Towards a Semantic Framework for Software Product
Line Test Coverage

Ruben Haasjes
University of Twente
P.O. Box 217, 7500AE Enschede
The Netherlands

r.e.y.haasjes@student.utwente.nl

ABSTRACT

Software product line engineering has helped the industry
to efficiently create families of similar products. However,
the process of testing these products is not as advanced
as the development techniques. Testing methods to effi-
ciently test software product lines have been developed,
but the majority of these techniques define test coverage
in terms of syntactic characteristics. The problem with
syntactic coverage criteria is that they give no insight in
the actual behavior that is tested. This could lead to inef-
ficient or inadequate testing. This study presents a more
semantic definition of software product line test coverage.
This semantic notion expresses test coverage in terms of
weights, related to the behavior and variability in a soft-
ware product line. These weights could be used to select
and prioritize test cases based on their importance, result-
ing in more meaningful testing.

Keywords

Integration Testing, Software Product Line, Test Coverage

1. INTRODUCTION

Software product line (SPL) engineering is a methodol-
ogy for developing collections of similar software. The key
concept is the reuse of common and variable features. Fea-
tures are either included or excluded resulting in a set of
similar, yet unique software systems. SPL engineering has
proven to enable developers to create collections of simi-
lar software systems more efficiently [4]. Figure 1 gives a
simple example of a software product line in the form of a
feature diagram (FD). A FD is a commonly used method
for modeling the variety and commonality in a SPL. The
FD in the example models a SPL of coffee vending ma-
chines. It visualizes the different options for drinks and
payment.

SPL engineering is used in a variety of products. Examples
are vending machines, cars, e-shops and numerous others.
SPL engineering is also applied in safety-critical systems,
thus making testing of vital importance [3]. An example
that illustrates the tremendous implications of insufficient
testing is the Ariane 5 crash. It took the European space
agency approximately 10 years and 7 billion dollars to pro-
duce this rocket. A lot of the software architecture from

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy oth-
erwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

25th Twente Student Conference on IT July ISt, 2016, Enschede, The
Netherlands.

Copyright 2016, University of Twente, Faculty of Electrical Engineer-
ing, Mathematics and Computer Science.

Coffee vending
machine
Drinks Payment
Cappuccino Espresso Coins Bankcard

Figure 1. Coffee vending machine example. In-
spired by a vending SPL example. [7]

similar rockets like the Ariane 4 was used in the Ariane 5.
The horizontal velocity of the rocket was stored in 16-bits
because of the re-use of software. However, the Ariane
5 was significantly faster than predecessors, resulting in a
velocity that could not be stored in 16-bits and ultimately,
the crash of the Ariane 5 [8].

The need for adequate testing is clear, but adequate test-
ing is difficult to define. When discussing SPL’s in par-
ticular it is argued that the most critical point of testing
is the interaction between components. The question re-
mains at what point a SPL has been tested thoroughly. In
theory testing is never done. New test cases can always be
derived, for example with larger input values or by repeat-
ing test cases for unexpected behavior. This is especially
difficult in a SPL, testing one product thoroughly is dif-
ficult but testing each possible product in a SPL is not
feasible for larger product lines [3, 11].

In recent years methods for more efficient SPL testing have
been developed. One approach uses the FD of a SPL.
By testing interactions between features in representative
products, the problem of testing each product individu-
ally can be reduced. Another approach uses a behavioral
model of the SPL. The model contains all the possible be-
havioral actions of all possible products. Then test suites
can be generated at SPL level. One common aspect among
these approaches is that their coverage measure is often de-
fined in terms of syntactic characteristics. Testing all the
possible interactions between features, or all the actions
that can be done in a behavioral model are examples. An
issue with these syntactic definitions of coverage is that
they do not take the actual behavior of a SPL into account,
which can result in inefficient or inadequate testing.

