
Edit distance on GPU clusters using MPI
Antoine Veenstra
University of Twente

P.O. Box 217, 7500AE Enschede
The Netherlands

a.j.veenstra@student.utwente.nl

ABSTRACT
In this paper, we describe a verified implementation of the
Levenshtein distance problem on a GPU cluster using MPI
and OpenCL. The implementation is based on an existing
verified single GPU implementation. The speed of the
implementation is higher on a cluster, but the efficiency
is affected by the overhead, which is caused by the extra
communication between nodes.

Keywords
OpenCL, MPI, Message Passing Interface, C++, Edit dis-
tance problem, Levenshtein distance problem, GPU clus-
ter, GPGPU program, case study

1. INTRODUCTION
In recent history the amount of available data has in-
creased, as faster computers acquire more information at
a higher rate. As the amount of data increases the need
for parallel computation does so too to process said data.
This, however, is no small feat. Multiple ways exist to
process data in parallel, but one of the most efficient ways
to do this is to use the Graphical Processing Unit (GPU).
A GPU enables the parallel execution of a single opera-
tion on multiple variables, unlike the Common Processing
Unit (CPU) which only allows for the execution of a single
operation on a single value. Even if the CPU has multiple
cores, the maximum amount of data processed in parallel
is generally still inferior to that of a GPU.

To decrease the processing time even further a logical step
is to increase the number of GPUs [4]. One could add more
GPUs to their computer, but this is not a scalable solution
since most motherboards only support a limited amount
of GPUs. Another solution would be to make multiple
devices work together, each containing at least one GPU.
This is called a GPU cluster.

Various algorithms have already been implemented on a
single GPU device and were verified [3]. The verification of
a program is important since it can guarantee the outcome
of an algorithm is always correct. If one wants to distribute
a verified implementation over multiple nodes, additional
steps have to be taken to ensure the implementation is still
mathematically correct. Those steps are explored while

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy oth-
erwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.
27th Twente Student Conference on IT, July 7, 2017, Enschede, The
Netherlands.
Copyright 2017, University of Twente, Faculty of Electrical Engineer-
ing, Mathematics and Computer Science.

distributing a verified implementation of the edit distance
problem, which has been developed by De Heus [3].

The edit distance problem is used in various fields of re-
search [8], such as Computational Biology, Signal Pro-
cessing, and Text Retrieval. It is used to compare two
strings or sequences of data, such as genome sequences.
Section 3.3 will further discuss the edit distance problem.

The existing implementation of the edit distance problem
uses a dynamic programming algorithm, which is well-
suited for general-purpose computing on GPUs (GPGPU).
The implementation was written in C++ using OpenCL,
which can run on most GPUs [5]. An alternative for
OpenCL would have been CUDA, which has been devel-
oped by NVIDIA and runs exclusively on NVIDIA GPUs.
OpenCL has been chosen over CUDA in order to ensure
compatibility with most GPUs.

To allow interaction between devices in a cluster a protocol
is required. One standard which has been around for years
is the Message Passing Interface (MPI) [10]. This inter-
face has been used to distribute the algorithm on multiple
(multi-)GPU nodes. The implementation in this paper is
not the first combining MPI and OpenCL. One example
is an implementation of the LINPACK benchmark, which
used a cluster containing 49 nodes, each node containing
two eight-core CPUs and four GPUs [4].

By implementing the edit distance problem on a GPU clus-
ter instead of a single GPU, the processing time could be
reduced as the performance of a cluster exceeds that of a
single node [4]. The goal of this research is to implement
the edit distance problem on a GPU cluster using MPI
and to verify this implementation. This goal results in the
research question mentioned in the following section.

2. RESEARCH QUESTIONS
The research question of this paper is:

What are the steps required to distribute a verified imple-
mentation of an algorithm on a GPU cluster?

The subquestions are:

1. How can the algorithm be divided in separate pro-
cesses?

2. How can the algorithm be run on multiple devices
using MPI?

3. How can the verification of the implementation be
guaranteed?

4. What is the optimal number of GPUs when consid-
ering cost, efficiency, and the amount of data com-
pared?

1



3. BACKGROUND
Before solving the research question, a background on the
topics used to solve it will be given in this section.

3.1 OpenCL
GPGPU programming is the use of GPUs to handle com-
putations which traditionally are done by CPUs. A CPU
consists of one or more cores allowing Single Instructions
streams and a Single Data stream (SISD). A GPU on the
other hand has a Single Instruction stream and Multiple
Data streams (SIMD). The number of cores on a GPU is
generally much higher than a CPU has, so a GPU can
process more data in parallel using its SIMD architecture.

One programming language allowing the developer to run
programs on a GPU is OpenCL. OpenCL allows a devel-
oper to run a kernel on a GPU or CPU [6]. It is a low level
programming language which can run on most GPUs and
CPUs and allows general purpose parallel programming
across both CPUs and GPUs. The traditional CPU based
programming models do not allow the same complex vec-
tor operations on GPUs as OpenCL offers without the
need to translate their algorithms to a 3D graphics API
such as OpenGL. As mentioned before, OpenCL is pre-
ferred over CUDA since the support of CUDA for GPUs
and CPUs is limited to NVIDIA GPUs [9].

In the OpenCL architecture one CPU based program call-
ed the Host controls multiple GPUs and CPUs called Com-
pute Devices. Each of those Compute Devices consists of
one or more work-groups, of which each contains one or
more work-items. These work-groups execute the OpenCL
kernels provided by the host program. Only before and af-
ter such kernel is running will the memory of the GPU be
accessible to the Host. Each work-item has a unique iden-
tifier (id) to allow for different results, even though the
same kernel runs on every work-item [6].

