
Benchmark Analysis Tool

Richard Cornelissen, Rens van der Heijden, Matthijs Hofstra,
Edwin Keijl, Ties de Kock, Remco Swenker

July 13, 2010

Contents

1 Problem Statement 3

2 Requirements 4

3 Design Decisions 6
3.1 Database . 6

3.1.1 Initial Design . 6
3.1.2 Current Design . 7

3.2 Database Population . 9
3.2.1 Moving Logs . 10
3.2.2 Parsing & Insertion . 10
3.2.3 Tool Uploader . 11

3.3 Benchmark Table . 12
3.3.1 Initial Design . 12
3.3.2 Detailed Design . 13

3.4 Comparisons . 19
3.4.1 Comparison . 20
3.4.2 ModelComparison . 20
3.4.3 Database Model . 20

3.5 User management . 21
3.6 PBS script generation . 21

4 Implementation 24
4.1 Basic Django Information . 24

4.1.1 Template structure . 25
4.2 Database Population . 26

4.2.1 Log movement . 26
4.2.2 Filreader . 27
4.2.3 Tool Upload . 29

4.3 Benchmark Table . 30
4.3.1 Server side . 30
4.3.2 Client side . 37
4.3.3 Adding/Changing Functionality 42
4.3.4 Notes . 44

1

4.4 Comparisons . 44
4.4.1 Scatterplot . 44
4.4.2 ModelComparison . 45

4.5 User Management . 46
4.6 PBS script generation . 46
4.7 Tools Module . 47

5 Future work 49

A Glossary 52
A.1 BeAT Glossary . 52
A.2 Django Glossary . 53
A.3 Software . 54

B Header 55

C Filereader Options 56

2

Chapter 1

Problem Statement

The Formal Methods and Tools research group has developed a toolset, called
Minimization and Instantiation of Labelled Transition Systems (ltsmin), which
can be used to analyze labeled transition systems through various tools. Ltsmin
also supports this analysis on a cluster of machines, which is managed by a
PBS scheduler. The toolkit produces a lot of data, for which no analysis tool is
available. This is the problem that BeAT attempts to solve.

The data includes run times, the time the tool was started, the amount of
memory it required (both virtual and Resident Set Size (RSS)), whether the
tool successfully completed its task, as well as the number of states and the
amount of transitions 1. Other data that BeAT collects is the cluster nodes and
provided options.

Currently, without BeAT, all this data is manually inserted into a database.
This process has been automated. BeAT should also be future proof, so that
new tools and modifications to the other tools and their output can be made
without modifying the BeAT code.

To provide interaction with the user, BeAT will have a web interface. It has
been decided at the start of the project that the software would be written using
Django, which is a web framework for Python. Javascript is used for client-side
manipulation of the data, to allow the use of dynamic webpages. The interface
allows the user to examine the data at will in table form, as well as allowing the
generation of two types of graphs. These graphs are generated by the python
module MatPlotLib, which also provides the necessary export capabilities.

1There is an exception for the amount of transitions: it is not recorded in some space
exploration tools.

3

Chapter 2

Requirements

The requirements have been made using the description given in chapter one.
they have been divided into functional requirements and non functional require-
ments.

Functional Requirements
R1 The system will store the output that is produced in a database. This

should include benchmark names, their results and similar information.
R2 The user interface will support filtering of the results stored in the

database.
R3 The system will allow the user to examine the results in the form of a

table.
R4 The system will allow the user to examine the results in the form of a

chart.
R5 The system will allow the user to export data, tables and charts to a

form that allows the user to easily incorporate this in a scientific paper.
R6 The system will allow the user to export data, tables and charts to a

form that is machine-readable (preferably CSV).
R7 The system will read and store results from the cluster as soon as

possible after it completes a batch job.
R8 The system will support user management (validation, authoriza-

tion...).
R9 The system will offer full support of the input format that LTSmin

uses.
R10 The system will have at least basic support for the input format of

other benchmark toolkits.
R11 The system will have a build environment in which it will shape input

into a batch job that can be provided to the PBS.
R12 The system will support personal results.
R13 The system will allow the user to provided generated results to the

public (including users without accounts).

4

Non Functional Requirements
R13 The system will be written in a dynamic programming language using

a maintained, stable web framework.
R14 The system will have a user-interface in the form of a website (web

interface).
R15 The system must be easy to deploy and be portable, preferably in a

virtual machine.
R16 The system shall respond to 90% of the http requests within 250 ms.
R17 The system shall work with Firefox 3.5+, Chrome 4.0+, Safari 4+.
R18 The system shall conform to web standards (HTML 4+, CSS).
R19 The system shall be protected against SQL Injection and XSS attacks.

5

Chapter 3

Design Decisions

In this chapter important decisions we made during the development process
will be discussed. Most of the sections here are also discussed in more detail in
chapter 4, where implementation issues are discussed.

3.1 Database

3.1.1 Initial Design

Figure 3.1: The initial, higher level database design, based on the data ware-
house concept.

Our initial idea was to use a data warehouse, a type of database that allows
easy aggregation and filtering. For our database, the fact (the data warehousing
term for the value(s) on which computation occurs) is a few fields in the Bench-
mark table. This idea, illustrated in figure 3.1, still exists within the database
design, but it has been altered to suit our needs. The data warehouse approach
focuses too much on a single fact, while our database contains several pieces of

6

data for each combination of variables (eg, model, tool and so on). This means
we cannot use SQL queries that were designed for a data warehouse; however,
these queries are not available in django, so they would force us to use custom
queries, which breaks django’s cross-database nature.

3.1.2 Current Design

Below, the tables in the current database design are outlined and the relations
between tables are explained. The design itself is outlined in figure 3.2, excluding
those tables that are not related to the BeAT core system (these tables relate to
the functionality of the web interface). Please note that certain terms used in
this diagram and in the text below are different from those used within ltsmin.
See the glossary (appendix A) for more information.

A row in the Benchmark table corresponds to a single benchmark result. It is
connected with Model and AlgorithmTool, which together with relations to the
Hardware and OptionValue tables (see below) specify the environment in which
the benchmark was executed. Most of the columns are the statistics that are at
the base of BeAT (time the benchmark was started, execution times, memory
values, exit status and the amount of states/transitions). The logfile column
contains a URI to the original log file, which is recorded for further examination
by the user. The BenchmarkHardware table represents a ManyToMany relation
between Benchmark and Hardware.

The Model, Algorithm and Tool tables simply represent what their names
imply, as defined in the glossary (see appendix A). An AlgorithmTool row
represents a combination of an Algorithm and a Tool, together with a version
identifier, date of the git revision and a regular expression (a row in the Regex
table) that can be used to parse logs produced by this particular AlgorithmTool.
A row in the Regex table represents a regular expression, which is currently used
to parse a log file. Since options may provide additional output of interest, a
ValidOption row (see below) may also point to a Regex.

Options are handled through the following tables:

Table explanation
Option names of options.
ValidOption connection between option and AlgorithmTool,

also contains a connection to regex.
RegisteredShortcut representation of a short option, relates to an

AlgorithmTool and an option.
OptionValue connects an option with an assigned value.

The Option table is used to reduce the size of the database, storing the name
of an option only once (similar to Model, Algorithm and Tool). ValidOption
is used to indicate an option is valid for a certain AlgorithmTool. It also links
to a regular expression, which may be used to parse additional information
from a log file. RegisteredShortcut is used to allow short options to relate
to different Options for different AlgorithmTools. For example, in a certain
AlgorithmTool, -c could be short for --cache, in another it may be short

7

Figure 3.2: Our current database design. Excluded here are tables that are part
of the other BeAT modules.

8

for --confidence=. While this is desirable, the said structure introduces a
problem, because it always relates a RegisteredShortcut to an Option, while this
is not strictly true in reality. To solve this, Option objects whose name starts
with a space character (’ ’) are ignored as long options. This works because
spaces can never be part of an option passed in the command line. OptionValue
objects are used to indicate a certain option was set (value = ’True’), or was
passed with some argument (value=value of argument). A set of zero or more
OptionValue objects is connected to each Benchmark. For example, --cache,
--state=vset and --vset=tree could be provided to execute a Benchmark,
resulting in three OptionValue objects (represented here as tuples of name and
value): (--cache,’True’), (--state=,’vset’) and (--vset,’tree’).

The ExtraValue table is used to associate additional information with a
Benchmark. The current scheme is quite fragile, since an ExtraValue with
the same name does not always indicate the same value, but it is a simple
and fairly flexible approach. The names are derived from the user-provided
regular expressions, while the values are whatever the regular (sub-)expression
matches on. To be more exact, python regular expressions provide a way of
naming a group as follows: ...(?P<group_name> expression)..., which creates
an ExtraValue row with name=group name and value=match, where match is
that which expression matches to. For more information about the parsing
process, see sections 3.2.2 and 4.2.2.

3.2 Database Population

The BeAT database needs to be filled with data in some way. Log files generated
by running ltsmin need to be parsed and placed into a database. However, since
the output format of ltsmin is not static, the use of regular expressions was
proposed. To allow the user to configure different ways of parsing the logs for
each version of ltsmin, the database contains a Regex table, in which the regular
expressions are saved. These are added through the web interface; see section
3.2.3 for more information.

Routine population of the database (ie. importing data from log files) con-
sists of two steps:

1. Moving logs to the server

2. Parsing the logs and inserting them into the database

These two steps are described below, followed by the way tools are added to the
database. Parsing logs includes parsing a header, which is automatically gener-
ated for jobs that are created through our web-interface. For documentation on
this interface, see section 3.6. For documentation of the header, see appendix
B.

