
1

Providing A Basis For Verifying Android Applications In
JML

Alexander Drechsel
University of Twente

P.O. Box 217, 7500AE Enschede
The Netherlands

a.w.b.drechsel@student.utwente.nl

ABSTRACT

Android applications are often hard and time consuming to

verify. This is in part due to the fact that currently available

tools and specification languages are not sufficient for the

verification of Android applications. Validation of applications,

however, is important to ensure reliability and correctness. This

paper provides a basis for the development of a Java Modelling

Language extension to assist in specifying and verifying

Android applications. Java Modelling Language is a

specification language which tools can use to verify Java code.

The specification and verification works by annotating every

method with requirement assertions which should be true when

the method is called and assertions which the method body

should ensure become true after a method has been executed.

This paper proposes supporting Android validation by

developing a JML extension designed for Android code and

provides a basis for such an extension.

Keywords
Android, Java Modeling Language, Verification, Specification

1. INTRODUCTION
Android devices are being sold in increasing numbers and the

Android OS is achieving a larger market share of smartphones

each year[4]. With this increase in sales the number of

applications developed for Android increases each year as well.

The quality of these developed applications varies greatly, with

some being error-prone to a large degree.

Though the Android API prevents such error-prone applications

from harming the overall system, such applications may, for

example, be unusable or unnecessarily consume large amounts

of resources. One of the factors contributing to this variance in

quality and reliability is the fact that Android applications are

difficult to properly validate. By validation we mean ensuring

that an application is correct by formally checking that it

satisfies its own requirements. This is because of several

reasons:

 Android applications are multithreaded. This is the

main source of difficulty because most formal

specification languages and their related tools are not

yet able to handle this properly.

 Not all of an application’s behaviour is written in Java

code, some is specified in xml-files.

 An application may be interrupted by other parts of

itself or different application but they must be able to

restore their state afterwards.

These are the reasons why existing tools and languages for

validation are not sufficient to properly validate Android

applications and most validation must be done by hand. This

way of validation, however, is time consuming and does not

guarantee that the application does not react in ways the

developer did not foresee.

One of the languages which can be used for specification and

validation is Java Modelling Language[6] (JML). JML is a

specification language for Java which works via Design by

Contract. Design by Contract is a programming method where

each method is given a contract in an annotation. This contract

indicates that a method will ensure certain conditions to be true

after the method is executed provided certain requirements

hold. JML can be used to specify Android code because

Android code is based on Java. However, Android, due to its

architecture, poses new challenges which make Android

applications difficult to handle with currently existing JML

techniques.

This paper proposes supporting Android validation by

developing a JML extension designed for Android code and

provides a basis for such an extension. We achieve this by

briefly discussing the API and what should be done related to

that, we study Activity transitions and provide specification

clauses to quickly describe their behaviour. By specification

clause we mean in this paper a semantically specific part of a

formal specification indicated by a keyword. We also provide a

specification clause for a group of functions which support

specification of concurrent behaviour. Finally, we discus

Android permissions and how to verify that the correct and only

the correct permissions have been requested. This paper

addresses parts of the multithreaded aspects and behaviour

outside of Java code but does not address interruptions by other

applications or the Android OS.

2. BACKGROUND
In the following we provide background information about JML

and Android that is necessary for this paper.

2.1 Java Modeling Language
JML[6] or Java Modeling Language is a specification language

for Java. JML specification follows the Design by Contract[8]

paradigm using Hoare logic[5]. Hoare logic is a formal system

with a set of logical rules for reasoning about the correctness of

computer programs. Hoare logic works using Hoare triplets

which is a set of assertions with a command. If the first

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee.
21thTwente Student Conference on IT, June 23st, 2014, Enschede, The

Netherlands.

Copyright 2014, University of Twente, Faculty of Electrical Engineering,

Mathematics and Computer Science.

2

assertion holds true then after execution of the command the

second assertion will hold true.[5].

Logic assertions are added to Java code as Java annotations for

each method and variable.

A simple example of JML specification is given in Figure 1.

This example is about a simple counter which has methods to

increase or decrease the counter and a method to return the

current count. The count may be not negative which is asserted

using a invariant. Both the method to increase the counter and

to return the current count do not have a requirement which

means in Hoare logic that their first assertion is simply true.

The method to decrease the counter, however may potentially

lower the count to negative values. To prevent this from

happening the requirement number>=amount was added to

assert that no number larger than the current count is subtracted.

The ensures clause in each method forms the second

assertion and in this simple example exactly describes the effect

of each method.

After specification has been added the validity is verified, either

manually or using verification tools. There are various

verification tools which use JML but they can be broadly

divided into two categories: Static Checkers and Runtime

Checkers.

Static checkers verify applications by using its source code and

the associated specification without executing any code.

Runtime Checkers verify applications by executing the

application and verifying for each state if the associated

specification holds.