3.2 MPI
MPI is a standard specification for communication be-
tween computers which enables parallel computing. It
is comparable to the traditional forking of threads in C
and its derivatives, but it adds additional communication
and computation functions. Nodes can send and receive
messages both asynchronous and synchronous, read and
write memory on other nodes, read and write files on other
nodes, compute simple mathematical operations on vari-
ables available on each node, and much more [10]. Each
node runs the same program and has its own unique id,
which is useful while dividing the workload among nodes.

3.3 Edit distance
The edit distance problem is way of measuring how much
two strings differ from each other [8]. The distance is mea-
sured by the minimal number of operations like inserting,
removing, replacing, and rearranging characters. One use
for the distance is to find DNA or RNA subsequences after
possible mutations. Another use is to offer suggestions for
misspelled words, as words with a shorter distance from
the misspelled are more likely to be a correct replacement.

The complexity of the algorithm depends on what op-
erations are allowed and the cost of these operations in
the implementation. In the existing implementation by
De Heus [3] and in the new implementation only insert-
ing, removing, and replacing are considered. The costs of
all the operations is set to 1. The edit distance with those
conditions is also called the Levenshtein distance [8].

For example, take sequence a (sa) as “kitten” and se-
quence b (sb) as “sitting”. The distance with the given

conditions is equal to 3, since there are only 3 operations
required to get from one sequence to the other. The oper-
ations required are:

• Replace the “k” with an “s”. “kitten”→ “sitten”

• Replace the “e” with an “i”. “sitten”→ “sittin”

• Insert “g” at the end. “sittin”→ “sitting”

The order of the operations is not important, as long as it
is the least amount of operations.

As mentioned before, the edit distance problem has al-
ready been implemented on a single GPU by De Heus [3].
His implementation is used as base in Section 4.1. As
explained in Section 7.1, the performance of the new im-
plementation will not be compared to the performance of
this single GPU implementation.

3.4 Verification
Verification is done by describing what an algorithm re-
quires as input and what it ensures as output. The lan-
guage used is JML with an extension for Permission-based
separation logic. The Permission-based separation logic is
used to guarantee no read and writes of memory occur at
the same time [1]. The separation logic uses simple rules
to define permissions on resources like locks do in mul-
tithreaded programs, but do not have any effect on the
actual program. It is used to verify multithreaded pro-
grams, to guarantee no concurrent resource access occurs.

Permissions are claimed by using the Perm(x, π) function,
where x is the memory address or memory range to claim
and π is the permissions required. The value of π should be
larger than 0 and no larger than 100. Any value between 0
and 100 grants read access to x, and a value of 100 grants
write access. In this paper π is either read or write, where
read is an arbitrary value between 0 and 100 and write
equals 100. These two values should suffice, as no complex
constructions are required in the verification. Multiple
work-items can share a resource with the read permission,
but only one can use a resource with the write permission.

4. DIVIDING THE ALGORITHM
To answer this question we must first explore the limi-
tations and potential improvements of the previous im-
plementation. The limitations will then be discussed and
solved if possible in the following subsections. In the final
subsection the algorithms used will be described.

4.1 Original algorithm
The algorithm of De Heus uses a dynamic programming
solution [3]. In his paper he describes a way to distribute
the computation on multiple work-groups of a GPU. The
dynamic programming algorithm fills a matrix with the
following rules [2]:

H(−1,j) = j

H(i,−1) = i

H(i,j) = min


H(i−1,j) +1

H(i,j−1) +1

H(i−1,j−1) +Score

(1)

where Score equals zero if the characters of the sequences
at index i and j are equal; otherwise, Score equals one.

The value of H(i,j) depends on the cells H(i−1,j), H(i,j−1),
and H(i−1,j−1). This limits the use of parallelism to speed

2



up the computation, but it leaves an opening nonetheless.
There is no dependency between cells H(a,b) if a+b is con-
stant. The grey cells in Figure 1 are such a group of cells
which can be calculated in parallel. Each diagonal is based
on the previous two diagonals, because of the dependencies
previously mentioned [7]. There is no need to save diag-
onals prior to those two diagonals, so the implementation
can discard the previous diagonals to save memory.

4.2 Partitioning the algorithm
With larger sequences the diagonal becomes too large to
calculate in one iteration on a GPU. Dividing the matrix
vertically allows one to split the calculation in manage-
able parts. These parts will be called pillars. Each pillar
requires the right most column of the previous pillar due
to the dependencies of each cell. This means the other
columns can be discarded to save memory.

Each of the pillars mentioned above can be split in blocks.
Blocks A to D, E to H, and I to L in Figure 2 are such
a partitioning. The dependencies of the individual cells
are inherited by the individual blocks. Just like the cells
the blocks can also be calculated in parallel if they are
not dependent of one another. Block D and F are such
blocks as they only require block B and C. With larger
sequences the number of independent blocks becomes more
significant. As a result, the calculation of multiple blocks
in parallel becomes more attractive.

If the blocks where squares, as De Heus suggested [3], the
amount of cells processed in parallel would start at 1, con-
tinue to width, and go back to 1. The amount of cells
processed increases or decreases by 1 every iteration, so
the average amount of cells processed is approximately
width/2 cells processed in parallel. Blocks like B and K,
on the other hand, have an average amount of cells pro-
cessed in parallel of exactly width. The only disadvan-
tage of this approach is that the top and bottom of each
pillar alternate blocks like A and D exist, but the over-
all performance is still better. Therefore, the pillars will
be constructed diagonally to optimise the amount of cells
processed in parallel at any given time.

4.3 Storing the diagonals
As mentioned before, two diagonals are required to calcu-
late the following diagonal. Unfortunately, OpenCL offers
no support for an array of arrays, so either the two diago-
nals must be saved in separate variables or they must be
combined in one larger array. Using two variables limits
the freedom while implementing the algorithm as the rows
must be swapped after each iteration. Using a single com-
bined array requires the calculation of indices each time
the algorithm accesses the array. The two solutions are not
significantly different, so another factor should be consid-
ered before opting for one of the two solutions. The most
common blocks are shaped like B, C, F , etc. Therefore,
the rest of this section will only consider the algorithm
required to process those blocks.