9

Figure 3.3: High level flowchart for filereader script.

3.2.1 Moving Logs

Initially, the way logs were pushed to the server that BeAT runs on was unclear.
We considered three options: automatic movement, user uploaded (through a
form on the website) and user-controlled copying (where the user moves the files
with a tool like scp). Automatic movement incurs a relatively large security risk,
while its advantage over the others is limited. We assumed both of the other
options would be implemented.

Later, it became clear that an upload mechanism is not an optimal solution,
since the amount and total size of a set of logs is usually too great to submit
through a website. After discussing with our client, we assumed the intended
user was familiar with unix tools such as scp. In the current implemenation,
the user uploads a set of logs to a specific file on the BeAT server, which is then
automatically inserted (using the process described below). The user can also
manually execute the insertion script.

3.2.2 Parsing & Insertion

Because of the scheme we use for reading data from logs, and the way we allow
different tools to be used, we assume the regular expressions and the information
about the tools are already in the database. As mentioned, we have created a
page to do this; see section 3.2.3 for more information.

For historical reasons, we allow several logs to be placed in one file. This is
also useful when inserting a large amount of logs without access to bash. The
process is illustrated in the flowchart in figure 3.3. Available options for the
filereader are documented in appendix B. For each log, the analysis process
consists of two parts; of the header and of the log itself. The header is used
to find the appropriate AlgorithmTool, which in turn references the regular
expression to analyze the log. The provided options are also included in the
header; the regular expressions associated with those are queried in a similar
manner. Other information (not required for the log analysis) is also retrieved
from the header; see the full description of the header in appendix B. The

10

regular expressions are sequentially applied to the log file; the one related to
the AlgorithmTool is first and is required to succeed. The others are applied
in the order they are fetched from the database; no guarantees are made about
this order. Should certain group names overlap, the result from the regular
expression applied last is used. It is up to the user to ensure this does not
happen, which can be achieved by using sensible names.

After successfully collecting all this information, it is passed through a check-
ing function (which can be extended in later versions of BeAT to allow for more
specific checks). If this check succeeds, the data is passed to the submission
function that inserts the data. This function gets or creates database items as
needed (for example, the hardware item might already be in the database) and
returns the benchmark object as well as its created status, allowing the main
script to create the appropriate message for the user. The log file is saved as
a plain text file, either on the file system or in a git using the python module
dulwich (if the --dulwich switch is provided). The advantage of the latter is
that this allows BeAT to take advantage of git’s superior compression methods,
while the disadvantage is the user cannot directly access the files (though the
repository can be used as a normal git repository). See section 4.7 for more
information on dulwich.

3.2.3 Tool Uploader

The tool uploader will allow the following data to be sent to the database:
Tool Name: The name of the tool for example: ”lps”
Algorithm Name: The name of the back-end algorithm for example: ”-reach”
Version: The version output of the new tool for example: ”ltsmin-1.5-20-

g6d5d0c”. This version number is used to link the date when the tool was made
in git to the uploaded logs. This makes it possible to plot performances of tools
over time.

Regular Expression: The regular expression that should be used to parse
output generated by this tool. Here is an example of a regex:
lps-reach: .*(\r\n|\n)((?P<kill>Killed|.*?error:.*)|lps-reach:

reachability took.*(\r\n|\n)state space has (?P<scount>\d+)

states.*; (?P<peakNodes>\d+) peak nodes.*(\r\n|\n)Exit) \[[0-9]+\]

(\r\n|\n)(?P<utime>[0-9.]+) user, (?P<stime>[0-9.]+) system,

(?P<etime>[0-9.]+) elapsed --(Max |)VSize = (?P<vsize>\d+)KB,

(Max |)RSS = (?P<rss>\d+)KB

to make sure the regex works there is a field to place a test log and a button
to run the regex over the log. This allows you to see if the regex works as its
supposed to.

Options: this will allow the addition of tool options. Short options (eg. ”-c”
for ”–cache”) can be entered as follows: ”–cache:c” or ”:x”. If the option takes
an argument, an ”=” sign should precede the colon. Some of these options
may also cause a change in the way the log should be parsed these extra regex
rules.

11

Figure 3.4: Mac OS X Finder, taken from [18]
.

3.3 Benchmark Table

The benchmark table was designed so that the user can view benchmarks, filter
the view on certain properties, sort the view, and select which data is shown
for every benchmark. It is created with the use of JavaScript, AJAX, jQuery
[7], JSON [2], and some jQuery plugins to form an intuitive user interface, like
hoverIntent [1].

3.3.1 Initial Design

Initially, we planned to build the benchmark table so that it looks like the search
feature of Mac OS Xs Finder. With this application, you can add and remove
certain filters (like last opened date and file type) to view the filtered results,
as in figure 3.4. The idea of our benchmark table is similar, using the data in
our database. For the benchmark table, we want the user to be able to add and
remove filters, specify the type of the filter (e.g. a date filter), specify a filtering
style (e.g. before the given date), and specify a filtering value.

The filter types we originally planned to implement are:

• Model name;

• Algorithm name;

• Tool name;

• Memory (RSS);

• Runtime (= user time + system time);

• Number of states;

12

• Number of transitions;

• Date;

• Options.

In these filter types, we recognized certain generalizations, namely:

• Selecting a name (model name, algorithm name and tool name);

• Specifying an integer and whether the value in the database is less than,
greater than or equal to the provided value (memory (RSS), runtime,
number of states, number of transitions);

• Specifying a date and whether the benchmark was executed on, before or
after the specified date (date);

• Selecting certain options from a list and, if necessary, specify a value for
the chosen option (options).

Furthermore, we want the user to be able to select some benchmarks from the
table and compare them by clicking a compare-button.

3.3.2 Detailed Design

During the course of the project, some features of the benchmark table have
changed, some features were added, and some were discarded. These decisions
are explained here.

Change of features during development

During our meetings, we made the decision to add some extra features to the
benchmark table, namely:

• Selecting which columns are displayed;

• Sorting on (multiple) columns;

• Adding filters for:

– Version of algorithmtool;

– Memory (VSIZE);

– Finished;

– Processor;

– Physical Memory size;

– Computer name;

– Kernel version;

– Disk space.

13

Figure 3.5: Screenshot of column selection

• Paging the results;

• Selecting all benchmarks and inverting the selection;

• Exporting selected benchmarks as a CSV-file;

• Filtering the queryset on the selected benchmarks;

• Instead of selecting one value for the filters model name, algorithm name,
tool name, and later on, algorithmtool version, processor, computer name,
and kernel version, it should be possible to select a list of values.

Furthermore, the feature to select and compare benchmarks was removed. We
did this because we could not find a suitable interpretation for any combination
of selected benchmarks.

Column selection

The user is able to select the columns of data he wants to see, this is done by
checking and unchecking in a list of column names that pops up when he hovers
his mouse over the input-element called ”Columns (hover)”, as seen in Figure
3.5. There are columns that are available for every benchmark; the standard
columns, and columns that are not available for every benchmark run, and thus
can only be selected when there is at least one benchmark run in the QuerySet
the user is viewing that contains that value; the extra columns.

Standard columns

The columns which the user should be able to select by default are:

14

• Model name;

• States;

• Transitions;

• Runtime;

• Memory (RSS);

• Memory (VSIZE);

• Tool name;

• Algorithm name;

• Version;

• Date;

• Finished;

• Computername;

• Processor;

• Amount of physical memory;

• Kernel version;

• Amount of hard disk space;

• Options used.

By default, the values of model name, number of states, runtime, memory (RSS),
and finished are shown in the benchmark table.

Extra values

The user should also be able to select which extra values he wants to see. The
extra values are not in the database by default, but might be found in some
log files because of certain options specified or certain tool and algorithm com-
binations used. Only the available extra value names that are present in the
QuerySet the user is currently viewing are shown in the column list.

15

Figure 3.6: Screenshot of filter table and sorting

Sorting

The user is able to sort the QuerySet he is viewing by one or more of the columns
he has selected. To do so, a table has been added above the benchmark table,
where the user can specify a column and an order (ascending or descending),
as seen in Figure 3.6. After specifying a column to sort on, an extra row in the
table will appear so the user can specify the second column he wishes to sort
on. Notice that the user can select the same column multiple times, though the
database will only evaluate the first appearance of a column. The user can also
sort the QuerySet on an extra value column, bat as these values are stored as
text in the database, the sorting will be done alphabetical.

Filter table

The part of the benchmark table that regulates the filtering system is called the
filter table. This table consists of a list of filters the user specified, as in Figure
3.6. On the right side of each filter are an add button and a remove button. The
remove button deletes the filter in that row (or sets it to an empty filter if it is
the only filter in the filtertable) and the add button adds an empty filter one
row under the row of the button. Furthermore, when a filter contains an error
(e.g. no value has been selected for a states-greater than filter), it is marked
red, so the user can easily fix it.

Empty filter

The empty filter is a filter that does nothing, its only purpose is to give the user
the option to select a filter type.

Model name, algorithm name, tool name, processor, computer name,
algorithmtool version, and kernel version filters

The model name, algorithm name, tool name, processor, computer name, algo-
rithmtool version, and kernel version filters all have the requirement that the
user should be able to select one or multiple values. To achieve this, we were
inspired by the way users can select to whom a message is sent in Facebook, like

16

Figure 3.7: Screenshot of Facebook’s receiver selection

Figure 3.8: Screenshot of RAM filter

Figure 3.7. Here, the user starts typing and results pop up in the list below the
input element. Then the user can use the arrow keys to select a receiver and
press enter to add him or her to the list of receivers. The filter does the same:
it knows a list of possible values and searches for possible values while the user
is typing.

