
1

Benchmarking of Automated Planners: which Planner

suits you best?
Wim Florijn

University of Twente
P.O. Box 217, 7500AE Enschede

The Netherlands

w.j.florijn@student.utwente.nl

ABSTRACT
Benchmarking provides an objective way to compare automated

planners in artificial intelligence. Currently, there is no

benchmarking framework which is able to compare the different

kinds of automated planners on the market. As part of this

research, a benchmarking framework has been developed which

supports problems for different kinds of planners. This creates

the possibility to compare both PDDL-based and Graph-based

planners. In this paper a benchmarking framework which

supports both PDDL-based and Graph-based planners, is

described. The results of the research confirm that for the tested

suite of problems, PDDL-based planners perform better than

Graph-based planners.

Keywords

Artificial Intelligence, benchmark, planner, PDDL, graph

1. INTRODUCTION
Planning is a branch of artificial intelligence which concerns

the generation of strategies or action sequences. Usages of

planners are the realization of strategies for autonomous robots

or unmanned vehicles or other smart devices. These strategies

can be very complex, and thus hard to find and optimize [10].

The two most well-known kinds of planners are: Classic

planners based on the PDDL language, and Graph-based

planners. An example of a Graph-based planner developed

within the University of Twente is GROOVE [2]. Classic

PDDL based planners are often able to provide quick solutions,

by not exploring the full state space [1], [9]. This is achieved by

making use of efficient heuristic search algorithms. Currently,

the Graph-based planner GROOVE does not offer this

functionality. GROOVE however has different advantages: it is

more easy and intuitive to work with, and provides additional

functionality. By being able to compare GROOVE to other

planners, possible areas of optimization can be found.

Currently, there are no automated benchmarking frameworks

which cover both PDDL-based and Graph-based planners, let

alone the whole field of automated planners. There is however a

need for such a benchmarking framework. Two main groups of

people can be distinguished who benefit from an automated

planner benchmarking framework. These are the developers,

and end-user of planners.

In the case of planner end-users, the usability of a tool is

important. People will decide to use a tool if it provides the

functionality they want, and if the user experience is positive. In

the case of an automated planner, this user experience is largely

dependent on the stability, speed and functionality of the tool.

To determine and compare these factors between different

planners, benchmarks or tests must be executed.

For developers, it is arguably even more important to be able to

compare planners. When comparing their tool or algorithm to

other planners or algorithms they can observe differences in

performance. Comparing results of specific samples to the

results of other planners will indicate the strong and weak

points of the planner, and in which areas improvements can be

made.

This need for benchmarking solutions brings us to the goal of

this research: to implement an automated benchmarking

framework which supports both Graph-based and PDDL-based

planners. There are some factors which the framework has to

satisfy, to be accepted as a valid solution.

 First of all, the framework should be extensible. This

means that it should support all kinds of planners and

problems, and it should be able to add more.

 Secondly, the framework should also be easy to use.

It should be clear for users how the framework works,

and how operations can be executed.

How these factors should be satisfied, has been determined

using a literature study. Using this information, a framework

has been developed which satisfies the conditions.

PAPER OUTLINE
In section 2, we will introduce the concepts of planners and

benchmarks in artificial intelligence. In section 3, we will

elaborate on the problem and what we want to achieve with this

paper. This is followed by a description of related work in

section 4. In section 5, the framework and its components are

described, together with the results. Also a discussion of the

results will be given in this section. Finally, a conclusion will

be drawn in section 6.

2. BACKGROUND

2.1 PLANNERS
Currently, there are many different planners on the market. A

lot of these planners can be categorized in two categories:

Graph-based planners and PDDL-based planners. PDDL is an

acronym for Planning Domain Definition Language. It works

with two input files: A domain file for predicates and actions,

and a problem file for objects, initial state and goal

specification [5]. A Graph-based planner works with graph

representations of problems and intermediate states. These

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies

are not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee.

