̄.

Informally, we can see that it is not possible to apply the transformations
which made the critical pair c confluent to the parallel dependent pair a. This is
because we cannot apply the rule p3 to Y2, since the NAC for p3 is not satisfied
for the match m : L3 → Y2.

From this example we can conclude that strict local confluence of all critical
pairs does not imply local confluence of all parallel dependent transformations in
an SPO HLR system. Next, we will informally discuss some potential solutions
to this problem based on related work on high-level replacement using double-
pushout. Investigating if these solutions are also applicable to SPO HLR systems
is future work.

Related Work

Lambers [23] has presented a method to analyse local confluence for adhesive
HLR systems (which are HLR systems for DPO) with NACs. Similarly to our
work, Lambers has defined critical pairs with NACs and an embedding theorem.

Like us, Lambers observed that strict local confluence of all (conditional)
critical pairs was not sufficient for local confluence of the HLR system, therefore
Lambers has defined strict NAC-confluence.
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Definition 4.4.8 (Strict NAC-confluence). A conditional critical pair of trans-

formations t1 = (K
p1,m1
=⇒ C1) and t2 = (K

p2,m2
=⇒ C2) is strictly NAC-confluent

if

1. it is strictly confluent via some transformations %1 = (K
p1,m1
=⇒ C1

∗
=⇒ X)

and %2 = (K
p2,m2
=⇒ C2

∗
=⇒ X)

2. and for every morphism e0 : K → G ∈ M where e0 |= t̄1 and e0 |= t̄2
(i.e., e0 satisfies the derived rules of t1 and t2), it follows that e0 |= %̄1 and
e0 |= %̄2 (i.e., e0 satisfies the derived rules of %1 and %2).

Using this definition, we would be able to prove that an SPO HLR system
is strictly locally confluent if all conditional critical pairs are strictly NAC-
confluent (this proof would be analogous to Theorem 3.3.4, the strict NAC-
confluence ensures that the embedding theorem with NACs is applicable).

What we do not yet know is when a conditional critical pair is strictly NAC-
confluent. Lambers [23] provides a sufficient condition for strict NAC-confluence
in the DPO setting, it should be investigated if these conditions also work for
in the SPO setting.

We conclude this chapter with a note on future work. Strict NAC-confluence
is not the only thing that is yet to be investigated. In order to apply these results
to (GraphP ,M,R), we must investigate whether the PO/PB property holds
for this SPO category. Furthermore, in order to compute critical pairs and
derived rules, we require a construction for pushout complements, we have not
yet found such a construction for GraphP . This leaves a lot of future work.
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Chapter 5

Attributed Graphs

In this chapter we will introduce attributed graphs and show that attributed
graphs can be used for SPO high-level replacement. Attributed graphs are
graphs where some vertices represent values, such as integers, strings, booleans
or characters. These value vertices may only be the target of edges.

In Figure 5.1 we see an example of a rule with uses attributed graphs. In
the rule the vertex labelled 1 in the attributed graph L represents a hungry
philosopher. The edge ‘forks’ points to a vertex with the integer value 2, which
means that the philosopher has two forks. This rule removes the edge with the
label ‘hungry’, and adds a self edge with the label ‘eating’.

L Rr

12

hungry

philosopher

forks
12

eating

philosopher

forks

Figure 5.1: A rule which transforms a hungry philosopher with two forks to an
eating philosopher with two forks.

In the graphs L and R we have shown only one value vertex. However, for
every integer there exists a unique value vertex in both graphs L and R; we
only display those value vertices which have incident edges.

In Section 5.1 we will introduce algebraic signatures and algebras, which are
necessary to define attributed graphs. In Section 5.2 we will define attributed
graphs and show that there exists an SPO category with attributed graphs as
objects.

5.1 Algebraic Signatures and Algebras

In this section we introduce some necessary concepts which are needed to define
attributed graphs. The following definitions are taken from [10].
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Definition 5.1.1 (Algebraic Signature). An algebraic signature Σ = (S,OP),
or signature for short, consists of a set S of sorts and a family of operation
symbols OP = (OPw,s)(w,s)∈S∗×S .

For an operation op ∈ OPw,s, we write op : w → s or op : s1, . . . , sn → s,
where w = s1, . . . , sn. If w = λ then op :→ s is called a constant symbol.

Example 5.1.2. The signature SIG below describes integers. SIG has a con-
stant integer symbol zero, it has the operations succ, pred , add , and mult (suc-
cessor, predecessor, addition and multiplication operations).

SIG =
sorts : int
ops : zero :→ int

succ : int → int
pred : int → int
add : int , int → int
mult : int , int → int

Definition 5.1.3 (Σ-algebra). For a given signature Σ = (S,OP), a Σ-algebra
A = ((DA

s )s∈S , (f
A
op)op∈OP ) is defined by

• for each sort s ∈ S a set DA
s , called the carrier set;

• for each symbol op : s1, . . . , sn → s ∈ OP , a function fAop : As1 × · · · ×
Asn → As.

We write DA =
⋃
s∈S D

A
s for the union of all carrier sets.

Remark. The definition implies that for a constant symbol c :→ s ∈ OP , we
have a value fAc ∈ As.

Definition 5.1.4 (Homomorphism). Given a signature Σ = (S,OP) and Σ-
algebras A and B, a homomorphism h : A → B is a family h = (hs)s∈S
of total mappings hs : As → Bs, such that for each operation symbol op :
s1, . . . , sn → s ∈ OP , we have hs(f

A
op(x1, . . . , xn)) = fBop(hs1(x1), . . . , hsn(xn))

for all xi ∈ Asi (for i = 0 . . . n). Homomorphisms can be composed: given
h : A → B and i : B → C, then j = i ◦ h : A → C is a family of mappings
(js)s∈S such that ∀s ∈ S : js = is ◦ hs

Remark. By this definition, we have hs(f
A
c ) = fBc for each constant symbol

c :→ s ∈ OP .

Example 5.1.5. We present an SIG-algebra A for the signature SIG defined
in Example 5.1.2.

DA
int = Z

fAzero = 0 ∈ DA
nat

fAsucc = x 7→ x+ 1 : DA
int → DA

int

fApred = x 7→ x− 1 : DA
int → DA

int

fAadd = (x, y) 7→ x+ y : DA
int ×DA

int → DA
int

fAmult = (x, y) 7→ x · y : DA
int ×DA

int → DA
int
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5.2 Attributed Graphs as an SPO Category

Now that we have presented the preliminaries, we can define attributed graphs.
An attributed graph has a graph and an algebra, such that every carrier set of
the algebra is a subset of the vertices of the graph. These value vertices may
only be the target of edges.

Definition 5.2.1 (Attributed Graph, Attributed Graph Morphism). Given a
universal label alphabet L and a signature Σ = (S,OP), a Σ-attributed graph
AG = (GAG , AAG) is defined by

• AAG , a Σ-algebra.

• GAG = (VAG , EAG) is a graph (see Definition 2.1.1) with

– VAG , the set of vertices, such that DAG ⊆ VAG ,

– EAG ⊆ V̂AG × L× VAG , where V̂AG = VAG \DAG

A (Σ-attributed graph) morphism between two Σ-attributed graphs AGi =
(Gi, Ai) for i = 1, 2 is a tuple h = (hG : G1 → G2, hA : A1 → A2) where hG =
(hV , hE) is a partial graph morphism, and hA is a total algebra homomorphism
such that for all s ∈ S we have hA,s = hV |DA1

s
. We say that h is total (resp.

injective, surjective) if hG and hA are total (resp. injective, surjective).

Remark. We will often speak of attributed graphs (and not be explicit about
the signature) instead of Σ-attributed graphs.

Since both algebra morphisms and graph morphisms can be composed, we
can form the category AGraphP having attributed graphs as objects and all
attributed graph morphisms.

Since we want to show that there exists an SPO category using AGraphP ,
we need to define the morphism classes M and R. M is the class of mor-
phisms we can use as matches, therefore we require the graph component of
an M-morphism to be total, there is no (additional) restriction on the algebra
component of the morphism (algebra homomorphisms are always total).

Definition 5.2.2 (classM). A Σ-attributed graph morphism f : AG1 → AG2

with f = (fG, fA) belongs to the class M if fG is a total morphism.

The class R of rule morphisms requires that the algebra component of the
R-morphism is an isomorphism On the one hand this is natural (it would be
strange if the data domain changes in the course of a transformation); at the
same time this ensures the existence of pushouts over R- and M-morphisms.

Definition 5.2.3 (class R). A Σ-attributed graph morphism f : AG1 → AG2

with f = (fG, fA) belongs to the class R if fA is an isomorphism of Σ-algebras.

Given a rule p = (L
r−→ R) where L = (GL, AL) then it can be the case that

for some Σ-algebra A there exists no algebra homomorphism AL → A. This
means that for any Σ-attributed graph of the form X = (XG, A), there does not
exist an attributed graph morphism L→ X. In order to ensure that the algebra
does not restrict applicability of the rule, we can use the term algebra in the
rule graphs. Given a signature Σ the term algebra TΣ(X) has homomorphisms
to all other σ algebras. For more details see [10].

In order to show that (AGraphP ,M,R) is an SPO category, we will first
show pushouts exist in AGraphP over M- and R morphisms
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Proposition 5.2.4 (Pushouts in AGraphP overM- andR-morphisms). Given
attributed graph morphisms f : AG1 → AG2 ∈ R and g : AG1 → AG3 ∈ M,

the pushout AG2
f ′−→ AG4

g′←− AG3 over AG2
f←− AG1

g−→ AG3 is con-
structed as follows, where AGi = (Gi, Ai) for i = 1, . . . , 4.

AG1 f=(fG,fA) //

g=(gG,gA)

��
(1)

AG2

g′=(g′G,g
′
A)

��
AG3 f ′=(f ′G,f

′
A) // AG4

• G2
f ′G−→ G4

g′G←− G3 is the pushout in GraphP of G2
fG←− G1

gG−→ G3 . 1

• Let f ′G = (f ′V , f
′
E), A4 = ((DA4

s )s∈S , (f
A4
op )op∈OP ) where

– ∀s ∈ S : DA4
s = f ′V (DA3

s )

– ∀op ∈ OP : fA4
op = f ′V ◦ fA3

op

• f ′A = (f ′A,s)s∈S such that ∀s ∈ S : f ′A,s = f ′V |DA3
s

• g′A = (g′A,s)s∈S such that ∀s ∈ S : g′A,s = (f ′V ◦ gA,s ◦ f
−1
A,s)

Proof. We have f ′G ◦ gG = g′G ◦ fG and we know that f ′A ◦ gA = g′A ◦ fA be-
cause the algebra homomorphisms are defined by the graph morphisms. The
pushout properties for the GraphP component follows from the pushout con-
struction in GraphP 1, since the algebra homomorphisms are defined by the
graph morphisms we know that the pushout properties also hold for the algebra
component. We can conclude that (1) is a pushout.1

In the example we have shown in Figure 5.1, the number of forks needed to
be equal to two before the philosopher could start eating. In the next example
we will show that it is also possible to change an attribute value. This is done
by removing an edge to a value vertex and adding an edge to a different value
vertex.

