
Using a Graph Transformation Tool to generate a Parser
Peter van Dijk

University of Twente, NL
P.O. Box 217, 7500AE Enschede

The Netherlands
p.a.h.vandijk@student.utwente.nl

ABSTRACT
Graph transformation tools (GTTs) are powerful tools for
analysing syntax trees. In the state of the art importing
syntax trees in GTTs requires a format-specific converter
that is prone to changes. This research solves the de-
pendence on import tools by using the GROOVE GTT
to subsume all steps involved in creating the syntax tree.
Consequently our approach is wholly defined in terms of
graph transformations for both the LL(1) parser and its
generator. We find that our approach is indeed correct and
complete, but suffers a performance penalty in comparison
to traditional parsers.

Keywords
Graph transformation tool, Parser, Parser generator, Syn-
tax tree, LL(1), GROOVE

1. INTRODUCTION
To analyse a sentence, one builds a syntax tree:, a tree de-
picting the grammatical structure of the English sentence.
Figure 1 depicts a syntax tree for the English sentence
“the man bit the dog”. Such trees can also be created
for programming languages, an example of which can be
seen in Figure 2 for the arithmetical sentence “2*8+4*8”.
Texts can be analysed using a grammar, which defines the
rules of the natural language or programming language.
As long as the input text is valid, a syntax tree can be
generated, so the process of creating a syntax tree also
validates the text. That is why constructing syntax trees
is an important job of parsers and compilers. Syntax trees
of programming languages can also be used by compilers
to create executable code [1]. There are many types of
parsers that can create a syntax tree from a text; e.g. LL,
LR, LALR, SLR.

Since trees are a subset of graphs, graph transformation
tools (GTTs) are in principle suitable for manipulating
syntax trees. They are a powerful tool for semantic anal-
ysis of syntax graphs (thus also trees), which is an helpful
technique for program verification. However, since most
GTTs use their own graph format, it is difficult to import
generated syntax trees.

Figure 3 shows the normal tool chain needed to create a

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy oth-
erwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.
21th Twente Student Conference on IT June 21st, 2014, Enschede, The
Netherlands.
Copyright 2014, University of Twente, Faculty of Electrical Engineer-
ing, Mathematics and Computer Science.

Sentence

Verb Phrase

Noun Phrase

Noun

dog

Determiner

the

Verb

bit

Noun Phrase

Noun

Man

Determiner

The

Figure 1: Syntax tree for natural language

Figure 2: GROOVE syntax tree for 2*8+4*8

syntax tree and use it in a GTT, except for the lexer. The
lexer turns an input text into a token stream; a sequence of
tokens with information on each word in the input text. A
parser generator takes a grammar and generates a parser
for this grammar. A parser turns the token stream into
a syntax tree (if the input text follows the rules of the
grammar). However, to open this syntax tree with a GTT
an extra conversion step must be performed, which slows
down the workflow. Since GTTs have their own graph
format a converter has to convert the syntax tree to the
GTT’s graph format.

In this paper the following solution is studied: a parser
which constructs a syntax tree using graph transforma-
tions. Subsequently it is shown how to generate this parser
from the associated grammar, also using graph transfor-
mations. Both the parser and the parser generator have
been created in the GTT named GROOVE [3]. By im-
plementing the parser generating algorithm and parsing
algorithm in GROOVE the converter has been made ob-
solete.

1.1 Research Scope
We assume that some preprocessing has already been done
and the text has been converted to a token graph (which
is a graph representation of a list of tokens) by a lexer.

1

Figure 3: Existing architecture

Figure 4: Example of a graph transformation rule
in GROOVE

There are multiple algorithms to form a syntax tree by
parsing tokens; however, not all those algorithms may be
compatible with graph formats. The algorithm must not
only be compatible, but must also have a low (worst-case)
time complexity, because the parser has to be able to parse
large token graphs in a short time. Choosing the right
algorithm was very important, because the grammar and
parser generator are affected by the choice.

Since this research was aimed at using a GTT, it is as-
sumed that all data is provided in graph format. This has
been done for the tokens, as well as for the grammar.

