
A Case Study for GPGPU Program Verification
Steven de Heus
University of Twente

P.O. Box 217, 7500AE Enschede
The Netherlands

stevendeheus@gmail.com

ABSTRACT
The goal of this research is to design a concurrent program
that computes the edit distance between two strings and
then verify the correctness of the program. The program
is implemented in OpenCL and specification and verifica-
tion is done using permission-based separation logic. The
logic used for the (manual) verification is the same as used
in the VerCors tool set, which is currently under develop-
ment. The results of this research will assist in further
development of VerCors.

Keywords
OpenCL, program verification, edit distance, case study,
GPGPU program, permission-based separation logic, Ver-
Cors tool set

1. INTRODUCTION
Graphics Processing Units (GPUs) are used increasingly
for tasks other than processing graphics. Because of the
typical architecture of GPUs (hundreds to thousands of
cores), they lend themselves well for concurrent programs.
GPGPU (General-Purpose GPU) programming is inter-
esting because programs that can divide workload over
many threads can run much more efficiently on GPUs than
on CPUs. Since GPU programming is on the rise, it is im-
portant to be able to reason about the correctness of such
programs.

With the expansion of GPGPU programming and verifi-
cation comes a demand for more verification case studies.
For example, a tool set called VerCors [2] is being devel-
oped. This tool set reasons about multithreaded programs
using permission-based separation logic. For the develop-
ment of this tool set, more GPGPU program verification
case studies that use the same type of specification and
verification logic are needed [6]. This research will pro-
vide such a case study.

A common type of algorithm that can be implemented on
GPUs is dynamic programming. With dynamic program-
ming, a problem is broken into multiple similar subprob-
lems. GPGPU programming is well-suited for dynamic
programming because in GPGPU programming the same
set of instructions is sent to multiple cores of the GPU.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy oth-
erwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.
20th Twente Student Conference on IT January24st, 2014, Enschede,
The Netherlands.
Copyright 2014, University of Twente, Faculty of Electrical Engineer-
ing, Mathematics and Computer Science.

This concept is better known as Single Program Multi-
ple Data (SPMD). A good example of a problem that can
be solved with dynamic programming is the edit distance
problem. The edit distance is the minimal cost to convert
a word into another word using the weighted actions inser-
tion, deletion and transformation of characters. A solution
to the edit distance problem can be modified to also solve
other problems. An example is Levenshtein [8], a varia-
tion of edit distance where all costs are always one. Other
problems that can be solved with dynamic programming
with similar data dependencies between the subproblems
can also be solved with similar algorithms. Since edit dis-
tance provides a good example of dynamic programming
and the solution can be applied to other problems as well,
it will be used for this case study of GPGPU program
verification.

A GPGPU program that finds the edit distance between
two strings will be implemented and manually verified us-
ing permission-based separation logic. This research will
set an example for future work on GPGPU program speci-
fication and verification and more specifically, the VerCors
tool set.

2. RESEARCH QUESTIONS
The main research question is:

How can we reason about the correctness of GPGPU pro-
grams?

This research question is divided into multiple sub-questions:

1. What are the formal requirements the program needs
to meet?

2. How can we implement the program on a GPU?

3. How can we prove that the program meets the re-
quirements?

4. How can we optimize the performance of the pro-
gram?

3. BACKGROUND
3.1 Edit distance
The edit distance between two strings A and B is the min-
imal amount of work required to transform A into B. For
the transformation, characters may be inserted, deleted
or transformed into other characters. These three actions
have variable costs Ci (insertion), Cd (deletion) and Ct

(transformation). Examples of applications of edit dis-
tance are spell checkers, autofill for search, correction sys-
tems for optical character recognition and DNA compari-
son [11].

Below is an example of input for the program:



A = ‘abcde’
B = ‘abde’
Ci = 5
Cd = 10
Ct = 15

The output the program should return for this input is
5, because A can be transformed into B by inserting the
character ‘c’ and the cost of inserting a character is 5.