25thTwente Student Conference on IT, July 1st, 2016, Enschede, The

Netherlands.

Copyright 2016, University of Twente, Faculty of Electrical

Engineering, Mathematics and Computer Science.

2

states can be visualized and edited by users. This allows for a

more intuitive user experience. Examples of planning problems

are described in section 5.1.1.

Different planners can make use of different search algorithms

with different heuristics. The used search algorithm together

with the used heuristics makes a large difference in the

performance of a planner. Some planners take a short time, but

can’t find a short path, while other planners take more time but

they try to find the shortest path.

There are various kinds of environments in which planning

problems exist. In known environments, the planning can be

done prior to execution (offline). However, in dynamically

unknown environments, planning has to be done online, due to

the fact that models and policies must be adapted when the

environment changes. In this paper, offline planning will be

used to validate the benchmarking framework.

2.2 BENCHMARKS
A benchmark is a standard of measurement or evaluation, and

an effective and affordable way of conducting experiments [4].

It is a way to assess the relative performance of an object, by

running a number of standard tests and trials against it.

Because experience has shown that information about planners

is not easy to obtain, users of planning tools need guidance to

select tools that are most suitable for planning problem; and

researchers also desire a unified evaluation method to

demonstrate the strength and weakness of their tools versus

others. To make a good comparison between planners,

qualitative and quantitative data should be compared.

Quantitative data can be retrieved by running the benchmark

suite can be on each planner and measuring the time this takes.

The shorter it takes a planner to generate a solution, the better.

Then the planners can be compared based on their speed. This

is however not as straightforward as it seems. There has

however to be taken into account that different planners can use

different (heuristic) search algorithms. Some search algorithms

will find a longer path in a short time, while other search

algorithms will find the slowest path in a relatively long time.

Qualitative data can be retrieved by recording the number of

states which a planner has visited, before a solution is found.

The amount of states is a representative solution in

benchmarking, because it is hardware independent. Finally the

amount of traversed paths which is needed to come to a solution

is a good unit of measure. This tells us about the quality of the

search heuristic. There is however a technical difficulty: not all

planners will record the number of states or the amount of

traversed paths it took to find a conclusion.

An important criterion for a good benchmark suite is its

diversity on important characteristics of the problem. These

characteristics are elaborated on in section 3.

3. PROBLEM STATEMENT
To be able to construct a benchmarking framework in which

both Graph-based and PDDL-based planners can be compared,

the following research questions have been defined:

1. How should a benchmarking framework be set up

which is able to compare both PDDL-based and

Graph-based planners?

2. Which results should the framework deliver?

3. Which format should the framework deliver the

results in?

The goals of this research are to research and implement an

automated benchmarking solution, so that planner tools can be

tested and compared. The results of this benchmark should be

made available to be used to possibly create optimizations. For

the results to be valuable, a suitable test suite has to be made,

which covers a range of possible scenarios. The framework

together with the suite will be executed on a set of planners, to

check their performance.

For a method to be scientifically correct, it must be reliable and

valid. These two factors are important for the acceptance by the

scientific community. Therefore the benchmarking framework

should meet these conditions. The conditions are explained in

more detail below.

1. Reliability means that other researchers must be able

to perform exactly the same experiment, under the

same conditions, and generate the same results

(testability). In our case: the benchmark must return

the same results when executed by multiple users

under the same conditions.

2. Validity means that the results which will be obtained

are valid: it is considered to be the degree to which a

tool measures what it claims to measure. In our case:

the results of the benchmarking framework must

reflect the real performance of the tested planner.

To create a planner-covering test suite, many possible scenarios

have to be kept in mind. One important factor in the

performance of planners is scalability. It is very well possible

that some planners are able to solve small problems relatively

fast, while larger problems take relatively long.

