
Boosting Shared Hash Tables Performance on GPU
Luuk Verkleij

University of Twente
P.O. Box 217, 7500AE Enschede

The Netherlands
l.h.verkleij@student.utwente.nl

ABSTRACT
Since 2005 it has become apparent that CPU sequential
speed fails to increase exponentially, making parallel com-
puting like GPU computing more important. The devel-
opment of GPUExplore has shown that model checkers are
one of the applications that could benefit from this trend.
This paper contributes to increasing model checkers speed
by redesigning a hash table algorithm, used by the model
checkers LTSmin and GPUExplore. In this paper we com-
pare the performance of three different designs, including
a new proposed design. Based on the data we have gather,
we claim that our design performance is better than the
others.

Keywords
GPU, OpenCL 1.2, Hash Table, model checker, LTSmin,
GPUExplore

1. INTRODUCTION
Until recently clock speed of cores increased exponentially,
together with transistors. Unfortunately this trend stopped
after 2005, as clock speed failed to increase exponentially,
unlike transistors[5]. Motivated by this lack of perfor-
mance scaling, CPU went more parallel like Graphic Cards
or Graphic Processing Units (GPUs) already did. The ex-
treme parallelism on GPUs, which are designed for pro-
cessing images, are now becoming the focus of more algo-
rithms. This is because vendors decided to open up their
GPUs for general purposes computing.

One of the applications that could benefit by this parallel
programming trend are model checkers. Model checkers
go through as many states as possible, checking variables
if they satisfy some pre-set conditions. It is easy to imag-
ine why such an application could benefit from parallel
computing, as every state has multiple state transitions.
Some of these states could be checked in parallel, where
GPU is strong. Wijs et al. created such a model checker,
named GPUExplore[7].

An important part of a model checker is it’s hash table, in
which it searches for and stores states. As model check-
ers have specific and simpler requirements, which means
that common used hash tables, like Cuckoo hashing, does

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy oth-
erwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.
24th Twente Student Conference on IT 22th of Januari st, 2016, En-
schede, The Netherlands.
Copyright 2016, University of Twente, Faculty of Electrical Engineer-
ing, Mathematics and Computer Science.

not have optimal performance. This has been found with
Laarman et al. with the model checker LTSmin[3] and
Wijs et al. with the model checker GPUExplore[7]. There-
fore Laarman et al. proposes a design based on CPU ar-
chitecture that achieves good results. Wijs et al. proposes
a redesign of the Laarman et al. design taking GPU ar-
chitecture in mind.

In this paper we propose a redesign of the Laarman et al.
algorithm. We are going to measure this algorithm against
our implementation on GPU of the Laarman et al. and
Wijs et al. algorithm. Using these measurements we are
going to prove that our algorithm performance is better.
Therefore we conclude that our redesign could be used in
future model checkers to increase their performance.

In this paper we first discuss background information, which
include how the Laarman et al. hash table algorithm works
and was designed. The background also includes a short
explanation on how GPU architecture and programming
works. Afterwards we discuss Laarman et al.’s and Wijs
et al.’s design of their algorithm and discuss our redesign.
We discuss the implementation, in which we explain some
problems and decision we have made. After this we will
going to discuss the research method and results, which
includes verification and testing. At last we analyse the
results, make a conclusion and discuss further work.

2. BACKGROUND
2.1 Hash table
The hash table algorithm used for this research is de-
scribed in a previous paper by Laarman et al [3]. The
goal of this paper[3] was to realize an efficient shared state
storage for model checking algorithms.

With this goal in mind, they could identify the following
requirements.

• The storage only needs one operation: find-or-put
(Algorithm 1). This lowers strain on memory and
avoids cache line sharing in comparison to more gen-
eralized hash tables.

• The storage should not require memory allocation
during operation, as this would increase the memory
footprint

• The use of pointers should be avoided, as pointers
take a considerable amount of memory when large
spaces are explored.

• The time efficiency of find-or-put should scale with
the number of processes executing it, ideally result-
ing in almost linear speed up.

• The storage is not required to be resizable

1

There where two types of hashing for the hash table con-
sidered. Hopscotch and Cuckoohashing. Cuckoo hashing
has been both be considered by Laarman et al. [3] and
Wijs et al. [7]. It was decided that these do not perfor-
mance well and often have features that where unused.
Afterwards the following design choices have been made
by Laarman et al. [3] for the hash function.

• Open Addressing

• A form of collision resolution by probing.

• Linear probing on the cache line

Probing over the cache line is by first by getting a
part of the hash table of the size of the cache line.
Then this part is being probed untill it founds it or
inserts it. If those fail it rehash and probes the cache
line again.