Memory (RSS), memory (VSIZE), runtime, states, transitions, RAM,
and disk space filters

These filters require the user to specify a number and specify whether he wants
results in which the value is equal to, less than or greater than that number, as
in Figure 3.8.

Date filter

This filter requires the user to specify a date to filter on, and whether the
benchmark runs have been executed before, after or on this date, an example
of this filter is shown in Figure 3.9. The format for the date is yyyy-mm-dd.

17

Figure 3.9: Screenshot of date filter

Figure 3.10: Screenshot of options filter

Options filter

This filter consists of a list of options that have been registered in the database,
like in Figure 3.10. Only the options that are possible in the QuerySet the user
is viewing are displayed. The user is able to check which options are used for
benchmark runs and, if necessary, what value that option has.

Finished filter

The finished filter requires the user to select True or False, depending on whether
he wants to see the benchmark runs that have finished correctly or that havent
finished correctly. An example is shown in Figure 3.11.

Figure 3.11: Screenshot of finished filter

18

Figure 3.12: Screenshot of paging features and buttons

Paging

Though we first thought paging would not be necessary, we noticed Firefox did
not work well with a large set of benchmark runs in the benchmark table. To
fix this, we added paging, so the results the user sees are limited. The user is
also able to specify the page size, which is 25 by default, and is able to jump
to the first, last, next and previous page through the interface shown in Figure
3.12.

Select all and invert selection

For better usability, the user is able to select all benchmark runs in the QuerySet
he is viewing by clicking the ”All”-button or inverting his selection with the
”Invert”-button. These buttons work on all benchmark runs in the QuerySet,
not just on the page the user is viewing at that moment. After the ”All”-button
has been clicked, it changes into a ”None”-button, meaning that clicking it clears
the selection.

Exporting

The user is able to export the selected benchmark runs as a CSV-file by selecting
benchmark runs in the benchmark table and clicking the ”Export”-button.

Filter on selected benchmark runs

The user is able to limit the benchmark runs he wants to see in the benchmark
table by selecting these benchmark runs and pressing the ”Filter Checked”-
button.

3.4 Comparisons

BeAT allows the user to analyze the data in two different ways. First of all, the
user can look up the raw data as it would appear in the database on the bench-
marks page, see section 4.3. Second, the user can produce two types of graphs
by selecting a set of properties on a page containing a form. We will refer to
these graphs as comparisons. Both graph types (Comparison and ModelCom-
parison) are discussed below and in section 4.4. Both types are recorded in the

19

database for future re-generation; the database model used is also discussed, in
section 3.4.3.

3.4.1 Comparison

On the ”compare tools” page, the user can select two sets of benchmarks by
specifying a algorithm, tool, version and the options for each set. We intersect
these two sets on their models, so that all models that ran on only one of the two
combinations selected by the user are ignored. We then aggregate the set, so the
result set consists of a model associated with data from two different benchmark
settings. The current pieces of data are run time and virtual memory size, both
of which are plotted in seperate scatterplot. The axes of this plot represent the
combinations the user selected.

The graphs containing this data are shown on the result page, including
the specified filtering properties. The data is also represented as a table below
the graphs. The Flot JavaScript library is used to produce the graphic repre-
sentation. Flot was chosen because it enables us to create interactive graphs,
in particular that the user can hover over datapoints to see more information
about that specific item. Each graph can be exported to pdf, ps, eps or svg
format using the MatPlotLib python framework. MatPlotLib makes it easy to
export anti-aliased graphs.

3.4.2 ModelComparison

The ”compare models” page works similar to the ”compare tools” page. Here
the user selects a tool, algorithm, option combination and data type. BeAT
redirects the user to a similar result page, producing a graph on which each line
represents one model. The y axis represents the selected data type, while the
x axis shows the revision date of the AlgorithmTool on which the benchmarks
was performed.

3.4.3 Database Model

The full database model is shown in figure 3.13. The core tables are Comparison
and ModelComparison. They both contain name, date time (last modified),
hash (the auth key) and a foreign key user to the User table. The auth key
is a hash used to allow users without access to view the particular graph, see
section 3.5 for more information.

The ModelComparison table has a foreign key to the Tool and Algorithm

tables, representing which combination was selected by the user. A Many-To-
Many relation called optionvalue with the OptionValue table is used to store
all the options selected by the user. The type of data to be plotted is stored in
the type attribute.

The Comparison table has two foreign keys to the AlgorithmTool table,
one for each selected combination, instead of the keys to Tool and Algorithm.

20

Each of these can have user-selected options; those options are represented by
two Many-To-Many relations with the OptionValue table.

The difference between the two tables is caused by the fact that the Algo-

rithmTool table contains a version string; this is required to identify a unique
entry in the case of Comparison, while in ModelComparison, an abstract repre-
sentation is required (as this graph iterates over the different versions). Possible
future types of graphs can be in a manner similar to these two.

3.5 User management

Not all pages in BeAT should be publicly accessible. For example, visitors should
be allowed to view the frontpage and other general website information. Only
logged in users should have permissions to access the data, generate graphs and
create job scripts. The data added to the database is available to all users that
have login credentials, while generated jobs and graphs are assigned privately
to the user that generated them. If needed, a superuser has the power to view
and modify this information.

Sharing results publicly is possible, through a provided permalink on each
result page. The data that can be shared currently only includes both types of
graphs. The permalink is a simple URL, which provides an argument to the
HTTP request the unknown user will make, allowing this user access. Note that
anyone with access to the URL may access the data: this mechanism should
therefore not be considered a security measure.

To manage users, the standard Django user authentication system is used.
Through django’s default administration interface (accesable through a link on
any BeAT page), users can be added, if the user is logged in as a superuser.

3.6 PBS script generation

Not all the data relevant to a benchmark is present in the default output of the
ltsmin tools. Data such as the name of the node on which it was executed, the
operating system running there, the amount of memory, the version of the tool
being used, the option given to the tool, and the date on which the execution
took place are examples of that data. To make sure this data was available in
the log files of future runs it was decided that a header containing that data
should be available. An easy way to do this was to make sure the scripts that
are executed by the scheduler collect and output this information before running
the benchmark itself.

With the above information in mind a python class was designed that would
generate PBS scripts that could be submitted to the scheduler. The generated
PBS files are based on the files generated by a shell script that was already is
use, and also contains a few lines that collect and output the data we required.
During the project the scripts had to be changed a couple of times and we came
to the conclusion that it was easier to switch to a template-based system, which

21

Figure 3.13: The database model for comparisons.

22

is what we included in the final product. Because the required templates were
very simple, we could use Django’s built-in template support, which supports
everything we need, even though it was originally designed to generate webpages.

To make script generation available to the end user we chose to create a
webpage that allows the user to perform the generation of a single job with
some set of user-supplied options, as well as the generation of a complete test
suite that contains all relevant permutations of options for a single model. The
permutations were provided by our client and also contain some types that are
not yet supported, concerning jobs that should run on multiple nodes. We have
chosen to also generate these, as we intend for BeAT to be extended to support
these jobs too, in time. At the request of our client we also added support
for saving specific jobs. When a user creates such a job and supplies a name,
the options supplied by the user are saved under that name, and he or she can
reload that information at a later time and produce the same job again, or alter
this job.

23

Chapter 4

Implementation

The following chapter will discuss the issues we faced and choices we made
during the implementation of BeAT. We start with a brief overview of Django,
followed by an explanation of administrative backend of the system. Afterwards
we discuss the user-facing website.

4.1 Basic Django Information

This section contains some basic information about the filestructure that Django
uses. Anyone already familiar with Django can probably skip it. Almost all
of our python code uses Django in some way, and is installed in Django as an
application (”app”). A noteable exception is the filereader, which is not directly
accessable through the website and for that reason has been placed somewhere
else. Because all the apps have a few things in common, we will cover that
information here in order not to repeat the same information when discussing
the implementation details of each app.

All of our apps are located in the BeAT root folder. Each app has its own
folder, for example, beat/benchmarks and beat/graphs. In general apps do
not depend on each other with the exception of beat/benchmarks, on which
most apps depend. This is because it is the main application and contains the
classes required to interact with the benchmark data in the database.

There are a few python files that are are present in most or all of the apps.
The most common ones are listed below, along with some information concern-
ing their contents and purpose. When the description of the implementation of
some part of the website does not specify where the code for one of the things
mentioned below is located, it will be in the default file. For a more in-depth
explanation on Django we recommend a visit to the Django documentation [8].
If appropriate, sections of this documentation are referenced. Unless otherwise
noted, the documentation for version 1.2 is intended.

24

Filename Contents
init .py This file is required to tell Python that the directory is a

Python module and can be imported (and imported from).
admin.py The Django admin interface can be tailored to

the user’s needs by creating subclasses of the
django.contrib.admin.ModelAdmin class in this file.

forms.py Contains a description of one or more forms used on the web-
site. Each form is described as a python class.

manage.py A thin wrapper around django-admin.py that takes care of
two things for you before delegating to django-admin.py:
It puts your projects package on sys.path and it sets the
DJANGO SETTINGS MODULE environment variable so that it
points to your projects settings.py file. django-admin.py

is Django’s command-line utility for administrative tasks.
models.py Contains one or more classes, each of which is a representation

of the data held in a particular table in the database.
settings.py The automatically generated Django settings module, includ-

ing settings for the database, caching, authentication, template
directory and media directory.

urls.py A mapping of URL patterns (in the form of regular expres-
sions) to functions in views.py.

views.py This file contains code that presents data to the user for one
specific application on the website.