2. BACKGROUND
2.1 Graph Transformation Tools
GTTs use graphs to represent the state of a computation
and graph transformation rules to represent changes to
states. Such rules have the form G → G′ in which G is
the graph that must be matched and G′ is the transformed
graph. One problem with graph matching is that it is
NP-complete in the size of the graph to be matched [8],
which could influence the time complexity of the graph
transformation system.

2.1.1 GROOVE
An example of a graph transformation rule for GROOVE
can be found in Figure 4. The example rule can be inter-
preted as ”If a field has no harvest, remove all apples (at
least one) from all the trees in the field and create a new
harvest”. An application of this rule can be seen in Figure
5, where 5a is the graph to be matched (G) and 5b the
transformed graph (G′). Nodes with thin solid black lines
will be matched, nodes with thick dashed red lines are for-
bidden, nodes with thin blue dashed lines will be matched
and deleted and nodes with solid thick green lines will be
created. The ∀ indicates that all possible matches of the
connected nodes will be transformed, as opposed to regu-
lar nodes for which just one match will be made. Types are
represented with bold text and flags (not present in this
example) with italic text. Wildcards (also not present) are
indicated with a question mark, e.g. ?x, and can be used
on node types and edges.

The type graph is, next to the input graph and graph
transformation rules, another kind of input for GROOVE
[3]. It specifies which nodes support which edges and flags
using types. More information on the exact format of type
trees can be found in Appendix A.

2.2 Grammar
A grammar definition is a formal grammar that specifies
the syntax of a language. Figure 6 is an example of a gram-
mar definition in EBNF [6] that can be used to correctly

(a) Source Graph (b) Target Graph

Figure 5: Example application of the rule in Fig.
4

start

: addExpr;

addExpr

: multExpr ((‘+’ | ‘-’) multExpr)*;

multExpr

: operand ((‘*’ | ‘/’) operand)*;

operand

: NUMBER | ‘(’ addExpr ‘)’;

NUMBER

: (‘0’|‘1’|‘2’|‘3’|‘4’|‘5’|‘6’|‘7’|‘8’

|‘9’)+;

Figure 6: Grammar definition

parse a mathematical expression. The grammar rules de-
scribe how to form sentences with the symbols used in the
language. The symbols of grammar rules can be catego-
rized into two types: terminals and nonterminals.

Terminals are the literal characters/strings that can be
found in the text, and are shown in quotes (for example
‘+’). In the syntax tree they are used to label leafs of the
tree.

Nonterminals are used to label the internal nodes in the
syntax tree. They expand into other grammar rules (the
start rule for example refers to addExpr).

2.3 Parser
A parser has a token stream as input, which is a chain
of tokens with information on each symbol in the input
text. The parser analyses the token stream and creates a
syntax tree for the input if the input is valid according to
the grammar definition. An unambiguous grammar will
only have one associated syntax tree for a correct input
[1].

There are multiple parsing algorithms that can construct a
syntax tree. They differ on multiple points: parsing from
left-to-right, right-to-left, bottom-up, top-down, in-place,
side-by-side, etc. These aspects influence time complexity
and grammar format.

2.4 Parser Generator
Since it is easier to write a grammar than a parser, it
is a widely-used technique to use parser generators. A
parser generator creates a parser with a certain parsing
algorithm for the given grammar. One commonly used
parser generator is ANTLR [5]. ANTLR creates parsers
that use left-to-right parsing with a dynamic lookahead,
also known as LL(*)-parser. Another well known parser
generator is YACC, which creates LALR-parsers [4].

3. OUR APPROACH
Figure 7 shows the architecture of the solution presented
in this paper. GROOVE takes two sorts of input for ma-
nipulating graphs: a set of start graphs (dark red rounded
squares) and a set of graph transformation rules (blue par-
allelograms). For the parser generator this will be a gram-
mar in graph format and three sets of rules that transform

2

Figure 7: New architecture; Àparser generator Á parser

the grammar rules to parser rules, a lookahead graph and
a type graph. The parser uses a set of common rules and
a set of generated rules to transform a token graph and
lookahead graph into a syntax tree. The parser also uses
a type graph (yellow rounded square) to verify the graphs
used while parsing.