3.2 OpenCL
OpenCL [7] is a programming language that can be used
to write concurrent programs that can run on both GPUs
and CPUs. It is compatible with most hardware (most
importantly, both Nvidia and AMD). OpenCL is a low
level programming language based on C. Another pro-
gramming language commonly used for GPGPU program-
ming is CUDA [1]. CUDA is similar to OpenCL but runs
on Nvidia devices exclusively. The programming language
chosen for this research is OpenCL because it runs on more
platforms.

3.3 GPGPU programming
For GPGPU programming it is important to consider the
OpenCL memory model [7]. GPUs typically have hun-
dreds of cores. The different cores or work-items are grouped
together in work-groups. Work-items have access to pri-
vate memory, local memory (shared by all work-items in
the same work-group) and global memory (accessible by
all work-groups). In order to optimize the performance of
a program it is important to keep global memory usage
to a minimum and instead work on the faster local/pri-
vate memory as much as possible. All work-items used
by the program receive the same set of instructions (ker-
nel) but will execute them on different data depending on
their global and local identifier (Single Program Multiple
Data). Synchronization between work-items is achieved by
using barriers. When a work-item reaches a barrier it waits
until all other work-items in the same work-group reach
the barrier before it continues. Synchronization between
work-groups is hard to achieve and generally discouraged.

3.4 Permission-based separation logic
In standard separation logic [10], mutual exclusions mech-
anisms are used to ensure that only one thread at a time
has write access to a shared memory location. However,
this type of separation does not give enough freedom to
reason about concurrent programs as it does not allow
simultaneous reads to shared locations [6]. Permission-
based separation logic uses numerical permission values
(0 < perm ≤ 100) to denote rights to a shared loca-
tion [4]. The highest permission grants write access to
a shared location (perm(location, 100)). Any value lower
than 100 only grants read access. Since VerCors keeps
track of which threads still hold read permissions, it is
acceptable to use any value between 0 and 100 or just
‘p’ for read permissions (perm(location, p)). Permission-
based separation logic guarantees lack of data-races: when
a work-item writes to a location, no other work-items can
read from or write to the same location.

4. RELATED WORK
Farivar et al. [5] have designed an efficient algorithm that
computes edit distance on GPUs. The optimizations in
this research, although written in CUDA, could be used
for our own program. One of these optimizations is to split
the problem into independent quadrants to reduce global
memory usage.

Huisman and Mihelcic have done research on verification

of GPU programs (using permission-based separation logic)
[6]. Huisman et al. are also developing VerCors, a tool set
that reasons about the correctness of concurrent programs.

Some automated GPU verification tools already exist. Ex-
amples are PUGpara [9] and GPUVerify [3]. These auto-
mated verifiers are based on verification methods different
from permission-based separation logic. PUGpara uses pa-
rameterized verification and GPUVerify uses synchronous,
delayed visibility.

5. IMPLEMENTATION
The overall idea is to divide the problem into smaller sub-
problems, each of them requiring the edit distance between
a substring of A and a substring of B (both substrings start
at the frist character of A and B respectively). The results
of the subproblems can be stored in a (n+1)∗(m+1) ma-
trix like in Figure 1. Each cell in the matrix corresponds
with a combination of substrings. Let A[0..n] and B[0..m]
be the two input strings with length n+1 and m+1, re-
spectively, and let D(k, l) be the edit distance between the
substrings A[0..k] and B[0..l] where 0 ≤ k ≤ n, 0 ≤ l ≤ m.
The costs for the actions insert, delete and transform are
described as Ci, Cd, Ct respectively.

Figure 1. First iteration of edit distance

The first row and column of the matrix can be filled easily.
The first row is computed as D(0, l) =Ci * l where 0 <=
l <= n, because the minimal amount of work to trans-
form the empty string into any other string is equal to
the amount of characters in that string multiplied by the
cost of inserting a character. The same goes for the first
column, but with deletion instead of insertion: D(k, 0) =
Cd * k where 0 <= k <= n. So if the costs for insertion
and deletion are 1, the first row and column will both be
[0, 1, 2, 3..] as shown in Figure 1.