An input the algorithm for processing a block should di-
gest is the left column and it should output the right most
column of the block. The two diagonals should evolve, but
the size should stay constant. In the two variables solution
the column values could be divided between and appended
to the two diagonals. This requires some preprocessing as
the even indices of the column should be appended to one
diagonal and the odd indices to the other as shown in Fig-
ure 3a. Some post-processing is also required to retrieve
the column after processing as shown in Figure 3b. A so-
lution to this problem is to transfer the parts of diagonals

k i t t e n
0 1 2 3 4 5 6

s 1 1 2 3 4
i 2 2 1 2
t 3 3 2
t 4 4
i 5
n 6
g 7

Figure 1. Example matrix

Figure 2. Partitioning of the matrix

(a) Input (b) Output

Figure 3. The two variable implementation

3



Figure 4. Computation with a single array

a and b as is. The pre- and post-processing steps cancel
each other out, so there is no need to do so.

The digestion of the input and the supplying of output is
comparable in the single array solution. Figure 4 shows
the evolution of the single array throughout the computa-
tion of a block. The block used in this figure is block B
from Figure 2, which is four columns wide and consists of
seven iterations. There is no advantage or disadvantage
on which end the input and output are stored. The blocks
of memory can be transferred to another process as is, just
as in the two variable solution.

We can conclude that there are no significant advantages
or disadvantages to either solution. The single variable
solution is only slightly more attractive since there is one
less variable to worry about. Therefore, the single vari-
able solution will be chosen in the algorithms mentioned
in Section 4.6.

The calculation of indices depends on the iteration count
of the algorithm. The formula used to get the index of the
diagonal to change is i + n · 2 + 1 where i is the number
of iterations completed and n is the index of the cell in
the diagonal. The index of the cell above the targeted
cell is determined by subtracting 1 from the index of the
targeted cell and the index of the cell to the left of the
targeted cell is determined by adding 1 to the index of the
targeted cell. This means that the cells used by a thread
are three consecutive cells of which the middle one will
be replaced with the calculated value. This can be seen
in Figure 4, where three consecutive cells calculate the
result of the middle cell. This figure also shows how the
dependency on the iteration count influences the indices
of the targeted cells.

A visual representation of which cells are stored in the
array can be found twice in Figure 2 as D1 and D2. Lines
D1 and D2 cross all the cells stored in the array at one
point in the algorithm. The arrows go from the targeted
cells to the cell for which the values are calculated during
the next iteration. The arrows next to D1 represent the
third iteration and the arrows next to D2 represent the
last iteration. The top cell of the lines are stored on index
zero and the bottom cell is stored in the last cell of the
array. This direction has been chosen to make debugging

A B C D E · · ·
0 A0 B0 C0 D0 E0 · · ·
1 A1 B1 C1 D1
2 A2 B2 C2
3 A3 B3
4 A4
...

... Block B
. . .

Figure 5. Block A zoomed in

Figure 6. Computation of the starting block

easier as the resulting column will be in the first cells of
the diagonal after the run, making them easier to find and
compare to known results. There is no other advantage or
disadvantage if the result is stored the other way around.
Figure 4 also shows this same orientation. The input is
equivalent to the left most column as seen in D1 and the
output equivalent to the right most column in D2.

4.4 Constructing the initial diagonals
Now that the storage of the diagonals has been set the
array has to be initiated at the beginning of the pillar. In
Figure 5 an example of a starting block is shown which is a
zoomed in version of block A in Figure 2, but also applies
to block E. The width of the pillars is 4, so the block is a
triangle of 3 by 3 cells.

In Figure 5 column A can be copied from the previous pil-
lar and row 0 can be calculated by adding the offset of the
pillar to the cell. In Figure 6 the array containing the di-
agonals and its transformation is shown. The coordinates
in the Figure 6 correspond to the coordinates in Figure 5.
Each iteration is numbered and the first iteration of the
following block is shown at the bottom.

Figure 6 resembles to Figure 4. Both share the same prop-
erty of having three consecutive cells defining the middle
cell. The obvious difference being the amount of cell being
processed each iteration. In the following section you will
find the algorithm to compute this block.

4.5 Computation of the last block
At the bottom of every pillar there is a block with a flat
base. In Figure 2 D, H, and L are such blocks. If the same
method as in Figure 4 is used the array of diagonals will
go out of bounds. However, this poses no problem as both
the result and the output column are independent of the
cells below it. Thus blocks D, H, and L will be treated

4



Algorithm 1 Parallel algorithm to process blocks

1: procedure Block calc(id, width, sa, sb, height, d)
2: kernel requires (\forall* t; 0 ≤ t < width;

Perm(sa[t], read))
3: kernel requires (\forall* i; 0 ≤ i < width +
height− 1; Perm(sb[i], read))

4: requires sa 6= NULL
5: requires sb 6= NULL
6: requires d 6= NULL
7: requires 0 ≤ id and id < width
8: requires sa.length ≥ width
9: requires sb.length ≥ width+ height

10: requires d.length ≥ width · 2 + height
11: requires Perm(sa[width− 1− id], read)
12: requires (\forall* i; id ≤ i < id + height;

Perm(sb[i], read))
13: ensures d[0] = \old(d[0])
14: ensures d[height+width·2−1] = \old(d[height+

width · 2− 1])

15: a← sa[width− 1− id]

16: loop invariant x = i+ id · 2 + 1
17: for i is 0 . . . height do
18: requires i 6= 0 ⇒ Perm(d[x − 2], read) ∗

Perm(d[x− 1], write) ∗ Perm(d[x], read)
19: ensures Perm(d[x − 1], read) ∗ Perm(d[x],

write) ∗ Perm(d[x+ 1], read)
20: kernel ensures (\forall* t; 0 ≤ t < width;

Perm(d[i+ t · 2], read) ∗Perm(d[i+ t · 2 + 1], write) ∗
Perm(d[i+ t · 2 + 2], read))

21: barrier()

22: if a = sb[id+ i] then
23: Score← 0
24: else
25: Score← 1
26: end if
27: ensures a = sb[id+ i]⇔ Score = 0
28: ensures a 6= sb[id+ i]⇔ Score = 1
29: x← i+ id · 2 + 1
30: cell d← d[x] + Score
31: cell up← d[x− 1] + 1
32: cell left ← d[x+ 1] + 1
33: d[x]←minimum(cell up, cell left , cell d)
34: ensures d[x] = minimum(minimum(d[x − 1],

d[x+ 1]) + 1, d[x] + Score)
35: end for
36: end procedure

the same way as blocks like B. The only difference is the
number of iterations required to get the right most column
of the block.