2. RESEARCH GOAL

2.1 Problem statement
The problem with coverage measures in terms of syntactic

characteristics is that the actual coverage of a test becomes
difficult to define. Syntactic characteristics give little in-
sight in the actual behavior that is tested. For example,
the importance and impact of an error are not taken into
account. This implies that coverage might be measured
differently for syntactically different but behaviorally sim-
ilar products. Another problem is that a far more im-
portant component does not account heavier towards the
coverage than a less important component. Therefore the
aim of this study is to define software product line test
coverage in a more semantic manner.

2.2 Research questions

The scope of this research is integration testing. The main
question during this research is: How can test coverage
be defined for software product line testing?

In order to answer the research question the following
questions will be answered:

Q1: To what extent are test coverage definitions for cur-
rent testing methods for software product line testing se-
mantic?

Q2: What is a suitable (behavioral) model for specifying
test coverage for software product line testing?

Q3: How applicable is this model to a real-life example?

3. BACKGROUND
3.1 SPL integration testing

The key concept in software product lines is variability.
Products in software product lines are created by includ-
ing or excluding commonly used functional units. Every
individual feature can be thoroughly tested. This how-
ever does not guarantee that interaction between units in
a specific product will work. The faults that only occur
under specific combinations of units are called interaction
faults. Therefore testing all reasonable combinations of
units seems necessary. However testing each possible prod-
uct combination seems not feasible, since the amount of
tests needed will grow exponentially with the amount of
features [11].

3.2 Feature diagrams

A way to reduce the amount of tests needed to test a
complete SPL is by using feature diagrams. In this paper
the definitions as specified by B. Batory [1] are used. FDs
are build using the following symbols:

/NN A

alternative or mandatory
Figure 2. The symbols used in a feature diagram.

optional

The symbols have the following meanings:

e And: Both features must be selected.
e Alternative: Only one feature can be selected.

e Or: One or more features can be selected.

Mandatory: The feature must be selected.

Optional: The feature can be selected.

A test case derived from a FD is an interaction between
a set of features. For example a test case for the FD
presented in figure 1 could be testing if an espresso can
be bought using coins.

3.3 Featured transition systems

Although feature diagrams are capable of modeling the
complete variability in a SPL, they give little information
about the actual behavior in a SPL. Feature transition sys-
tems (FTS) effectively model the behavior of a complete
SPL. This paper uses the FTS as defined by X. Devroey
et al [7]. An FTS is defined as a tuple: (S, Act, trans, i,
d, v) where

e S is a set of states;

Act is a set of actions;

trans C S X A x S is the transition relation;
e i € S is the initial state;

e d is a feature diagram,;

~ labels each transition with a boolean expression
over the features specified in d, that are able to exe-
cute the transition. The expression is specified using
classical boolean operators.

Below a simple FTS of the behavior of the coffee vending
machine.

Cappuccino

/c

Cancel / p
start —
Espresso
/e
Make Confirm

/d /p

Q Card °

/ ca

Coin

/ co

Figure 3. Example weighted featured transition
system for the coffee vending machine.

DEFINITION 1. A test case is a finite sequence T of ac-
tions.

For the FTS of the simple coffee machine SPL a possible
test case could be: (Espresso, Confirm, Pay by card, Take
product). These test cases are then mapped to input values
and actions in the actual system.

4. RELATED WORK

4.1 Test coverage

A study relevant to the one in here, is by L. Brandan
Briones et al. [2] on a semantic framework for test cover-
age. The study deals with the problem of test coverage in
general being specified syntactically. They describe how
weighted fault models can be used to express to what ex-
tent a test suite covers a specification and furthermore
provide algorithms to calculate the minimal test suit with
maximal coverage.

Using their algorithms the user can test more efficiently, by
testing important safety-critical aspects more thoroughly
than less critical system parts.

4.2 Test case prioritization

R. Lachmann et al. [9] have addressed one of the issues
discussed in the problem statement, testing more import
aspects more thoroughly then less critical aspects. They
have developed a method for prioritizing test cases. For
their approach they assume that test cases for every prod-
uct variant have already been generated, using an incre-
mental product-by-product approach. The first step in
their approach is to calculate the differences between prod-
ucts, the so called regression delta. Afterwards they create
delta graphs that are used to calculate the degree of change
between the product currently being tested and the previ-
ously tested product. Using the delta graphs, weights are
calculated for each component in a product under test.
These weights are then used to order and prioritize test
cases.