When characters A[k] and B[l] are equal, the following
statement holds: D(k, l) = D(k - 1, l - 1). The reason for
this is that the transformation from A[0..k] to B[0..l] can
be done with exactly the same set of actions as the trans-
formation from A[0..k-1] to B[0..l-1], as the extra character
at the end of both strings does not have any impact on the
actions used. An example of this is D(1,1) as shown in fig-
ure 2. In Figure 2, the yellow cells indicate that there is
now enough information available to compute the value
for the corresponding subproblem.

When characters A[k] and B[l] are not equal, the value in
the corresponding cell is the minimum of the three values:
D(k−1, l)+Ci, D(k, l−1)+Cd and D(k−1, l−1)+Ct. This
way subproblems are solved by picking the most efficiently
solved subproblems (with regard to the different costs of
the actions). In figure 3 D(2,1) and D(1,2) are computed
this way. This guarantees that after the final iteration the
minimal amount of work needed to transform A into B
is equal to the value D(n, m) (the lower right corner of
the matrix). The behaviour of the algorithm can also be



Figure 2. Second iteration of edit distance

expressed as a function:

D(k, l) =


D(k − 1, l − 1) if A(k) = B(l)
min(D(k − 1, l) + Ci,
D(k, l − 1) + Cd,
D(k − 1, l − 1) + Ct) if A(k) 6= B(l)

In figure 2 and 3 the data dependencies between the cells
are shown in dark and light gray (green and yellow), mean-
ing that in order to compute the cells in yellow, the values
in the green cells must be known. These figures show that
an entire diagonal at a time can be computed concurrently,
but no more than that. To prevent desynchronization be-
tween work-items, a barrier is added after computing the
value in each cell. Without these barriers it would be pos-
sible for different work-items to work in different diagonals
at the same time, which could lead to data races when the
same memory location is read by one work-item while an-
other work-item is writing to that location.

Figure 3. Third iteration of edit distance

In order to compute all values in the matrix, work-items
are initialized as shown in figure 4. Each cell with bold
borders indicates it is a starting position of one of the
work-items, meaning one work-item will compute the value
for that cell and then work its way through the matrix.
In order to achieve this, the coordinates for the starting
positions of the work-items are ((1−mheight)/2 + wid +
1, (mheight− 1)/2−wid+ 1) where mheight is the height
of the matrix and wid is the work-item id. In order to
cover the entire matrix the work-items alternate between
increasing the x and y coordinate after every iteration of
the algorithm, resulting in the pattern shown in Figure
5. Figure 6 illustrates when the work-items come across
barriers. A downside of this pattern is that not all work-
items are always working on an existing cell, which means
they are effectively idling. To illustrate this, empty rows
were added in Figure 5 and 6

5.1 Kernel design
The kernel is the code that is run by all the work-items on
the GPU. The kernel consists of three parts: initialization,
the main loop and a wrap-up. During initialization each

work-item retrieves its id and computes its starting coor-
dinates. In each iteration of the main loop the work-items
compute one diagonal in the matrix and increase their co-
ordinates accordingly. During wrap-up a single work-item
sends the result back to the host, where it will be printed
to the console. Below the code is divided into snippets
which are clarified individually. The full program can be
found in the appendix.

This function serves as a workaround for the fact that
OpenCL does not support two dimensional matrices. The
programming is done mostly with two dimensional coordi-
nates. When a value from the matrix needs to be accessed
or stored, the two dimensional coordinates are translated
to an array index using this function. This functions or-
ganizes the matrix in an array as a sequence of rows.

int to1D(int x, int y, int width) {
return y*width + x;

}

Each work-item computes the x and y coordinates of their
starting position using wid (work-group id). Only one
work-item starts at a position where computation is neces-
sary (at (1,1)), all the other work-items have their starting
position in the first row or column or in a non-existent po-
sition, as shown in figure 4. The array dimensions holds
the width and the height of the matrix respectively.