4.1.1 Template structure

Django provides a template system with tags which function similar to some
programming constructs. Though the template system is documented in the
Django documentation [9], we explain the basics here. A template contains
variables, which get replaced by values when the template system is evaluated
and tags, which control the logic of the template. Context variables passed to a
template can be accessed using {{ variable.attribute }}. Tags are defined
as {% tag %} and can be used for more complex purposes as if-statements,
for-loops and template inheritence (using the block tag).

The HTML structure is defined through this template inheritence. base.html
defines the basic HTML structure that is used for every page and inclusion of
CSS and JavaScript files. More importantly, five different blocks are defined
that can be extended in a specific page as shown in figure 4.1.

head can be used to add extra things to the header, such as JavaScript files.

title overrides the title in the <title> tag.

structure defines the basic layout of the page, this is overridden in base site-

.html.

sidebar allows you to add extra items to the navigation bar on the right side
of the page, if that may be needed.

25

Figure 4.1: The basic template structure that is used for BeAT. Here
base site.html only extends the content block.

Nearly every page that uses a ’standard’ one column layout that extends
base site.html. This template only overrides the structure block, defines
the one column layout and defines a new block called content inside of that
column. This makes it possible to use a different structure as on the frontpage,
if this is desired. As described above, all other blocks can be overridden as well
if there is a need.

So to make a new template, create an HTML document in the preferred
application directory of the templates directory. It needs to extend the base-

site.html template and override the content block to be able to contain any
new content. Furthermore, it can optionally override any of the blocks men-
tioned above.

Navigation

The sidebar block contains the navigation of the websites. All links are defined
as list items with an anchor tag that uses the Django {% url %} tag to output
absolute URLs directly to a specific view. This prevents hard coding the URLs,
so they can easily be changed in urls.py.

4.2 Database Population

In this section, some implementation details for the various database population
scripts are discussed. Insight for future development is also provided.

4.2.1 Log movement

This section will give a short description about the log movement process and
the issues we considered while implementing it. Part of this feature has been
discussed in section 3.2.1.

26

Processs

Before logs can be processed they need to be available on the server. The first
step in the regular flow when importing logs is moving them to the location
where they can be proccessed. A few options were discussed in section 3.2.1.
Since our users are quite technical and used to ssh and a ssh key infrastructure,
we decided to process the files on the server and use scp to copy the logs. This
removes the need to install python with the proper libraries on the client PC,
keeps the SQL server secure and does not waste bandwith, because the logs
need to be stored on the server anyway.

Implementation

Implementation of the log movement was straight forward. The first part in-
volved setting up a usergroup on the server and creating a directory, which was
periodically checked by the filereader script. The output from the filereader is
not saved at the moment (since all regular logs should be parseable), but this
warrants a look in the future.

4.2.2 Filreader

In this section, the filereader script, which imports data from provided logs, will
be discussed in detail. Some information will be provided on how to improve
the script; for those sections of text, familiarity with python is assumed. The
flowchart in figure 3.3 is used for the structure of this section.

Call & Parse options

The filereader is intended to be called from a shell. At some point in the project,
support for using it from another python script existsed; however, currently, this
functionality is considered depricated. It is possible to include this functionality
again, but the Filereader.main() method should be updated to reflect changes
in the available options. From the command line, a number of options can be
provided, followed by any number of paths to a file. Assuming the use of bash,
one should use xargs to allow any amount of arguments to be passed. The
disadvantage is that the counting of errors no longer works (since xargs causes
the filereader to be called on each file individually instead of passing a large set
of arguments). This is not needed if the code runs on a linux kernel version after
2.6.23, from which onward an arbitrary amount of arguments can be passed [3].
Options for the filereader are parsed using the optparse python module, which
makes adding additional options (almost) trivial. See the python documentation
of optparse [6] for more information.

Splitting into logs

This code is pretty straight-forward, simply iterating over the lines in a file. One
notable thing is that the current scheme allows data to be placed in between

27

the ending of one log and the beginning of the header of another. During our
tests, we have encountered some issues with loading ltsmin modules; generated
error messages in between logs are ignored. It should be possible to parse this
information and display it to the user.

Header Analysis

The header analysis parses the header, as documented in B. A regular expression
extracts the relevant data from the file, elements of which are processed. The
most relevant are first, the tool version, which looks like ltsmin-1.5-20-gdd431,
where the last six characters are the initial six of the git revision from which
the tool was compiled (for the ltsmin tools, this string can be retrieved through
<executable> --version). Second, the start time/date is converted into a
datetime type (the type used by django’s DateTimeField, the field this data
needs to be inserted in), from the python module datetime. Finally, the call
(the string used to get the tool to execute) is analyzed to find the tool name
and algorithm name (through a regular expression), as well as applied options
and the used model (using the gnu getopt method provided by python’s getopt
module). Note this is slightly different from what is used in ltsmin; there, the C
module popt is used. However, gnu getopt provides the needed basic features,
without the need to package a C module in BeAT. If needed, however, it should
be possible to use python’s ctypes module to load C code and use it to parse
options. In theory, it should even be possible to allow the user to specify which
module should be used, by adding an option module field to the AlgorithmTool
table. Because of the complexity of adding these features and the lack of a
significant advantage over gnu getopt, we have chosen to leave this as future
work, however.

The specification of the used hardware and details about the kernel is also in
the header; however, currently, we only use the nodename and the kernel-release
fields, which are those that were considered most relevant. More information
(for example, installed library versions) , as well as the data that not currently
used, can be added to the header and the Hardware table. To collect this
information, the regular expression should be altered. Support for multiple
machines is currently not provided; adding this feature is a non-trivial task to
perform. Options would include using a delimiter to separate the information
for different machines (eg, assuming a delimiter |, Nodename could contain
node1|node2|node3), which should be relatively easy to split into different
hardware items. Assuming these items are placed in a list, the filereader can
already insert multiple items into the database (ie. an alteration of the database
structure is not required).

Finally, relevant regular expressions to parse the log are extracted from the
database and returned with the retrieved data for futher processing.

28

Log Analysis

The first regular expression, which was retrieved based on tool, algorithm and
version, is used to get the basic data out of the log: finish status, state and pos-
sibly transition counts, memory VSize and RSS, and user, system and elapsed
time. These are retrieved through group names, which are, respectively: kill,
scount, tcount, vsize, rss, utime, stime and etime. The group kill

should match to the empty string if execution was successful. The first regular
expression may contain additional information, through the use of additional
groups as specified in section 3.1.2. As mentioned in that section, the other
regular expressions, belonging to the options, are considered in a similar man-
ner. Again, it should be noted that the regular expressions are in-order and
data will be overwritten if the same group name is used twice. All the collected
information, including that of the header, is placed in a python dictionary type
and returned. This dictionary is provided to the database writing logic, which
inserts the data after performing a basic validity check.

Data Validation

Currently, data validation occurs through a simple method checks whether all
the fields are properly filled. It can mark data as invalid, or modify it to correct
errors. An example of the latter is that when transition count is not in the
dictionary (for example, because the -reach algorithm is used, which cannot
collect this data), it is set to zero (as opposed to leaving it on the value None).
Due to lack of knowledge on our part, not much interesting happens here. How-
ever, a programmer with experience with ltsmin should be capable to build
a useful extension that can detect potentially invalid, or perhaps even better,
interesting data, before it is entered into the database. Since the filereader is
build in an object-oriented manner, the function can simply be overwritten by
a sub-class.

Data Insertion

Inserting data into the database consists mostly of simple get_or_create()

queries, which create items as needed. If the --override switch is provided,
the Benchmark row is deleted if the get_or_create() query returns that it
already exists. Should the get_or_create() query result in an exception that
indicates multiple objects match the criteria, an error will be printed. This type
of error implies the database contains invalid data, so the user is informed to
take action, restoring the integrity of the database.

4.2.3 Tool Upload

In this section, the Tool Uploader will be discussed. Some information will be
provided on how to improve the script; for those sections of text, familiarity
with Python and JavaScript is assumed.

29

Webpage

The tool upload is preformed form the website with the page located under
Tool Upload. On this page there are several options fields in the form of an
django.forms.CharField. The page contains the five main fields as described
in toolupload and the two fields for the checking of the file. The cheking is done
by JavaScript.

Tool analysis

When the Send button is pressed the form is sent to views.py. The first
thing that is done is getting the gitrevision to check if the tool exists in the
gitrepository where all the tools should be stored. If not, the form is returned
to the user, displaying an error that the git version does not exist.

Tool Storing

If the given git version does exist the date is pulled from this git commit. It
is then parsed to a datetime object and together with all the pieces of data
it is then parsed into the database. Inserting data into the database consists
mostly of simple get_or_create() queries. Before the data of the options field
is placed into the database it first needs some adjustments. The options string
is pulled apart by using split(’\n’) so that every line is a different string.
Each line is then read out and placed into the database. In the final part of the
Tool Upload the user will have to go to the Django admin page to add regexes
so that any changes that the options bring to the log can be parsed.

4.3 Benchmark Table

The benchmark table is implemented in a client server strategy. The server
side receives a request, creates a response and sends it to the client. The client
creates requests and handles responses to show them on screen.

4.3.1 Server side

The server side receives requests from the server. This request contains a JSON
[2] object with data in it, which can be decoded with the python json library [5].
This object contains information to create a specific QuerySet of the Benchmark
table, namely:

• Filters to be applied on the initial QuerySet Benchmark.objects.all();

• Columns to be sent to the client;

• What the QuerySet should be sorted on.