Since the parser generator has to create a set of graph
transformation rules, the GTT must be able to create
graph transformation rules. This is possible in GROOVE,
because it saves the rules in the same graph format as the
input and output graphs [7].

4. THE PARSER
The parser uses a parsing algorithm to convert a token
graph like the one in Figure 8 into a syntax tree like the
one in Figure 2. It is an LL(1) parser, which is created
using an LL(1) grammar. An LL(1) grammar has a unique
grammar rule that can be applied for every parse decision.
An LL(1) parser can parse sentences of an LL(1) grammar
without backtracking and as such ensures a linear worst-
case time complexity. Which grammar rule will be applied
at a parse decision can be determined by looking at the
first terminal it can produce and try matching it with the
next token that must be parsed. To do this a lookahead
table is calculated. This lookahead table is provided in
graph format and is generated by the parser generator.

4.1 Graphs Used While Parsing
The parser has a start graph consisting of multiple disjoint
subgraphs, namely a emphlookahead graph and a emph-
token graph. The parser also uses a type graph which
places constrains on the edges, types and flags in the used
graphs. A railroad graph and a syntax tree are created as
new disjoint subgraphs whilst parsing.

4.1.1 Lookahead graph
A lookahead graph maps grammar rules to the their first
parseable terminal. This lookahead graph has a simplistic
structure. Each nonterminal in the grammar has its own
subgraph which has, at its center, a node with the name
of the nonterminal as its type. From this node are edges
pointing to the first terminals this nontermerminal can
produce.

4.1.2 Token graph
The token graph is used to indicate which token must be
parsed next and which tokens have not been parsed yet.
The token graph is a linked list of token nodes which are, in
principle, terminals with context information on the input
text (e.g. line number, character number). Each token
(except for the last) has an edge labelled “next” which
points to the next node.

4.1.3 Type graph
The type graph determines the allowed combinations of
node types and edges. An example of a type graph can be

found in Figure A.1. The graphs used in the parser must
always adhere to the defined graph formats in the type
graph.

4.1.4 Railroad Graph
The railroad graph is used to track the state of the parser
and shows which steps can be taken next. This graph
only exists while parsing. Because this is an LL(1) parser
only one grammar rule should be applicable at any time.
This implies that there is only one subsequent state for
each parser state. This railroad graph was inspired by the
ANTLRWorks syntax diagram (commonly known as the
railroad diagram) in which only the nodes are labelled [?].

The railroad graph has the following format. The nodes
represent the terminals and nonterminals that can be parsed.
They are connected in the sequence in which they can be
parsed. The edges are labelled “next”, “up” and “down”
and indicate how the parser should traverse the syntax
tree.

4.2 Syntax Tree
The output graph of the parser is a syntax tree. The
tree will be constructed whilst parsing, just like the rail-
road graph. For each terminal and nonterminal node the
parser visits in the railroad graph, a node is added to the
syntax tree. Each node in the syntax tree has an edge
to its parent, labelled “parent”, except for the start node.
Nodes in regular trees have ordered sets of children. Since
GROOVE does not support node ordering in trees, chil-
dren are ordered by using “sibling” edges, as shown in Fig-
ure 2. All tokens in the original token graph end up as leafs
in the syntax tree, so they still contain all the information
of the original tokens.

4.3 Graph Transformation Rules
The parser uses two sets of graph transformation rules:
common rules and generated rules. The common rules are
used to traverse the syntax tree and railroad graph, while
simultaneously constructing the syntax tree. They are not
generated because they are the same for every parser. The
generated rules are used to build tracks (i.e. paths) in the
railroad graph. They extend the railroad with a grammar-
rule-specific graph.

4.3.1 Common Rules
Fundamentally a parser needs three actions to traverse a
syntax tree, namely: going to the first child of a node
(down), going to the parent of a node (up) and going to
the next sibling of a node (next). In our implementation
these three actions are used by the common rules and can
be found in the railroad graph’s edges.

3

Figure 8: A token stream in graph format

Figure 9: The ‘downAndAccept’ rule in GROOVE

Figure 10: The ‘nextAndAccept’ rule in GROOVE

The parser has the following common rules.