It is even possible (using some assumptions) to apply operations of a Σ-
algebra A. Let A be the algebra defined in Example 5.1.5. Consider the
operation fAadd , then for every pair of integers we assume that there exists a
product vertex, which has outgoing edges π0 and π1 (which represent the ar-
guments) and add (which represents the result of the operation), such that
fAadd(t(π0), t(π1)) = t(add). More details on this method can be found in [22].

Figure 5.2 shows an example of a rule where an operator is applied. The
empty circles (with the number 3 or 4 next to them) are value vertices, their
value is not specified (they are variables in the term algebra). The diamond
shaped vertex is a product vertex which models the add operation.

The rule models a hungry philosopher which takes a free fork which on his
left. When the rule is applied, the fork is no longer free (the philosopher holds
it), and the edge ‘forks’ is replaced: the operation add is applied to the value
vertex with the label 3 and the value vertex which represents the number 1, the
result is the value vertex labelled 4. A new edge (1, forks, 4) is added.

1Because our pushout construction for GraphP is incorrect, it follows that the pushout
construction for attributed graphs is also incorrect, see Section 8.3 and Appendix A.2.
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L Rr

1

hungry
philosopher

forks

1

2
left

fork

π1

add

free
3 4

1

hungry
philosopher

1

2
left

fork

π1

add

forks
holds

3 4

π0π0

Figure 5.2: A rule which models a hungry philosopher which takes a free left
fork. The number of forks is incremented by one.

We want to show that (AGraphP ,M,R) is a strict SPO category, before
we can show this we will first show that the critical pair property (which ensures
the existence and completeness of critical pairs, see Theorem 3.2.5) holds.

Lemma 5.2.5 (Critical Pair Property for AGraphP ). For any pair of M-
morphisms m′1 : X → G and m′2 : Y → G, there exists an attributed graph
K and M-morphisms m1 : X → K,m2 : Y → K,m : K → G, such that
m1 and m2 are jointly epimorphic, m is a monomorphism, m ◦m1 = m′1 and
m ◦m2 = m′2:

X
m1

**
m′1

))K m // G

Y
m2

44

m′2
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Proof. We have already proven this for graphs in Proposition 2.4.2, therefore we
can construct GK ⊆ GG and the morphisms m1,G,m2,G and mG analogously
to Proposition 2.4.2. Since GK ⊆ GG we know that DAG ⊆ VK , therefore we
can take AK = AG, mA = idGA

, m1,A = m′1,A and m2,A = m′2,A. Clearly m
is a monomorphism because the components mG and mA are monomorphisms.
We must show that m′1,A and m′2,A are jointly epimorphic, this follows from
the fact that m′1,G and m′2,G are jointly epimorphic and Definition 5.2.1. We
know m1,m2 and m are M-morphisms because their graph components are
total graph morphisms (see Proposition 2.4.2).

Using these results we can show that (AGraphP ,M,R) is a strict SPO
category.

Proposition 5.2.6. (AGraphP ,M,R) is a strict SPO category.2

Proof. First we show that (AGraphP ,M,R) is an SPO category

1. C has pushouts over any morphism span B
f←− A

g−→ C, if f ∈ M and
g ∈ R (or vice versa), this follows from Proposition 5.2.4.2

2Because our pushout construction for GraphP is incorrect, it follows that the pushout
construction for attributed graphs is also incorrect, see Section 8.3 and Appendix A.2.
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2. M is closed under composition because total graph morphisms are closed
under composition. R is closed under composition because (algebra) iso-
morphisms are closed under composition.

3. M is closed under decomposition, because total graph morphisms are
closed under decomposition. R is closed under decomposition, because
(algebra) isomorphisms are closed under decomposition.

Next we show that (AGraphP ,M,R) is also a strict SPO category

1. For any morphism span G
m←− L

r−→ R, with m ∈ M and r ∈ R, the

co-morphism r′ of r in the pushout R
m′−→ H

r′←− G over m and r is an
R-morphism, i.e., r′ ∈ R. To show that r′ ∈ R we must show that r′A is
an isomorphism; this is the case because the algebra components of the
morphisms m, r,m′ and r′ form a pushout in the category of algebras. By
Proposition 2.3.7 we know that r′A must be an isomorphism.

2. All R-morphisms are strictly M-preserving w.r.t. any monomorphism in
M; this follows from the that this property holds for (GraphP ,M,R)
(Proposition 2.4.2)

3. For any pair ofM-morphisms m′1 : L1 → G and m′2 : L2 → G, there exists
an object K and M-morphisms m1 : L1 → K,m2 : L2 → K,m : K →
G, such that m1 and m2 are jointly epimorphic, m is a monomorphism,
m ◦m1 = m′1 and m ◦m2 = m′2. This follows from Lemma 5.2.5.
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Chapter 6

Efficient Confluence
Detection

When computing all critical pairs for a pair of rules, it is possible that there
is a very large number of them (we will elaborate on this in Section 7.2). In
order to analyse if a HLR system is (strictly) locally confluent, we need to know
whether all critical pairs are strictly locally confluent. In this chapter we will
investigate if it is possible to avoid the need to analyse all critical pairs for this
purpose.

In Section 6.1 we will discuss essential critical pairs (based on [26]), which
are a subset of the set of critical pairs, such that all critical pairs are strictly
locally confluent if and only if all essential critical pairs are strictly locally
confluent. It turns out that the requirements on these essential critical pairs are
too strict to give a significant improvement: the set of essential critical pairs is
not significantly smaller than the set of critical pairs.

Section 6.2 will discuss another method to determine that a critical pair is
strictly locally confluent. Given a strictly locally confluent critical pair a, then it
is possible that the confluent transformations of a can be embedded in another
critical pair b. This means that b is also strictly locally confluent. We will state
a sufficient condition for when this is the case.

6.1 Essential Critical Pairs

Our original hypothesis what that it was possible to determine a subset of the
set of all critical pairs called essential critical pairs, which represents all critical
pairs, in the sense that all critical pairs are strictly locally confluent if and only
if all essential critical pairs are strictly locally confluent. When analysing an
HLR system for (strict) local confluence, only the set of essential critical pairs
would need to be computed and checked for strict local confluence.

We need to find out when a critical pair is essential. Consider Figure 6.1

which shows the critical pairs a = (X1
p1,m1⇐= A

p2,m2
=⇒ X2) and b = (Y1

p1,m◦m1⇐=

B
p2,m◦m2

=⇒ Y2). We know that the critical pair b is not essential if the strict local
confluence of a implies the strict local confluence of b.

We should therefore determine when the strict local confluence of a implies
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m1
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R2
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X1

m∗1
��

Ar′1
oo r′2

//

m

��

X2

m∗2
��

Y1 Boo // Y2

Figure 6.1: The critical pair X1
p1,m1⇐= A

p2,m2
=⇒ X2 can be embedded in the critical

pair Y1
p1,m◦m1⇐= B

p2,m◦m2
=⇒ Y2 if m, m∗1 and m∗2 are M-morphisms

the strict local confluence of b. Let ai = (A
pi,mi
=⇒ Xi) and bi = (B

pi,m◦mi
=⇒ Yi) for

i = 1, 2 be the transformations induced by the critical pairs. The first require-
ment is that the transformations ai can be embedded in the transformations bi
(for i = 1, 2), i.e., the embeddings ei = 〈m,m∗i 〉 : ai → bi exist (for i = 1, 2).
However, this is not yet sufficient to prove that b is strict locally confluent if and
only if a is strict locally confluent. If a is strictly locally confluent, then there

exist transformations ti = (A
pi,mi
=⇒ Xi

∗
=⇒ Y ) for i = 1, 2 such that t̂1 = t̂2. We

can follow a reasoning similar to the proof of Theorem 3.3.4 if we know that t̂1
(and therefore also t̂2) is strictly M-preserving w.r.t. m. However we do not
know enough about t̂1 and m to be able to decide this.

In the next definition we state when a strictly locally confluent critical pair
represents another critical pair. It formalizes when the strict local confluence of
one critical pair implies the strict local confluence of another critical pair.

Definition 6.1.1 (Representation). Let a = (X1
p1,m1⇐= A

p2,m2
=⇒ X2) and b =

(Y1
p1,n1⇐= B

p2,n2
=⇒ Y2) be critical pairs such that a is strictly locally confluent, i.e.,

there exist commuting transformations %i = (A
pi,mi
=⇒ Xi

∗
=⇒ K) for i = 1, 2.

Then we say that a represents b if there exists a M morphism m : A → B

and transformations δi = (B
pi,ni
=⇒ Yi

∗
=⇒ N) with embeddings ei : %i → δi

for i = 1, 2 such that m is the embedding morphism for both embeddings and
δ̂1 = δ̂2.

Remark. By definition of embeddings we have ni = m ◦ mi for i = 1, 2. We
know that m is an epimorphism since m◦m1 and m◦m2 are jointly epimorphic
(else b would not be a critical pair). Furthermore by this definition we know
that if a represents b then both a and b are strictly locally confluent.

Next we will formalize when a critical pair is an essential critical pair. Given
a critical pair, we can not use the definition we have just given because we
do not yet know if this critical pair is strictly locally confluent, and (if the
pair is strictly locally) what the transformations are that make the pair strictly
locally confluent. However using theorem Theorem 3.1.12 and the fact that (by
Definition 3.2.3) every monomorphism is strictlyM-preserving, we can conclude
that a represents b if m is a monomorphism. However, since m is also an
epimorphism, m will be an isomorphism in set- and graph-based categories
(Proposition 2.2.13), which means that a and b are the same critical pair.

An alternative is to require that m∗1 and m∗2 are monomorphisms. Assuming

a is strictly locally confluent i.e., there exist transformations ϕi = (Xi
∗

=⇒ K)
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for i = 1, 2. Since any morphism is strictly M-preserving w.r.t. any monomor-
phism, Theorem 3.1.12 implies the existence of transformations σi = (Yi

∗
=⇒ N)

and embeddings e∗i : ϕi → σi for i = 1, 2. This way we can show that b is strictly
locally confluent if a is strictly locally confluent.