__kernel void editdistance(__global char* string1,
__global char* string2, __global int* matrix,
__global int* costs, __global int* dimensions,
__global int* out) {

int wid = get_global_id(0);

int y = (dimensions[1] - 1)/ 2 - wid + 1;
int x = -(dimensions[1] - 1)/ 2 + wid + 1;

Figure 4. Starting positions of the work-items

This snippet contains the start of the main loop of the
kernel. It computes the edit distance for the current cell
of each work-item as described in section 5.

for (int i = 0; i < (dimensions[0] + dimensions[1] -
1); i++) {

if (x > 0 && x < dimensions[0] && y > 0 && y <
dimensions[1]) {

if (string1[x - 1] == string2[y - 1]) {
matrix[to1D(x, y, dimensions[0])] =

matrix[to1D(x-1,y-1, dimensions[0])];
} else {



Figure 5. Division of labor between work-items

Figure 6. Division of labor between work-items
over time, the grey lines indicate barriers

matrix[to1D(x, y, dimensions[0])] =
minimum(matrix[to1D(x-1,y,
dimensions[0])] + costs[0],
matrix[to1D(x,y-1, dimensions[0])] +
costs[1], matrix[to1D(x-1,y-1,
dimensions[0])] + costs[2]);

}
}

Finally, this snippet contains the end of the main loop,
where x and y are updated. There is also a barrier here
that forces work-items to wait until all work-items have
reached the barrier. After the main loop, a single work-
item returns the value in the lower right cell of the matrix,
where the final result is stored.

if (i % 2) {
x++;

} else {
y++;

}

barrier(CLK_LOCAL_MEM_FENCE);
}

if (wid == 0) {
out[0] = matrix[to1D(dimensions[0] - 1,

dimensions[1] - 1, dimensions[0])];
}

6. SPECIFICATION
The program described in section 5.1 is specified using an-
notations. These describe the behaviour of the kernel as
well as the permissions each work-item has to shared mem-
ory locations. There are two types of annotation used to
specify the program: kernel behaviour specification, which
describes the behaviour of the kernel, and shared memory
location permission specification, which describes which
work-items have read or write permissions to shared mem-
ory locations. The specification of a GPU program is typ-
ically divided into 3 levels:

• kernel level specs: describes all permissions trans-
ferred from the host to the kernel and the behaviour
of the kernel as a whole.

• work-group level specs: describes how the permis-
sions are distributed between different work-groups
and the behaviour of the individual work-groups.

• work-item level specs: describes how the permis-
sions are distributed among the work-items within
the work-groups and the behaviour of the individual
work-items.

Besides the different levels of specification, there are also
barrier specficiations. These describe which permissions
each work-item has after passing the barrier.

The complete program with specification can be found in
the appendix, snippets are discussed below.

6.1 Specification of kernel behaviour
The main function has annotations that describe the be-
haviour of the kernel, work-group and individual work-
items. The specification language used here is based on
JML (Java Modeling Language). For the specificiation
of this program there is no kernel specification as it is the
same as the work-group specification because the program
is restricted to only run on one work-group. The reason
for this is that barriers can only synchronize work-items
within the same work-group and synchronization between
all work-items is necessary. The work-group specification
has certain requirements about the parameters (mostly
about the size of arrays) and ensures that every cell in the
matrix meets certain conditions.

/*@
(Work-group level specs)
requires sizeof(costs) == (sizeof(cl_int) * 3) &&

dimensions[0] > 0 && dimensions[1] > 0 &&
sizeof(matrix) ==
sizeof(dimensions[0])*sizeof(dimensions[1])

requires (\forall int i ; i >= 0 ^ i < 3 =>
costs[i] > 0);

ensures out[0] >= 0
ensures (\forall int x,y ; x > 0 ^ x <

dimensions[0] ^ y > 0 ^ y < dimensions[1] ==>
matrix[to1D(x,y, dimensions[0])] ==
matrix[to1D(x - 1, y - 1, dimensions[0])] v
matrix[to1D(x,y, dimensions[0])] ==
minimum(matrix[to1D(x-1,y, dimensions[0])] +
costs[0], matrix[to1D(x,y-1, dimensions[0])]
+ costs[1], matrix[to1D(x-1,y-1,
dimensions[0])] + costs[2]));