1. init
2. finish
3. downAndAccept
4. nextAndAccept
5. down
6. next
7. up

Since the parser looks one node ahead, the next symbol it
has to match can be a nonterminal as well as a terminal.
That is why the up, down and next actions have been cre-
ated for terminals (rules 3 and 4) and nonterminals (rules
5, 6 and 7). Furthermore, there are “init” and “finish”
rules.

Ad rules 3 and 4: there is no “acceptAndUp” rule, be-
cause “up” edges in the railroad graph can only point to
nodes with the type “done”. These “done” nodes are not
terminals and therefore cannot be accepted.

The implementation of rules ‘downAndAccept’ to ‘up’ can
be found in Figure 9 to 13. How these rules work together
can be seen in the parsing algorithm shown in Algorithm
1 in Appendix 9.

The ‘init’ rule creates a starting point for the railroad
graph and syntax tree. Furthermore, it adds a begin
token, which points to the first unparsed token in
the token graph, and an end token, which the last
token in the token graph points to. An empty token
graph can be detected with ease, because the begin
token will point to the end token.

Figure 11: The ‘down’ rule in GROOVE

The ‘finish’ rule ensures only the syntax tree remains,
by deleting the empty token graph, the railroad graph
and the lookahead graph. This rule can only be ap-
plied if the railroad graph gives the parser the“finish”
option.

The ‘downAndAccept’ rule can be applied when the
parser just started parsing a nonterminal and has to
parse the first symbol of the nonterminal’s grammar
rule, which is a terminal. This means that the parser
now has to add this terminal as a new child in the
syntax tree.

The ‘nextAndAccept’ rule can be applied when the
parser just parsed a symbol and has to parse a ter-
minal subsequently. This means that the parser now
has to add this terminal as a sibling of the previously
parsed symbol in the syntax tree.

The ‘down’ rule can be applied when the parser just
started parsing a nonterminal and has to parse the
first symbol of the nonterminal’s grammar rule, which
is a nonterminal. This nonterminal however, should
have the token that must be parsed next in its looka-
head. The parser will add this nonterminal as a new
child in the syntax tree.

The ‘next’ rule can be applied when the parser just parsed
a symbol and has to parse a nonterminal subsequently.
This nonterminal however, should have the token
that must be parsed next in its lookahead. The
parser will add this nonterminal as a sibling of the
previously parsed symbol in the syntax tree.

The ‘up’ rule completes the parsing of the current non-
terminal and returns the focus to the parent nonter-
minal. This rule has a lower priority to ensure the
parser does not stop parsing the current grammar
rule until it cannot accept any more tokens.

If the ‘up’ rule would have the same priority as the
other rules the parser would do unnecessary back-
tracking, because it cannot see which actions it can
take after parsing the current nonterminal. This also
means it would be able to create multiple syntax
trees for ambiguous grammars.

Figure 12: The ‘next’ rule in GROOVE
4

Figure 13: The ‘up’ rule in GROOVE

4.3.2 The Generated Rules
The generated rules extend the railroad when the parser
visits an unprocessed nonterminal. They inject a partial
railroad graph (derived from the associated grammar rule
of the nonterminal) between the nonterminal and its sub-
sequent node. That way the parser has to parse the non-
terminal first before continuing. In this railroad graph all
nonterminals carry an “unprocessed” flag; this indicates
that the nonterminal has not been visited yet. An exam-
ple of the generated rule for the “operand” nonterminal
can be found in Figure 14.

5. THE PARSER GENERATOR
The parser generator consists of three parts: a parse rule
generator, a lookahead graph generator and a type graph
generator.

5.1 Grammar Graphs
The generators all take a grammar in graph format as
input. Each rule of the grammar has its own graph. At the
start of the graph is a node with the name of the grammar
rule as its type. It is connected with a “to” edge to a chain
of nonterminals and terminals which are connected with
“next” edges, depicting the order in which they can be
parsed. The last (non)terminals are connected to a node
with only a “done” flag to indicate that the parser may
stop parsing this grammar rule after that (non)terminal.
The (non)terminals have their name as their type. The
terminals must also have a “terminal” flag, to enable the
parser to distinguish them from nonterminals. An example
of a grammar rule can be found in Figure 15.