2.1.1 Ghost variables
Ghost variables are specification only variables which function

similarly to Java variables. A ghost variable may be created

anywhere a Java variables may be created plus in method

headers. Values can be assigned to ghost variables using the

JML set command anywhere a Java variable could have a value

assigned. A ghost variable will then have this value in the same

manner as a Java variable. Like Java variables, ghost variables

have a scope and if declared inside a method body will only

exists within that body.

2.1.2 Final notes about JML
JML is still in development and has many variants and

extensions. One weakness of JML and Hoare logic in general is

that it handles concurrency poorly due to the fact that sequential

execution of methods cannot be guaranteed.

 Figure 1. A simple example of a JML specification.

2.2 Android
Android is a software platform for mobile devices that includes

an operating system, middleware and key applications. [7]

Applications for Android are usually created in Java with the

help of the Android SDK and design guidelines. Android

applications are designed using four components:

 Activities which are used for user interfaces and

are the core of each application usually starting other

components,

 Services which perform actions in the

background for an unlimited period of time,

 Broadcast Receivers which simply react to

announcements,

 Content Providers which allow applications to

make parts of the applications data available to other

applications.[7]

2.2.1 Activities and the activity lifecycle
Activities are the most used components in Android and are

managed using the Activity Lifecycle where activities are either

alive, paused, stopped or finishing. It is important to note here

that stopped activities, though hidden, still contain all its state

and member information[7]. This is important because the

application can return to this activity and thus must remain

valid. Finally it should be noted that most interaction between

user and application occurs via events which happen

concurrently.

2.2.1.1 The Activity class
In code Activites all possess the same general framework.

An activity has a onCreate method which is called to create

the Activity. The onCreate method broadly functions the

same way as a constructor for a Java class, initializing the

various elements in the class. After the onCreate method is

finished and the Activity is brought to the foreground the

onStart method is called which should be used to initialize or

restore volatile memory consuming data or actions. onStart

is also called when a stopped Activity is restored. The

onBackPressed method is a method which is called when

the user presses the back button on his or her Android device.

By default this method simply ends this method and restarts the

//@invariant number>=0;
private /*@spec_public@*/ int number;

//@assignable number;
//@ensures number == \old(number)+ amount;
public void addToTotal(int amount){
 number = number+Math.abs(amount);
}

//@requires number>=amount;
//@assignable number;
//@ensures number == \old(number)+ amount;
public void substractFromTotalNoNegative(int
amount){
 number = number-Math abs(amount);
}

//@ensures \result == number
Public /*@ pure @*/ int getNumber(){
 return number;
}

3

previous Activity indirectly calling its onStart method

but may be overridden to have various other functions. Aside

from these methods an Activty will have one or more

methods which will be called when a button on the screen is

pressed. These methods then handle the user interaction and are

generally the source of transitions to other activities.

Activities which are more complex will need to override more

methods from the Activity class such as the onStop

method but the information given above is sufficient for the

examples given in this paper.

In Figure 2 is an example of a basic Activity. Though not

strictly necessary the onStart and onBackPressed

methods have been explicitly added even though they simply

call their parent method.

 Figure 2. Example of a basic Activity.

2.2.2 Properties defined in xml-files
Not all of the properties and behaviour of Android Activities

are contained within their Java class, some are contained within

the associated XML file and the Application’s

AndroidManifest.xml file.

The AndroidManifest.xml file is the core file of an Android

application and presents all essential information of the

application. Among this information is a description of all

Activities. This description gives the capabilities of each

Activity and its launch behaviour.

All Activities have an associated xml-file which has the same

name as their Java class and describes the initial state of the

GUI for that activity and the names for all its elements.

2.2.3 Permissions in Android
Android applications by default are not allowed to access the

full functionality of Android and can only access functions

which according to the android developer guide “cannot do

anything that would adversely impact the user experience or

any data on the device.”[1]. Any application which requires

access to protected function will need to set the required

permission for the protected functions in its AndroidManifest.

When installing an application Android will request the user to

grant an application its required permissions.

3. CONTRIBUTION
This paper provides a basis for a JML extension for specifying

and validating Android applications. This basis is provided by

examining several basic components nearly every Android

application will have.

The research for this paper was mainly done using a case study.

The case study is an Android version of the Pong video game

and was originally developed for OVSoftware as a student

project[2]. The case study is a relatively simple application

having only Activities and non-Android classes. During

specification of the case study a class named Annotation was

added to the application to serve as a container for several

global variables which were added for specification purposes.

While the extra class was not strictly necessary, it improves

readability compared to adding the variables an existing class

because they are not strictly part of the application.

From this case study we have drawn several conclusions which

contribute to a JML extension for specifying and validating

Android applications. We identified a way to specify transitions

from one activity to the next using ghost variables and propose

a short way of writing this. Motivated by the splash screen and

its common use in Android applications we identified what

constructs are necessary to specify a set of concurrency

methods from Android of which postDelayed is one

example.

Separate from this case study, we also researched permissions

and identified a clause which can be used to verify an Android

application requests the permissions it needs and does not

request unneeded permissions.