*/
__kernel void editdistance(__global char* string1,

__global char* string2, __global int* matrix,
__global int* costs, __global int* dimensions,
__global int* out) {



This snippet contains the loop invariants. These describe
the behaviour of x and y with respect to the wid and loop
iterator. Because c truncates towards zero upon integer
division the fact that x and y increase alternatingly can
be described by adding (i + 1) / 2 to the initial y position
and i / 2 to the initial x position.

int y = (dimensions[1] - 1)/ 2 - wid + 1;
int x = -(dimensions[1] - 1)/ 2 + wid + 1;
for (int i = 0; i < (dimensions[0] + dimensions[1]

- 1); i++) {
//@loopinvariant y = (dimensions[1] - 1) / 2 -

wid + 1 + (i + 1) / 2
//@loopinvariant x = -(dimensions[1] - 1) / 2 +

wid + 1 + i / 2

...

if (i % 2) {
x++;

} else {
y++;

}

The specification ensures that D(x,y) = D(x - 1, y - 1) or
that D(x,y) = minimum(D(k - 1, l) + Ci, D(k, l - 1) + Cd

and D(k - 1, l - 1) + Ct). Essentially it ensures that the
values in all the cells are computed as discussed in section
5.

if (x > 0 && x < dimensions[0] && y > 0 && y <
dimensions[1]) {

if (string1[x - 1] == string2[y - 1]) {
matrix[to1D(x, y, dimensions[0])] =

matrix[to1D(x-1,y-1, dimensions[0])];
} else {

matrix[to1D(x, y, dimensions[0])] =
minimum(matrix[to1D(x-1,y,

dimensions[0])] + costs[0],
matrix[to1D(x,y-1, dimensions[0])]
+ costs[1], matrix[to1D(x-1,y-1,
dimensions[0])] + costs[2]);

}
}
//@ensures matrix[to1D(x,y, dimensions[0])] ==

matrix[to1D(x - 1, y - 1, dimensions[0])] v
matrix[to1D(x,y, dimensions[0])] ==
minimum(matrix[to1D(x-1,y, dimensions[0])]
+ costs[0], matrix[to1D(x,y-1,
dimensions[0])] + costs[1],
matrix[to1D(x-1,y-1, dimensions[0])] +
costs[2]);

6.2 Specification of shared memory location
permissions

To prove that a program does not have data races we
need annotations to describe which permissions the work-
items should have at different places in the kernel. Per-
missions are denoted by perm(location, amount). The
amount needed for a write permission is 100, for a read
only permission it can be any amount under 100 or p for
partial. The tool will be able to deduce the exact value
of a read permission, so the programmer does not need to
specify it.

The specification of shared memory location permissions
consists of three important parts: the work-group level
specification, the work-item level specification and the bar-
rier specification. The work-group level specification de-
scribes which permissions each workgroup receives before
running the kernel and which permissions are returned

after running the kernel. The work-item level specifica-
tion describes which permissions each work-item receives
before running the kernel and which permissions are re-
turned after running the kernel. The barrier specification
describes all permissions each work-item receives at the
barrier. Any permissions owned by a work-item before
the barrier that are not mentioned in the barrier specifi-
cation are automatically returned. The kernel level speci-
fication will also be automatically derived by the tool (the
permissions received at the start are simply the sum of
all permissions required by all work-items and the permis-
sions that are returned are also the sum of all permissions
returned by the work-items).

For the work-item and work-group level specification, re-
quires means the permissions must be obtained before
the work-item or work-group starts running and ensures
means the permissions are returned after running. At the
barrier there is only an ensures, the tool will derive which
permissions are required before the work-item reaches the
barrier.

Snippets of the code and specification are clarified below.

Because only one work-group is used, full permissions to
all in- and outputs are required and ensured in the work-
group level specification. On the work-item level specifi-
cation partial permissions to all inputs are required. One
of the work-items receives full permission to the cell at
(1,1). The other work-items do not start at a location
where computation is needed and will receive their write
permissions later at the barrier in the main loop.