We will now describe how the server side works.

30

Filters

?? After receiving a request, the server starts making a QuerySet with the data
the user has sent. The first step is applying the filters. At first, the selection
filter is run, which limits the QuerySet to all the id’s of the benchmark runs the
user has selected before pressing ”Filter Selection” by evaluating:

if len(data[’subset’]) != 0:

qs = qs.filter(id__in = subset)

Where qs is the QuerySet and data is a dictionary containing an array of
integers called subset. After applying the selection filter, each filter in the
filters array is applied:

• If the filter is one of the list filters (see below), every possible value of
this field is stored in an array, so that the backend knows what values are
available for the filter;

• The filter is applied by qs = filter.apply(qs).

BeAT recognizes the following filter types:

• Model name;

• Algorithm name;

• Tool name;

• Algorithm-tool version;

• Memory (RSS);

• Memory (VSIZE);

• Runtime;

• Number of states;

• Number of transitions;

• Date;

• Options;

• Finished;

• Computer name;

• Processor;

• RAM;

• Kernel version;

31

• Disk space;

• Selection.

Except for the selection filter, all filters have been ordered in classes specified
in beat.benchmarks.filter:

• ListFilter for the filters of type model name, algorithm name, tool name,
algorithm-tool version, processor, kernel version, and computer name.

• ValueFilter for the filters of type memory (RSS), memory (VSIZE),
runtime, number of states, number of transitions, RAM, and disk space.

• OptionsFilter for the options filter;

• DateFilter for the date filter;

• FinishedFilter for the finished filter.

These classes all use the QuerySet.filter function [11].

List filter The ListFilter class gets a list of strings containing names for
either models, tools, algorithms, computers, processors, algorithm-tool versions,
or kernel versions. When calling it’s apply function with a QuerySet qs, it
checks what filter type is given and filters qs so that only those benchmarks
with corresponding values are included.

Value filter The ValueFilter takes a certain integer or real value and a
style of filtering like ’greater than or equal’ or ’less than or equal’. When calling
the apply function, the corresponding field in the database is filtered with that
value and style.

Options filter The OptionsFilter contains a list of tuples of keys of options
in the database and values for that option. Its apply function finds the corre-
sponding OptionValue object for this key k and value v for every option and
value by calling ov = OptionValue.objects.get(option=k,value=v). If the
OptionValue does not exist, an empty QuerySet is returned, else, the QuerySet
qs is filtered by:

qs = qs.filter(optionvalue__in = [ov.id])

Date filter The DateFilter splits the received date in three parts: year,
month, and date. These values are used to filter the QuerySet on benchmark
runs that have been run before, after, or on a certain date by applying one of
the following commands:

32

• qs = qs.filter(date_time__gte =

datetime(year, month, day, 0, 0, 0),

date_time__lte =

datetime(year, month, day, 23, 59, 59)), if the benchmark
runs should be on the specified date.

• qs = qs.filter(date_time__gte =

datetime(year, month, day, 0, 0, 0)), if the benchmark runs
should be on or after the specified date.

• qs = qs.filter(date_time__lte =

datetime(year, month, day, 23, 59, 59)), if the benchmark runs
should be on or before the specified date.

Finished filter The FinishedFilter takes a Boolean value which it applies
on the QuerySet qs by calling:

qs = qs.filter(finished__exact=self.finished)

Column Selection

The server determines which columns the client can choose from. These columns
are divided into two categories: standard columns and extra columns. The
standard columns are the same as the filters described above in section ??,
minus the selection filter.

The extra columns are only available when one or more of the benchmark
runs in the used QuerySet contain it. The values for these columns are kept in
the table specified by the ExtraValue Model in beat.benchmarks.models and
are mainly generated by specific choices for options and/or algorithm and tool
combinations.

All available columns for a QuerySet (which are the standard columns com-
bined with the possible extra columns) are sent to the server in a JSON-object
array. Each of the objects in this array contains the attributes ’name’ and ’db-
name’, which stand for the name to be displayed to the user and the name to be
send to the server respectively. As an example, the object for the model name
column is:

{

’name’ : ’Model name’

’dbname’ : ’model__name’

}

The objects for the extra columns have both the name and dbname attribute set
to the name specified in the ExtraValue table.

Besides determining and sending all available columns, the server must also
apply the columns the user has chosen to the QuerySet. This is handled by the
addColumns function, which takes a QuerySet and an array of column names.

33

This function checks every column name c in columns and sees the following
cases:

• The column name is equal to the options column - in which case it needs to
execute a rather difficult query including concatenating strings and rows;

• The column name is in the HARDWARECOLUMNSARRAY (computername, pro-
cessor, ram, kernel version, disk space) - in which case it should get the
values from the Hardware table;

• The column name is not in the STANDARDCOLUMNSARRAY (containing the
names of all standard columns) - in which case it should get the values
from the ExtraValue table.

All remaining column names are automatically added when the command

apply(qs.values, columns + [’id’])

is evaluated [13], which also adds the identifier-column that is always needed in
the response. This command completes the column selection.

Sorting

The client sends an array containing arrays of column names and either ’ascend-
ing’ or ’descending’ to the server, specifying on which columns it should sort.
For example, the array

[

[’model__name’, ’ASC’]

[’total_time’, ’DESC’]

]

specifies that the server should first sort the QuerySet on the model name (as-
cending) and then on the runtime (descending).

The sortQuerySet function sorts a QuerySet. If the array the client sent is
empty, the function sorts the QuerySet on the identifier and returns it. If the
array is not empty, the function goes over each tuple of column name and order,
creating an array of keywords: the column name itself if the order is ascending,
the column name preceded by a ’-’ if the order is descending. The example
above would lead to the array [’model__name’,’-total_time’].

After all tuples are handled, the QuerySet is sorted by apply(qs.order by,

array) [12].

Context

Every ListFilter has a certain context: this is the list of all possibilities the
filter can have as values. These possibilities are calculated either before a filter of
the corresponding type is applied or when all specified filters have been applied.
For example, when first applying the filter runtime ≥ 12.5, then getting the

34

possible model names and then applying the filter model name on [’leader.b’],
the user sees all possible model names after the runtime filter is applied. This
way, the user can’t be surprised by an empty QuerySet when a model is chosen
that is unavailable after applying the runtime filter.

The function used to get the context of ListFilter filters is getContext,
which calls the corresponding get-function.

Response

The response the server sends to the client is structured as follows:

{

’benchmarks’ : [],

’columns’ : {},

’benchmark_ids’ : [],

MODEL : [],

ALGORITHM : [],

TOOL : [],

OPTIONS : [],

CPU : [],

COMPUTERNAME : [],

VESION : [],

KERNELVERSION : []

}

The values in the dictionary contain the following data:

• benchmarks is the array of benchmarks to be shown in the benchmark
table;

• columns is the list of possible columns the user can select from;

• benchmark ids is the list of all the benchmark identifiers in the QuerySet
before paging (needed for certain client-side functionality like selecting all
benchmarks);

• MODEL, ALGORITHM, TOOL, OPTIONS, CPU, COMPUTERNAME, VERSION, and
KERNELVERSION all contain context for ListFilters.

This python dictionary will be transformed into a JSON-String and send to the
client.

Flow Chart

The server handles requests from the client as specified in the flow chart in figure
4.2.

35

Figure 4.2: Flow chart of the server side of the benchmark table

36

4.3.2 Client side

The client side collects data and automatically sends a new request when there
is a change in a filter, in the columns selected, in the sorting, when the pagesize
is changed, or when another page is requested. It also keeps a list of identifiers
of the selected benchmarks, a list of all benchmark identifiers, and a list of all
possible columns.

Filter Table

The filter table, which can be found in beat/site media/js/filtertable.js,
is written as a jQuery [7] plugin, meaning that it can transform an HTML-
element, in this case a TABLE-element, into a filter table. The filter table
handles all the possible filters (except for the selection filter), meaning it makes
sure the user can select a filter type, select a filter style (if necessary), type,
select, add, or remove values, add or remove filters, etc.

For every filter in the filter table, an object is stored. This object is struc-
tured as:

{

type (String),

row (integer),

style (String),

value (String/integer/array),

error (Boolean)

}

In this structure, type specifies the type of the filter, row specifies the row in
which the filter is shown in the filter table, style indicates the filtering style
the user choose (which may be empty), value indicates the value the user has
specified, and error indicates if there is an error in the filter (e.g. when type

is set to ”empty” or value is empty).
In the filter table, the filters have been generalized into list filters, value

filters, a date filter, an option filter and a finished filter, which we will look at
now.

List filters The list filters include the filters for model name, tool name,
algorithm name, computer name, processor, algorithm-tool version, and kernel
version.

For the user to be able to specify which values he wants in the QuerySet,
he needs to be able to select one or more from a list of possibilities. As said
before, we have chosen for a user interface similar to that of Facebook, using
an edited jQuery plugin called tokeninput [17]. Originally, this plugin made
an AJAX request to the server to ask for possible values are, but because we
already receive these possibilities when doing a request, we modified it to search
in a locally stored array. The possibilities in this array have been filtered on
the server, so that the user won’t get an empty QuerySet. Furthermore, when

37

a request is made and a response has been received, all selected values in the
list filter that are not available anymore are removed.

In the list filter object, the style is left empty and value contains an array
of integers pointing to identifiers in the database. The error value is set to
True if the value contains no identifiers.

Value filters The value filters include the filters for memory (RSS), memory
(VSIZE), runtime, number of states, number of transitions, amount of RAM,
and amount of disk space.