4.6 The OpenCL algorithms
Figure 2 shows three kinds of blocks. How blocks like A,
E, and I are computed is explained in Section 4.4 and can
be seen in Figure 6. How blocks like B, C, F , G, J , K,
and E are computed is explained in Section 4.3 and can
be seen in Figures 2 and 3. Blocks like D, H, and L are
computed like block B as explained in Section 4.5, so they
will not be treated differently. Algorithms 1 to 3 contain
JML specifications in green, which will be discussed in
Sections 6.1 to 6.3.

4.6.1 Algorithm to compute standard blocks
Algorithm 1 is used to handle blocks like B, and D. Vari-

able d contains the diagonals as explained in Section 4.3.
The id is the id of the thread. OpenCL allows multiple
threads to execute the same algorithm in parallel. The id
of the thread is a unique number from zero till the number
of threads. This id is used to identify which column of the
block the thread is to process. Variable width is the width
of the block. The width of the block is equal to the amount
of threads OpenCL is using. Variable height is the num-
ber of iterations to be executed. There is no limit to this
number apart from the length of sequence b, as it is useless
to compute more rows than present. Variables sa and sb
are parts of sequences a and b respectively. The size of sa
is equal to the width. The size of sb is equal to the total
height of the block, so this is equal to height+width− 1.

As seen on line 15 of Algorithm 1 each thread picks a
column according to the following formula: width−1− id.
If the id had been used to pick a column the equations
on lines 22 and 29 would be “a = sb[width − id + i]” and
“x← width− id+ i” respectively, so there is no significant
difference.

Each iteration is separated by a barrier() operation on
line 21. It guarantees that every thread is at the same
point in the program before any can continue. As x is
computed with the id · 2, the xs at every iteration always
differs with at least 2 between threads. This means that
no thread can read a cell while another is writing in the
same memory, thus guaranteeing that no memory incon-
sistencies occur during operation.

4.6.2 Algorithm of initial blocks
Algorithm 2 is used to handle blocks like A, E, and I.
Variables id, width, sa, sb, and d are the same as in Algo-
rithm 1. Variable offseta is the offset of the pillar relative
to sequence a, where the first element of the sequence is
zero.

Lines 17 to 20 fill the top row, which is row 0 in Figure 5.
Since the row is one cell wider than the width, one thread
has to set two cells. On line 21 the character of the column
being computed is loaded. Each thread loads the character
at index id. If the index would be width − id − 1 the
equations on lines 30, 34, and 41 would be along the lines
of “width− id− 1 ≤ i”, “a = sb[i− (width− id− 1)]”, and
“x← i+width− (width− id−1) ·2”. These equations are
longer and thus more susceptible to bugs.

Lines 23 to 48 are equivalent to lines 17 to 35 in Algo-
rithm 1. The only difference between the two loops is that
not all the threads calculate a new value in Algorithm 2
as can be seen in Figure 6. The if statement on line 30
ensures that.

4.6.3 Algorithm of initial column
There is only one column unaccounted for and that is the
initial column as indicated in Figure 2. Algorithm 3 does
that while taking into the account the structure of the
variable containing the diagonals. The variables id, width,
height, and d are the same as in Algorithms 1 and 2.
The variable offsetb is the offset of the block relative to
sequence b, where the first element of the sequence is zero.
Line 8 calculates the total size of the diagonal and line 9
calculates the starting index to fill. The while loop on
Lines 11 to 14 fills each cell of the diagonal while respecting
the offset of b. There are no barrier() statements in this
algorithm as the threads only write to the memory.

4.6.4 Conclusion
With these three algorithms and the exchange of columns
as described in Section 4.2 the edit distance between two

5



Algorithm 2 Parallel algorithm to begin pillars

1: procedure Begin calc(id, width, sa, sb, offseta, d)
2: kernel requires (\forall* t; 0 ≤ t < width;

Perm(sa[t], read))
3: kernel requires (\forall* i; 0 ≤ i < width − 2;

Perm(sb[i], read))
4: kernel requires (\forall* i; 0 ≤ i ≤ width;

Perm(d[i], read))
5: requires sa 6= NULL
6: requires sb 6= NULL
7: requires d 6= NULL
8: requires 0 ≤ id and id < width
9: requires sa.length ≥ width

10: requires sb.length ≥ width
11: requires d.length ≥ width · 2
12: requires Perm(sa[id], read)
13: requires Perm(d[id], write)
14: requires id = 0⇒ Perm(d[width], write)
15: ensures d[0] = \old(d[0])
16: ensures d[height+width·2−1] = \old(d[height+

width · 2− 1])

17: d[id]← offseta + width− id
18: if id = 0 then
19: d[width]← offseta
20: end if
21: a← sa[id]
22: loop invariant x = i+ width− id · 2
23: for i is 0 . . .width− 1 do
24: requires i = 0⇒ Perm(d[id], write)
25: requires i = 0 and id = 0⇒ Perm(d[width],

read)
26: requires i 6= 0 ⇒ Perm(d[x − 2], read) ∗

Perm(d[x− 1], write) ∗ Perm(d[x], read)
27: ensures Perm(d[x − 1], read) ∗ Perm(d[x],

write) ∗ Perm(d[x+ 1], read)
28: kernel ensures (\forall* t; 0 ≤ t ≤ i;