4. PRELIMINARIES: THE API
A side problem for any specification of code that refers to APIs

or Libraries is that typically no openly available formal

specification exists for these libraries. This specification is

important because it defines the framing of each method. By

framing we mean what variables and objects a method

modifies. Framing is specified in JML using pure and

assignable. This framing is important because it is a main

method of reasoning for static checkers and greatly boosts

execution speed when runtime checking. Because of the size of

the Android API and the ubiquity of its use within Android

application code, it is especially important that some form of

formal specification of the Android API exists when specifying

Android applications.

Methods which change no variables or objects are specified are

pure. The only methods which may be used directly in

specification expressions are methods which are pure.

Methods which do modify variables and objects should have an

assignable clause. The assignable clause should specify

which variables and objects are changed.

Static checkers require that framing is specified for each

method. They require this framing to reason about variables and

comparing the specification to the source code.

Though it is not necessarily required for runtime checkers it is

generally desired for framing to exist because it greatly boosts

execution speed. This increase in execution speed is because

instead of needing to recheck the complete state space it only

public class InstructionActivity extends Activity
{

 @TargetApi(Build.VERSION_CODES.ICE_CREAM_
SANDWICH)
@Override
protected void onCreate(Bundle
savedInstanceState) {
 super.onCreate(savedInstanceState);
 this.setRequestedOrientation(ActivityInfo
.SCREEN_ORIENTATION_LANDSCAPE);
 overridePendingTransition(R.anim.fadein,
R.anim.fadeout);
 setContentView(R.layout.activity_instruct
ion);
 getActionBar().setDisplayHomeAsUpEnabled(
false);
 if(Build.VERSION.SDK_INT>=Build.VERSION_C
ODES.ICE_CREAM_SANDWICH)
 getActionBar().setHomeButtonEnabled(false
);
 }

protected void onStart(){
 super.onStart();
 }

public void onBackPressed(){
 super.onBackPressed();
 }
}

4

needs to recheck a smaller portion of the state space. It should

be noted that this increase in execution speed requires that the

assignables are indeed correct. With runtime checking it is

possible to verify that the assignables are correct though this is

difficult.

For this research we will assume that it is already known which

methods are pure and that for non-pure methods at least some

form of framing has been specified, such that they can be used.

Initial estimates of which methods are pure can be done by

assuming that all “get” and “is” methods are pure. While this

should cover most methods which are pure within the Android

API it could have false positives, where a get method aside

from returning the requested data also increases a counter which

tracks the number of times the data has been requested or a

similar variable change, and false negatives, where a method

which does not use the naming convention is pure. An example

of a false negative we encountered during the case study is

UptimeMillis() from the android.os.

SystemClock class whose informal specification suggests

that it is a pure method.

Specification of which variables non-pure methods modify is

somewhat more involved but can be abstracted by

encompassing the variables and objects a method changes

inside an abstract frame. One way of abstracting the modified

variables and objects into a frame is by using dynamic frames

as explained in Dynamic Frames in Java Dynamic Logic by

Schmitt et al[12].

Of course such estimated and abstracted specifications would

need to be checked against the actual implementation of the

Android API but that is not part of this work and such

verification would be quite difficult[9][13]. For the purposes of

this paper estimated specifications using the assumptions

mentioned above were generally sufficient.

5. ACTIVITIES
In this section we discuss how Activity transitions in Android

can be specified with JML. While these transitions can be

described without an extension to JML, this is quite lengthy and

has much duplication. To this end we propose two new JML

specification clauses: activityTransition and

activity. We discuss the intuition behind these two new

clauses here and a final version of its syntax and semantics is

given in Appendix A.

5.1 Activity transitions
One of the aspects which makes Android difficult to specify in

standard JML is the transitions from one Activity to the next.

Not only is this difficult because Android is a concurrent

platform but the Android environment can change applications

by interrupting them with time-sensitive events such as a phone

call or by destroying stopped Activities to free up memory.

An Activity does not directly transition to another Activity but

instead creates an intent which is sent to a handler which will

set up and execute the actual transition. For our case study we

referenced Midlet Navigation Graphs in JML by W. Mostowski

and E. Poll[10] on how we could describe screen transitions and

like in [10] mainly used ghost variables to describe each

transition, abstracting much of the complexity.

5.2 Specifying using basic JML
During the specification of the case study we used ghost

variables and the abstraction they provide to specify activity

transitions. For each transition we specified what the next

Activity should be and to which Activity it should return to if

the back button is pressed.

Ghost variables alone, however, do not necessarily reflect the

actual state of an application, thus we expanded the receiving

onStart() method using hasWindowFocus() to verify

that the receiving Activity is alive and on the foreground. We

also made it a requirement that intents for Activity transitions

should only be created by Activities for which

hasWindowFocus() is true. This is generally not required

by Android. But we added it because typically only the active

Activity should trigger an activity transition. The final version

of this specification clause should also allow this to not always

be a requirement. Additionally, we added a new ghost variable

screenTransition to indicate the volatile state the

application enters when transitioning to a new Activity (that is,

an intermediate state between the active activities). Finally, we

did not concern ourselves with framing during this part of the

case study. Figures 3 and 4 have been taken from this part of

the case study.