The user is able to specify an integer or real value and a style on which the
filter should check, for example, it is possible to specify the QuerySet should
only contain those benchmark runs of which the measured runtime is greater or
equal to 10.3 seconds.

To be able to do this, the value of style in the filter object contains either
”equal”, ”greaterthan”, or ”lessthan” and value contains the integer or real the
user wants to check on. error is set to True when the textbox of the value is
empty or does not contain an integer/real.

Date filter The date filter works the same as a value filter, except that its
style can be equal to either ”on”, ”before”, or ”after” and its value should
contain a date in the form of yyyy-mm-dd. The error value in the filter object
is set to True if the textbox of the filter does not contain a string in the form
of yyyy-mm-dd.

Options filter The option filter is shown as a list of possible options in what
is called a mega dropdown menu; when the user hovers over a specific element,
a small menu appears. In this mega dropdown menu, a list of checkboxes with
option names and, if the option requires an argument, a textbox for the user to
specify a value for that argument.

The value of an option filter, which consists of a list of selected options and a
list of values for those options, is stored in the filter object as an array consisting
of two arrays: the first containing the identifiers of the selected options, the
second containing the values specified by the user for those options. If the
option takes no argument, it’s value is specified as ”True” in the value of the
filter object. The style in the filter object is always empty.

The error value in the filter object is set to True if no option is selected or
when an option that requires an argument is selected, but no value has been
specified.

Finished filter The finished filter’s value can only be True or False, which
is stored in the value of the corresponding filter object. The style in the filter
object is always empty and the error value of the filter object is always False,
as the finished filter is displayed as a selection menu, with True being the default
value.

38

Communication Filter table and Benchmark table

The benchmark table, which uses the filter table, can get the filters by calling
filters on the filter table element. When doing this, the filter table returns all
the filter objects that do not contain an error, so that the benchmark table can
send a request to the server.

After receiving a request from the server, the context of the possible op-
tions, models, etc. might have changed, so the benchmark table will call
updateContext on the filter table, after which the filter table will apply the
new context to every filter.

When a filter is changed, the filter table automatically sends a trigger with
the value specified in the constant TRIGGERCODE. When the benchmark table
receives this trigger, it will use the filters function to make a new request to the
server.

Benchmark Table

The benchmark table, specified in beat/site media/js/benchmarktable.js,
handles the following tasks:

• Selection of columns;

• Sorting;

• Creating the filter table;

• Paging;

• Filter on selection;

• Selecting all/invert selection;

• Exporting selected benchmark runs;

• Making requests to the server and handling them.

The benchmark table contains some variables to store data, namely:

• data, contains all data to be sent to the server;

• ASCENDING, contains the constant value for ascended sorting;

• DESCENDING, contains the constant value for descended sorting;

• DELAY, contains the constant value indicating the delay between changing
some of the data and sending a request to the server;

• checked benchmarks, contains the identifiers of all selected benchmark
runs;

• updating, Boolean value specifying whether a request to the server is still
being handled;

39

• update again, Boolean value specifying whether some data has changed
during an update;

• benchmarks, contains all received benchmarks from a response;

• benchmark ids, contains all identifiers in the QuerySet;

• columns, contains all possible columns;

• table, keeps the filter table;

• timeout, keeps the value resulting from a setTimeout function call;

• previousRequest, contains the JSON.stringify value of data while up-
dating, will overwrite previousSucceededRequest if a request completes
successfully;

• previousSucceededRequest, contains the JSON.stringify of the latest
succeeded request, if the data of a new request equals this value, the
request will not be sent to the server.

Column selection The selected columns are stored in data.columns as an
array of strings. All possible columns are displayed in a mega drop down menu
as a list of checkboxes. Each of these checkboxes has a change function spec-
ified, that update data.columns. Everytime a request is made, the function
updateColumns is called, which renews the mega drop down menu.

Sorting The variable data also contains the sorting the user specified. This
is structured as an array keeping tuples (in JavaScript arrays with two values)
of strings: the column name and ascending/descending. This means the user
can sort on any column he has selected in the column selection.

The table next to the filter table contains the mechanism for sorting. The
user can first specify which column name he wants to sort on and whether he
wants to sort ascending or descending. After specifying a column name, a new
row is added to the table to give the user the ability to sort on multiple columns.

As an example, if the user first wants to sort on model name (ascending)
and then on runtime (descending), data.sort contains:

[

[’model__name’, ’ASC’]

[’total_time’, ’DESC’]

]

Creating filter table When the benchmark table is loaded, it creates a filter
table by calling:

$("#filters").filtertable([], {});

40

Paging The current page and pagesize are kept in data.page and data.pa-

gesize respectively. When the filters or sorting has changed, the page is set to
0 and the benchmark table is updated. When clicking the first, previous, next,
or last button, the first, previous, next, or last page respectively is loaded by
setting the page and doing an update.

The pagesize is set in a form, with a default of 25 results per page. When
typing in another value and pressing enter/return, the page is set to 0, the
pagesize is set to the new value and the benchmark table is updated.

Selection filter When pressing ”Filter Checked”, data.subset is set to the
identifiers currently in checked benchmarks, the page is set to 0 and the bench-
mark table is updated. After doing so, the QuerySet is filtered to only contain
these identifiers, before the filters, sorting, column selection, etc. are handled.

This way, the user can specify it only wants to do something with these
specific benchmark runs.

Select all and invert selection When the user presses ”All”, checked bench-

marks is set to a copy of benchmark ids - the identifiers of all benchmarks in the
QuerySet, meaning that it is cross-page instead of only the current page. After
this, the ”All”-button changes into the ”None”-button, which, when pressed,
sets checked benchmarks to an empty list.

The ”Invert”-button inverts the selection: all identifiers that are in bench-

mark ids, but not in checked benchmarks, will form the new checked bench-

marks. Again, this works cross-page.
When clicking the ”All”-, ”None”-, or ”Invert”-button, updateCheckboxes

is called, which updates all the checkboxes in the benchmark table.

Export to CSV When clicking ”Export CSV”, the user can download a CSV-
file containing all the information of the benchmark runs in checked benchmarks.

Communication handling The update function is used to update the bench-
mark table. This function sets data.filters to the array of all filterobjects in
the filter table that do not have an error and sets a timeout to call makeRequest
if it’s argument direct is not set. If direct is set, it does not set a timeout, but
directly calls makeRequest.

makeRequest then sends an AJAX-request to the server, specifying that it
should call handleResponse when it finishes successfully.

handleResponse will then update local variables, update the filter table’s
context, update the sort table, columns and checked benchmarks and show the
new results in the benchmark table.

Request

A request is stored in the data variable in the benchmark table. This variable
is structured as follows:

41

{

sort : array,

columns : array,

page : integer,

pagesize : integer,

filters : array,

subset : array

}

Where sort contains the sorting data, columns an array of column names the
user wants to see, page an integer of the page the user requests, pagesize the
size of that page, filters an array of filterobjects from the filter table, and
subset the subset of benchmark identifiers the user wants to see. As a side
note, if subset is empty it is not processed on the server side.

4.3.3 Adding/Changing Functionality

Adding a filter

Adding a filter table means changing both the server and client side. On the
server side, a new constant must be added in beat.benchmarks.filter to name
the filter, for example, COMPUTERNAME contains the name for the Computername
filter.

Then the following cases are recognized:

• The filter is a list filter, in which case the constant must be added to
LISTFILTERS and CONTEXTFILTERS. Furthermore, a case for the new filter
must be added to the ListFilter class;

• The filter is a value filter, in which case the constant must be added to
VALUEFILTERS and a case must be added to the ValueFilter class to
support the new filter.

• The filter is neither a list filter nor a value filter, in which case a new filter
class must be added to beat.benchmarks.filter, extending the Filter
class. This class must have an apply function which takes a QuerySet
and returns a new QuerySet. Furthermore, a case for the new filter type
should be added to convertfilters function.

If the new filter also requires certain context, but isn’t a list filter (just like
the OptionsFilter), the constant should be added to CONTEXTFILTERS in beat-

.benchmarks.filter and to the variable result in the function makeResponse

in beat.benchmarks.ajax benchmarks. A corresponding get-function should
be added in beat.benchmarks.ajax benchmarks, which, in turn, needs to be
added to getContext().

On the client side, the constant should be added to beat/site media/js-

/filtertable.js, which in turn should be added to ALLFILTERS and to the
filtername-function. If the user should only be able to use the filter once, the
constant should also be added to UNIQUEFILTERS.

42

If the filter is a list filter or value filter, it should be added to LISTFILTERS

or VALUEFILTERS respectively. After doing that, you are done adding the filter.
If, however, the filter is not a list or value filter, the following functions

should be edited:

• $.fn.updateContext; if the filter does have context, it should be added
here in the same way OPTIONS is handled, checking whether the filterobj
is of the new filter type and if so, edit the filterobj and call rewriteRow.

• makeRowContents; here, the row for the filter is made. A case must be
added for the new filter type.

With this, the new filter has been added.

Adding a column

The columns are completely server side, meaning no JavaScript has to be edited
to add a new column.

To add a column, it should be added to STANDARDCOLUMNS and STANDARD-

COLUMNSARRAY in beat.benchmarks.ajax benchmarks if it is directly available
in the Benchmark table or through one of its foreign keys (like model goes to
model name), or in HARDWARECOLUMNS and HARDWARECOLUMNSARRAY if the value
is available for every benchmark and the value resides in the Hardware table.