Definition 6.1.2 (Essential Critical Pair). Let b be a critical pair with trans-

formations bi = (B
pi,ni
=⇒ Yi) (for i = 1, 2). We say that b is an essential critical

pair if there exists no critical pair a with transformations ai = (A
pi,mi
=⇒ Xi) and

embeddings ei = 〈m : A → B, m∗i : Xi → Yi〉 : ai → bi (for i = 1, 2) such that
m∗1 and m∗2 are monomorphisms (see Figure 6.1).

The requirement that both m∗1 and m∗2 are monomorphisms is very strict.

We are looking for critical pairs with transformations ai = (A
pi,mi
=⇒ Xi) and bi =

(B
pi,m◦mi

=⇒ Yi) for i = 1, 2 (see Figure 6.1), such that m is not a monomorphism
(else m would be an isomorphism), and both m∗1 and m∗2 are monomorphisms.
In the category GraphP , this is the case when there are at least two vertices
in A which are deleted by both rules, furthermore, m must be non-injective on
those two vertices and m must be injective on all elements of A which are not
being deleted (by either rule).

An example of such a case is shown in Figure 6.2. Here we see the critical

pair a = (X1
p1,m1⇐= A

p2,m2
=⇒ X2) which is embedded into the critical pair b =

(Y1
p1,m◦m1⇐= B

p2,m◦m2
=⇒ Y2), such that m∗1 and m∗2 are monomorphisms.

1

32

54

1

1

2,3,4,5

1

1 1

3,52,4

R1 L1 L2 R2

X2

Y2B

AX1

Y1

m′1 m1 m2 m′2

m∗2mm∗1

r1 r2

1

1

Figure 6.2: The critical pair Y1
p1,m◦m1⇐= B

p2,m◦m2
=⇒ Y2 is not an essential critical

pair.

Because of the strict requirement on m, the size of the set of essential critical
pairs will not differ very much from the set of essential critical pairs (which we
will also see in our case study, see Section 7.5). Hence the notion of essential
critical pairs is probably not very useful. Therefore in the next section, we will
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work out a theory which allows us to decide if a critical pair is strictly locally
confluent, based on the fact that another pair is strictly locally confluent.

6.2 Subsumption of Critical Pairs

Because in general the set of essential critical pairs is not significantly smaller
than the set of critical pairs, we propose another method to analyse whether
a critical pair is strictly locally confluent, based on the fact that some other
critical pair is locally confluent.

Given a strictly locally confluent critical pair a, we can check if a can repre-
sent (see Definition 6.1.1) some other critical pair b using the sufficient condition
we provide in the next proposition.

Proposition 6.2.1. Let a = (X1
p1,m1⇐= A

p2,m2
=⇒ X2) and b = (Y1

p1,n1⇐= B
p2,n2
=⇒

Y2) be critical pairs such that a is strictly locally confluent, i.e., there exist

transformations %i = (A
pi,mi
=⇒ Xi

∗
=⇒ K) for i = 1, 2 such that %̂1 = %̂2.

Then a represents b if there exists a M-morphism m such that %̂1 is strictly
M-preserving w.r.t. m.

Proof. We know that there exist transformations δi = (B
pi,ni
=⇒ Yi

∗
=⇒ N) with

embeddings ei : %i → δi by Theorem 3.1.12. We know that the object N is
the same (modulo isomorphism) for both transformations and δ̂i = δ̂2 because
(by Theorem 3.1.12) N is the pushout object of the same span of morphisms

B
m←− A %̂1=%̂2−→ K.

When analysing (strict) local confluence of an HLR system, the order in
which critical pairs are checked for (strict) local confluence is important if we
want to avoid unnecessary local confluence checks. If at some point during our
(strict) local confluence analysis we conclude that the critical pair a represents
b, then it would be a shame if we had already computed an example to show
that b was strictly confluent. Therefore we should analyse the critical pair a
before b if a weakly represents b, in the following sense:

Definition 6.2.2 (Weak Representation). Let a = (X1
p1,m1⇐= A

p2,m2
=⇒ X2) and

b = (Y1
p1,n1⇐= B

p2,n2
=⇒ Y2) be critical pairs. We say that a weakly represents

b if there exists an M-morphism m : A → V such that m ◦ m1 = n1 and
m ◦m2 = n2.

For graphs as defined in Definition 2.1.1 it is sufficient to order by number
of vertices. We will show this in the next proposition.

Proposition 6.2.3. Given two critical pairs a = (X1
p1,m1⇐= A

p2,m2
=⇒ X2) and

b = (Y1
p1,n1⇐= B

p2,n2
=⇒ Y2) in the category GraphP , then |VA| < |VB | implies a

does not weakly represent b.

Proof. Assume that a weakly represents b, then we have a total graph morphism
m : A→ B such that m ◦m1 = n1 and m ◦m2 = n2. Since the pairs (m1,m2)
and (n1, n2) are jointly surjective, this means that m must be an epimorphism.
However, since |VA| < |VB | the mappings for the vertices cannot be surjective.
Therefore a total and surjective morphism m : A → B cannot exist, which
means a does not represent b.
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Next we will show that given two critical pairs a = (X1
p1,m1⇐= A

p2,m2
=⇒ X2)

and b = (Y1
p1,n1⇐= B

p2,n2
=⇒ Y2) where |VA| = |VB |, we do not need to check

whether a weakly represents b, because if a represents b, then the critical pairs
are isomorphic.

Before we can show this, we will first shown that a total graph morphism is
uniquely defined by the vertex component of the morphism.

Proposition 6.2.4. Given graphs G and H, and a total set morphism fV :
VG → VH the edge component of the total graph morphism f = (fV , fE) : G→
H is uniquely defined by fV .

Proof. Because f is total, fE must also be total. For every edge e = (s, l, t) ∈ EG
we have fE(e) = (fV (s), l, fV (t)) because edges must preserve sources, targets
and labels (see Definition 2.1.3).

Proposition 6.2.5. Given a two critical pairs a = (X1
p1,m1⇐= A

p2,m2
=⇒ X2) and

b = (Y1
p1,n1⇐= B

p2,n2
=⇒ Y2) in the category GraphP , such that |VA| = |VB | and a

represents b, then A ∼= B.

Proof. Because a weakly represents b, we have a total graph morphism m : A→
B such that m◦m1 = n1 and m◦m2 = n2. We know that m is an epimorphism,
because the pairs (m1,m2) and (n1, n2) are jointly surjective. Since |VA| = |VB |
we know that the vertex mapping mV must be one-to-one, this means mV is
injective. Since mV was also surjective, we know mV is an isomorphism.

We know that (Proposition 6.2.4) mE is uniquely defined by mV . The edge
mapping mE must be injective because the mapping of the source and target
vertices of every edge are injective. We can conclude that mE and mV are both
surjective and injective, which means m is an isomorphism, and A ∼= B.

In order to apply our new method for critical pair detection, we need to order
the critical pairs by decreasing size of the host graph. This ensures that, when
analysing a critical pair a, all critical pairs with a larger host graph have already
been analysed. If there exist a critical pair b which is strictly locally confluent
and uses the same rules as a, then we can analyse (using Proposition 6.2.1) if
a is also strictly locally confluent. If Proposition 6.2.1 is not applicable, then
there may exist other critical pairs which can represent a, or the regular method
for confluence analysis can be applied to determine whether a is strictly locally
confluent.

Since our method can only decide if a critical pair is strictly locally confluent,
but not the converse, this method will not be faster when analysing critical
pairs which are not strictly locally confluent. In Section 7.5 we will see how this
method performs in practice.
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Chapter 7

Implementation and
Experiments

In this chapter we will analyse how well critical pair detection and local con-
fluence analysis work in practice. First we will discuss the algorithm that we
have implemented to find all critical pairs for two rules, this will be followed
by a discussion on the complexity of this algorithm in Section 7.2. Section 7.3
will discuss how we can analyse whether a critical pair is locally confluent. The
rest of the chapter will be about the critical pair and confluence analysis in
practice. We will show some graph transformation systems and analyse if these
are strictly locally confluent.

7.1 Critical Pair Detection Algorithm

The algorithm for computing the set of all critical pairs for a pair of rules can
be derived from the definition. First we need to compute all jointly surjective
matches for the two rules. Then we need to analyse if the transformations given
by the rules and matches are indeed parallel dependent. If this is the case then
we have found a critical pair.

Algorithm 1 Simple algorithm for computing all critical pairs

Require: Two rules p1 = (L1
r1−→ R1) and p2 = (L2

r2−→ R2)

1: CP ← ∅
2: Compute all jointly surjective matches (m1 : L1 → K, m2 : L2 → K)
3: for p1 and p2

4: for all (m1,m2) do

5: Compute t1 = (K
p1,m1
=⇒ P1) and t2 = (K

p2,m2
=⇒ P2)

6: if t1 and t2 are parallel dependent then
7: CP ← CP ∪ {(t1, t2)}
8: end if
9: end for

This algorithm has been implemented in the graph transformation tool
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groove1 [35]. The implementation was written in Java, and reuses many of
the existing groove classes. The implementation for generating all critical
pairs adds two classes to the existing groove code. These two classes together
consist of roughly 1000 lines of code.

7.2 Complexity of the Algorithm

The most complex part of the algorithm is the computation of the jointly sur-
jective matches, since the number of these matches will grow very large if the
left-hand sides for the two rule are large. In Proposition 7.2.1 we will show that
it is sufficient to compute only the jointly surjective matches for the vertices
of a pair of rules, since edges are defined uniquely by their source and target
vertex. From this we can conclude that the number of jointly surjective matches
is defined by the number of vertices in the two left-hand sides of the rules.

Proposition 7.2.1. Given a pair of rules p1 = (L1
r1−→ R1) and p2 = (L2

r2−→
R2), a pair of jointly surjective and total set morphisms (mV : VL1

→ VG and
nV : VL2

→ VG), then for any jointly surjective and total m : L1 → G and
n : L2 → G, where m = (mV ,mE) and n = (nV , nE) the graph G is unique up
to isomorphism.

Proof. Because m and n are total, we know (by Proposition 6.2.4) that the
edge components of m and n are uniquely defined by their vertex components.
The morphisms m and n are jointly surjective therefore G = (VG, EG) where
VG = mV (VL1

) ∪ nV (VL2
) and EG = mE(EL1

∪ nE(EL2
). Assume there exists

total and jointly surjective morphisms m′ : L1 → G′ and n′ : L1 → G′ such
that m′V = mV and n′V = nV . Then we have G′ = (V ′G, E

′
G) where V ′G =

mV (VL1
) ∪ nV (VL2

) = VG and E′G = m′E(EL1
) ∪ n′E(EL2

). Because the edge
components m′ and n′ are uniquely defined by their vertex components, we
know that E′G

∼= EG and therefore G ∼= G′.