5. CONTEMPORARY TEST COVERAGE
DEFINITIONS

5.1 FDs and test coverage

Recent SPL testing techniques [6] use a FD as input in
order to generate samples. By doing this they a small
relevant subset can be tested instead of all the possible
product variations.

The most common coverage criteria for sample selection is
that every wvalid combinatorial pair of features should be
covered in at least one product [10].

5.2 FTSs and test coverage

The coverage of tests with regard to a FTS are usually
specified using one of the following definitions.

e (State / all states coverage) The states coverage, is
the ratio between visited states in all test cases off a
test suite and the total amount of states in a FTS.

e (Transition / all transition coverage) The transition
coverage, is the ratio between all visited transitions
in all test cases off a test suite and the total amount
of transitions in a FTS.

e (Transition pairs / all-transition pairs) The transi-
tion pairs coverage, is the ratio between adjacent
transitions successfully entering and leaving a state
visited in all test cases off a test suite and the to-
tal amount of possible adjacent transitions, entering
and leaving a state.

e (Path / all paths coverage) The path coverage, is the
ratio between covered executable paths in all test
cases of a test suite and all the executable paths.
Here an executable path is a sequence of actions such

that the v associated with the sequence of actions is
valid with the FD.

With one of the these definitions of coverage, test cases
are derived from the FTS.

6. A SEMANTIC DEFINITION OF TEST
COVERAGE

In practice, a lot of undesired behavior and errors are re-
lated to the interaction between features, thus a cover-
age defined as all the valid combinatorial pairs of features
seems reasonable [6]. However, this definition of cover-
age has little relevance when thinking about the actual
semantic or behavioral coverage. The FTS test coverage
definitions presented by X. Devroey at al. [6] have more
relation to the actual behavior of the SPL. However, these
definitions do not differentiate in importance of certain
behavior.

In this section we define coverage for SPL’s in a seman-
tic manner. The main challenge when defining coverage
for a SPL, is that all the possible actions are weighted
equally. But this makes little sense, since some actions
are obviously more important than others. For example
when testing a product line of cars, testing the brakes or
the airbag is far more important than the radio.

6.1 Risk

In order to differentiate between importance of certain ac-
tions we use a classical definition of risk.

DEFINITION 2. The risk R of an action is R € Ry ob-
tained from the probability that a fault occurs multiplied
with the impact of the fault.

In other words, the risk expresses the likelihood that a
fault will occur when performing a certain action, and its
consequences. The risk can be expressed as a matrix with
arbitrary values for probability and impact, see Table 1.

Table 1. Example risk matrix, with 1-5 for prob-
ability and impact. Columns for probability, rows
for impact.

Very low | Low | Medium | High | Very high
Very high 5 10 15 20 25
High 8 12 16 20
Medium 3 6 9 12 15
Low 2 4 6 8 10
Very low 1 2 3 4 5

Any numeric scale for probability and impact can be used.
Depending on how much difference in risk there is. We
propose to add this notion of risk to a FTS. Thus we ex-
tend the FTS tuple with r resulting in Weighted Featured
Transition System: WFTS = (S, Act, trans i, d, ~, r)
where r is a function that labels every transition with a
risk factor. Risk analysis should be done in cooperation
with an expert.

We created an example WFTS for the FTS of the coffee
vending machine. Faults that involve paying, or receiving
the product are deemed to have more risk than selecting,
confirming and canceling your choice.

Cappuccino

/c/3

Cancel / p /2
start —

Espresso
/e/3

Make Confirm
/d /20 /p/2

a Card °

/ ca /10

Coin
/ co /10

Figure 4. Example weighted featured transition
system for the coffee vending machine.