Perm(d[i+width−id·2−1], read)∗Perm(d[i+width−
id · 2], write) ∗ Perm(d[i+ width− id · 2 + 1], read))

29: barrier()
30: if id ≤ i then
31: requires Perm(d[x− 1], read)
32: requires Perm(d[x+ 1], read)
33: requires Perm(d[x], write)

34: if a = sb[i− id] then
35: Score← 0
36: else
37: Score← 1
38: end if
39: ensures a = sb[i− id]⇔ Score = 0
40: ensures a 6= sb[i− id]⇔ Score = 1
41: x← i+ width− id · 2
42: cell d← d[x] + Score
43: cell up← d[x− 1] + 1
44: cell left ← d[x+ 1] + 1
45: d[x]←minimum(cell up, cell left , cell d)
46: ensures d[x] = minimum(minimum(d[x −

1], d[x+ 1]) + 1, d[x] + Score)
47: end if
48: end for
49: end procedure

sequences of arbitrary sizes can be computed. The division
in blocks as shown in Figure 2 allows for multiple process
to work on the calculation in parallel. This answers the
fist subquestion as stated in Section 2.

Algorithm 3 Parallel algorithm to fill the first column

1: procedure Column fill(id, width,offsetb,height,d)
2: kernel requires (\forall* x; width · 2− 1 ≤ x <
width+ height− 1; Perm(d[x], write))

3: requires d 6= NULL
4: requires 0 ≤ id and id < width
5: requires d.length ≥ width · 2 + height
6: requires (\forall* x; width·2−1+id ≤ x·width+
id − 1 and x · width + id − 1 ≤ width + height − 1;
Perm(d[x · width+ id− 1], write))

7: ensures (\forall x; width ·2−1+ id ≤ x ·width+
id − 1 and x · width + id − 1 ≤ width + height − 1;
d[x ·width+ id−1] = (x−1) ·width+ id−1 + offsetb)

8: total size← width+ height− 1
9: i← width · 2− 1 + id

10: loop invariant (i− 1 + id) mod width = 0
11: while i ≤ total size do
12: d[i]← i− width+ offsetb
13: i← i+ width
14: end while
15: end procedure

5. USING MPI
Now that the algorithm is split in manageable pillars in
Section 4, the next step is to distribute the algorithm
over a cluster. MPI offers various functions to simplify
the distribution, but the main task will be exchanging the
columns as explained in Section 4.2. How the tasks will
be divided is the first problem that will be tackled.

5.1 Distributing the pillars
The distribution of the workload of the edit distance prob-
lem can be done by simply passing a few messages between
nodes. Each node needs to know which pillar it has to com-
pute itself and then give the next node a column number
of where their pillar starts. The next node is the node with
one id higher or, if no such node exists, the node with id
zero. After a node has finished a pillar, it picks the next
pillar that it has to compute itself by adding the sum of
the widths of the nodes to the current column number.
Section 4.6 explains what the width of a node is. The sum
of those widths can easily be computed by using a cluster
wide mathematical operation command available in MPI.
Note that the distribution described here does not take
into account the different speeds of GPUs. The impact of
this deficiency is discussed in Section 7.

The height of the blocks can be negotiated between the
nodes. The lowest width of the nodes is communicated to
all nodes and they multiply that by an arbitrary constant.
This constant should not be too small as the overhead of
starting a run would impact the overall performance, but
it should not be too big either, since not enough blocks
will be available for parallel computation.

After the computation is complete, the node which has
processed the last block should return the result. MPI
shows the output of all the nodes, so there is no need to
forward any results to a specific node.

5.2 The MPI algorithm
Algorithm 4 shows how the nodes work together. The
initialisation and finalisation phases have been left out,
since they are not important to the algorithm. Arguments
of the procedure are queried in the initialisation phase.
The algorithm contains JML specifications in green, which
are discussed in Section 6.4.

6



Algorithm 4 MPI control

1: procedure main(id, column, sa length, sb length,
width, cluster total width, blocks num, max height)

2: requires 0 ≤ id and id < width
3: requires width ≤ cluster total width
4: requires 0 ≤ column and 0 < sa length
5: requires 0 < blocks num and 0 < max height
6: requires (blocks num − 1) · max height <
sb length

7: requires sb length ≤ blocks num ·max height

8: loop invariant column mod cluster total width
= \old(column)

9: while column < sa length do
10: requires queue.is empty()
11: if column 6= 0 then
12: ensures not queue.is empty()
13: queue.put(mpi receive column())
14: end if

15: ensures sa 6= NULL
16: sa ← read part(column,width)
17: cl write mem(sa)

18: loop invariant queue.size() ≤ 2
19: for block is 0 . . . blocks num do
20: if column 6= 0 and 1 < blocks num−block
21: then
22: ensures queue.size() = 2
23: queue.put(mpi receive column())

24: end if

25: ensures column list 6= NULL
26: if column 6= 0 then
27: ensures 1 < blocks num − block ⇒

queue.size() = 1
28: ensures 1 = blocks num − block ⇒

queue.size() = 0
29: column list← queue.pop(id)
30: else
31: column list←empty column()
32: end if

33: ensures height = min(max height,
sb length− block ·max height)

34: if 1 < blocks num− block then
35: height← max height
36: else

37: height← sb length−block ·max height
38: end if

39: column list←execute kernel(

40: max height, height, sa, width, block,
41: column list, queue.peek()

42: )

43: if not is final pillar() then
44: mpi send column(column list)
45: else if blocks num− block = 1 then
46: print(column list[height− 1])
47: end if
48: end for
49: column← column+ cluster total width
50: end while
51: end procedure

52: function execute kernel(max height, height, sa,
width, block, column list, column next)

53: requires 0 < height ≤ max height
54: requires 0 < sa.length ≤ width
55: requires 0 < block
56: requires column list.length = height
57: requires column next.length ≤ max height

58: if block 6= 0 then
59: diagonal size← sa.length · 2− 1
60: cl copy memory(from=max height, to=0,

61: size=diagonal size)

62: cl write memory(to=diagonal size,

63: from=column list[sa.length− 2 :])

64: column size← max height− sa.length+ 2
65: cl write memory(to=diagonal size+

66: column size, from=column next)

67: else
68: cl write memory(to=sa.length+ 1,

69: column list)

70: cl write memory(to=sa.length+ 1+

71: max height, column next)

72: end if
...