Since the number of vertices in a (non-attributed) graph is finite, the number
of jointly surjective matches is also finite. However, since we allow non-injective
matches, the number of jointly surjective matches explodes quickly. In the next
example, we will show how we can calculate the total number of (distinct) jointly
surjective matches for two different rules with (added together) have n vertices.

Example 7.2.2. Consider a pair of rules with left-hand-sides L1 = (V1, E1)
and L2 = (V2, E2), let V be the disjoint union of the sets of vertices V1 and V2.
We will now show how to compute all surjective total morphisms x : V → X.
We call the set X with the surjective and total morphism x an overlapping of
the vertices in V .

In case |V | = 1 then there is exactly one overlapping. For V = {1} this
overlapping is depicted in Figure 7.1a. In Figure 7.1b, we show overlappings for
the set V = {1, 2}. Here we see that there are two possibilities: the two vertices
can be two separate vertices, or they can be joined together.

1We have discovered that the pushout construction we have given is not correct, because
pushouts do not always exist. Groove was built on the assumption that pushouts always
exist, therefor the correctness of our implementation is no longer guaranteed (see Section 8.3
and Appendix A.2).
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1

(a)

1,2 1 2

(b)

1,2,3 1,2 3

3

21
1,3 2 1 2,3

(c)

Figure 7.1

More generally we can compute the overlappings for any set V in the follow-
ing way: let v ∈ V and let V ′ = V \ {v} (we have |V ′| = |V | − 1). Compute all
overlappings for V ′. For every overlapping (X ′, x′ : V ′ → X ′) we can create an
overlapping (X,x : V → X) of the vertices of V in the following ways:

1. Take X = X ′ and define x such that x(v) ∈ X ′ and for all v′ ∈ V ′ we
have x(v′) = x′(v′) (there are |X| ways to do this).

2. Take X = X ′ ∪{v} and define x such that x(v) = v and for all v′ ∈ V ′ we
have x(v′) = x′(v′).

In Figure 7.1c we see an example of all the overlappings of V = {1, 2, 3}.
Let v = 3, then V ′ = V \ {3} = {1, 2}. We have already computed the two
overlappings of V ′ in Figure 7.1b. The first overlapping in Figure 7.1b has
only 1 vertex. We can add the vertex 3 in two ways: either we ‘merge’ it with
the existing vertex (this gives us 1 vertex as result) or we add the vertex 3
separately. The results are the two leftmost overlappings in Figure 7.1c. The
overlapping of V ′ has two vertices (this is the right overlapping in Figure 7.1b).
From this overlapping we can create three new overlappings: we can ‘merge’ the
vertex 3 with either one of the two existing vertices, or we can add the vertex 3
separately; this results in the three rightmost overlappings in Figure 7.1c.

Below we see how we can compute v(n), which is the total number of possible
overlappings for n vertices. To compute this number we take the sum for i =
1 . . . n of v(n, i). With v(n, i) we compute the number of ways to overlap n
vertices, such that the overlapping has i vertices.

If n < i then there are no overlappings (e.g., there is no way to overlap 4
vertices such that the overlapping has 5 vertices). If n ≥ i and i = 1 then there
is exactly one overlapping (there is exactly one way to overlap n > 0 vertices,
such that the overlapping has 1 vertex).

In any other case we can calculate the number of overlappings as follows.
First we calculate the number of ways to overlap n − 1 vertices such that the
overlapping has i vertices (v(n− 1, i)) for each of these overlappings there are i
ways to create a new overlap (see 1. in Example 7.2.2). For every overlapping
of n − 1 vertices with size i = 1 (v(n − 1, i − 1)); there is one way to create a

67



new overlapping of n vertices with size i (see 2. in Example 7.2.2).

v(n) =

i=1∑
n

v(n, i)

v(n, i) =


0 if n < i or

1 if i = 1 and i ≤ n
v(n− 1, i)i+ v(n− 1, i− 1) otherwise

If n ≥ 1 then v(n) is equal to the nth Bell number [5]. For these Bell
numbers, the following upper bound is known [6]:

v(n) = Bn <

(
0.792n

ln(n+ 1)

)n
, n ∈ N>0

It is clear that the total number of jointly surjective matches can be ex-
tremely large if the two left-hand-sides for which we are finding the matches
are large. For future work we could write a more efficient algorithm which only
computes those jointly surjective matches which actually forms a critical pair
(i.e., there must be an overlap of a vertex or edge that in being deleted by one
of the rules). However the worst-case complexity of such an algorithm would
still be the same as this algorithm.

7.3 Confluence Analysis

Using our implementation of the critical pair detection algorithm, we can find
the set of all critical pairs for each graph transformation system. Then we
can use the tool groove to analyse if these critical pairs are strictly locally
confluent. This confluence analysis uses many existing features in groove:

• We analyse which rules are applicable to a certain state (a state is a
graph which is the target of the last transformation, together with the
transformation morphism of the transformation).

• For every state we can apply all possible rules via all possible matches to
find the next state. In this process it is important that we also keep track
of what the first transformation for a state was (i.e., from which of the
two transformations of this critical pair the state originates).

• If we have found two isomorphic states with different origins, then we
check if the transformation morphisms commute, if this is the case then
we have found proof the critical pair was strictly locally confluent.

It is also possible that after finding all possible states, no proof for strict
local confluence was found. This means that the critical pair is not strictly
locally confluent.

As we have mentioned before, local confluence is undecidable. This is be-
cause the state space in which we need to search can be infinitely large. To solve
this, we have limited our search depth to 100 states. If the search reaches this
depth, then the result will be undecided.
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7.4 Graph Transformation Systems in Practice

We will give several examples of graph transformation systems which have been
created in groove. From some of these we know that they are not confluent,
for others it is expected that they are (locally) confluent.

For every graph transformation system we will discuss, we will analyse if
there exist critical pairs which are not strictly locally confluent, or critical pairs
for which we cannot decide strict local confluence (since we limit our search
depth).

Attribution, Algebras and Operations For non-attributed graphs, we
know that the set of vertices is always finite (in practice), therefore the set
of jointly surjective matches will also be finite. For attributed graphs the set of
vertices may not be finite, however we compute critical pairs with the same alge-
bra as the rule. This means the algebra morphism is a monomorphism. Because
of this, two constants must always overlap if they are equal. When computing
the jointly surjective matches, the match for the constants is already defined
by the algebra isomorphism, the vertices for which we still need to compute the
match (i.e., the vertices which are not values) is finite.

In groove, rules use the term algebra, which is an algebra where values can
be variables, in this case, it is also possible that variables overlap with other
variables or constants (however two different constants can never overlap). In
our critical pair algorithm we compute all possible overlappings, this means
that if the GTS is strictly locally confluent for the term algebra, then it will
also be strictly locally confluent if any other algebra is used (the converse does
not hold).

Some of the rules that we will discuss use operations, since the result of the
operation is defined by the term algebra, we cannot overlap this result with any
other values. Because the rules which we discuss have no edges to these values
in the LHS, and algebra elements cannot be deleted, these vertices cannot be
the cause of parallel independence, therefore it is justified that we do not overlap
the targets of operations which other values.

Throughout this section we will show some figures which depict rules in the
graph transformation systems. For these rules we use the following notational
conventions:

• Vertices or edges which are deleted (elements of the LHS, which have no
image in the RHS) are depicted as thin, dashed (blue) vertices and edges.

• Vertices or edges which are added by the rule (elements of the RHS, which
have no preimage in the LHS) are depicted as wide (green) vertices or
edges.

• All other vertices and edges are both in the LHS and RHS.

• Every line of text on a vertex is a self edge (of which the line is the label).
If such a self edge is deleted by the rule is prefixed with a ‘-’, if it is being
added by the rule then it is prefixed with a ‘+’.
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• If there are multiple edges with the same source, target and effect (e.g.,
all edges are deleted), but different labels, then we will depict only one
edge and show the edge labels on different lines.

7.4.1 Dining Philosophers

Figure 7.2 shows five rules for a graph transformation system that models the
Dining Philosophers problem. In this GTS a philosopher can become hungry,
at this point he must take the forks on his left and right side (one by one),
before he can start eating, afterwards he will put the fork down again so they
are available for other philosophers. It is possible that every philosopher takes
the left fork, such that the right fork is already taken for ever philosopher, in
this state, no rules can be applied any more.

Phil
− hungry
+ hasLeft

Fork
− free

holdleft

(a) get-left

Fork
− free

Phil
− hasLeft

+ eat

hold right

(b) get-right

Phil
− think

+ hungry

(c) go-hungry

Phil
− eat

+ hasRight

Fork
+ free

hold
left

(d) release-left

Fork
+ free

Phil
− hasRight

+ think

right
hold

(e) release-right

Figure 7.2: Rules for the Dining Philosophers Graph Transformation System

Expected outcome We expect that this graph transformation is locally con-
fluent. As far as we are aware, the only state in which no rules can be applied
any more is the state in which every philosopher hold exactly one fork (we call
this the deadlock state). From any other state, it should be possible to reach
the deadlock state, since every philosopher which has two forks can release these
forks and take the left one. Philosophers which were waiting for the left fork to
become available (because it was not free) should be able to pick up their left
fork at this point. Once all philosophers have picked up their left fork, they will
arrive at the deadlock state.

In conclusion, since there is exactly one final state and all other states should
be able to reach this state, the graph transformation system is expected to be
confluent.
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7.4.2 Dining Philosophers (2)

Since the Dining Philosophers GTS we have just specified has a deadlock state,
we have created a different graph transformation system in which the rules
get-left and get-right have been replaced by get-both. Similarly, the
rules release-left and release-right have been replaced by release-both.
We have depicted these new rules in Figure 7.3. This GTS also has the rule
go-hungry which we have depicted in Figure 7.2c.

Fork
− free

Phil
− hungry

+ eat

Fork
− free hold

right

hold

left

(a) get-both

Fork
+ free

Phil
− eat

+ think

Fork
+ free

left

hold

right

hold

(b) release-both

Figure 7.3: Different rules for the second Dining Philosophers Graph Transfor-
mation System

Expected outcome Similarly to the previous GTS that models the Dining
Philosophers problem, we expect that this GTS is locally confluent. The main
difference with the previous GTS is that it is no longer possible that all philoso-
phers are waiting to get more forks, since they always pick up both forks at
once.

7.4.3 Counting Dining Philosophers

The counting dining philosophers GTS is also based on the dining philosophers
problem, the main difference with the previous two graph transformation sys-
tems is that this GTS has attributed graphs. The philosophers count how many
forks they have, if they have two forks, then they can start eating. If they have
zero forks then they can go and think.