6.2 Test validity

The WFTS is an efficient way of modeling all behavior
of a SPL. However, tests could be derived for which no
product can ever exist. Therefore only tests that are valid
should be considered.

DEFINITION 3. A test case is valid if there exists at
least one product that is able to execute the test.

Checking whether a product exists that is able to execute
a test case can be done using propositional logic. The
relations in a FD can be translated in the following way
[12]:

Table 2. Feature diagram to propositional logic
mapping
Feature Diagram Propositional formula
f1 is an optional sub-feature of f fi—>f
f1 is a mandatory fief

sub-feature of f

f1,.., fn or sub-features of f V. Vfhef

(flv--\/fnﬁf) AN
/\i<j =(fi N fj)

f1,.., fn.alternative

sub-features of f

For example the coffee vending machine FD could be trans-
lated into the following rules:

o Coffee machine
e Drinks <> Coffee Machine
e Payment <> Coffee Machine

e Cappuccino V Espresso <+ Drinks

(Coins V Bankcard <+ Payment) A—(Coins A Bankcard)

Each action in a test case is labeled with a feature expres-
sion. If the total feature expression combined with the
feature expression from the FD is satisfiable, a product
exists that is able to execute the test. By satisfiable we
mean, that there is at least one interpretation or model of
the expression that makes the expression true.

Many tools have been developed for solving the above
mentioned question, e.g. SAT-solvers. Using SAT-solvers
all the possible products with respect to the FD can be
derived. Furthermore using the feature expression of a
test case, all the products able to execute the test can be
derived. A problem is that the satibility problem is NP-
complete. Thus if many SAT checks are done on a large
model, it might lead to performance issues. However the
study by X. Devreoy et al. [7] shows that, when used effi-
ciently, performance is no issue, even in a model with over
60 states and over a 1000 transitions.

6.3 Action sequence relevance percentage

For our definition of test coverage not only the risk of an
action is important. A product line consists of a variety
of products. Therefore the percentage of relevance of each
action in a test case should be considered. Or in other
words: which percentage of the products is able to execute
the particular sequence of actions?

DEFINITION 4. The action sequence relevance percent-
age, is the percentage of products that is able to execute
the particular sequence of actions.

In order to derive this percentage, expert knowledge about
the production amounts is needed. Let us take the coffee
vending machine as an example. From the translated FD
to propositional logic we can derive all possible products.
We have added sample production values to do some sim-
ple calculations.

Table 3. Product configurations of the coffee
vending machine example, with sample production
amounts

Configuration Amount
{d, p, ¢, co} 25
{d, p, c, ca} 50
{d, p, e, ca} 50
{d, p, e, co} 25
{d, p, ¢, e, co} 100
{d, p, ¢, e, ca} 200
Total production amount 450

If we have action sequence (Cappuccino, Confirm) the fea-
ture expression becomes: ¢ A p. The following products
satisfy both the feature expression of the action sequence
and the feature expression of the FD: {d, p, ¢, co}, {d, p,
¢, ca}, {d, p, ¢, e, co}, {d, p, ¢, e, ca}. Thus 4 out of 6
products are able to execute the action sequence (Cappuc-
cino, Confirm). If we map the products with actual pro-
duction amounts the action sequence relevance percent-
age of action sequence (Cappuccino, Confirm) becomes:
2545041004200 — 375 5 83%. Or in other words, 83% of

450 450
the products is able to execute this action sequence.

6.4 Test coverage in a SPL
Thus when defining test coverage for SPLs, we consider
the following aspects:

e The risks that can be found in a test case.

e The relevance percentages of the action sequences in
a test case.

The test coverage in a single test case can be found in the
following manner. We propose to rewrite the test as multi-
ple action sequences. Each action in a test case is replaced
with the complete sequence to get to the action. Let us
illustrate this according to a single test case in the coffee
vending machine example: (Cappuccino, Confirm, Card,
Make) will be rewritten this as (Cappuccino), (Cappuc-
cino, Confirm), (Cappuccino, Confirm, Card), (Cappuc-
cino, Confirm, Card, Make).