73: return cl read memory(1, max height)
74: end function

The id is the unique identifier of the process. The column
contains the column index where the node has to start.
During the while loop on lines 5 to 38 this variable will
contain the column index of the pillar being processed.
Variables sa length and sb length contain the lengths of
sequences a and b. The width is the width as explained
in Section 4.6. Variable cluster total width contains the
sum of the width variables of all the nodes in the cluster.
It is the maximum number of columns the GPUs in the
cluster can handle at any given time. The blocks num is
the number of blocks in a pillar minus the starting block as
that will be combined with the second block. For example,
the blocks num in Figure 2 equals 3. The starting block
is not counted as its computation will be combined with
the next block. The variable max height is equal to the

maximum number of iterations a block will have.

Block G in Figure 2 depends on blocks C, D, and F ,
so the process handling block G should get both most
right columns of C and D before starting the calculation.
Lines 11 to 14 retrieve the first column if the process is
not handling the first pillar. Each iteration of the for loop
retrieves another column in lines 20 to 24 before comput-
ing the block. This ensures that there are two columns
in the queue before line 39 if the id of the process is not
zero and if the process is not at the last block of the pil-
lar. At the last block of a pillar no column is received,
since the last block depends on only one other block. For
example, in Figure 2 block H depends only on block D,
given that the diagonals used in block G are still in the
memory. The first pillar does not require the retrieval of

7



columns from other nodes, since Algorithm 3 can be used
to fill its column.

Lines 16 and 17 read a chunk of sequence a starting from
column and store it in the memory of the GPU. The size
of this chunk is the number of characters read up to the
width, so if there are not enough characters left in sa the
width of the chunk is equal to sa length− column.

The for loop on lines 19 to 48 iterates through all the
blocks of the pillar, where the first and second block are
considered as one. For example, in Figure 2 blocks A and
B are considered as one. Lines 20 to 38 retrieve the vari-
ables required to execute the kernel on line 39. Lines 43
to 47 handle the result of the kernel.

As mentioned earlier, the if statement in lines 20 to 24
manages the retrieval of columns from other nodes. Line 23
is executed if the process is not dealing with the first pillar
and if it is not computing the final block of a pillar.

Lines 26 to 32 get a column if needed. As mentioned
before, the first pillar does not require a column from other
nodes, so an empty list is used instead for the first pillar.

Lines 34 to 38 get the height of the block which is to be
processed. Only the height of the last block of each pillar
is smaller than the max height.

On lines 39 to 42 the kernel is executed and the result is
saved. The function is defined on lines 52 to 74.

Lines 43 to 47 handle the output of the kernel. If the
process is not at the last pillar the column will be send to
the next node. Again, the next node is the node with one
id higher or, if no such node exists, the node with id zero.
If the process is at the last block of the last pillar, the
result of the problem can be found in the column. This
result is printed to the standard output. As mentioned
before, MPI will handle the redirection of the output of a
node to the output of the parent call.

5.2.1 Executing the kernel
The code on lines 52 to 74 shows the steps required to
run the kernel. The kernel will execute a combination
of algorithms which can be found in Section 4.6. In the
first pillar Algorithm 3 is first executed. In the first block
of any pillar Algorithm 2 is executed next. And at last
Algorithm 1 is executed. Note that for the combination of
blocks A and B of Figure 2, Algorithms 3, 2, and 1 will
be executed.

Lines 58 to 72 show what memory operations on the GPU
are required to run kernel. What memory operations are
executed depend on which block is being processed. If it is
not the first block, the array of the diagonals from the last
run is moved to the start of the variable on line 60. Then
the column retrieved from the previous node is written to
the memory after the diagonals, where the column skips
the first characters. This is done on line 62. The number
of characters skipped of this column is equal to the size
of the width minus two. After that, the following column
is also appended in the memory on line 65. The copying
of the second column is required because the block being
processed depends on two columns.

If the process is at the first block of a pillar there is no
need to copy the diagonals as the new block will be using
Algorithm 2. Only the writing of the columns is necessary.
This is done on lines 68 and 70.

To keep the performance of the program decent, the num-
ber of blocks in a column should be at least 4, so that
multiple blocks can be computed in parallel on multiple
nodes. There is however a lower limit on the height of

a block because of line 60. If the diagonals at the end
of a run overlap with the position where the diagonals are
copied to, an error will be encountered. This can be solved
by buffering the copy, but this brings too much overhead.
As this only happens if the sequences are small, it is better
to run the problem on a single node as Section 7 will point
out. That is why the program will simply refuse comput-
ing the edit distance between two too short sequences on
a cluster. It will not fall back to compute the problem
on a single node to eliminate any confusion on how many
nodes were actually used to solve the problem.

The formula to compute the minimum sequence size is
2 ·diagonal size. The diagonal size is equal to sa.length ·
2− 1 as line 59 shows. The width of a pillar on one node
used for testing was 1024, so sequences run on a cluster
including that node will refuse any sequence size smaller
than 2 · (1024 · 2− 1) = 4094.