As described in [3], other factors indicating the difficulty of a

planning problem are:

1. Determinism of actions. If an action is deterministic,

it will always lead to some specific state. This is

however not the case with non-deterministic actions:

they can lead to a choice of states.

2. Are actions probabilistic? Probabilistic planning

considers that the possible outcomes of an action are

not equally likely. Probabilistic planning addresses

those cases where it is desirable to seek plans

optimized with respect to the estimated likelihood of

the effects of their actions.

3. Dynamics of the environment. The dynamics of the

world may be described using discrete, continuous or

hybrid models.

4. Observability of the environment. Can the current

state be observed unambiguously? The actor may

have to act on the basis of reasonable assumptions or

beliefs regarding when the environment is not fully

observable.

5. Time and concurrency. Every action consumes time.

But there may or may not be a need to model it

explicitly and reason about its flow for the purpose of

meeting deadlines, synchronizing, or handling

concurrent activities.

6. Amount of actors. Different agents may have different

goals and/or metrics. In general, a multi agent

planning problem can be defined as the problem of

planning by and for a group of agents [11]. The

behavior of agents can differ based on the problem

which is to be solved. For example, in multiplayer

3

games, independent and self-interested agents can be

used to model opponents.

To generate a benchmarking suite which delivers system

covering results, preferably all these factors should be tested.

However, due to the limited amount of time which is available,

a couple of these factors have been selected to compile the

benchmarking suite. The factors which have been selected to

take into account when generating the benchmarking suite are

determinism, time and concurrency and amount of actors.

4. RELATED WORK
There has been done plenty of research on benchmarks and

planners. A couple of interesting papers are listed below.

4.1 PLANNERS
 Edelkamp and Rensink have explored graph

transformations. The exact behavior of the Graph-

based planner GROOVE is explained in [2].

 Meijer has investigated the similarities and

differences of Graph-based planners and PDDL

planners [6]. In this paper is explained how one can

translate Graph planning problems to PDDL.

Unfortunately, no implementation is available.

4.2 BENCHMARKS
 Lu et. Al. [4] have investigated the issue of

benchmarking bug-detection tools. The benchmarking

of bug-detection tools is comparable to the

benchmarking of planners. To make a complete

benchmarking suite, a benchmark has to cover a wide

variety of problems. Therefore we have chosen to

make use of a benchmark suite with a variety of

problems, with the option to add more.

Once approximately every 2 year, a planner competition is held

between planner developers. Most of these planner developers

have an academic background. In the planning competitions,

PDDL-based planners are tested against a suite of problems.

Much information about PDDL-based planners and planning

problems can be found on the website of the competition.

5. DESCRIPTION

5.1 Approach
As described in section 1, the requirements of the

benchmarking framework are; extensibility and ease of use. The

way in which this is achieved, and the way the framework

works will be described in this section followed by a

description of how the requirements have been satisfied.

The framework has been built using a layered setup. This way it

is easy to add functionality without having to change large parts

of the framework. A class diagram of the benchmarking

framework is given in appendix C. For each class, a global

description about its functionality will be provided.

 Benchmark: This class holds a set of planners, and a

benchmarking suite. It can be used to execute the suit

for some planner. Furthermore, from this class results

can be written to the result writer. Planners and a

suite can be added to this class.

 Suite: This class holds a set of problem definitions.

The main method in this class is the executeSuite

method. When the executeSuite method is called with

some planner as argument, all problem definitions

will be executed, which recursively will deliver

results.

 ProblemDefinition: A problem definition has a

name, a description and a set of problems. The idea is

to be able to create different problems of the same

problem definition, varying in size. This way the

scalability of planners can be tested in a clear fashion.

When the executeProblemDefinition method is

executed, all problems which are held by the problem

definition are executed, and the set of results will be

returned.

 Problem: This is an instance of a problem definition

with some fixed size/complexity. A problem can hold

multiple problem instances, each for a different

planning language. When the executeProblem method

is executed, the problem instance which is suitable for

the given planner will be executed.