5.2 Output Graphs
The output of the parse rule generator is a graph trans-
formation rule as depicted in Figure 14 for each grammar
rule. The output graph of the lookahead graph generator
is a lookahead graph as depicted in section 4.1.1. The out-
put graph of the type graph generator is a type graph as
depicted in Figure A.1.

5.3 Parse Rule Generation
The parser generating algorithm transforms the graph in
Figure 15 to the one in Figure 14. To create the parse
rules a grammar graph is transformed as follows. The
“to” edge is replaced by a “down” edge and the incoming
“next” edges at the node flagged “done” are replaced by
“up” edges. This informs the parser when to change the
depth in the syntax tree. Every node except the first one
gets a “new:” attribute to indicate that these nodes must
be added to the railroad graph. The “∀” and “rail” node
and their edges are added. This way the generated rule will
reconnect every outgoing edge of the nonterminal that is
being processed to the “done” node. Lastly the “terminal”
flags are removed and “unprocessed” flags are added to the
nonterminal nodes.

One restriction in this format is the absence of empty rules
(also known as λ-rules), because the “down” and “up” edge
are both necessary for the parser to work correctly. For-
tunately these empty rules can be mimicked by making
the nonterminals that refer to them optional in the other

grammar rules. This process is called λ-rule elimination
[9].

5.4 Lookahead Graph Generator
Creating the lookahead graph is done by loading all the
grammar graphs together as disjoint subgraphs and com-
paring the nodes with incoming “to” edges. These nodes
are the first symbols of the grammar rules. If a grammar
rule starts with a terminal, it is added to the lookahead of
that grammar rule. If a grammar rule starts with a nonter-
minal which has a terminal in its lookahead that has not
been added yet, the terminal is added to the lookahead of
the grammar rule as well. These steps are repeated until
all terminals are added.

It is possible as well to use this lookahead graph in com-
bination with the grammar graphs to detect LL(1) er-
rors. However, this has not been implemented because
the parser now supports LL(k) grammars by using back-
tracking, which could be obstructed by LL(1) errors.

5.5 Type Graph Generator
The type graph generator loads all grammar graphs to-
gether as well. It adds the nonterminals (the first node of
each grammar graph) as a subtype of the rail nontermi-
nal, the syntax tree nonterminal and the lookahead non-
terminal. It also adds the terminals (which are indicated
with “terminal” flags in the grammar graphs) as a subtype
of the rail terminal, token and lookahead terminal. The
token terminal in turn, is a subtype of the syntax tree ter-
minal, which makes it possible to convert tokens to syntax
tree terminals. An example of a generated type graph can
be found in Figure A.1.

6. VALIDATION
6.1 Correctness
Multiple scenarios have been tested to validate the parser:

1. Parsing a correct sentence
(a) using an LL(1) grammar
(b) using an LL(k) grammar with k > 1

2. Parsing an incorrect sentence
(a) a sentence with an incorrectly placed token
(b) a sentence with a missing (trailing) token

3. Parsing an ambiguous sentence (with an ambiguous
grammar)

Scenario 1.a, 2.a and 2.b have been tested with the gram-
mar in Figure 6, while scenario 1.b has been tested by
adding the following rule to that grammar:

modulo : NUMBER ‘%‘ NUMBER;

The multExpr rule was replaced by the following rule:

multExpr: operand ((‘*’|‘/‘) operand)*

| modulo ((‘*’|‘/‘) modulo)* ;

That way an LL(1) error occurs when parsing a multExpr,
since the operand and modulo rules can both begin with
the terminal NUMBER. The last scenario was tested with a
small custom grammar.

6.1.1 Results
When testing scenario 1.a and 1.b the parser correctly
created a syntax tree. In scenario 1.b however, the parser
had to backtrack after trying to parse incorrect grammars
rule at LL(1) errors.

In scenario 2.a the parser stopped parsing at the misplaced
token, because it could not perform any further actions.
In scenario 2.b the parser accepted all the tokens, but

5

Figure 14: The generated “operand” rule in GROOVE

Figure 15: The grammar rule for ”operand = NUMBER | LPAREN addExpr RPAREN” in GROOVE

could not apply the ‘finish’ rule because this option was
not given by the railroad graph.