Expected outcome This GTS has a rule get-both which allows the philoso-
pher to pick up two free forks. Because if this, the deadlock state which we have
discussed in the first dining philosophers GTS cannot happen here. Therefore
we expect that this graph transformation system is confluent.

7.4.4 Circular Buffer

In Figure 7.5 we see a GTS which models a circular buffer. The rules get and
put allow objects to be removed and added to the buffer, respectively. The rule
extend increases the size of the buffer.

Expected outcome From every state of the circular buffer, it should be
possible to apply the rule put a number of times to make sure that the buffer
is completely full. The rule extend should be applicable when the buffer is full,
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Fork
− free

Phil
hungry

Fork
− free

int int

π1 = 2

forks

hold

right

add

forks

hold

left

π0

(a) get-both, the diamond vertex rep-
resents the integer addition operation,
where π0 and π1 are the arguments.

Fork
+ free

Phil
eating

π1 = 1

intint

forks

sub

forks

π0

hold

(b) release, the diamond vertex repre-
sents the integer subtraction operation,
where π0 and π1 are the arguments.

Phil
− thinking
+ hungry

(c) go-hungry

Phil
− eating

+ thinking

0

forks

(d) think

Phil
− hungry
+ eating

2

forks

(e) eat

Figure 7.4: Rules for the Counting Dining Philosophers Graph Transformation
System

Object Cell
+ empty

Buffer

Cell

next

first

first

val

(a) get

Cell

Object
Cell

− empty

Buffer

val

last

last

next

(b) put

Object

CellCell

Buffer

Cell
empty

first

next

last

next

val next

(c) extend

Figure 7.5: The rules for the Circular Buffer GTS
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repeated application of put and extend allows the buffer to grow to any size.
We expect that this GTS is confluent. However, since it may be possible that the
rules put and extend can be applied infinitely often (alternating). Therefore it
may be possible that we are not able to decide local confluence for some critical
pairs.

7.4.5 Counting Circular Buffer

The counting circular buffer GTS is similar to the circular buffer GTS, however
this circular buffer does not use empty self edges. Instead this buffer counts how
many cells are free. This GTS uses attributed graphs.

The rules are shown in Figure 7.12. We should note that the rule put con-
tained a check if the buffer was not empty (using the ‘greater than’ operation).
However since the result of operations in the term algebra are not constants
(such as true or false), but variables, the rule is never applicable in the term
algebra. Therefore we have removed this check from the rule.

π1 = 1

int int

Object

Cell

Buffer Cell

empty first

first

π0

empty next

add val

(a) get

Cell

Object

Cell

Buffer

int

1

int

π1

last

subπ0
val

empty

next

empty

last

(b) put

intint

π1 = 1

Object

CellCell

Buffer

Cell

π0

empty empty

next

next

val

last first

next

add

(c) extend

Figure 7.6: The rules for the Counting Circular Buffer GTS

Expected outcome Similarly to the regular circular buffer it is possible that
the rule sequence put and extend is applied infinitely often. Therefore it may
be possible that confluence cannot always be decided. We expect that this GTS
is locally confluent.
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7.4.6 Append

The Append GTS (Figure 7.7), models appending an element at the end of a
linked list. In order to do so, the last element of the list must be found by
iterating over the list.

last

void

− lastappend
control

this

caller x
next

return
val

(a) append

append append
control

control

x

this

caller

this

next

x

(b) next

append

return

caller

return

(c) return

void

append
controlcaller

val
return

this

x

(d) stop

Figure 7.7: Rules for the Append GTS

Expected outcome In case two elements a and b are being appended at the
same time, then two outcomes (final states) are possible: one where a is the last
element of the linked list, and one where b is the last element of the linked list.
Therefore this GTS is not confluent.

7.5 Results

In this section we present the results for the critical pair and confluence analy-
sis. The table below shows the number of critical pairs we have found for each
GTS, it also shows how many of these pairs are not locally confluent, and for
how many of these pairs we could not decide local confluence.

Number of critical pairs Strictly
GTS Total Non conf. Undecided Time (s) confluent

Dining Phil 25 25 0 0.1 No
Dining Phil (2) 191 0 0 0.2 Yes
Counting DPhil 318 276 20 0.4 No
Circular Buffer 6689 3683 2634 20.5 No
Counting CBuffer 14788 7257 6099 128.1 No
Append 17787 16023 1388 33.9 No
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Essential Critical Pairs In Section 6.1 we concluded that the conditions on
essential critical pairs were very strict: we conjectured that the set of essential
critical pairs would not be significantly smaller than the set of all critical pairs.
We have performed analysis to find out which critical pairs were essential and
which were not. It turns out that in all six graph transformation systems every
critical pair is an essential critical pair. This is the case because none of the
rules (in any of the graph transformation systems) deletes more than one vertex.

Subsumption of Critical Pairs In Section 6.2 we have described when a
strictly locally confluent critical pair a can represent another critical pair b,
which means that the strict local confluence of b is implied by the strict local
confluence of a. In the next table compare the time it takes to analyse strict
local confluence using our original method (as explained in Section 7.3), and the
new method, which first analyses if the strict local confluence of a critical pair
can be implied by another critical pair.

The table also shows the total number of critical pairs, the number of strictly
locally confluent pairs and the number of subsumed critical pairs (i.e., the num-
ber of critical pairs for which the strict local confluence was implied by another
critical pair).

Time (s) Critical Pairs
GTS Original Subsumption Total Confluent Subsumed

Dining Phil 0.1 0.1 25 0 0
Dining Phil (2) 0.2 0.2 191 191 154
Counting DPhil 0.4 0.4 318 22 14
Circular Buffer 20.5 20.4 6689 372 313
Counting CBuffer 128.1 121.9 14788 1432 1355
Append 33.9 34.4 17787 376 277

We can see that the time it takes for both methods to analyse all critical pairs
does not differ very much. For the first three graph transformation systems both
methods analyse the GTS very quickly, the speed difference was not measurable.
We do see that our subsumption approach is more efficient for the Counting
Circular Buffer GTS, however the difference is small (roughly 5%).

We can see that the last three graph transformation systems have many
critical pairs, however only a few of these are strictly locally confluent. Our
subsumption method falls back to the original way for confluence analysis if
strict local confluence can not be determined using subsumption. Therefore, for
most of these critical pairs, the old method was used to determine whether they
were strictly locally confluent.

In the next sections, will show some of the critical pairs for every GTS (which are
not strictly confluent, or for which we could not decide strict local confluence).
In order to depict these pairs, we only show the names of the rules and target
graph of the two jointly surjective matches.

7.5.1 Dining Philosophers

Analysis of the Dining Philosophers graph transformation system shows us that
there are 25 critical pairs. For all of these our implementation was able to decide
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that they were not strictly locally confluent. In some of these critical pairs, (at
least) one of the vertices represents both a philosopher and a fork. If we exclude
these critical pairs, there are nine critical pairs remaining. We have shown six
of these pairs in Figure 7.8; for the critical pairs Figures 7.8a, 7.8b and 7.8e the
pair for getting/releasing the right forks (instead of left) is analogous.

Fork
free

Phil
hungry
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Figure 7.8: Critical pairs for the Dining Philosophers Graph Transformation
System, none of these are strictly locally confluent.

We see that all of these pairs are situations which we do not want in reality.
Ideally we would require that ever philosopher has at most one left fork, and
at most one right fork. We also should not allow the left fork to be equal to
the right fork. We see that only the critical pair in Figure 7.8d satisfies these
constraints.

We could also require that every philosopher has at least one left and right
fork. This can be done by modelling this constraint in every rule. The rules
get-left, release-left, get-right and release-right should be modified
such every philosopher has a fork on his left, and a fork on his right.

7.5.2 Dining Philosophers (2)

Our results were as expected, there are more critical pairs because the rules
get-both and release-both are bigger than the rules which they have re-
placed. It turns out however, that every critical pair is strictly locally confluent.
Therefore we can conclude that this GTS is strictly locally confluent.
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7.5.3 Counting Dining Philosophers

Analysis has shown that the counting dining philosophers GTS is not strictly
locally confluent. There were many critical pairs which were not confluent and
also some pairs for which confluence could not be decided. For these ‘undecided’
pairs, it was the case that an infinite sequence of get-both, release, release
could be applied. Because we compare the algebra attributes in the term algebra
the attributes do not become equal after applying operations. For example the
expression 2− 1− 1 is not equal to 0 in the term algebra.

Many of these critical pairs are situations which we do not want in practice.
These critical pairs show philosophers with multiple forks edges, a philosopher
where the left and right fork are the same, or a philosopher which is both eating
and thinking (or hungry). If we exclude such situations we are left with 15
critical pairs which are not confluent, and zero critical pairs for which confluence
cannot be decided. Some of these pairs are shown in Figure 7.9.
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Figure 7.9: Critical pairs for the Counting Dining Philosophers Graph Transfor-
mation System, none of these are strictly locally confluent. The circular nodes
with X or Y represent variables.

The situation in Figures 7.9a and 7.9b is not strictly locally confluent because
after applying either of the possible applications for the rule get-both, it is not
possible to apply any rules any more, because a philosopher needs to have two
forks before the rule eat can be applied. In the term algebra, an operation can
never result in a constant. Note that these critical pairs are locally confluent (but
not strictly), because both possible applications for get-both give an isomorphic
result.

In Figure 7.9c, we see that the philosopher does not have a left and right
fork specified. However the philosopher does hold a fork, and the number of
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forks is zero. It is a situation which should not happen in practice.

In Figure 7.9d, we see a philosopher where the number of forks is two, but
the philosopher does not hold any forks. This is also not a situation which we
want in practice.

7.5.4 Circular Buffer

We expected the circular buffer to be confluent, however there are many critical
pairs which are not confluent, some of these are shown in Figure 7.10. Fig-
ure 7.11 shows two of the pairs for which confluence could not be decided.
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Figure 7.10: Critical pairs for the Circular Buffer GTS which are not strictly
locally confluent.

Many of these critical pairs represent situations which are not desired in
practice. In some of these critical pairs we see that there is more than one
Buffer. Other pairs have Cells with more than one outgoing next or val

edge. There are critical pairs in which the Buffer has more than one first (or
last) edge. We also have some critical pairs in which there exists an Object

with more than one incoming val edge.
If we exclude all critical pairs for which the above constraints do not hold,

and for which the type constraints hold (i.e., every vertex is either a Buffer, a
Cell or an Object but not multiple of these at the same time), then there are
no pairs remaining which are not confluent, but there are two remaining pairs
for which confluence could not be decided. These are depicted in Figure 7.11.
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Figure 7.11: Critical pairs for the Circular Buffer GTS for which strict local
confluence could not be decided.