6. VERIFYING THE IMPLEMENTATION
In Algorithms 1 to 4 verification has been added in the
form of ensures and requires. The verification guarantees
that the work-items do not write to the same memory
location. This is required to ensure the determinism of the
algorithm, so that the result is consistent. As explained in
Section 3.4, permission-based separation logic is used to
state which work-item has access to what resources.

Most of the lines are trivial or explained in Section 4.6.
Non-trivial lines will be explained in this section. The
OpenCL algorithms are executed as a single group, so the
work-group verification is equal to the kernel verification
Therefore, the work-group verification has been left out.

6.1 OpenCL Algorithm 1
In Algorithm 1, lines 18 to 21 describe how the barrier dis-
tributes the read and write permissions among the work-
items. Line 18 reclaims all permissions the work-items
have on d. The following line redistributes the permis-
sions, and line 20 describes how the permissions are dis-
tributed over the kernel. Since the difference of the xs
between two consecutive threads is 2, no threads should
have read permissions on a cell with write permissions of
another work-item.

Lines 13 and 14 refer to the fact that the first and last
cells in the array of diagonals are not edited, as Figure 4
illustrates.

6.2 OpenCL Algorithm 2
The explanation of the previous section also holds up for
Algorithm 2, but a few line have been added. Lines 4,
13, and 14 are required in this algorithm to enable the
writes in lines 17 to 20. Lines 24 and 25 reclaim those
permissions. Lines 26 to 28 of Algorithm 2 are equivalent
to lines 18 to 20 from Algorithm 1. The if statement on
line 30 helps with the enforcement of permissions, as less
work-items process cells at the same time.

6.3 OpenCL Algorithm 3
Verification of Algorithm 3 is trivial, as no work-item re-
quires read permissions and no write permissions overlap.
Lines 2 and 6 describe what write permissions are required.

6.4 MPI Algorithm 4
As the nodes in a cluster only communicate the right most
columns of blocks, no concurrent variable manipulation
can occur. Therefore, permission-based separation logic
is not required for this algorithm. There are no circular
dependencies, so no deadlocks can occur. This cuts down

8



0 2 4 6 8 10 12

·1 · 1010

0

50

100

150

Fig. 7bFig. 7b

Number of cells

A
v
er

a
g
e

ti
m

e
(s

)

Node 1

Node 2

Nodes 1 and 2

(a) Overview

0 0.2 0.4 0.6 0.8 1

·1 · 1010

0

2

4

6

8

10

12

Number of cells

A
v
er

a
g
e

ti
m

e
(s

)

Node 1

Node 2

Nodes 1 and 2

(b) Zoomed in

Figure 7. Average time to compute edit distance

0 0.5 1 1.5 2

·1 · 1010

2

4

6

·10−9

Fig. 8bFig. 8b

Number of cells

A
v
er

a
g
e

ti
m

e
(s

)

Node 1

Node 2

Nodes 1 and 2

(a) Overview

0 0.2 0.4 0.6 0.8 1 1.2

·1 · 1010

0.9

1

1.1

1.2

1.3

1.4
·10−9

Number of cells

A
v
er

a
g
e

ti
m

e
(s

)

Node 1

Nodes 1 and 2

(b) Zoomed in

Figure 8. Average time per cell

the need for verification even further, leaving only trivial
requires and ensures statements.

6.5 Verification with VerCors
Unfortunately, OpenCL is not sufficiently supported by
VerCors to do automatic verification. Rewriting the ker-
nel in PVL, the native language of VerCors, does not
help, as there is no support for kernel arguments. In fur-
ther research support could be built into VerCors, but in
the mean time the manual verification provided in Algo-
rithms 1 to 4 will have to do.

7. TESTING THE PERFORMANCE
The implementation has been tested on a cluster of two
nodes. Node 1 has an NVIDIA GTX 960M with a maxi-
mum work-group size of 1024, which was first introduced
in 2015. Node 2 has an AMD R9 270X with a maximum
work-group size of 256, which was first introduces in 2013.
That means that the width, as discussed in Section 4.6,
are 1024 and 256 on Nodes 1 and 2 respectively. The im-
plementation has been run on the nodes separately and on

the nodes as a cluster. This allows us to compare the time
the program needs to return the result. The values used in
Figures 7 and 8 are averages of ten separate runs. The x-
axis represents the product of the lengths of the sequences
compared, which is equal to the number of cells in the
solution matrix as mentioned in Section 4.1. The y-axis
represents the average time it takes to solve the problem
in Figure 7 and the average time it takes for one cell to be
computed in Figure 8.

Figure 7 shows that the implementation works faster on a
cluster than on the individual nodes, if the number of cells
becomes larger than approximately 0.4 · 1010 cells. It also
shows that Node 2 takes longer than Node 1 to solve the
problem. This is due to the fact that the width of Node 2
is smaller than the width of Node 1. If the number of
cells is equal to 1.0 · 1010, Node 1 takes 10.5 seconds to
complete, Node 2 takes 47.2 seconds to complete and the
cluster takes 9.8 seconds to complete. The width used
in Node 1 is 4 times as big as the width in Node 2, but
the time required to solve the problem is 4.50 times as
long. Therefore, we can conclude that Node 2 will be the

9



bottleneck in the cluster. The implementation does not
take into account the difference in performance between
nodes, so Node 2 defines the maximum performance of
the cluster.

The total width of the cluster is equal to 1024+256 = 1280,
and the width of Node 2 is 256. So Node 2 is going to
handle 256/1280 = 1

5
of the pillars. That means that the

time the cluster should take is at least one fifth of the time
it takes Node 2 to solve the problem. There is however a
small difference between 47.2/5.0 = 9.44 and 9.8. This
is probably due to the fact that the use of a cluster takes
more time to set up and the communication provides some
overhead.

The theoretical optimal speed of the cluster is (1/10.5 +
1/47.2)−1 = 8.59, which is 12% faster than the actual
speed. This theoretical speed does not include the extra
time to set up the cluster. Section 8.1 will discus optimi-
sations required to approach this theoretical speed.