 ProblemInstance: A problem instance is an

implementation of some problem in some language

such as PDDL. It does contain a ProblemType. When

a ProblemInstance and a Planner have the same

ProbemType, the ProblemInstance can be executed by

the Planner.

 Planner: The planner class consists of a name, a

location, a set of arguments and a regex. The name is

the name of the planner, the location is the location of

the planner executable on disk, and the set of

arguments are the planner-specific command line

arguments. The regex is the (optional) regular

expression used to filter information from the

command line output of the planner. An example of a

piece of information which can be filtered is the

amount of explored states. The planner class can be

used to execute some problem instance.

 Result: The results class holds the results of the

execution of the planner. Currently, the timestamp,

execution time, output, run number, and information

about the executed problem definition and planner are

saved. It is however easy to extend the class with

extra functionality which suits the needs of the user.

 ResultWriter: The result writer class writes the

content of the Result class to an XLS file. This way

data can be visualized and interpreted using some

spreadsheet editor.

 ProblemType: This is a class used to match planners

to problem instances. When planners and problem

instances have an equal problem type, the planner is

able to execute the problem instance. Examples of

problem types are Graph-based or PDDL-based.

A more in-depth description of requirements and functionality

of the framework is given below.

5.1.1 Extensibility
The first requirement described in section 1 tells us that the

framework should support all kinds of planners and problems.

As described, the back-end of the framework has been designed

to support these planners and problems. Another obstacle

however is, to let users input these planners and problems in a

logical and user-friendly way.

To achieve this, the benchmarking framework takes an XML

file as argument, where all planners, problems and other

configurations can be defined. The structure of this XML file is

shown in appendix B. The structure will be described below.

4

 Runs: First of all the number of times the benchmark

should execute the suite is defined. It could be

possible that there is a difference in execution time

over different runs: this can be corrected by taking the

average execution time of multiple runs.

 Planner: In this section, planners can be defined. A

planner has a caption, location, problem type, regex

and a set of arguments. The caption should be the

planner name, and the location the location of the

planner executable on disk. The problem type is the

type of the problem it can execute. Examples are

PDDL-based or Graph-based. The regex can filter the

output of the planner to only get usable results.

Finally the arguments are arguments to generate the

command. The command which is executed on the

command line can be seen as a mapping of indices to

strings. Some of the indices are planner-specific

arguments, and other can be problem-specific

arguments. There can also be default arguments

which won’t change when executing different

planners/problems.

The framework uses the planners defined in the XML,

to generate Planner class instances as defined in

section 5.1.

 Problem definition: A problem definition is a

description of a problem. An example of a problem is

the blocks world problem. Also multiple problem

instances can be created for the same problem. Each

problem instance models a problem in some

language.

The framework uses the problem definitions defined

in the XML, to generate ProblemDefinition class

instances as defined in section 5.1.

 Results: In this section of the XML document, the

location where the results should be saved can be

indicated. One directory and one filename should be

provided. The results are saved as an excel sheet.

The results section in the XML will be used to

generate a ResultWriter instance as defined in section

5.1.

To make a comparison between Graph-based planners and

PDDL-based planners, a set of planners has to be selected

which will be compared. PDDL-based planners have been

selected based on their performance in the international planner

competition, and the Graph-based planner GROOVE has been

selected because it is developed at the University of Twente.

The selected candidates are:

1. Graph-based planners

- GROOVE

2. PDDL-based planners

- MAPlan

- PSM

- MADLA Planner

- MAPR and CMAP

Because GROOVE is currently the only Graph-based planner,

only one Graph-based planner can be examined. All these

planners have been researched and tested for usability. From the

planners listed above, some would deliver incomplete results,

wrong results or wouldn’t execute at all. Because of the limited

time available, the choice has been made to not include these

planners with the framework. The planners which have been

tested with the benchmarking framework are the following:

1. Graph-based planners

- GROOVE

2. PDDL-based planners

- MADLA Planner

- MAPan

To make a comparison between two objects, a qualitative or

quantitative method should be used. Qualitative and

quantitative data gathering methods for the case of

benchmarking frameworks may be hard to implement, because

not all planners do deliver clear results.