/*@
(Work-group level specs)
requires perm(string1, 100) * perm(string2, 100) *

perm(matrix, 100) * perm(costs, 100) *
perm(dimensions, 100) * perm(out, 100)

requires \forall int x,y ; x > 0 ^ x <
dimensions[0] ^ y > 0 ^ y < dimensions[1] ;
perm(matrix[to1D(x, y, dimensions[0])], 100);

ensures perm(string1, 100) * perm(string2, 100) *
perm(matrix, 100) * perm(costs, 100) *
perm(dimensions, 100) * perm(out, 100)

ensures \forall int x,y ; x > 0 ^ x <
dimensions[0] ^ y > 0 ^ y < dimensions[1] ;
perm(matrix[to1D(x, y, dimensions[0])], 100);

(Work-item level specs)
requires perm(string1, p) * perm(string2, p) *

perm(costs, p) * perm(dimensions, p)
requires wid == (dimensions[1] - 1)/2 ==>

perm(matrix[to1D(1,1, dimensions[0])], 100) *
perm(matrix[to1D(0,1, dimensions[0])], p) *
perm(matrix[to1D(1,0, dimensions[0])], p) *
perm(matrix[to1D(0,0, dimensions[0])], p)

ensures wid == 0 ==> perm(output, 100)
ensures perm(string1, p) * perm(string2, p) *

perm(costs, p) * perm(dimensions, p)
*/

__kernel void editdistance(__global char* string1,
__global char* string2, __global int* matrix,
__global int* costs, __global int* dimensions,
__global int* out) {

At the barrier each work-item receives permission to the
next cell (according to the updated x and y)

barrier(CLK_LOCAL_MEM_FENCE);

/*@
x > 1 ^ y > 1 ==> {



perm(matrix, p)
perm(matrix[to1D(x - 1, y, dimensions[0])], p)
* perm(matrix[to1D(x, y - 1, dimensions[0])],

p)
* perm(matrix[to1D(x - 1, y - 1,

dimensions[0])], p)
* perm(matrix[to1D(x, y, dimensions[0])], 100)

}
wid = 0 ^ i = dimensions[0] + dimensions[1] - 2

==> {
perm(output, 100)

}
*/

}

7. VERIFICATION
The goal is to eventually use VerCors to automatically
verify OpenCL kernels by evaluating the program step by
step (keeping track of all the conditions that hold along
the way). Because this is very tedious work only a rough
outline of the proof will be presented.

The input values (besides the cells in the matrix) will never
cause any conflicts because not a single work-item ever
receives write permission to any of them, the input is only
read by the work-items. The output should not cause any
issues either, as only one work-item writes to the output
at the end of the kernel.

The specification of the permissions to the cells in the ma-
trix are a little trickier (see the snippet above). Assuming
the program behaves as described in section 5 and more
specifically as in figure 4 and 5, we know that at the bar-
rier all work-items are positioned along the same diagonal.
This means that, since each work-item only receives write
access to the cell at (x,y), no two work-items should have
write access to the same cell in the matrix. Furthermore,
work-items receive partial permissions to the cells located
at (x - 1, y), (x, y - 1) and (x, y - 1). None of these are on
the same diagonal as (x,y), so there are no cells of which
a partial permission as well as a full permission has been
given out to the work-items. This means that the program
should be data race free and VerCors tool should be able
to verify this program.

8. CONCLUSIONS AND FUTURE WORK
An OpenCL program that solves the edit distance prob-
lem was succesfully implemented. Both the behaviour and
shared memory location permissions were specified. The
work in this paper could be used as a case study for the
further development of the VerCors tool set. In theory,
VerCors will be able to verify the program and specifica-
tion presented in this paper as correct, although minor
syntax changes may be necessary.

8.1 Future work on the algorithm
Certain optimizations for the algorithm are possible. A
minor optimization is not to calculate the first row and
column on the host but to let the kernel take care of this.
Another optimization is to redefine the to1D() function
to change how two dimensional coordinates are translated
to an array index. The kernel would require less memory
fetches if the matrix is stored as a sequence of diagonals
instead of a sequence of rows.