Consider the critical pair in Figure 7.11a. The rules extend and put can
be applied infinitely often (alternating). This pair is also a situation which is
not desired in practice, since the buffer in this critical pair is not circular. For
similar reasons, we cannot decide strict local confluence for the critical pair in
Figure 7.11b. An interesting observation here is that this pair is actually locally
confluent (but not strictly locally confluent), we can check this by applying
the rule sequence get, put, extend to the graph in Figure 7.11b, if we also
apply the sequence extend, get, put, then the results are isomorphic (but the
transformation morphisms do not commute).

7.5.5 Counting Circular Buffer

Analysis has shown that this GTS was not confluent. Similarly to the previous
GTS, many of these situations are situations which we do not desire in practice.
We have excluded all cases where there are multiple Buffers, where the Buffer

has multiple first, last or empty edges, situations where cells have more than
one incoming or outgoing next or val edge, and situations where an Object

has more than one incoming val edge.
After this exclusion we are left with two pairs which are not confluent (shown

in Figures 7.12a and 7.12b), and one critical pair for which confluence could not
be decided (shown in Figure 7.12c).

For the critical pairs shown in Figures 7.12a and 7.12b, our analysis shows
that the critical pair is not locally confluent. This is because of the term algebra:
if we would apply the sequence of rules get, put. Then our the empty edge would
point to X + 1 − 1, however if we apply the sequence of rules put, get, then
the empty edge would point to X − 1 + 1, in the term algebra these expressions
are not equal. However in other algebras these expressions can be equal to
each other, if this would be the case then these pairs would be strictly locally
confluent.

Confluence for the critical pair in Figure 7.12c could not be decided, since
the sequence of transformations extend, put can be applied infinitely often. If
we apply the rule put to the graph in Figure 7.12c, then no rule applications
are possible any more. We see that the buffer in this situation is not actually
circular, if this would have been the case, then the pair could still be (strictly)
locally confluent.
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Figure 7.12: Critical pairs for the Counting Circular Buffer GTS, the circular
vertices with an X are variables.

7.5.6 Append

Our expectation was that this GTS was not locally confluent, our analysis con-
firms that we were correct. In Figure 7.13 we see one of the critical pairs. In
contrast to the graph transformation systems we have seen before, this critical
pair shows a situation which can happen in practice.

append
control

last

append
control

xcaller

this

callerx

this

Figure 7.13: Critical pair for (append,append)

There are exactly two different ways to apply the rule append to this graph.
Both applications give an isomorphic result, therefore the critical pair is locally
confluent. However the transformation morphisms for these two rule applica-
tions do not commute, therefore critical pair is not strictly locally confluent.

This is a typical example of why strict local confluence is required instead
of local confluence, if the two vertices which are targets of the x edge could be
distinguished (for instance if they would have a self-edge), then the transforma-
tions would no longer be confluent. This case is similar to the example we have
given in Figure 3.6 on page 33.
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7.6 General Conclusion

For most of these graph transformation systems we see that the critical pairs
which are not strictly confluent are situations which we do not desire in practice.

In order to solve this problem we could define constraints for each graph
transformation system which must always hold. An example of such a constraint
would be: every philosopher has exactly one left fork and exactly one right
fork, the left and right forks may not be the same fork. We can only model a
constraint like this if we can use negative application conditions; for example,
using negative application conditions we can ensure that the left and right fork
are not the same. Unfortunately we can not yet detect and analyse critical pairs
with NACs at this point.

In the circular buffer, we have seen that the critical pairs show buffers which
are not circular. In groove it is possible to model an application condition like
this using a regular expression; however, we are not able to analyse such a rule
at this point.

Using rules with constraints, critical pair analysis should no longer give
counterexamples which cannot happen in practice (provided that sufficient con-
straints have been modelled into the rules).

In the circular buffer GTS, we have found that the alternation of the rules
extend and put was applicable infinitely often in some cases, this is because
there exists a match from the LHS of this rule to its own RHS. Because of this,
we reached our maximum search depth in some cases, and the confluence search
was terminated. For the pairs where this was the case, our algorithm could not
decide if the pairs were confluent.

For one of the systems which we have tested (Append), we have expected
that the GTS was not locally confluent because we could think of a conflicting
situation. In our analysis if this system, we have managed to find a critical
pair which represents this conflict. We know that, for every GTS which is not
locally confluent, there must exist a parallel dependent pair of transformations.
We have also proven that for such a parallel dependent pair of transformations,
there exists a critical pair. Since we find and analyse all critical pairs, this
means that our analysis will never give false positives, i.e., if the GTS is not
locally confluent, then the result of our analysis will never be that the GTS is
locally confluent.

The converse of this may not be true, it can be the case that a locally con-
fluent GTS is not strictly locally confluent. Furthermore, it can be possible that
we cannot find evidence that a critical pair is strictly locally confluent (we only
search a limited depth of states to prevent searching infinitely), in this case local
confluence cannot be decided.

Two of the transformation systems we have analysed made use of our theory
on attributed graphs. For these GTSs, we have only analysed critical pairs in
the term algebra. For some of these critical pairs we have seen that they were
not confluent, because some expressions were not equal in the term algebra. It
would be nice if we could also analyse these expressions using different algebras.
This would allow us to show local confluence for other algebras as well.
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Chapter 8

Conclusion

In the following, we first summarize the achievements of this thesis; we then
return to the research questions formulated in Section 1.6 to see how far we got
in answering these. Finally we discuss possible directions for future research.

8.1 Achievements

We have presented theory on confluence analysis for SPO high-level replace-
ment. We have generalized some existing theorems (embedding theorem and
local confluence theorem) on SPO graph transformation to high-level replace-
ment. In order to do this we have defined (strict) SPO categories, which specify
requirements which must hold for the categories for which our proofs are valid.
We have defined critical pairs and shown that there exists a critical pair for
every conflict (i.e., every pair of parallel independent transformations).

Our theory is not only applicable to graphs with partial graph morphisms:
we have also shown that our work is also applicable to attributed graphs. Both
of these are supported by the graph transformation tool groove. These are
not the only categories for which our theory is applicable: we conjecture that
typed (attributed) graphs and hypergraphs are also strict SPO categories.

We have also presented some of the foundations for confluence analysis for
HLR systems with NACs. By defining NAC SPO categories, we have defined
for which categories our theorems are valid. Using these NAC SPO categories,
we have shown an embedding theorem which allows NACs, we have defined con-
ditional critical pairs (critical pairs with NACs), and we have shown that there
exists a conditional critical pair for every conflict. Unfortunately we found that
the strict local confluence of all conditional critical pairs does not imply strict
local confluence of an HLR system, and we have also not yet shown that graphs
with partial graph morphisms form a NAC SPO category. This is future work.

In search for a more efficient method for critical pair detection, we researched
whether there exist essential critical pairs, which are a subset of critical pairs
such that all critical pairs are strictly locally confluent if and only if all essential
critical pairs are strictly locally confluent. It turns out that the restrictions on
essential critical pairs are very strict, which has as a consequence that the set of
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essential critical pairs is not significantly smaller than the set of critical pairs.
We have solved this issue by presenting an alternative method for confluence

analysis: we have defined when a strictly locally confluent critical pair can
represent another critical pair, which means that the other critical pair is also
strictly locally confluent. Because we know that the first pair is strictly locally
confluent, the restrictions on this sufficient condition are less strict than the
restrictions on essential critical pairs.

8.2 Evaluation

In our introduction (Section 1.6) we have mentioned three main steps: first,
we wanted to research whether the existing theory on DPO and SPO graph
transformation could be modified in order to be applicable in our situation;
secondly, we wanted to implement an algorithm for critical pair detection in
groove; and lastly, we wanted to use groove to analyse whether some graph
transformation systems were (strictly) locally confluent, to see how well we
could determine local confluence in practice. We will evaluate these three steps
separately.

8.2.1 Modifying existing theory

In order to show local confluence of a HLR system, we needed to prove several
main theorems. The embedding theorem (Theorem 3.1.12), the completeness
theorem for critical pairs (Theorem 3.2.5), and the local confluence theorem
(Theorem 3.3.4). Similar theorems have also been proven to show local conflu-
ence of DPO HLR systems [10].

A basic version of the embedding theorem was already shown by Ehrig et al.
[13]. This embedding theorem by Ehrig is only applicable to graphs, however the
definition of graphs by Ehrig is slightly different from ours (edges are unlabelled
and pairs of vertices could be connected by multiple edges). Furthermore the
embedding theorem by Ehrig was restricted to injective embeddings (i.e., these
embeddings are families of monomorphisms).

We have generalized this embedding theorem so that embeddings are not
necessarily monomorphisms, and our embedding theorem is not only applica-
ble to the category of graphs with partial morphisms, but to any strict SPO
category. We have shown that graphs and attributed graphs form strict SPO
categories1.

Our definition for critical pairs is based on (and very similar to) the existing
definition for DPO HLR systems in [10]. We were able to show that there exist
a critical pair for every conflict which has not been previously shown in work
on SPO graph transformation or high-level replacement.

In order to provide a sufficient condition for local confluence of an HLR sys-
tem, we needed to require strict local confluence, which was also the case in
work on both SPO graph transformation [27] and DPO high-level replacement
[10]. Using the notion of strict local confluence, we were able to prove a suffi-
cient condition for local confluence of an SPO HLR system.

1Unfortunately, we have discovered that this is not true, see Section 8.3 and Appendix A.2.
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We continued our work in order to find a sufficient condition for local con-
fluence of an HLR system with NACs. In order to do so, we had to require that
right NACs could be converted to (equivalent) left NACs. We came up with
the Pushout/Pullback property which ensures that right NACs can indeed be
converted to left NACs. However, we have not yet proven that this property
holds for GraphP (this is future work). Using this property, we have defined
and proven an embedding theorem which allows NACs.

The notions of parallel independence and critical pairs (now called condi-
tional critical pairs) needed to be redefined to allow NACs, the definitions
we have given were again similar to the definitions for DPO [24]. Using the
Pushout/Pullback property we were able to show that conditional critical pairs
were complete. This allowed us to conclude that a SPO HLR system with NACs
is locally confluent if there are no critical pairs. Unfortunately we found that
strict local confluence of all conditional critical pairs does not imply the (strict)
local confluence of the HLR system. It is future work to find a sufficient condi-
tion for local confluence of an HLR which does have conditional critical pairs.

8.2.2 Algorithm for Critical Pair Detection

Using the theory we have developed, we have implemented an algorithm to
find all critical pairs for a graph transformation system in groove. For ev-
ery pair of rules, the algorithm has to compute all possible ways to combine
the vertices in the left-hand sides. Every combination forms a pair of jointly
surjective matches. Unfortunately, the total number of these jointly surjective
matches can grow very quickly. Therefore in the future, the algorithm could
be improved so that it will only compute those jointly surjective matches which
will form a critical pair (i.e., the parallel independent pairs of transformations
are not computed). This improvement will not reduce the worst case complexity.