The set up taking more time can be seen in Figure 8.
These graphs show the time taken per cell, so extra time
taken independent of the number of cells will be visible
in these graphs. The steep decline in time per cell at
the left side of the graph is a clear indication that the
time to set up is indeed significant. In these graphs it is
also visible that the cluster becomes faster than Node 1 at
approximately 0.4 · 1010 cells, as the amount of time per
cell in the cluster drops below the time per cell in Node 1.

From these results we can conclude that optimal number
of GPUs in a cluster depend on the size of the sequences
compared, when considering the speed of the calculation.
For the specific cluster used in this section 0.4 · 1010 cells
is the size when the cluster is faster than the individual
nodes. The cluster will however never be more efficient
than the individual nodes, as the overhead on a cluster
persist no matter the size of the cluster. This means that
the user should consider whether the superior speed out-
weighs the inferior efficiency.

7.1 Comparison of algorithms
Comparison with the algorithm of De Heus is not useful,
since it cannot solve the edit distance of sequences longer
than the width of a node [3]. The implementation of this
paper does not focus on such small sequences, as extra
complexity and features results in a significant overhead
while computing them. It is safe to say that for comparing
small sequences the algorithm of De Heus is more suitable,
as it does not suffer from the same overhead.

8. CONCLUSION
The steps required to distribute the verified implementa-
tion of the edit distance are described in Sections 4 to 6.
The first step is explained in Section 4, which is the divi-
sion of the algorithm as shown in Figure 2. The second
step is explained in Section 5, which is the distribution of
the pillars among nodes and the communication between
the nodes. Finally, Section 6 explains the verification of
the new algorithms used in the previous two steps. The
three steps answer the first three subquestions mentioned
in Section 2. Together they answer the research question
mentioned in the same section.

The final subquestion is answered in Section 7, which dis-
cusses the performance of the implementation.

8.1 Future work on the implementation
Section 6.5 explains that VerCors offers insufficient sup-
port for OpenCL. A solution would be to improve the tool

so that all functionality of OpenCL can be used. The
code of the implementation described in this paper could
be used as a simple test. Once the tool supports OpenCL
any ambiguities or inconsistencies can be fixed in the im-
plementation.

There are certain optimisations possible for the MPI al-
gorithm. As mentioned in Section 7, one node can be the
bottleneck of a cluster. This can be solved by either using
the same hardware for every node, or to dynamically di-
vide the work load between nodes. The dynamic division
should allow nodes to negotiate what their tasks will be.

Another optimisation is the use of the CPU parallel to the
GPU. The OpenCL algorithms can be converted to a CPU
implementation so that it can help solve the edit distance
problem.

The OpenCL algorithms could also be optimised. The
memory used could be limited by using the algorithm of
Meyers [7]. The advantage is that the columns shared
between nodes takes less space, so the overhead for sending
and receiving the columns should be reduced. However, a
disadvantage is that the algorithm of Meyers requires extra
operations per cell and thus reduces the performance of
the algorithms. Therefore, the overall performance of the
implementation is not guaranteed to be better than the
current implementation.

9. REFERENCES
[1] A. Amighi, S. Darabi, S. Blom, and M. Huisman.

Specification and verification of atomic operations in
GPGPU programs, volume 9276 of Lecture Notes in
Computer Science (including subseries Lecture Notes
in Artificial Intelligence and Lecture Notes in
Bioinformatics). 2015.

[2] K. Balhaf, M. A. Shehab, W. T. Al-Sarayrah,
M. Al-Ayyoub, M. Al-Saleh, and Y. Jararweh. Using
gpus to speed-up levenshtein edit distance
computation. In 2016 7th International Conference
on Information and Communication Systems, ICICS
2016, pages 80–84, 2016.

[3] S. de Heus. A Case Study for GPGPU Program
Verification. In 20th Twente Student Conference on
IT.

[4] G. Jo, J. Nah, J. Lee, J. Kim, and J. Lee.
Accelerating LINPACK with MPI-OpenCL on
Clusters of Multi-GPU Nodes. IEEE Transactions
on Parallel and Distributed Systems,
26(7):1814–1825, 2014.

[5] Kronos Group. Conformant products.
https://www.khronos.org/conformance/adopters/

conformant-products#opencl.

[6] A. Munshi. The OpenCL Specification. Khronos
OpenCL Working Group, November 2012.

[7] G. Myers. A fast bit-vector algorithm for
approximate string matching based on dynamic
programming, volume 1448 LNCS of Lecture Notes
in Computer Science (including subseries Lecture
Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics). 1998.

[8] G. Navarro. A guided tour to approximate string
matching. ACM Comput. Surv., 33(1):31–88, Mar.
2001.

[9] NVIDIA Corporation. CUDA GPUs.
https://developer.nvidia.com/cuda-gpus,
October 2017.

[10] University of Tennessee, Knoxville, Tennessee. MPI :
A Message-Passing Interface Standard.

10

https://www.khronos.org/conformance/adopters/conformant-products#opencl
https://www.khronos.org/conformance/adopters/conformant-products#opencl
https://developer.nvidia.com/cuda-gpus

	Introduction
	Research questions
	Background
	OpenCL
	MPI
	Edit distance
	Verification

	Dividing the algorithm
	Original algorithm
	Partitioning the algorithm
	Storing the diagonals
	Constructing the initial diagonals
	Computation of the last block
	The OpenCL algorithms
	Algorithm to compute standard blocks
	Algorithm of initial blocks
	Algorithm of initial column
	Conclusion


	Using MPI
	Distributing the pillars
	The MPI algorithm
	Executing the kernel


	Verifying the implementation
	OpenCL Algorithm 1
	OpenCL Algorithm 2
	OpenCL Algorithm 3
	MPI Algorithm 4
	Verification with VerCors

	Testing the performance
	Comparison of algorithms

	Conclusion
	Future work on the implementation

	References