Because barriers are used (and are necessary), the kernel
can only run on one work-group (barriers only synchro-
nize within a single work-group). This means that when
the length of the diagonals of the matrix exceeds the max-
imum work-group size the kernel can no longer compute

entire diagonals at once, even though other GPU cores are
idle. A possible solution is to divide the matrix into a cer-
tain amount of submatrices. The amount of submatrices
needed depends on the max work-group size and the origi-
nal matrix size. These submatrices can each be calculated
by one work-group. Similar to how edit distance is solved
in a matrix, the work-groups need to wait for each other
to finish before they can start computing. An example is
shown in figure 7. In the figure, three out of four quad-
rants are solved (the green/gray ones). The downside of
this solution is that it is still not always possible to com-
pute entire diagonals at a time. For example, during the
last iteration of the active work-groups only the lower right
corners of the second and third quadrants were computed
(instead of the entire diagonal). In this case, if the max
work-group size is three, the original solution would likely
be more efficient. For larger matrices (where many diago-
nals are a lot larger than the maximum work-group size),
it is likely worthwhile to split the matrix into submatrices
so multiple work-groups can be used.

Figure 7. Partially solved matrix, divided into
quadrants

9. REFERENCES
[1] NVIDIA CUDA Compute Unified Device

Architecture - Programming Guide, 2007.

[2] A. Amighi, S. Blom, M. Huisman, and
M. Zaharieva-Stojanovski. The vercors project:
setting up basecamp. In K. Claessen and N. Swamy,
editors, PLPV, pages 71–82. ACM, 2012.

[3] A. Betts, N. Chong, A. Donaldson, S. Qadeer, and
P. Thomson. GPUVerify: a verifier for GPUkernels.
SIGPLAN Not., 47(10):113–132, Oct. 2012.

[4] R. Bornat, C. Calcagno, P. O’Hearn, and
M. Parkinson. Permission accounting in separation
logic. SIGPLAN Not., 40(1):259–270, Jan. 2005.

[5] R. Farivar, H. Kharbanda, S. Venkataraman, and
R. Campbell. An algorithm for fast edit distance
computation on GPUs. 2012.

[6] M. Huisman and M. Mihelcic. Specification and
verification of GPGPU programs using
permission-based separation logic. Technical Report
TR-CTIT-13-12, Centre for Telematics and
Information Technology, University of Twente,
Enschede, March 2013.

[7] Khronos Group. The OpenCL Specification, Sept.
2010.

[8] V. I. Levenshtein. Binary codes capable of correcting
deletions, insertions and reversals. Soviet Physics
Doklady, 10(8):707–710, feb 1966. Doklady Akademii
Nauk SSSR, V163 No4 845-848 1965.

[9] G. Li and G. Gopalakrishnan. Parameterized
verification of GPU kernel programs. In IPDPS
Workshops, pages 2450–2459. IEEE Computer
Society, 2012.



[10] J. C. Reynolds. Separation logic: A logic for shared
mutable data structures. In LICS, pages 55–74.
IEEE Computer Society, 2002.

[11] Wikipedia. Levenshtein distance — wikipedia, the
free encyclopedia, 2013. [Online; accessed
16-October-2013].

10. APPENDIX
10.1 Complete kernel implementation & spec-

ification

/*@
(Kernel_level specs)
requires perm(string1, 100) * perm(string2, 100) *

perm(matrix, 100) * perm(costs, 100) *
perm(dimensions, 100) * perm(out, 100)

requires (\forall int x,y ; x >= 0 ^ x <
dimensions[0] ^ y >= 0 ^ y < dimensions[1] ;
perm(matrix[to1D(x, y, dimensions[0])], 100)):

requires sizeof(costs) == (sizeof(cl_int) * 3) &&
dimensions[0] > 0 && dimensions[1] > 0 &&
sizeof(matrix) ==
sizeof(dimensions[0])*sizeof(dimensions[1])

requires (\forall int i ; i >= 0 ^ i < 3 =>
costs[i] > 0);