The next step is to calculate the weight of each action
sequence. Since we rewrote the test case as multiple action
sequences, the weight is acquired by taking the risk of the
last action in the action sequence and multiplying this with
the action sequence relevance percentage.

Thus the coverage of this test case can be calculated in the
following manner. Test coverage of (Cappuccino, Confirm,
Card, Make) = weight(Cappuccino) + weight(Cappuccino,
Confirm) + weight(Cappuccino, Confirm, Card) + weight(
Cappuccino, Confirm, Card, Make).

The risk of Cappuccino is 3 and the action sequence (Cap-
puccino) corresponds using SAT-solving to a relevance of
4/6 product variations, or mapped with the sample pro-
duction amounts to a percentage of approximately 83%.
The risk of Confirm is 2 and the action sequence relevance
percentage of (Cappuccino, Confirm) also corresponds to
approximately 83%. The risk of Card is 10 and the action
sequence (Cappuccino, Confirm, Card) using SAT-solving
is relevant for 2 / 6 product variations, or mapped with
the sample production amounts to % ~ 56%. The risk of
Make is 20 and the action sequence relevance percentage of
(Cappuccino, Confirm, Card, Make) is also approximately
56%.

Thus we can calculate: test coverage(Cappuccino, Con-
firm, Card, Make) = (3 * 0.83 + 2 * 0.83 4+ 10 * 0.56 +
20 * 0.56) ~ 20.95.

6.4.1 Total coverage in test suite

We are interested in the test coverage of a complete test
suite. The test coverage of a complete test suite is the
sum of the coverage of each particular test case. However,
identical test cases should not be added multiple times.

For example if we have test suite { (Cappuccino, Confirm),
(Cappuccino, Cancel) }, the weight of Cappuccino should
not be counted twice, since it is essentially the same test.
But this can be avoided by writing the test cases as ac-
tion sequences. Then the test suite becomes: {(Cappuc-
cino), (Cappuccino, Confirm)}, {(Cappuccino), (Cappuc-
cino, Cancel)}. Now the duplicate weights can be filtered
by taking the union of all the action sequences in the test
suite. We call this the supertest. The supertest for this
example will result in: {(Cappuccino), (Cappuccino, Con-
firm), (Cappuccino, Cancel)}. The test coverage of a test
suite can then be found by summing all the weights of each
action sequence. Figures [5-7] provide a visual representa-
tion of this process.

‘ Cappuccino ‘ Confirm ‘

Figure 5. Test case (Cappuccino, Confirm)

© 0w N O ;AW N

e
W N = O

‘ Cappuccino . Cancel '

Figure 6. Test case (Cappuccino, Cancel)

Cancel

Cappuccino

Confirm ‘

Figure 7. Supertest {(Cappuccino, Confirm),

(Cappuccino, Cancel)}

DEFINITION 5. We define:

e The absolute coverage is the sum of all the action
sequence weights in a supertest;

e The total coverage is the absolute coverage of the
supertest of all valid test cases;

e The relative coverage is the absolute coverage divided
by the total coverage.

6.5 Algorithms

The total coverage can be found by taking the absolute
coverage of the supertest of all valid test cases. This can
cause problems. Because it could occur that the amount
of possible valid test cases is infinite. If we consider our
vending machine WFTS we could keep repeating actions
indefinitely long. To solve this problem we could consider
test cases of finite length only. In the finite test length
approach only test cases with length £ € N and &£ >=1
are deemed valid. Algorithm 1 is used for calculating the
absolute coverage in a test suite.

Algorithm 1: Calculating absolute coverage in a test
suite
Data: WFTS f, test suite T, finite length k
Result: absolute coverage in a test suite
supertest < J;
for each test in T do
for each actionsequence of test do
if length of actionsequence <= k then
‘ supertest < supertest U actionsequence;
end

end
end
abscov + 0;
for each sequence in supertest do
‘ abscov < abscov + weight of sequence;
end
return abscov;

Line 1-8 describe the process of creating the supertest.
The weight of a sequence, mentioned on line 11 in Algo-
rithm 1 is calculated using Algorithm 2.