Scenario 3 was tested with the well-known dangling else
problem [2], which can be illustrated with the following
code:

if (a) if (b) s1; else s2;

The else can belong to the first, but also to the second
if. That means there are two correct syntax trees for
this input. The parser created a single syntax tree in this
scenario. However, both possible syntax trees could be
created by giving the ‘up’ rule a higher priority. In the
created syntax tree the else was paired with the second
if, because the parser tries to parse as many tokens as
possible before returning control to the parent nonterminal
(which in this case is the first if).

6.2 Time Performance
Time performance has been tested with an LL(1) grammar
of a small programming language, consisting of 22 gram-
mar rules. Firstly a parser was generated for this gram-
mar. Subsequently multiple token graphs of different sizes
were parsed while tracking the time and parser states it
took for the parser to construct the syntax trees. The same
inputs were parsed with a parser generated by ANTLR,
for comparison. To ensure the resulting parsing time is
consistent in its input, the same input has been replicated
multiple times, i.e. ”2+2;”, ”2+2;2+2;”, etc. This assures
a consistent ratio between tokens and parser states, since
the parser has to apply the same parse rules every time.
The results of these tests can be seen in Table 1 and 2.

Table 1: Measurements of the performance of the
parser
tokens syntax parser GROOVE ANTLR

tree states parse time parse time
nodes [ms] [ms]

2 13 39 449 5
4 26 61 616 5
6 38 83 744 5
8 50 105 964 6
12 74 149 1461 6
24 146 281 3410 6
48 290 545 11081 6
96 578 1073 47546 8

Table 2: Measurements of the performance of the
parser
tokens syntax parser GROOVE ANTLR

tree states parse time parse time
nodes [ms] [ms]

6 11 22 589 5
12 20 34 998 5
24 29 58 2635 6
48 74 106 8652 6
96 146 202 42189 6

7. CONCLUSIONS
It is possible to create a parser for a GTT using the algo-
rithm provided in this research. The generated parser is
deterministic: it only creates one syntax tree for an am-
biguous grammar. This prevents unnecessary backtrack-
ing and as such improves time performance.

Even though the parser uses a parsing algorithm with a
linear worst-case time complexity (for LL(1) grammars),
it still runs in exponential time (cf. linear time with
ANTLR). One of the reasons could be the complexity of
the graph matching that is performed by GROOVE, which
is NP-complete (in the size of the graph to be matched) [8].
While ANTLR has pointers to the parser state (which is
saved on the program stack), GROOVE has to find the
state of the parser in the railroad graph with a graph
match before applying any graph transformation rule.

8. FUTURE WORK
To improve the time performance changes can be made to
the parser. The unused parts of the railroad could be re-
moved, for example. This would reduce the graph match-
ing time, because of the reduction in the graph size. This
would have a big impact on the time performance, since
the railroad graph is the largest graph used by the parser.

Another welcome change would be the use of empty (λ)
rules. To implement this the lookahead graph generator
must also be adapted, since it only checks the first symbol
of a rule, which could then be empty.

9. ACKNOWLEDGEMENTS
The author would like to thank Arend Rensink for propos-
ing the idea of using a railroad graph as well as for the
guidance throughout the research process.

10. REFERENCES
[1] A. V. Aho, M. S. Lam, R. Sethi, and J. D. Ullman.

Compilers: Principles, Techniques, & Tools.
Addison-Wesley, 1988.

6

[2] C. Clark. What to do with a dangling else. SIGPLAN
Not., 34(2):26–31, Feb. 1999.

[3] A. H. Ghamarian, M. J. de Mol, A. Rensink,
E. Zambon, and M. V. Zimakova. Modelling and
analysis using GROOVE. International journal on
software tools for technology transfer, 14(1):15–40,
February 2012.

[4] S. C. Johnson. Yacc: Yet Another Compiler
Compiler. In UNIX Programmer’s Manual, volume 2,
pages 353–387. Holt, Rinehart, and Winston, New
York, NY, USA, 1979.