Changing default columns

The default columns are defined in the initial data variable in beat/site-

media/js/filtertable.js. To change the default columns, the user must
change the value of data.columns to the default columns he wants. Keep in
mind that the values in this array equal the dbname values in STANDARDCOLUMNS

in beat.benchmarks.ajax benchmarks (note that these constant values are de-
fined in beat.benchmarks.filter) and that the order of these default columns
must still follow the order at which they are defined in STANDARDCOLUMNS.

Changing column order

To change the order of the standard columns, the order of the values in the
constants STANDARDCOLUMNS and STANDARDCOLUMNSARRAY in beat.benchmarks-

.ajax benchmarks must be changed. The order of the extra columns cannot be
changed, as they are queried from the database.

Again, keep in mind that the order of the default columns defined in data.sort

in beat/site media/js/filtertable.js must be equal to the order at which
they are defined in STANDARDCOLUMNS in beat.benchmarks.ajax benchmarks.

Changing default pagesize

The default pagesize can be found in data.pagesize in beat/site media/js-

/filtertable.js. Here, you can edit the initial (and thus, default) pagesize.

43

When changing this pagesize, the benchmarks template must also be edited to
show this new initial pagesize. This template can be found in beat/templa-

tes/benchmarks.html in a form called pagesizeform. Here, the value of the
input-element must be changed to the new default pagesize.

Changing list filter result size

The size of the number of results shown when typing in a list filter can be
found in beat/site media/js/filtertable.js and is stored in the constant
LISTFILTERSIZE. Changing this value will change the number of results shown
when typing, but keep in mind that the higher the number, the longer the
JavaScript will have to look for results.

4.3.4 Notes

Notes on database access and differences

Though we tried to use the Object Relationship Mapping of Django as much
as often as possible, it was not always sufficient for the data we had to get
from the database. To get the hardware columns, extra columns, and options
column (computername, processor, etc.), we had to use manually written SE-
LECT queries, as specified in the addColumns function of beat.benchmarks-

.ajax benchmarks. Furthermore, one of these SELECT queries cannot be used
over all SQL-servers and uses custom queries; the query that gets the Options
column from the database. This query does concatenates all options used for a
benchmark run, meaning it concatenates over multiple rows. The queries have
been written for both SQlite3 and postgresql.

4.4 Comparisons

In the next two sections, the interactions and data flows for creating graphs will
be discussed. Afterwards we will discuss our implementation issues with flot.

4.4.1 Scatterplot

The user starts at a form where he can select the options to be used for the
comparison. The form fields are defined in comparisons.forms.py and the data
is processed in the compare scatterplot() method of comparisons.views.py.
The options are discussed in section 3.4. The standard Django pattern for forms
processing is used [16]. If the form is not submitted, then an empty form will be
shown to the user. Otherwise, submitted form data will be handled: An entry
in the Comparison table is added by calling the create() method. Next, the
selected options are created in the many-to-many table. This many-to-many
relation is needed because for one comparison, multiple options can be selected.
Finally, the hash value for this comparison is calculated based on the ID. The
user is then redirected to a page where the graph is displayed.

44

The comparisons.views.compare detail() function first filters all data
from the Benchmark (and related) tables in the database. Specifically the mod-
elnames, memory and time data (for both benchmark settings) are zipped into
a list of tuples. All this data is then sent to the compare.html template as
context variables. Before the HttpResponse is returned, the user is checked for
his authorization key. If the user has no permission to view this comparison, he
is redirected to a 403 permission denied page.

The template contains a static link to an image called scatterplot.png.
In urls.py, this image is mapped to the method that produces the graph as a
PNG file. The comparison ID is read from the URL, so the view function knows
what data to plot.

The comparisons.views.scatterplot() function is responsible for con-
verting the data of one comparison to a scatterplot graph. The MatPlotLib
Python library is used to plot both types of graphs.The Benchmark objects
are filtered from the database, as defined by the comparison. The two sets of
Benchmark objects are intersected on the modelnames they contain.

If the resulting data set is empty, then an empty graph is shown to the user.
Othewise, the data is converted a bit so it can be plotted in a graph. Two
separate graphs (one for runtime, the other for memory usage) are plotted into
one figure by using the add subplot() method. For each graph, the following
actions are performed:

• The total time or memory RSS values are selected from the benchmark
sets.

• The datapoints are masked either red or blue.

• A linear function is plotted to show where the values for both series are
equal.

• The data is plotted using the scatter() function.

• The axes are labeled and colored.

The same list is executed for the memory RSS plot. Finally, the figure is
exported in PNG format.

4.4.2 ModelComparison

The actions performed to create a graph for comparison of models are nearly
the same. The comparisons.views.graph model() method will be explained
here:

• Data is extracted from the database, specified by the ModelComparison

object.

• All models in the database are aggregated by name.

45

• For each model in the dataset, a line is plotted of the selected data type
over all available dates.

• Finally, the graph legend is printed and the plots are labeled.

4.5 User Management

Django comes with a user authentication system to handle user accounts, groups
and permissions. Only the first feature is used for BeAT. The standard Django
model django.contrib.auth.models.User is used to model a user in the da-
tabase. No additional data about a users is stored.

In the base.html template, the {% if user-is authenticated %} block is
used to check whether a user is authorized to view links to personal pages. The
@login required decorator is used in views to check whether a user is autho-
rized to access a specific view. This used for all of the comparison and jobs pages
and the benchmark table page. If a user is not authorized to view a certain page,
he will be redirected to the login page. In settings.py, the location of the login
page is defined as LOGIN URL = ’/login/’. This URL is mapped in urls.py

to a predefined Django view called django.contrib.auth.views.login that
uses the custom template login.html. After a succesful login, the user is redi-
rected back to the page he tried to acces. More information about django’s
authorization mechanisms can be found in the django doucmentation [15].

4.6 PBS script generation

The code that handles the generation of PBS scripts and the saving of a the op-
tions of a specific job specified on the website is all located in the app beat/jobs.
This app defines a single table in the database that describes the arguments that
can be passed to the script generation code. The scripts are generated using
Django templates, located in beat/jobs/templates. When a script is to be
generated the template main.tpl is loaded from this folder and supplied with
the values of all relevant variables, and Django will then use its builtin tem-
plate handling to produce the script. The template language is quite simple:
{% include "somefile.tpl" %} will insert the contents of somefile.tpl at
that point, and {{ variable_name }} will be replaced with the value of the
variable with that name. Django supports more instructions, and can handle
quite complex templates, but none of those are in use in the PBS script tem-
plates at this time. For that reason they will not be discussed at this point, for
more information on Django-templates visit the Django website. After Django
has processed the templates it produces a single long string containing the re-
sulting text. When a single pbs script is requested, the app will write that string
to a virtual file and then serve it to the user. When the user requested a suite,
all the resulting strings are written to virtual files, which are then added to a
(virtual) gzipped tar-file, which is then served to the user. By using virtual files
the server never needs to write to the harddrive to generate these scripts and

46

they are small enough to fit in memory (a few kilobytes per file, which should
be freed by the garbage collector after the download is complete). The code
that produces a suite and the code to create a single script are both in jobs.py.
The code that creates a virtual tar-file is located in jobs_fileserv.py.

4.7 Tools Module

The Tools package contains some helpful modules with mostly generic methods
that are explained below.

export csv - contains a function export() that takes a Django queryset and
outputs a comma-separated values (csv) document with column names
and all rows of that queryset. Optionally, a title for the document and a
list of column names that should be excluded from the document can be
given as arguments. We use this for exporting data from the benchmark
table. This module uses the python CSV library [4], as documented in the
django docoumentation [10].

feeds - Django provides a high-level syndication-feed-generating framework
that makes creating RSS and AtomFeed easy [14]. This module can be
extended by creating additional subclasses of django.contrib.syndica-
tion.views.Feed. Each class needs the title, link and description at-
tributes and the methods items(), item title() and item description().
Furthermore, each Feed class needs to be mapped in urls.py.

graph - the export() method in this module is used for exporting graphs as a
HttpResponse. The user can indicate the file format to which the graph
is exported (default is png, other options are pdf, ps, eps and svg). This
method requires a MatPlotLib Canvas object as an argument.

hash - a simple method to create a SHA1 hash out of a string. This is used to
create the authorization key for sharing comparisons.

intersect - the intersect() method takes two lists and returns the intersec-
tion of this list, by converting the lists to sets, applying the and operator
and finally converting it back to a list. In BeAT, this is used to find the
correct set of benchmarks for a comparison.

logsave - the code used to interact with a local git repository. This code
has been seperated from the filereader code so that it may be completely
optional, preventing issues for machines where dulwich is not available.
This file provides a function to write and read logs, as well as initialization
code. A function to get the latest tree in the git repository containing the
logs is also provided. The most important advantage of this code is that
it does not generate raw text files, but instead commits directly to the git
repository. This avoids two issues: file size and slowness of a filesystem
for folders that contain a large amount of files.

47

regex tester - This script provides a simple function to test a regular expres-
sion as would be done in the filereader code. It is used in conjunction with
some javascript on the tool upload page (see section 3.2.3).

git interface - The GitInterface is a small shell around the gitpython module,
allowing BeAT to interact with git. It contains two functions that will be
discussed: match from tag(given tag) and get matching item(hash).
match from tag(given tag) will find the revision related to the given
tag. It takes the TagReference.list items(repo) from gitpython, it will
iterate over this list and return the requested commit. get matching i-

tem(hash) does the same but it uses iter commits() instead of Tag-

Reference.list items(repo), searching for the revision based on hash
instead of tag name. The returned item from these functions can be used
to get the commit date.