 Figure 3. Method from MainMenuActivity from the

case study initiating a transition to LobbyActivity

specified with basic JML.

/* @requires Annotation.screenTransition==false;
@requires this.hasWindowFocus();
@ensures Annotation.next ==
Annotation.LOBBYACTIVITY;
@ensures Annotation.previous ==
Annotation.MAINMENUACTIVITY;
@ensures Annotation.screenTransition==true;
@ensures quickplaybutton.isEnabled()==true; */
public void customPlay(View view) {
if(!quickplaybutton.isEnabled()){
 quickplaybutton.setText(R.string.quickpla
y_button);
 quickplaybutton.setEnabled(true);
 NetworkService.getInstance(this).update(n
ull, new QuickPlayEvent());
 }
/* @set Annotation.screenTransition=true;
@set Annotation.next=Annotation.LOBBYACTIVITY;
@set Annotation.previous =
Annotation.MAINMENUACTIVITY; */
Intent intent = new Intent(this,
LobbyActivity.class);
NetworkService.getInstance(this).update(null, new
JoinLobbyEvent());;
startActivity(intent);
}

5

Figure 4. Relevant methods from LobbyActivity for

receiving transitions specified with basic JML.

5.3 Specifying using extended JML
While manually specifying each transition in this manner is

possible, this results in lengthy and duplicate specification for

Activity, as Figures 3 and 4 clearly show.

To alleviate this we propose to introduce a few new semantic

clauses to function as shorthands (“An abbreviated symbolic

writing method that increases speed and brevity of

writing”[14]) for Activity transitions.

Methods which initiate a transition should be specified with the

help of activityTransition(String

targetActivityName). An example of

activityTransition is given in Figure 5. Using the

information given in this clause, a tool utilising this proposed

extension can expand the clause to the required specification.

An example of this expansion is given in Figure 6.

The shorthand for the receiving side of the transition is more

complex because it spans multiple methods, namely

onCreate, onStart and onBackPressed are all affected

by how an application can be started and its place in the activity

history stack. Because multiple methods are affected by this

shorthand, we decided that a logical location for the semantic

clause specifying this would be in the header of the class so that

the Activity as a whole can be specified. The clause we propose

for the receiving side is: activity(String[]

launchingActivities, String[]

BackingActivities, String[]

backableActvities)

Each of the variables in this clause provides information about a

different part of its transition behaviour:

 launchingActivites: The names of the

Activities which can launch this Activity.

 backingActivities: The names of the

Activities, which can transition to this

Activity when the back button is pressed.

 backableActivities: The names of the

Activities, this Activity can transition to

when the back button is pressed.

An example of this clause being used is given in Figure 7 and

the way this clause is expanded in shown in Figure 8.

 Figure 5. Example use of the activityTransition

specification clause.

 Figure 6. The expanded specification of

activityTransition used in Figure 5.

 Figure 7. Example use of the activity specification

clause.

/* @activityTransition(“LobbyActivity”)
@ensures quickplaybutton.isEnabled()==true;
*/
public void customPlay(View view) {
if(!quickplaybutton.isEnabled()){
 quickplaybutton.setText(R.string.quickpla
y_button);
 quickplaybutton.setEnabled(true);
 NetworkService.getInstance(this).update(n
ull, new QuickPlayEvent());
 }
Intent intent = new Intent(this,
LobbyActivity.class);
NetworkService.getInstance(this).update(null, new
JoinLobbyEvent());;
startActivity(intent);
}

//@activity (“MainMenuActivity”,null,”MainMenu”)
public class LobbyActivity extends
FragmentActivity implements Observer,
ReceiveInviteDialogFragment.InviteDialogListener,
ErrorDialogFragment.ErrorDialogListener {…}

/* @requires Annotation.screenTransition==false;
@requires this.hasWindowFocus();
@ensures Annotation.next ==
Annotation.LOBBYACTIVITY;
@ensures Annotation.previous ==
Annotation.MAINMENUACTIVITY;
@ensures Annotation.screenTransition==true;
@ensures quickplaybutton.isEnabled()==true;
*/
public void customPlay(View view) {
if(!quickplaybutton.isEnabled()){
 quickplaybutton.setText(R.string.quickpla
y_button);
 quickplaybutton.setEnabled(true);
 NetworkService.getInstance(this).update(n
ull, new QuickPlayEvent());
 }
/* @set Annotation.screenTransition=true;
@set Annotation.next=Annotation.LOBBYACTIVITY;
@set Annotation.previous =
Annotation.MAINMENUACTIVITY; */
Intent intent = new Intent(this,
LobbyActivity.class);
NetworkService.getInstance(this).update(null, new
JoinLobbyEvent());;
startActivity(intent);
}