[5] T. J. Parr and R. W. Quong. ANTLR: A
predicated-LL(k) parser genarator. Softw: Pract.
Exper., 25(7):789–810, July 1995.

[6] R. E. Pattis. Teaching EBNF first in cs 1. In R. Beck
and D. Goelman, editors, SIGCSE, pages 300–303.
ACM, 1994.

[7] A. Rensink. The GROOVE simulator: A tool for
state space generation. In J. L. Pfaltz, M. Nagl, and
B. Böhlen, editors, Applications of Graph
Transformations with Industrial Relevance
(AGTIVE), volume 3062 of Lecture Notes in
Computer Science, pages 479–485, Berlin, 2004.
Springer Verlag.

[8] A. Rensink. Time and space issues in the generation
of graph transition systems. Electronic Notes in
Theoretical Computer Science, 127(1):127 – 139,
2005. Proceedings of the International Workshop on
Graph-Based Tools (GraBaTs 2004) Graph-Based
Tools 2004.

[9] T. Sudkamp. Languages and machines - an
introduction to the theory of computer science.
Addison-Wesley series in computer science.
Addison-Wesley, third edition, 1988.

7

APPENDIX
A. TYPE GRAPH

Figure A.1: Example of a generated type graph

Figure A.1 shows an example of a type graph in GROOVE.
This type graph matches the grammar in Figure 6, but the
terminals have been given a name (‘+’ is now called PLUS
for example).

GROOVE’s type graph has the following format. Nodes
with dotted lines are abstract types and cannot be instan-
tiated, but they can be subtyped. Flags are, as before,
shown in italic and types in bold text. The arrows with
hollow heads indicate supertypes. The arrows with filled
heads are the allowed edges between nodes. The ”text:
string” indicates that a token can have a text-attribute of
type string.

The nonterminals and terminals have multiple abstract

supertypes which are necessary to compare them. Non-
terminals can be found in the lookahead graph, syntax
tree and railroad graph. The concrete types of the non-
terminals in the example are start, multExpr, operand
and addExpr. Terminals can be found in the lookahead
graph, syntax tree, railroad graph and token graph. The
concrete types of the terminals in the example are PLUS,
RPAREN, MINUS, NUMBER, LPAREN, TIMES
and DIVIDE.

If the parser wants to check that a railroad terminal has
the same type as token, for example when accepting a
token, it has to match them using their types. This is
done by wildcards in the parser rules, which only match
the concrete types.

8

B. The Parsing Algorithm

input : token graph, lookahead graph, type graph, parser rules
output: syntax tree

add “start” node flagged “visitingNode” as syntax tree;
add “start” node flagged “unprocessed” and “visiting” as railroad graph;
while token graph not empty do

if “visiting” flag on unprocessed node then
process node by expanding it with associated railroad graph of the following format:
down−−−→ symbol(

next−−−→ symbol)∗
up−→ done

where symbol is a terminal or an unprocessed nonterminal. All previous outgoing edges of the node now begin
at the new done node;

else
if next node in railroad graph is a terminal and type matches first token in token graph then

if outgoing edge to next railroad node is labelled “down” then
remove token from token graph and place as leaf in syntax tree as child of tree node labelled
“visitingNode”;

else if outgoing edge to next railroad node is labelled “nxt” then
remove token from token graph and place as leaf in syntax tree as sibling of tree node labelled
“visitingNode”;

end
move “visitingNode” flag to added leaf;

else if next node in railroad graph is a nonterminal and lookahead of nonterminal includes first token then
if outgoing edge to next railroad node is labelled “down” then

add nonterminal in syntax tree as child of tree node labelled “visitingNode”;
else if outgoing edge to next railroad node is labelled “nxt” then

add nonterminal in syntax tree as sibling of tree node labelled “visitingNode”;
end
move “visitingNode” flag to added node;

else if outgoing edge to next railroad node is labelled “up” then
move “visitingNode” flag in syntax tree to parent of visited node;

end
move “visiting” flag in railroad to next node ;

end

end
delete railroad graph and lookahead graph;
remove “visitingNode” flag from syntax tree;

Algorithm 1: The Parsing Algorithm

9