48

Chapter 5

Future work

We have several recommendations for features that can be added to the system.
These are features that could not be added during the project because of time
constraints. We will give a short description of each feature, an explanation of
the feature and our estimate of the implementation difficulty. These suggestions
are sorted by their priority. The overview of these features is in table 5.1 and
continues in table 5.2.

49

Table 5.1: Future work
Name Difficulty Explanation
FLOT medium At the moment our graphs are gener-

ated using Mathplotlib. Graphs that
are generated using this library are
static and do not allow for interactions.
In a scatterplot it is not possible to add
labels because these would take up too
much space. Instead, a solution with
flot and a mouseover when hovering
over a point was proposed. Part of
this feature was implemented but it was
not realised because there were some is-
sues with client-side transformations of
(time-based) data.

Easier addition of algorithm-tools medium AlgorithTools need to be added to the
database in order to recognise the logs.
A good solution should be created that
does never add invalid data, but is not
too unfriendly for the users. The cur-
rent solution is safe, but might be a nui-
sance depending on the amount ltsmin
revisions used to create logs.

Filter on git revision medium The current benchmark table only all-
lows the user to filter on the date of a
tool’s creation. It does not enable the
user to filter on the hash of the revision
of the used ltsmin version.

Filter on extra values medium Filter benchmark instances by the value
of their extra values.

Multiple hardware support medium/hard BeAT does not use all the information
it has with regards to the hardware used
to create runs. The impact of differ-
ences in cpuś (for example: more cache,
new instructions) might have a large im-
pact on runtime. At the moment BeAT
is not able to generate graphs using this
data.

Options column medium The benchmark table does not show the
options used to create each benchmark
instance. This is confusing since multi-
ple instances which only vary in options
look exactly alike.

50

Table 5.2: Future work (continued)
Name Difficulty Explanation
Better user management medium Currently all benchmarks are available

for registered users. Visitors can only
see benchmarks if they have the perma-
link. Complete groups support could be
added. This could hide private branches
their benchmark results or make all re-
sults for published versions public.

Better CSV export easy The current CSV export exports all
columns. This is easy to fix with console
tools, or by ignoring the extra data. Se-
lecting the columns you wish to export
(and saving this setting) would be a nice
addition.

Typed extra vlues hard Currently the extra values are stored as
a string. Support for typing would add
some validation, make processing a bit
easier and is considered to be a cleaner
solution.

Tools from other repositories easy/hard Enable BeAT to import logs created
by other tools. Depending on their
log structure and structure (frontend +
backend, or more parts) adding these
tools is relatively easy or could get very
hard.

51

Appendix A

Glossary

A.1 BeAT Glossary

Name Description
Algorithm The state space exploration method used to analyze

the models.
AlgorithmTool The combination of an algorithm and a tool, which

is represented by an ltsmin executable.
Benchmark The data that results from running an Algorithm-

Tool once (usually on specified hardware, with cer-
tain options and a particular model).

Comparison The section of the BeAT application that concerns
comparing two AlgorithmTools, resulting in a scat-
terplot of results.

Filters The section of the BeAT application that allows fil-
tering within the table. Does not refer to django fil-
ters (the table filtering is performed in javascript).

Log The output generated by the AlgorithmTool. Note
that this refers to an abstract level, not to a par-
ticular file.

Model A description of a state space in a certain language.
ModelComparison The section of the BeAT application that allows

the user to see information about multiple models
over time for a particular AlgorithmTool.

Run An execution of a Benchmark. May also refer to
the results of such, as a synonym to Log

Tool The appropriate language module to read models.
(AlgorithmTool) Version The exact version string of the AlgorithmTool, con-

taining the first 6 characters of the has of the git
revision it was built from

52

A.2 Django Glossary

Term Definition
admin The Django administration is an automatically-generated ad-

min site which runs directly on top of the database. It can be
used to browse and modify specific data. For BeAT, the admin
is used to create new users. Views for editing or browsing data
in the admin can be manually adjusted in admin.py.

application All the modules of a Django website are called applications.
BeAT contains three applications: benchmarks (stores all re-
sult data), comparisons (handles graphing) and jobs (to gen-
erate job scripts). Within BeAT, Tools is a module that only
contains some helpful methods, such as a simple hash function
and data export functions. Tools does not need models.py or
views.py.

decorator Special Django methods to do a preliminary check before a
view function is executed. For BeAT, we use decorators in for
login authentication and caching.

field attribute on a model; a given field usually maps directly to a
single database column.

model Models store your application’s data. They represent the
database structure of a project. Each model is represented by
a class that subclasses django.db.models.Model. Each model
has a number of class variables, each of which represents a
database field in the model.

project A Python package i.e. a directory of code that contains
all the settings for an instance of Django. This would
include database configuration, Django-specific options and
application-specific settings.

queryset An object representing some set of rows to be fetched from the
database. No database activity actually occurs until you do
something to evaluate the queryset.

template A chunk of text that acts as formatting for representing data.
A template helps to abstract the presentation of data from the
data itself. It contains the HTML code to which Django can
pass context data.

url The file urls.py defines how URLs are mapped to views.
Django runs through each pattern and stops at the first item
matching the requested URL. Each pattern contains a regu-
lar expression in which named groups can be used, to capture
specific bits of the URL.

view A function responsible for rendering a page. In the Model-
View-Controller pattern, a Django view is about equivalent to
the controller.

53

A.3 Software

Name Description
Dulwich A python module that allows the programmer full

access to any (locally stored) git repository.
Django A framework for webdevelopment in python.
Gitpython A python module that provides basic operations on

git repositories.
Matplotlib A graphing module for python.

54

Appendix B

Header

The header looks as follows:
BEGIN OF HEADER
Nodename: hostname of the executing node
Hardware-name: the name of the hardware platform (eg x86 64)
OS: the OS name (eg GNU/Linux)
Kernel-name: the name of the kernel (eg Linux)
Kernel-release: the release name of the kernel (eg 2.6.26-2-amd64)
Kernel-version: the version of the release (eg #1 SMP Thu Feb 11 00:59:32
UTC 2010)
Hardware-platform: name of the hardware platform
Processor: name of the processor
Memory-total: the amount of memory available, in kilobytes 1028804
DateTime: the time the run was started, in the format ”year month day hour
minute second microsecond”
ToolVersion: the version of ltsmin used to create this log (eg ltsmin-1.5-20-
g6d5d0c)
Call: the way the tool was called to generate this log. This is usually bash. For
example:
memtime lpo2lts-grey -c ./ltsmin-models/mucrl/f42.tbf ./ltsmin-models/mucrl/t42.dir
memtime tracks time and memory use. lpo2lts-grey is the AlgorithmTool exe-
cutable, followed by options (here -c) and
additional arguments (it is assumed that the first of these is the model).
END OF HEADER

55

Appendix C

Filereader Options

This information can also be obtained by using python filereader.py --help.
Usage: filereader.py [options]
Options:
-h, --help show this help message and exit
--silent Print only dangerous errors (like database integrity warn-

ings).
-q, --quiet Print default amount of messages; one per item under nor-

mal circumstances.
-v, --verbose Print additional (helpful) information, such as a summary

of added data.
--noisy Print as much as possible. Useful for debugging this script,

not intended for other use.
--override Override existing data.
--dulwich Use this switch if logs are to be saved to a local git reposi-

tory.

56

Bibliography

[1] Brian Cherne. hoverintent jquery plug-in.
http://cherne.net/brian/resources/jquery.hoverIntent.html.

[2] D. Crockford. The application/json media type for JavaScript Object No-
tation (JSON). RFC 4627 (informational). Published by the Internet En-
gineering Task Force.

[3] Fee Software Foundation. GNU core utilities frequently asked
questions. http://www.gnu.org/software/coreutils/faq/coreutils-
faq.html#Argument-list-too-long.

[4] Python Software Foundation. csv - CSV file reading and writing.
http://docs.python.org/release/2.6/library/csv.html.

[5] Python Software Foundation. json - JSON encoder and decoder.
http://docs.python.org/release/2.6/library/json.html.

[6] Python Software Foundation. optparse - more powerful command line op-
tion parser. http://docs.python.org/release/2.6/library/optparse.html.

[7] The jQuery Project. jQuery: the write less, do more, JavaScript library.
http://www.jquery.com.

[8] Django Project. Django documentation.
http://docs.djangoproject.com/en/1.2/.

[9] Django Project. The django template language.
http://docs.djangoproject.com/en/1.2/topics/templates/.

[10] Django Project. Outputting CSV with django.
http://docs.djangoproject.com/en/1.2/howto/outputting-csv/.

[11] Django Project. Queryset api reference - filter keyword arguments.
http://docs.djangoproject.com/en/1.2/ref/models/querysets/#filter-
kwargs.

[12] Django Project. Queryset api reference - order by.
http://docs.djangoproject.com/en/1.2/ref/models/querysets/#order-
by-fields.

57

[13] Django Project. Queryset api reference - values fields.
http://docs.djangoproject.com/en/1.2/ref/models/querysets/#values-
fields.

[14] Django Project. The syndication feed framework.
http://docs.djangoproject.com/en/1.2/ref/contrib/syndication/.

[15] Django Project. User authentication in django.
http://docs.djangoproject.com/en/1.2/topics/auth/.

[16] Django Project. Working with forms. http://docs.djangoproject.com/en/-
1.2/topics/forms/#using-a-form-in-a-view.

[17] James Smith. Blog of james smith. http://loopj.com.

[18] Ars Technica. Image of OS X finder. http://media.arstechnica.com/-
images/tiger/spotlight-find-metal.jpg.

58