The total coverage in a WFTS can then be found by giving
all valid test of finite test length equal or smaller than k
as input to Algorithm 1.

Algorithm 2: Calculating the weight of an action se-
quence

Data: WFTS f, action sequence S
Result: weight of an action sequence
risk < risk of last action in S

arp < action relevance percentage of S
return risk * arp;

6.6 Example

We use the coffee machine WFTS f for our example. In
this example, for a finite length k, the total, absolute and
relative coverage is calculated. Because the set of valid
tests grows in size rapidly we take k = 2.

The total coverage is calculated using Algorithm 1. The
set of all valid tests with length k <= 2 is given as input:
(Cappuccino), (Espresso), (Cappuccino, Cancel), (Cap-
puccino, Confirm), (Espresso, Cancel), (Espresso, Con-
firm).

The output of the supertest is equal to the set of all valid
test, since the set of all valid test implicitly contains all the
action sequences. For this example the production amount
values presented in Table 3 are used. Then Algorithm 2 is
performed on every action sequence in the supertest. First
we give the associated risk with the action sequence and
after that the action sequence relevance percentage. The
associated risks are (3, 3, 2, 2, 2, 2). The action sequence
relevance percentages (calculated according to Table 3)
are all approximately 83%. Thus the total coverage in the
coffee machine WFTS with finite length 2 = (3%0.83 4 3 %
0.834+2%0.83+2,0.83+2x0.83 +2x%0.83) = 11.62.

This total coverage value can be used to express the rela-
tive coverage of a test suite. For example test suite T =
{(Cappuccino, Cancel)}. The supertest becomes {(Cap-
puccino), (Cappuccino, Cancel)}. Using Algorithm 1 the
absolute coverage can be calculated as (3%0.83+2%0.83) =
4.15. However, the absolute coverage is only useful in re-
lation to the total coverage. The relative coverage for test
suite T = % ~ 36%. Thus can be concluded that test
suite T is able to detect approximately 36% of the total
weight of faults that could occur in the WFTS.

6.6.1 Relative coverage for syntactic definitions of
coverage

We have calculated the total coverage of the coffee vending

machine for different finite lengths k. Table 4 gives an

overview of the coverage percentages of different syntactic

coverage definitions.

According to the all-states algorithm in [7], the test suite
becomes: {(Cappuccino, Confirm, Coin, Change)}. This
results in absolute coverage ~ 11.11.

A possible test suite for the all-transition criteria is: {(Cap-
puccino, Confirm, Coin, Change, Make), (Cappuccino,
Confirm, Card), (Espresso, Cancel)}. This results in ab-
solute coverage ~ 26.38.

A possible test suite for the transition-pairs criteria is:
{(Cappuccino, Confirm, Card, Make, Cappuccino), (Cap-
puccino, Confirm, Coin, Change, Make), (Cappuccino,
Cancel), (Espresso, Confirm, Card, Make, Espresso),
(Espresso Confirm, Coin, Change, Make), (Espresso, Can-
cel)}. This results in absolute coverage ~ 66.66.

Table 4 shows that the relative coverage for test suites
statisfying syntactic coverage criteria is surprisingly low.
This implies that test case selection can be improved.

Table 4. Relative coverage percentages, for dif-
ferent syntactic coverage definitions, and different
finite test lengths.

k=5TC =128 k=6 TC =237
All states 9% 5%
All transitions 21% 11%
All transition pairs 52% 28%

7. DISCUSSION

Although our proposed method is intuitive, some aspects
are worth discussing. We currently calculate the action
sequence relevance percentages according to concrete pro-
duction information. However, this information might not
always be available. Another way of calculating the per-
centages is using probabilistic feature diagrams [5]. Us-
ing probabilistic feature diagrams and the feature expres-
sion resulting from the action sequence, the percentage of
products able to execute the sequence can be calculated
without knowledge about exact production amounts. An-
other problem is the calibration of the finite test length.
It is difficult to decide what test length is adequate. An-
other possible issue can be seen when examining Table
4. Even though the calculations are done for relatively
low test length values, the relative coverage of syntactic
coverage definitions is extremely low. This is due to the
cancel action in the coffee vending machine WEFTS. The
set of all possible actions contains a lot of repetition, with
a slightly different action sequence. As a consequence,
these test cases weight heavily in the total coverage, even
though there is a lot of repetition. Therefore future work
might require a discount factor. By introducing a discount
factor, repetitive test cases will weight less heavily in the
total coverage.