/* @requires Annotation.screenTransition==true;
@requires Annotation.next ==
Annotation.LOBBYACTIVTY;
@requires Annotation.previous ==
Annotation.MAINMENUACTIVITY;
*/
protected void onStart(){
//@set Annotation.screenTransition=false;
super.onStart();
}

/* @requires Annotation.screenTransition==false;
@requires this.hasWindowFocus();
@ensures Annotation.next ==
Annotation.MAINMENUACTIVITY
@ensures Annotation.previous ==
Annotation.LOBBYACTIVITY;
@ensures Annotation.screenTransition==true; */
public void onBackPressed(){
/*
@set Annotation.screenTransition=true;
@set Annotation.next =
Annotation.MAINMENUACTIVITY;
@set Annotation.previous =
Annotation.LOBBYACTIVITY;
*/
super.onBackPressed();
}

6

 Figure 8. The expanded specification of the activity

clause used in Figure 7.

5.3.1 Expanding activityTransition and activity
Though an implementation of activityTransition and activity

does not need to exactly match the expansions in Figures 3 and

5, it should not be significantly semantically different.

The activityTransition clause contains information

about which Activity will be the next. The expanded

specification of activityTransition should include the

following:

 The system should not already be transitioning when

initiating a transition. In Figure 6 this is given by the

requires clause stating that the ghost variable

screenTransition is false.

 The initiating Activity should currently have

window focus.

 The completion of this method should ensure that the

ghost variables used for transitions have been

updated correctly. In Figure 6 this is given by the

ensures clauses that LobbyActivity is next and

MainMenuActivity is previous.

 After this method is finished the intent will be

handled which means the system should currently be

in a transition.

 Before the intent itself is called the ghost variables

used for transitions should be updated.

The activity clause contains more information about its

place in the Activity transition process. The expanded

specification of Activity should contain the following:

 When calling both the onCreate and onStart

methods the system should currently be in a

transition.
 In both the onCreate and onStart method the

ghost variable, indicating what the next Activity

should be, should match the Activity being specified.

 In onCreate the ghost variable, indicating the

previous Activity, should match one of the Activities

given in launchingActivities.

 In onStart the ghost variable, indicating the

previous Activity, should match one of the Activities

given by launchingActivities or

backingActivities.

 After onStart has finished the Activity should

have window focus.

 The expanded specification for onBackPressed

should be similar to activityTransition. The

possible Activities onBackPressed can transition

to is given by backableActivities.

Though not included in our description or in the examples, the

expansion for these two clauses can include assignable clauses

which describe the framing.

5.4 Window focus
At the start of this section we made an assumption that only

Activities with window focus should be able to launch new

Activities. While this assumption will generally hold true this

does not always need to be the case. To allow this behaviour we

propose to overload the activityTransition semantic

clauses with an additional boolean to allow the window focus

requirement to be dropped in cases where window focus is not

required. With this modification the activity semantic clauses

change their meaning only slightly allowing for the window

focus requirement to be skipped.

6. CONCURENCY THROUGH THE

HANDLER CLASS
In this section we discuss a set of concurrency methods in

Android and how to specify their behaviour using one of the

concurrency methods as the example. The methods we discuss

are the post methods from the Android Handler Class. These

methods achieve concurrency by adding their message, usually

a runnable, to a message queue which will be processed when a

certain condition has been met. The most common use of these

methods is the use of postDelayed to ensure a splash screen

transitions to the next Activity after a certain amount of time

has passed. We use postDelayed as our leading example.

We propose two new JML specification clauses:

OnCondition and tag. In this section we discuss the

intuition behind these two clauses and how both static and

runtime checkers could verify these clauses. A complete version

of its syntax and semantics is given in Appendix A.

/* @requires Annotation.screenTransition==true;
@requires Annotation.next ==
Annotation.LOBBYACTIVTY
@requires Annotation.previous ==
Annotation.MAINMENUACTIVITY;
*/
protected void onCreate(Bundle
savedInstanceState) {…}

/* @requires Annotation.screenTransition==true;
@requires Annotation.next ==
Annotation.LOBBYACTIVTY
@requires Annotation.previous ==
Annotation.MAINMENUACTIVITY;
@ensures this.hasWindowFocus();
*/
protected void onStart(){
//@set Annotation.screenTransition=false;
super.onStart();
}

/* @requires Annotation.screenTransition==false;
@requires this.hasWindowFocus();
@ensures Annotation.next ==
Annotation.MAINMENUACTIVITY
@ensures Annotation.previous ==
Annotation.LOBBYACTIVITY;
@ensures Annotation.screenTransition==true; */
public void onBackPressed(){
/*
@set Annotation.screenTransition=true;
@set Annotation.next =
Annotation.MAINMENUACTIVITY;
@set Annotation.previous =
Annotation.LOBBYACTIVITY;
*/
super.onBackPressed();
}

7

6.1 The case study
The first Activity in our case study is SplashActivity.

SplashActivity is a simple Activity which will display

an image and after a certain amount of time has passed will

transition to LoginActivity. While Android has several

ways to implement such behaviour, the generally suggested way

is using postDelayed to create a runnable which will create

the intent for the next Activity. This is also how it was

implemented in the case study.