In our case, to generate a covering benchmark, a combination of

both qualitative and quantitative data will be used.

A benchmarking suite has been created with the following

problems:

 Blocksworld: The rules of this problem are the

following: Blocks are picked up and put down by an

arm. Blocks can be picked up only if they are clear,

i.e., without any block on top. The arm can pick up a

block only if the arm is empty, i.e., if it is not holding

another block, i.e., the arm can be pick up only one

block at a time. The arm can put down blocks on

blocks or on the table.

This problem can be solved using an automated

planner. In appendix A the PDDL-code and Graphs

for the blocksworld problem are given. In the PDDL

code, the domain file with predicates and actions

(pickup, putdown, stack and unstack) is given first,

followed by the problem file which defines the object,

initial state and goal state. A picture of the initial state

and the goal state of this problem is given in figure 1.

 8 Puzzle: The 8-puzzle is a square board with 9

positions, filled by 8 numbered tiles and one gap. The

rules of this problem are the following: At any point,

a tile adjacent to the gap can be moved into the gap,

creating a new gap position. In other words the gap

can be swapped with an adjacent (horizontally or

vertically) tile. The objective in the game is to begin

with an arbitrary configuration of tiles, and move

them so as to get the numbered tiles arranged in

ascending order either running around the perimeter

of the board or ordered from left to right, with 1 in the

top left-hand position. A picture of the initial state

and the goal state of this problem is given in figure 2.

 Logistics: In this domain there are several cities, each

one containing several locations, some of which are

airports. There are also trucks, which can move

within a single city, and airplanes, which can fly

between airports. The goal is to get some packages

from their initial locations to their destinations.

Criteria can be introduced: cost and duration, and

application costs and durations have been assigned to

all domain actions schemas. For both criteria the

lower values are preferable [7].

5

Figure 1: The initial and goal state of the Blocks world problem

Figure 2: The initial and goal state of the 8Puzzle problem

When this benchmarking suite is executed for some planner, the

execution time is measured. It is however less easy to measure

the qualitative data (the amount of explored states). Some

planners do keep track of this number, and return it, while other

planners don’t. To give users the option to record this amount

when available, the planner output can be filtered and saved.

5.1.2 Ease of use
As defined in [8], usability of a system or equipment is the

capability in human functional terms to be used easily and

effectively by the specified range of users, given specified

training and user support, to fulfill the specified range of tasks,

within the specified range of environmental scenarios.

To achieve ease of use in our case, all usable components

should be documented, and when possible give feedback. Two

main components can be distinguished:

 The XML file containing planners, problems and

other info, and the command line arguments. The

XML file has been documented in this paper, and is

also formally defined by the XSD file which is

included with the framework.

 The command line arguments needed when executing

the framework. A couple of arguments are needed

when executing the framework. These are the location

of the XML file, and a planner for which the

benchmark should be executed. The command line

interface is designed, so that it will give feedback

when a user inputs faulty information.

5.2 VALIDATION
The most important result of this research is the benchmarking

framework itself which has been described in section 5.

However, to be able to say something about the performance of

the tested planners and the quality of the framework, the

framework has been used to measure the performance of the

planners over the specified benchmarking suite.

The results of the different test runs are visualized and

described below. Not all problems could be executed for all

planners. Some planners would take too long to generate a

solution; therefore a time-out limit of one hour has been used.

When a planner takes longer than one hour to generate a

solution for a single problem, it will be terminated and there

will be no result for the problem. Another error which occurred

in practice is that planners would crash while executing. In this

case also no result is found for the problem. In the pictures

containing bar-charts, a missing result is indicated by a missing

bar.