8. CONCLUSION

In this paper we defined test coverage for software prod-
uct lines in a semantic manner. A literature study on con-
temporary test coverage criteria was conducted. Most of
the examined coverage criteria are syntactic, consequently
these criteria give insufficient information about the ac-
tual tested behavior. We define test coverage according
to two criteria: the risk of a fault and the percentage of
products in which this fault may occur. We propose to
use weighted featured transition systems (WFTS), since
they model both the behavior, with associated risks, and
the products that are able to execute the behavior. We in-
troduced methods for calculating the total, absolute and
relative coverage in a WFTS. The methods and algorithms
introduced in this paper have been tested on a small ex-
ample and the relative coverage percentages of test suites
generated by contemporary coverage criteria have been
calculated. The percentages show, that there is room for
improvement in the generation and prioritization of test
suites. Future work should aim at verifying and using this
semantic definition of coverage. We plan to implement
the algorithms into commonly used model checkers. By
doing this, examples can be tested more efficiently, fur-
ther verifying the usefulness of this research. By using
our semantic definition, test coverage can be expressed in
terms of weights that relate to the behavior and variabil-
ity in a software product line. We believe that in future
work, these weights can be used to generate and prioritize
tests according to the behavior of a software product line,
resulting in more meaningful tests.

9.
1]
2]

3]

REFERENCES

D. Batory. Feature models, grammars, and
propositional formulas. pages 7-20, 2005.

L. Briones, E. Brinksma, and M. Stoelinga. A
semantic framework for test coverage. Lecture Notes
in Computer Science, 4218:399-414.

H. Cichos, S. Oster, M. Lochau, and A. Schiirr.
Model-based coverage-driven test suite generation
for software product lines. pages 425—439, 2011.

P. C. Clements and L. M. Northrop. Software
Product Lines: Practices and Patterns.
Addison-Wesley Professional, 2001.

K. Czarnecki, S. She, and A. Wasowski. Sample
spaces and feature models: There and back again. In
Software Product Line Conference, 2008. SPLC"08.
12th International, pages 22-31. IEEE, 2008.

X. Devroey, G. Perrouin, A. Legay, M. Cordy, P.-Y.
Schobbens, and P. Heymans. Coverage Criteria for
Behavioural Testing of Software Product Lines,
pages 336—350. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2014.

[7]

N

X. Devroey, G. Perrouin, and P.-Y. Schobbens.
Abstract test case generation for behavioural testing
of software product lines. pages 86-93, 2014.

J. Gleick. Little bug, big bang, 1996.

R. Lachmann, S. Lity, S. Lischke, S. Beddig,

S. Schulze, and 1. Schaefer. Delta-oriented test case
prioritization for integration testing of software
product lines. pages 81-90, 2015.

D. Reuling, J. Biirdek, S. Rotdrmel, M. Lochau, and
U. Kelter. Fault-based product-line testing: effective
sample generation based on feature-diagram
mutation. pages 131-140, 2015.

J. Shi, M. B. Cohen, and M. B. Dwyer. Integration
testing of software product lines using compositional
symbolic execution. Lecture Notes in Computer
Science, 7212:270-284, 2011.

T. Thum, C. Kastner, S. Erdweg, and N. Siegmund.
Abstract features in feature modeling. In Proceedings
of the 2011 15th International Software Product Line
Conference, SPLC ’11, pages 191-200, Washington,
DC, USA, 2011. IEEE Computer Society.