6.2 Specifying using basic JML
The postDelayed(Runnable r, long

delayMillis) method from the Android Handler class

allows Runnables to be added to a message queue. The added

runnable is then executed after a specified amount of time has

elapsed. The postDelayed method and its related methods

are difficult to specify using standard JML. A failed attempt of

specifying the behaviour of a method using postDelayed is

given in Figure 9.

Figure 9. Example of specifying code that uses

postDelayed.

For tools which perform runtime checking the specification in

Figure 9 is almost the correct specification, however, it still has

two problems both relating to the timing of the Activity

transition. The first problem is that LoginActivity will not

immediately become the next Activity because some processing

still needs to be done which takes a variable amount of time.

The second problem is that the post condition of this method is

a conditional statement. The problem with this conditional

statement is that once true its condition will remain true, but

when a new Activity is launched Annotation.next is

no longer LoginActivity.

Tools which use static checking however will have far more

serious problems when attempting to verify this specification of

postDelayed or other attempts. Unlike runtime checking

where run() is called and the runtime checker can verify the

specification, a static checker will not be able to enter the

runnable and use the specification of run. This is because

static checkers do not execute the code and will thus not add the

runnable to the message queue (though depending on if the API

has been specified will know that it has been changed, but not

how), which results in static checkers effectively ignoring the

contents of the runnable. In other words, static checkers are not

able to make a direct connection between the current code and

code that is called indirectly.

6.3 Specifying using extended JML
To allow correct specification of code that calls

postDelayed or similar methods we propose two new

specification clauses: tag and onCondition. tag is an

identifying marker to be used in combination with clauses such

as onCondition to allow those clauses to reference methods

(and their specification) that are called indirectly. Tagging a

method works by adding tag(String tagId) to a method

declaration in the same was as pure is added. An example of

using tag is given in the declaration of the Runnable in Figure

10. This tagged method can then be referenced in specification

clauses by using the same String as tagId. The
onCondition(boolean condition, String

id)clause semantically means that when the condition

becomes true or slightly after, the method referenced by id

should be executed and that the specification of the referenced

method should then hold. An example of onCondition used

to specify postDelayed is given in Figure 10.

 Figure 10. Example of the use of onCondition.

//@ public ghost boolean succesfullPost;
//@ public ghost long calledTime;
/**
* This method is called by Android via the
onStart method. If successful this method will
launch LoginActivity after SPLASH_DURATION has
passed */
/* @ensures succesfullPost ==>
onCondition(uptimeMillis()>=
calledTime+SPLASH_DURATION,id("run"));
*/
public boolean splashScreen() {

boolean successfullPost;
Handler handler = new Handler();

succesfullPost =handler.postDelayed(new
Runnable() {

/* @public normal_behaviour
@requires !mIsBackButtonPressed;
@activityTransition("LoginActivity");
@also
@public normal_behaviour
@requires mIsBackButtonPressed;
*/
public /*@tag("run")@*/ void run() {
finish();
if (!mIsBackButtonPressed) {
Intent intent = new
Intent(SplashActivity.this,LoginActivity.
class);
SplashActivity.this.startActivity(intent)
;}}}, SPLASH_DURATION);
//@set calledTime = uptimeMillis();

 return succesfullPost;
}

//@ public ghost long calledTime;

/**
* This method is called by Android via the
onStart method. If successful this method will
launch LoginActivity after SPLASH_DURATION has
passed */
/* @ensures \result&& uptimeMillis()>=
calledTime+SPLASH_DURATION ==>
Annotation.next==Annotation.LOGINACTIVITY;*/
public boolean splashScreen() {
 boolean successfullPost;

Handler handler = new Handler();
succesfullPost =handler.postDelayed(new
Runnable() {

/* @public normal_behaviour
@requires !mIsBackButtonPressed;
@activityTransition("LoginActivity");
@also
@public normal_behaviour
@requires mIsBackButtonPressed;
*/
public void run() {
finish();
if (!mIsBackButtonPressed) {
Intent intent = new
Intent(SplashActivity.this,LoginActivity.
class);
SplashActivity.this.startActivity(intent)
;}}}, SPLASH_DURATION);
//@set calledTime = uptimeMillis();

 return succesfullPost;
}

8

6.4 Checking onCondition
A runtime checking tool could implement the semantics of such

a clause by adding instrumentation to the code to allow the

checker to monitor when the condition becomes true and if the

referenced method is called shortly after. Instrumentation is the

ability to monitor a specific part, in code this is done by adding

a code instruction which outputs the required information. An

example of the output of a pseudo-runtime checker checking the

example given in Figure 10 is given in Figure 11.

 Figure 11. Possible output of a runtime checker verifying

onCondition.