We have tested our algorithm by recreating some test cases from the agg
testsuite. Because agg has no test cases for SPO graph transformation we have
added some SPO specific testcases ourselves. We have also computed sets of
critical pairs for some graph transformation systems, which haven then been
used analyse whether these GTSs are (strictly) locally confluent.

8.2.3 Determining local confluence

Using existing features of groove, we were able to analyse whether critical
pairs are strictly locally confluent. Our case study has shown us that that this
confluence analysis works very well: it finds many counterexamples if a GTS is
not strictly locally confluent. We have also seen that many of these counterex-
amples are situations which cannot happen in practice, because some implicit
constraints have not been satisfied. Such constraints can usually be formulated
as positive or negative application conditions. The positive application condi-
tions can be added to the left-hand sides of all rules to ensure that the rules
only match if the constraints are satisfied. For negative application conditions,
it is also possible to model these in the rules in groove, however, critical pair
and confluence analysis for rules with NACs is not yet possible.

85



8.3 A Last Minute Result

Unfortunately, just before finishing this thesis we have found a counterexample
which shows that our pushout construction is incorrect (see Appendix A.2). This
counterexample shows a situation where the pushout over two total GraphP -
morphisms does not exist. As a consequence, this means that (GraphP ,M,R)
is not an SPO category because pushouts over M and R morphisms may fail
to exist.

It turns out that the behaviour of the graph transformation tool groove
is the same as we have specified in our (incorrect) pushout construction. This
means that groove is able execute the incorrect transformation we have shown
in Appendix A.2; however, the result of this transformation is not a pushout.
This means that in particular a pushout construction for graphs with partial
morphisms has to be reinvestigated. Unfortunately, the time constraints of this
thesis made it impossible to carry this though. Instead, we have marked the
affected results with footnotes.

A pushout construction for multi-sorted graphs (graphs which allow multiple
edges between a pair of vertices) where edges are unlabelled has been shown by
Ehrig et al. in [13]. It is likely that the definition for graphs and partial graph
morphisms as given by Ehrig et al. can be used to form a strict SPO category
for the transformation of graphs, in which therefore our main results can be
applied.

8.4 Future work

Based on the work we have presented in this paper, there are several directions
for future research:

1. Since we have defined HLR systems with NACs, we have presented and
NAC SPO categories. Unfortunately we do not yet know whether graphs
with partial morphisms form a NAC SPO category. Furthermore in order
to be able to compute critical pairs a construction for pushout comple-
ments is needed.

2. The theory for critical pair and confluence analysis for HLR systems with
NACs is not yet completely worked out. For example we believe that strict
NAC-confluence of all conditional critical pairs (as we have discussed at
the end of Chapter 4) is a sufficient condition for strict local confluence of
a HLR system with NACs. However, it is not yet possible to decide when
a conditional critical pairs is strictly NAC-confluent.

Once all theory on HLR systems with NACs has been developed, an al-
gorithm could be implemented in groove, and our case study could be
repeated. Using NACs it is possible to model constraints into the rules,
such that rules are only applicable if these constraints hold. In our case
study we have seen that many GTSs were not strictly locally confluent be-
cause some implicit constraints were assumed. These implicit constraints
did not hold in the critical pairs we have found. In the new case study we
will then see if local confluence can be decided for the graph transforma-
tion systems with constraints.
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3. It is possible to model typed graphs with inheritance in groove, this
allows modelling of object-oriented systems. We do not yet know if a
strict SPO category exists for typed graphs with inheritance.

4. The algorithm we have implemented computes all jointly surjective matches
(where the host graph is as small as possible) for every pair of rules. Many
of these jointly surjective matches do not lead to a critical pair. The per-
formance of the algorithm could be improved if it would only compute
those jointly surjective matches such that the transformations are parallel
dependent.

5. Groove has support for many types of rules, such as nested rules (also
called rules with nested application conditions). Since ideally we would
want groove to be able to analyse all kinds of graph transformation
systems, it would be very useful if critical pair and confluence analysis for
these rules can be performed using groove.

6. Attributed graphs in the rules in groove use the term algebra. This
allows rules to have variables and apply operations. Unfortunately it can
be the case (which we have seen in our case study) that a critical pair
using the term algebra is not (strictly) locally confluent, however the same
critical pair is strictly locally confluent when a different algebra is used.
At this point our critical pair detection algorithm uses the same algebra
as the rule graphs. It would be better if it would be possible to decide if
a HLR system is locally confluent if a certain (non-term) algebra is used.

7. Since groove is also a model checking tool which can efficiently com-
pute state spaces, it could be investigated how confluence reduction [39]
could be applied to reduce the number of states that need to be evaluated.
The work on confluence reduction uses a slightly different notion of con-
fluence, however we believe that our definitions for parallel independence
and critical pairs could be useful to implement confluence reduction.
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Appendix A

Proofs

A.1 Pushout Construction in GraphP

In this section we will restate our pushout construction1 and prove several propo-
sitions which follow from our pushout construction.

Construction 2.3.4 (Pushout in GraphP ). Let A, B, and C be graphs, let
f : A → B, and g : A → C be (partial) morphisms. We can construct the

pushout B
g′−→ D

f ′←− C as follows:

Define the relation ∼ on the disjoint union U = VB ∪̇ VC ∪̇EB ∪̇EC as follows:
for all a ∈ (VA ∪̇ EA) we have f(a) ∼ g(a) if f(a) 6= ⊥ and g(a) 6= ⊥.

Let [x] = {y ∈ U | x ≡ y} where ≡ is the equivalence relation generated by ∼.

Now we can construct VD as follows:

VD ={[x] | x ∈ VB ∪̇ VC
∧ @a ∈ VA : ((f(a) = ⊥ ∧ g(a) ≡ x) ∨ (f(a) ≡ x ∧ g(a) = ⊥))}

Before we can construct the set of edges, we first construct three sets: ED,add

(edges that are being added), ED,del (edges that are being removed) and ED,all ⊆
(VD × Lab × VD) (all edges where the source and target exist in VD).

ED,add = {([s], l, [t])|(s, l, t) ∈ (EB ∪̇ EC) \ (fE(EA) ∪̇ gE(EA))}

ED,del ={([s], l, [t])|(s, l, t) ∈ (EB ∪̇ EC) ∧ ∃a ∈ EA : (f(a) ≡ (s, l, t)

∧ g(a) = ⊥) ∨ (g(a) ≡ (s, l, t) ∧ f(a) = ⊥)}

ED,all = {([s], l, [t])|(s, l, t) ∈ (EB ∪̇ EC) ∧ [s] ∈ VD ∧ [t] ∈ VD}

The set ED is constructed as follows:

ED = ED,all \ (ED,del \ ED,add)

1Unfortunately, this construction is incorrect, as we show in Appendix A.2
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The morphisms f ′V : VC → VD and f ′E : EC → ED) are defined as follows:
(g′V and g′E are defined analogously)

f ′V (c) =

{
[c] if [c] ∈ VD
⊥ otherwise

f ′E((s, l, t)) =


([s], l, [t]) if ([s], l, [t]) ∈ ED

∧(([s], l, [t]) ∈ ED,del ⇒ (s, l, t) /∈ gE(EA))

⊥ otherwise

Before we show that our pushout construction is correct, we first show that
f ′ and g′ are jointly surjective.

Lemma A.1.1. The morphisms f ′ and g′, as defined in Construction 2.3.4 are
jointly surjective.

Proof. To show that the morphism pair (f ′, g′) is jointly surjective, we need to
show that the pairs (f ′V , g

′
V ) and (f ′E , g

′
E) are jointly surjective.

We will first show that f ′V and g′V are jointly surjective. Let [x] ∈ VD. We
know from the definition of VD that there exists a v ∈ VB ∪̇VC such that v ∈ [x].
If v ∈ VC , then we know from the definition of f ′V that f ′V (v) = [x]. Similarly
if v ∈ VD, we know that g′V (v) = [x]. This means that f ′V and g′V are indeed
jointly surjective.

Next, we will show that f ′E and g′E are jointly surjective. Let e = ([s], l, [t]) ∈
ED. We will show that there exists a b ∈ EB such that g′E(b) = e, or there exists
a c ∈ EC such that f ′E(c) = e. We make a case distinction based on whether
e ∈ ED,del:

• e /∈ ED,del

We know ED ⊆ ED,all this means that there must exist an edge e′ =
(vs, l, vt) ∈ EB ∪̇EC such that vs ∈ [s] and vt ∈ [t]. Assume that e′ ∈ EC
(the other case is symmetric). Since e /∈ ED,del, we know by definition of
f ′E that f ′E(e′) = ([s], l, [t]) = e

• e ∈ ED,del

Since e ∈ ED and e ∈ ED,del, we know (by definition of ED) that e ∈
ED,add. Therefore there must exist an e′ = (vs, l, vt) ∈ (EB ∪̇ EC) \
(fE(EA) ∪̇ gE(EA)) such that vs ∈ [s] and vt ∈ [t]. Assume that e′ ∈ EC
(the other case is symmetric). Now the implication in the definition of f ′E
is satisfied (e′ /∈ gE(EA) ), this means that f ′E(e′) = e.

For both cases we have shown that e is in the image of either f ′E or g′E , therefore
f ′E and g′E are jointly surjective. We have also shown that f ′V and g′V are jointly
surjective therefore we can conclude that f ′ and g′ are jointly surjective.

Proposition 2.3.5. B
f ′→ D

g′← C as defined in Construction 2.3.4 is a pushout.2

2Actually this construction is incorrect, in Appendix A.2 we show that pushouts do not
exist over all spans.
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Proof. Let A, B, and C be graphs, let f : A → B, and g : A → C be (partial)

morphisms. Let B
f ′→ D

g′← C be constructed as in Construction 2.3.4. In order

to show that B
f ′→ D

g′← C is indeed a pushout, we must show that f ′ ◦g = g′ ◦f
and we must show that the following universal property is fulfilled: for all objects
X and morphisms h : B → X and k : C → X with k ◦ g = h ◦ f , there is a
unique morphism x : D → X such that x ◦ g′ = h and x ◦ f ′ = k.

First we show that f ′ ◦ g = g′ ◦ f . We will first prove this for all vertices of
A. Let v ∈ VA. We make a case distinction on whether a is in the domain of
fV and/or gV :

• a ∈ dom(fV ) and a ∈ dom(gV )
By definition of ∼ we have fV (a) ∼ gV (a) therefore [fV (a)] = [gV (a)],
now by definition of f ′V and g′V we have f ′V (gV (a)) = g′V (fV (a)).