To test the scalability of the planners, three instances of the

blocks world problem have been generated. The easy variant

consists of 4 blocks, the medium one of 6, and the hard variant

of 12 blocks. Because the complexity of the problems increases

rather exponentially, only planners with smart searching

heuristics will be able to execute the hard variant of this

problem within a reasonable time period.

Figure 3: Execution times for the blocks world problem

Figure 4: Explored states for the blocks world problem

As shown in figure 3 and 4; The Graph-based GROOVE

planner does not perform as well as the PDDL-based planners.

The PDDL-based planners take a shorter period of time, and

explore a smaller number of states to come to a solution.

Furthermore, the GROOVE planner could not calculate the

solution for the hard version of the blocks world problem,

which consists of 12 blocks. The reason for this is that the

process ran out of memory. To create a level playing field, there

has been chosen to not re-execute some planner while running

on different hardware.

6

Figure 5: Execution times for the logistics problem

Figure 6: Explored states for the logistics problem

The PDDL-based planners were also better in calculating a

solution for the logistics problem. The MAPR-CMAP planner

is the fastest followed by the MADLA planner. The GROOVE

planner was not able to generate a solution, because of a time-

out.

Figure 7: Execution time for the 8puzzle problem

Figure 8: Explored states for the 8puzzle problem

In the case of the 8puzzle problem, the GROOVE-planner is the

winner. It is the only planner able to execute the problem,

because both PDDL-based planners crashed while executing.

There has also been tested how well the PDDL-based planners

perform when multiple agents are used. The Graph-based

planner does not support multiple agents. A custom set of

blocks world problems has been created to test the performance

of the multi-agent capabilities of the planners. This set contains

the easy variant of the blocks world problem, with 1, 2, 3 or 4

agents. The results are that MAPR-CMAP performs better when

using more agents, while the performance of the MADLA

planner worsens.

The obtained results are reliable and valid, because they cover a

range of problems, and vary in size. Also, when other

researchers run the benchmarking suite, they will obtain

roughly the same results based on the used hardware and

heuristics.

5.3 DISCUSSION
The fact that the performance of Graph-based planners is not as

good as the performance of PDDL-based planners can be

explained by an important factor.

The tested Graph-based planner does not use as smart search

algorithms as the tested PDDL-based planners do. No advanced

search heuristics are used, although this will likely change in

the future. The PDDL-based planners are optimized in this

aspect, to deliver optimal results in the planner competition.

This explains the differences in execution time and state

exploration between the researched planners.

6. CONCLUSION
To conclude, it is now possible to cross-benchmark PDDL- and

Graph-based planners.

A framework has been set up by looking into the similarities

and differences of the types of planners, and using a layered

setup. Every part of the framework has been made extensible,

so it is even possible to add planners which are based on

different languages.

The framework should deliver as much relevant information as

possible about the executed problems. Therefore we have

chosen to not only deliver the execution time, but also record

information about the executed problems, timestamps, and run

numbers, and the output of the planner. This way all the

information is available, and the end user can choose which

information to process.

By running the benchmark suite, there has been found that the

performance of the tested Graph-based planner is not as good as

the performance of the PDDL-based planners. Especially when

the problems become more complex, the execution time of the

GROOVE planner becomes very high.

We have chosen to deliver the results in XLS format. This

makes it easy for the users to visualize and process the

information using an (advanced) spreadsheet editor.

6.1 FUTURE WORK
Although the framework is very comprehensive, there are some

extensions which could be made in future work. These are the

following:

 It would be nice to have a Graphical User Interface to

quickly add planners and/or Problems. This could not

be done in this project, because of the limited time

available. However, because of the modular setup of

the framework, it is easy to add such a GUI without

7

having to change the whole tool. Because of the fact

that the framework takes an XML file as input, such

an XML file could be generated by the GUI

application, and then passed to the framework.