A static checking tool however should implement onCondition

differently. A similar implementation is not possible because,

generally the method referenced in concondition will not be

called directly. Because of this reason when an onCondtion

become true a static checker should call the referenced method,

thereby checking its requires and ensures clauses. An example

of the in- and output of a pseudo-static checker checking the

example given in Figure 10 is given in Figure 12. Unlike the

runtime checker there is some additional difficulty in this

example because the condition involves the elapse of time

which a static checker typically does not concern itself with. A

possible solution to this problem in a limited fashion involves

adding the option to elapse time to the list of possible user

interactions a static checker typically has.

 Figure 12. In and output of a static checker verifying

onCondition.

It should be noted that as described above, this does not check

the full functionality of onCondition because it assumes that

during runtime the referenced method will be executed, though

this may not be the case (that is, it may happen that the

referenced method is never executed due to unforeseen

constraints of the message queue). Additionally, in the

examples given above there is an additional difficulty because

time is is not directly changed by methods.

7. PERMISSIONS IN ANDROID
In this section we discuss permissions in Android and how to

verify them. We propose one new JML specification clause

which can be used to verify that all required permissions have

been requested but also that no unneeded permissions have been

requested.

It is generally desired that an application only requests

permissions it needs to function. Research shows that many

applications overestimate their requirements for permissions[3].

While on the surface this does not appear very difficult, it is

lengthy to retrieve permissions when specifying. To retrieve

permissions programmatically the packageManager from a

Context class such as a Activity needs to be retrieved,

from the packageManager the packageInfo of the

permissions needs to be retrieved from which then finally the

String Array of the requested permissions can be retrieved.

An example of this is given in Figure 13.

splashActivity.onStart called

 requires . . . true

 splashActivity.spashScreen called

 requires . . . true

 set calledTime

ensures . . .

onCondition tag run

 ensures . . . true

uptimeMillis()>= calledTime+SPLASH_DURATION . . .
true at 6957 ms

#FA526B.run called

tag run . . . onCondition at 6957 ms . .
. current 7031 ms . . . accept

requires . . . true

splashActivity.startActivity called

...

splashActivity.onStart called

 requires . . . true

 splashActivity.spashScreen called

 requires . . . true

 set calledTime

ensures . . .

onCondition tag run

 ensures . . . true

User interaction required to progress

HardwareButton back

HardwareButton home

Elapse time

User interaction: Elapse time

uptimeMillis()>= calledTime+SPLASH_DURATION . . .
true at 6957 ms

#FA526B.run called

requires . . . true

splashActivity.startActivity called

...

9

 Figure 13. Programmatically retrieving and checking

permissions.

To help verifying permissions we propose to introduce a new

semantic clause: permission (String

permissionName). This clause abstracts retrieving

permissions away and can also be used to verify an Android

application. Using this clause both verification of the required

permissions and no excess permissions can be done, without

need for lengthy specification. First the tool implementing this

clause should check that all permissions used in permission

clauses are requested in the AndroidManifest. Secondly it

should check that no unneeded permissions are requested by

checking that each permission requested in the

AndroidManifest is used in at least one permission

clause. Mathematically speaking the set of all

permissionNames used in permission clauses should be

equal to the set of requested permissions in the

AndroidManifest.

The section above assumes that specification developers use the

permission clause correctly, only using the clause when the

method does indeed require the permission. It is possible to

verify native Android permission by use of the API which

specifies what permissions methods require. A similar

verification for non-native permissions however faces the same

issue as the permission clause itself.

8. CONCLUSION
In conclusion this paper provides a basis for an extension of

JML for the specification and verification of Android

applications. It does so by providing several specification

clauses which assist in specification and if implemented in a

tool could be used for verification. The

activityTransition and activity clauses can be used

to describe the transition behaviour of Activities. The

onCondition clause and its supporting clause tag can be

used for specification and verification of the asynchronous

concurrency methods such as postDelayed. Finally,

permissions can be verified using the permission clause.

8.1 Future Work
The work presented in this paper can be continued in several

ways. All specification clauses have only been developed on

paper and testing and actual implementation still needs to be

done. Only a small part of the Android platform has been

covered in this paper and much still remains to be done. The

specification and verification of other components could be

researched. The transition behaviour of Activities can be further

researched and how it interacts with the Activity Lifecycle. As

mentioned in the preliminaries specification of the API is

another possible research option related to the verification and

specification of Android applications.

9. ACKNOWLEDGMENTS
My thanks to Wojciech Mostowski for the guidance provided.

10. REFERENCES
[1] System Permissions | Android

http://developer.android.com/guide/topics/security/permiss

ions.html Retrieved 09-06-2014

[2] Drechsel A., Vlutters S., Huang S., Ding H. and Steen J.

Uitbreiding OVPong. Report for design project. Fall 2013

[3] A. P. Felt, E. Chin, S. Hanna, D. Song, and D. Wagner,

"Android Permissions Demystied," in Proceedings of the

18th ACM Conference on Computer and Communications

Security, 2011.

[4] "Gartner Says Sales of Mobile Devices Grew 5.6 Percent

in Third Quarter of 2011; Smartphone Sales Increased 42

Percent". November 15, 2011. Retrieved 09-06-2014.