• a /∈ dom(fV ) and a ∈ dom(gV )
We know that g′V (fV (a)) = ⊥, so we will show that f ′V (gV (a)) = ⊥.
Because fV (a) = ⊥ and gV (a) ∈ [gV (a)] the property expressed by the ex-
istential quantifier in the definition of VD is not satisfied. We can conclude
that [gV (a)] /∈ VD, which means that f ′V (gV (a)) = ⊥

• a ∈ dom(fV ) and a /∈ dom(gV )
Analogous to the previous case

• a /∈ dom(fV ) and a /∈ dom(gV )
We have fV (a) = ⊥ and gV (a) = ⊥ therefore f ′V (gV (a)) = g′V (fV (a)) = ⊥

Now we will show that f ′ ◦ g = g′ ◦ f also holds for any edge e ∈ EA. Again we
make a case distinction on whether e is in the domain of fE and/or gE :

• e ∈ dom(fE) and e ∈ dom(gE)
Because morphisms must preserve the sources and targets, we know that
s(e) and t(e) also have an image under f and g. This means [fV (s(e))] =
[gV (s(e))] and [fV (t(e))] = [gV (t(e))]. Let s = fV (s(e)), t = fV (t(e)) and
l = l(e). We separate two cases, based on whether ([s], l, [t]) ∈ ED,del:

– ([s], l, [t]) ∈ ED,del

The implication in the definition of f ′E and g′E is not satisfied, since
clearly fE(e) ∈ fE(EA) and gE(e) ∈ gE(EA), therefore f ′E(gE(e)) =
g′E(fE(e)) = ⊥

– ([s], l, [t]) /∈ ED,del

The implication in the definition of f ′E and g′E is satisfied and we can
observe that f ′E(gE(e)) = g′E(fE(e)).

• e /∈ dom(fE) and e ∈ dom(gE)
We know that g′E(fE(e)) = ⊥, so we will show that f ′E(gE(e)) = ⊥.
Morphisms preserve sources and targets, this means that gV (s(e)) 6= ⊥ and
gV (t(e)) 6= ⊥ Let s = gV (s(e)), t = gV (t(e)) and l = l(e). Because f(e) =
⊥ we know that ([s], l, [t]) ∈ ED,del. We can see that the implication in
the definition of f ′E is false. This means that f ′E(gE(e)) = ⊥.

• e ∈ dom(fE) and e /∈ dom(gE)
Analogous to the previous case
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• e /∈ dom(fE) and e /∈ dom(gE)
We have fE(e) = ⊥ and gE(e) = ⊥ therefore f ′E(gE(e)) = g′E(fE(e)) = ⊥

Since for all cases f ′(g(a)) = g′(f(a)), we know that f ′ ◦ g = g′ ◦ f

For a given graph X with morphisms h : B → X and k : C → X such that
k ◦ g = h ◦ f we define x : D → X such that

xV ([d]) =

{
h(b) if ∃b ∈ VB : b ≡ d
k(c) if ∃c ∈ VC : c ≡ d

xE(([s], l, [t])) =

{
h((b1, l, b2)) if ∃b1, b2 ∈ VB : b1 ≡ s ∧ b2 ≡ t
k((c1, l, c2)) if ∃c1, c2 ∈ VC : c1 ≡ s ∧ c2 ≡ t

First we will show that x is well-defined. The following reasoning holds for
both edges and vertices. Because f ′ and g′ are jointly surjective, we know that
at least one of the cases of xV or xE will occur. If both occur then ≡ implies the
existence of a1, . . . , an ∈ A with f(a1) = b, g(a1) = g(a2), f(a2) = f(a3), . . . ,
g(an−1) = g(an) = c, which implies h(b) = k(c) using h ◦ f = k ◦ g. Similarly,
b1 ≡ b2 implies hV (b1) = hV (b2) and c1 ≡ c2 implies kV (c1) = kV (c2). Therefore
x is well-defined.

We must also show that x ◦ g′ = h and x ◦ f ′ = k. This clearly follows from
the definition3.

The last thing we must show is that x is unique. We know (Lemma A.1.1)
that f ′ and g′ are jointly surjective, which implies (Proposition 2.2.13) that f ′

and g′ are jointly epimorphic. Therefore we can conclude that x is unique.

Proposition 3.1.8. Let r : L → R and m : L → G be GraphP -morphisms,
such that m ∈ M, where M is the class of total graph morphisms. Then r
is M-preserving w.r.t. m if and only m(x) = m(y) implies x, y ∈ dom(r) or
x, y /∈ dom(r)4.

Proof. We prove this proposition using Construction 2.3.4.
(⇒) First we assume that m(x) = m(y) implies x, y ∈ dom(r) or x, y /∈

dom(r). To show that r is M-preserving w.r.t. m, we much show that m′ is
total, i.e. we need to show that every vertex and edge in R is has an image
under m′.

• Let v ∈ VR. If v has no preimage under rV , then we know that [v] = {v}
and [v] ∈ VH . Therefore m′V (v) = [v]. If v has one or more preimages
under rV , then we know that mV is defined for every vertex in r−1

V (v)
(because m is total), and because of our assumption (m(x) = m(y) implies
x, y ∈ dom(r) or x, y /∈ dom(r)) there does not exist an a ∈ VL such that
mV (a) ≡ v and rV (a) = ⊥. This means that [v] ∈ VH and m′V (v) = [v].

• Let e = (s, l, t) ∈ ER, we will show that e is has an image under m′E .
We have already shown that all vertices in VR have an image in VH , this
means s and t have an image in VH . If e has no preimage under rE then

3Actually this is not the case, this is where we have made a mistake in our proof, in
Appendix A.2 we show a counterexample

4Unfortunately, we can not be sure that the pushout over r and m exist, therefore we can
not be sure if r is (strictly)M-preserving w.r.t. m, see Section 8.3 and Appendix A.2.
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we know that ([s], l, [t]) ∈ ED,add, which means ([s], l, [t]) ∈ ED, so we
have m′E(e) = ([s], l, [t]). If e has one or more preimages under rE then
we know (because we assumed m(x) = m(y) implies x, y ∈ dom(r) or
x, y /∈ dom(r)) that there does not exist an a ∈ EL such that mE(a) ≡
e ∧ rE(a) = ⊥. This means that ([s], l, [t]) /∈ ED,del, and because the
source and target exist in VD we have ([s], l, [t]) ∈ ED, therefore m′(e) =
([s], l, [t]).

(⇐) Conversely, let r be M-preserving w.r.t. m, which means m′ is total. We
will show that this means that m(x) = m(y) implies x, y ∈ dom(r) or x, y /∈
dom(r). We will prove this by contradiction, let x, y ∈ L such that m(x) = m(y)
and assume to the contrary that x ∈ dom(r) and y /∈ dom(r). We know that
m(x) ≡ m(y). Now we make a case distinction based on whether x and y are
vertices or edges:

• Vertices: Since rV (y) = ⊥, [m(y)] /∈ VH , we know that m′V (rV (x)) = ⊥.

• Edges: Let (s, l, t) = m(x), then we know ([s], l, [t]) ∈ ED,del. This means
that m′E(rE(x)) = ⊥.

For both vertices and edges we have seen that m′ not total, which is a con-
tradiction. We may conclude x, y ∈ dom(r) or x, y /∈ dom(r), therefore r is
M-preserving w.r.t m.

A.2 Incorrectness of Pushout Construction in
GraphP

Unfortunately, when finishing this thesis, we discovered a counterexample which
shows that our pushout construction in GraphP (Construction 2.3.4) is incor-
rect. In this section we will show a situation where a pushout in GraphP does
not exist.

Figure A.1 shows morphisms f : A→ B and g : A→ C. Construction 2.3.4

results in the cospan C
f ′−→ D

g′←− B (as shown in Figure A.1). If C
f ′−→ D

g′←−
B is indeed the pushout over f and g, then the following pushout property must
hold:

For all objects X and morphisms h : B → X and k : C → X with
k ◦ g = h ◦ f , there is a unique morphism x : D → X such that x ◦ g′ = h
and x ◦ f ′ = k.

We will show that this is not the case. Consider the object X and the morphisms
h : B → X and k : C → X as shown in Figure A.1. We can see that k◦g = h◦f
therefore there must exist a morphism x : D → X such that x ◦ g′ = h and
x ◦ f ′ = k. However there does not exist a morphism x with these properties.

The problem is the edge (1, ε, 3) ∈ B which is mapped to (1, ε, (2,3)) ∈ X
under h. If we follow the construction of the edge component x in Proposi-
tion 2.3.5, then we would obtain the total morphism xE : D → X which maps
the edge (1, ε, (2,3)) ∈ D to the edge (1, ε, (2,3)) ∈ X. However, we can see that
xE ◦ g′E 6= hE , because hE is not defined for the edge (1, ε, 2) ∈ B, but xE ◦ g′E
is defined for the same edge.
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Figure A.1: C
f ′−→ D

g′←− B is not the pushout over f and g. The dotted lines
depict the edge component of the graph morphisms; the numbers show how the
vertices are mapped under the graph morphisms.

It turns out there does not exist a pushout in this situation. Our proof for the
pushout construction (Proposition 2.3.5) was incorrect. A consequence of this is
that (GraphP ,M,R) is not an SPO category (in the sense of Definition 2.4.1),
because given an M-morphism m : L→ G and an R-morphism r : L→ R, the
pushout over m and r may not exist.

94



Bibliography

[1] U. Assmann. How to uniformly specify program analysis and transforma-
tion with graph rewrite systems. In Compiler Construction, pages 121–135.
Springer, 1996.

[2] S. Awodey. Category theory. Oxford University Press, 2010.

[3] R. Bardohl. A visual environment for visual languages. Science of Computer
Programming, 44(2):181–203, 2002.

[4] P. Barroso and A. Furtado. Implementing a data definition facility driven
by graph grammars. Computer Languages, 3(2):65–74, 1978.

[5] E. T. Bell. Exponential polynomials. The Annals of Mathematics,
35(2):258–277, 1934.

[6] D. Berend and T. Tassa. Improved bounds on bell numbers and on mo-
ments of sums of random variables. Probability and Mathematical Statistics,
30(2):185–205, 2010.

[7] V. Claus, H. Ehrig, and G. Rozenberg. Graph-grammars and their appli-
cation to computer science and biology, volume 73. Springer, 1979.

[8] N. Dershowitz and J.-P. Jouannaud. Rewrite systems. In Handbook of
theoretical computer science, volume B, pages 243–320. Elsevier, 1989.

[9] H. Ehrig, K. Ehrig, J. De Lara, G. Taentzer, D. Varró, and S. Varró-Gyapay.
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