 The benchmarking suite is currently not very

extensive; only 3 problem definitions are defined.

Also not all planners were able to run all problem

instances. It would be nice to have a more extensive

benchmarking suite with problems which cover the

whole range of difficulties described in section 3.

6.2 AVAILABILITY
The source code of the benchmarking framework, including the

benchmarking suite, is made available. Documentation about

how to add planners or problems to the framework is given in

section 5.1.1 of this paper. The framework can be downloaded

from the following location:

https://github.com/WimFlorijn/PlannerBenchmark

7. REFERENCES
[1] Borrajo, D and Fernandez, S. 2015. MAPR and CMAP

[2] Edelkamp, S and Rensink, A. 2007. Graph Transformation

and AI Planning

[3] Ghallab, M, Dana, N and Traverso, P. 2016. Automated

Planning and Acting

[4] Shan Lu, Zhenmin Li, Feng Qin, Lin Tan, Pin Zhou and

Yuanyuan Zhou. 2005. BugBench: Benchmarks for Evaluating

Bug Detection Tools

[5] Mcdermott, D, Ghallab, M, Howe, A, Knoblock, C, Ram,

A, Veloso, M, Weld, D and Wilkins, D. 1998. PDDL -The

Planning Domain Definition Language

[6] Meijer, R. 2012. PDDL Planning Problems and GROOVE

Graph Transformations: Combining two Worlds with a

Translator

[7] Refanidis, I, Bassiliades, N and Vlahavas, I. 2015. AI

planning for transporting logistics

[8] Shackel, B and Richardson, S. J. 1991. Human Factors for

informatics usability

[9] Stolba, M and Komenda, A. 2008. MADLA: Planning with

Distributed and Local Search

[10] Vlahavas, L and Refanidis, L. 2009. Planning and

scheduling. [accessed 07-05-2016].

http://www.eetn.gr/index.php/about-eetn/eetn-publications/ai-

research-in-greece/planning-and-scheduling

[11] Weerdt, M and Clement, B. 2009. Introduction to Planning

in Multiagent Systems

https://github.com/WimFlorijn/PlannerBenchmark

8

APPENDIX

A. BLOCKS WORLD

A.1 PDDL CODE OF BLOCKS WORLD
Domain file:

(define (domain blocksworld)

 (:requirements :strips)

(:predicates (clear ?x)

 (on-table ?x)

 (arm-empty)

 (holding ?x)

 (on ?x ?y))

(:action pickup

 :parameters (?ob)

 :precondition (and (clear ?ob) (on-table ?ob) (arm-empty))

 :effect (and (holding ?ob) (not (clear ?ob)) (not (on-table ?ob))

 (not (arm-empty))))

(:action putdown

 :parameters (?ob)

 :precondition (holding ?ob)

 :effect (and (clear ?ob) (arm-empty) (on-table ?ob)

 (not (holding ?ob))))

(:action stack

 :parameters (?ob ?underob)

 :precondition (and (clear ?underob) (holding ?ob))

 :effect (and (arm-empty) (clear ?ob) (on ?ob ?underob)

 (not (clear ?underob)) (not (holding ?ob))))

(:action unstack

 :parameters (?ob ?underob)

 :precondition (and (on ?ob ?underob) (clear ?ob) (arm-empty))

 :effect (and (holding ?ob) (clear ?underob)

 (not (on ?ob ?underob)) (not (clear ?ob)) (not (arm-

empty)))))

Problem File:

(define (problem blocksworld-prob1)

 (:domain blocksworld)

 (:objects a b)

 (:init (on-table a) (on-table b) (clear a) (clear b))

 (:goal (and (on a b))))

A.2 GRAPHS OF BLOCKS WORLD

Figure 9: Goal and start graphs

Figure 10: Rule graphs

9

B. STRUCTURE OF THE INPUT XML

10

C. CLASS DIAGRAM OF THE FRAMEWORK