ensures perm(string1, 100) * perm(string2, 100) *
perm(matrix, 100) * perm(costs, 100) *
perm(dimensions, 100) * perm(out, 100)

ensures (\forall int x,y ; x > 0 ^ x <
dimensions[0] ^ y > 0 ^ y < dimensions[1] ;
perm(matrix[to1D(x, y, dimensions[0])], 100));

ensures out >= 0
ensures (\forall int x,y ; x > 0 ^ x <

dimensions[0] ^ y > 0 ^ y < dimensions[1] ==>
matrix[to1D(x,y, dimensions[0])] ==
matrix[to1D(x - 1, y - 1, dimensions[0])] v
matrix[to1D(x,y, dimensions[0])] ==
minimum(matrix[to1D(x-1,y, dimensions[0])] +
costs[0], matrix[to1D(x,y-1, dimensions[0])]
+ costs[1], matrix[to1D(x-1,y-1,
dimensions[0])] + costs[2]));

(work-item level specs)
requires perm(string1, p) * perm(string2, p) *

perm(costs, p) * perm(dimensions, p)
requires wid == (dimensions[1] - 1)/2 ==>

perm(matrix[to1D(1,1, dimensions[0])], 100) *
perm(matrix[to1D(0,1, dimensions[0])], p) *
perm(matrix[to1D(1,0, dimensions[0])], p) *
perm(matrix[to1D(0,0, dimensions[0])], p)

ensures wid == 0 ==>
{perm(matrix[to1D(dimensions[0,0,
dimensions[0])], 100)}

ensures perm(string1, p) * perm(string2, p) *
perm(costs, p) * perm(dimensions, p)

*/
__kernel void editdistance(__global char* string1,

__global char* string2, __global int* matrix,
__global int* costs, __global int* dimensions,
__global int* out) {

int wid = get_global_id(0);

int y = (dimensions[1] - 1)/ 2 - wid + 1;
int x = -(dimensions[1] - 1)/ 2 + wid + 1;

for (int i = 0; i < (dimensions[0] + dimensions[1]
- 1); i++) {

//@loopinvariant y = (dimensions[1] - 1) / 2 -
wid + 1 + (i + 1) / 2

//@loopinvariant x = -(dimensions[1] - 1) / 2 +
wid + 1 + i / 2

if (x > 0 && x < dimensions[0] && y > 0 && y <
dimensions[1]) {

if (string1[x - 1] == string2[y - 1]) {
matrix[to1D(x, y, dimensions[0])] =

matrix[to1D(x-1,y-1, dimensions[0])];
} else {

matrix[to1D(x, y, dimensions[0])] =
minimum(matrix[to1D(x-1,y,

dimensions[0])] + costs[0],
matrix[to1D(x,y-1, dimensions[0])]
+ costs[1], matrix[to1D(x-1,y-1,
dimensions[0])] + costs[2]);

}
}
//@ensures matrix[to1D(x,y, dimensions[0])] ==

matrix[to1D(x - 1, y - 1, dimensions[0])] v
matrix[to1D(x,y, dimensions[0])] ==
minimum(matrix[to1D(x-1,y, dimensions[0])]
+ costs[0], matrix[to1D(x,y-1,
dimensions[0])] + costs[1],
matrix[to1D(x-1,y-1, dimensions[0])] +
costs[2]);

int oldX = x;
int oldY = y;

if (i % 2) {
x++;

} else {
y++;

}

barrier(CLK_LOCAL_MEM_FENCE);

/*@
x > 1 ^ y > 1 ==> {

perm(matrix, p)
perm(matrix[to1D(x - 1, y, dimensions[0])], p)
* perm(matrix[to1D(x, y - 1, dimensions[0])],

p)
* perm(matrix[to1D(x - 1, y - 1,

dimensions[0])], p)
* perm(matrix[to1D(x, y, dimensions[0])], 100)

}
wid = 0 ^ i = dimensions[0] + dimensions[1] - 2

==> {
perm(output, 100)

}
*/

}

if (wid == 0) {
out[0] = matrix[to1D(dimensions[0] - 1,

dimensions[1] - 1, dimensions[0])];
}

}