[5] Hoare, C.A.R . 1969. An axiomatic basis for computer

programming in Communications of the ACM. volume 12,

number 10, pages 576-580. ACM Press

[6] The Java Modeling Language

http://www.eecs.ucf.edu/~leavens/JML/index.shtml

Retrieved 09-06-2014

[7] Masoumeh Al. Haghighi Mobarhan. 2011. Formal

Specification of Selected Android Core Applications and

Library Functions. Master thesis, Chalmers University of

Technology, Sweden.

[8] Meyer B. 1992. Applying “Design by Contract” in

Computer. volume 25, number 10, pages 40-51. IEEE

Computer Society Press

[9] Wojciech Mostowski. Fully Verified Java Card API

Reference

Implementation. Proceedings of the Verify 2007

Workshop (associated with

CADE 2007), Bremen, Germany, July 2007, CEUR

Workshop Proceedings.

[10] Mostowski W. and Poll E., C. 2010. Midlet Navigation

Graphs in JML. In Post Proceedings of the 13th Brazilian
Symposium on Formal Methods (SBMF 2010)

[11] OpenJML: http://opemnjml.org/ Retrieved 09-06-2014

[12] Schmitt, P.H., Ulbrich, M., Weiß, B.: Dynamic frames in

Java dynamic logic. In:Beckert, B., March´e, C. (eds.)

FoVeOOS 2010. LNCS, vol. 6528, pp. 138–152. Springer,

Heidelberg (2011)

[13] Wal, Jelmer ter. 2013. Specification and verification of

selected parts of the Java Collections Framework using

JML* and KeY. Master thesis, University of Twente,

Netherlands

[14] Shorthand – Wikipedia

http://en.wikipedia.org/wiki/Shorthand. Retrieved 10-06-

2014

/*
@ghost String[] permissionArray;
@set permissionArray =
getPackageManager().getPackageInfo(getP
ackageName(),
PackageManager.GET_PERMISSIONS)).reques
tedPermissions;
@requires (\exists int index;
(index>=0&&index<permissionArray.length
;
permissionArray[index].equals("android.
permission.DUMMY_PERMISSION");); */
public void requiresDummyPermission{…}

http://developer.android.com/guide/topics/security/permissions.html%20Retrieved%2009-06-2014
http://developer.android.com/guide/topics/security/permissions.html%20Retrieved%2009-06-2014
http://www.eecs.ucf.edu/~leavens/JML/index.shtml
http://opemnjml.org/
http://en.wikipedia.org/wiki/Shorthand.%20Retrieved%2010-06-2014
http://en.wikipedia.org/wiki/Shorthand.%20Retrieved%2010-06-2014

10

A. DESCRIPTION OF THE EXTENSION

In this paper several new specification clauses were proposed.

This appendix summariseseach of these new clauses.

A.1 ActivityTransition
The activityTransition clause is used as a shorthand for writing

the specification associated with launching a new Activity.

When checking this clause the checker expands this clause to

JML specification which specifies the transition.

Syntax

@activityTransition(String

targetActivityName)

@activityTransition(String

targetActivityName,boolean

windowFocusRequired)

targetActivityName: The name of the Activity which is

being launched.

windowFocusRequired: If the associated method should

only be called when the Activity containing the associated

method has windowFocus.

A.2 Activity
The activity clause is used as a short hand for writing the

specification associated with the transition behaviour of an

Activity as a whole.

This specification clause should only be used in the header of a

class which has Activity as a base class.

When checking this clause the checker expands this clause to

JML specification which specifies the transition behaviour of

the specified Activity.

Syntax

@activity (<String launchingActivity

| String[] launchingActivities>,

<String backingActivity | String[]

backingActivites>, <String

backableActivity | String[]

backableActivites>)

launchingActivity | launchingActivites: The

names of the Activities which can launch this Activity.

backingActivity | backingActivities: The

names of the Activities, which can transition to this Activity

when the back button is pressed.

backableActivity | backableActivities: The

names of the Activities, this Activity can transition to when the

back button is pressed.

A.3 OnCondition
The onCondition clause indicates that when the boolean

condition is true, the method with the tag matching String id

and its associated specification should be executed.

Syntax

@ onCondition(boolean condition,

String id)

condition: The boolean which must be true when the

method with the tag matching id is executed and when true the

method will be executed.

id: String which matches the tag of a method.

A.4 Tag
Declaration to a method to allow specification clauses to

reference the method.

A tag must be unique. (depending on implementation this may

be on class, package or global level)

A tag is declared in the same manner as pure.

Syntax

 @ tag (String tagId)

tagId: The String which is used by specification clauses to

reference the method.

A.5 Permission
The permission clause has 2 functions.

A method annotated with permission require that the specified

permission is granted to the application.

All permission set in the AndroidManifest should be used in a

permission clause at least once.

As an additional layer of verification the method body can be

checked if a API method requiring the permission is present if

the permission is a permission native to Android.

Syntax

@permission (String permissionName)

permissionName: The name of the permission that the

specified method requires.