• Separated data in an indexed array

• Hash memorization in buckets

• A power of 2 table size

• Lockless

• Using compare-and-swap (CAS) on the buckets

2.1.1 find-or-put

Data : size,Bucket[size], Data[size]
Input : vector
Output: seen

1 num ← 1 ;
2 hash ← hashnum(vector) ;
3 ← hash % size;
4 while true do
5 for i ∈ walkTheLineFrom(index) do
6 if empty = Bucket[i] then
7 if CAS(Bucket[i], empty, (hash , write))

then
8 Data[i]← vector ;
9 Bucket[i]← (hash , done) ;

10 return false ;

11 end

12 end
13 if hash = Bucket[i] then
14 while (−, write) = Bucket[i] do ..wait.. ;
15 if (−, done) = Bucket[i]∧Data[i] = vector

then
16 return true ;
17 end

18 end

19 end
20 num ← num +1 ;
21 index← hashnum(vector) % size;

22 end
Algorithm 1: The find-or-put algorithm of Laarman et
al.[3] in pseudocode

In this section all code in algorithm 1 will be referenced
by line number using the following notation: (x), whereby
x is a line in algorithm 1.

The find-or-put function probes continually (4) until ei-
ther a free bucket is found (8-10) or the data is found to
be in the hash table (15-17). The for-loop (5-19) handles
sequential probing behaviour.

The walkTheLineFrom (5) returns a set of integers starting
from index, with a maximal size of the cache line, making
optimal use of fetching behaviour of the cache.

Buckets store memorized hashes and the write status bit
of the data in the Data array. A bucket can be in three
states: empty, being written and done. A bucket can never
become empty again once it has the state being written
and can never become being written again once it has the
state done.

At line 6 the bucket is checked if it the empty state. If
so, it sets the state to being written, writes the vector to
the data and sets the bucket to done. This can be seen as
locking the data.

Line 14 resembles a spinlock, which means that when it
finds that the bucket is in the state of being written, it
waits untill the write has been completed.

2.2 GPU Architecture

Figure 1. GPU Architecture [2]

GPU architectures differ for each vendor. Here we will
explain GPU architecture through the abstraction of the
OpenCL framework making use of Figure 1. There is a
host, a CPU-based device, which controls multiple com-
pute devices. In our case the host, the CPU, controls the
CPU and the GPU. Each of these devices (GPU and CPU)
contains multiple compute units. In figure 1 the compute
units are the four blocks. In the case of the CPU there
are multiple cores, and in the case of GPUs we have work-
groups. In a compute unit (workgroup) there are multi-
ple processing units (workers). In figure 1 these are the
16 blocks within the compute units. NVidia calls their
workgroups “Warps”, while AMD calls their workgroups
“Wavefronts”[6].

In the GPU workers share a memory, called local memory.
In figure 1 these are the cache blocks in the workgroups.
This local memory can only be accessed by the workers in
the same workgroup, while global memory can be accessed
by all workers. Each worker also has a private memory.
Memory hierarchy is as follows, from fastest to slowest,
from least shared to most shared and from smallest to
largest[4][2].

2

1. Private Memory

2. Local Memory

3. Global Memory

This is the case for most consumer GPUs

To make optimal use of the parallel features of the GPU,
GPUs make use of SPMD (Single Program, Multiple Data)
and SIMD (Single Instruction, Multiple Data) techniques.
All workgroups run the same program and every worker
within a workgroup share a program counter and therefore
run the same instruction. This is different from a CPU
were threads run different instructions with different data.

2.3 OpenCL 1.2
There are two competing GPU programming languages:
CUDA and OpenCL. CUDA is made and only supported
by NVidia. CUDA is released in 2006 and is more ad-
vanced compared to OpenCL 1.2. Unlike CUDA, OpenCL
is cross-vendor, supported by all major GPU manufactur-
ers. As we do not want to be constraint by the vendor of
the GPU, we will be using OpenCL.

NVidia has been late in updating there OpenCL 1.2 sup-
port, but finally started to update their OpenCL 1.2 sup-
port starting this May 2015[1]. Therefore we can safely
assume that the majority of the graphic cards will sup-
port OpenCL 1.2.

OpenCL 1.2 is a standard developed by the Kronos Group.
It provides a top-level abstracting for low level hardware
routines. The advantage of the abstracting is that OpenCL
code runs from microcontroller to CPUs to General Pur-
pose GPUs.

2.4 GPU Optimalizations
2.4.1 Branch Divergence

Branch divergence occurs in GPUs, because of previously
discussed SIMD [2]. Take for example branch in figure 2.
If within a local thread group there is at least one thread
that goes in the if-branch and at least one thread that goes
in the else-branch, the time it takes for the workgroup to
complete doubles. As every worker that goes in the else
has to wait for the if-branch to finish and every worker that
goes in the if-branch has to wait for the else-branch to fin-
ish. This means that if/else and other branch divergences
should be avoided for optimal performance. nobranch is
the improved version of branch for GPUs

__kernel void branch(int a,

int b,

global int *c) {

if(a == -1) (*c) -= b; // a == -1

else (*c) += b; // a == 1

}

__kernel void nobranch(int a,

int b,

global int *c) {

(*c) -= a * b; // a == 1 || a == -1

}

Figure 2. Kernel branch often takes twice as long

2.4.2 Memory Hierarchy

As previously discussed, GPU has a memory hierarchy
which if used correctly can increase your speed signifi-
cantly. For example, if there are a lot of read/write oper-
ations between variable A and workgroup G than moving
variable A to the local memory of workgroup G increases
speed. And if a thread does a lot of operations on a vari-
able within the global or local memory, it is faster to read
the variable to the private memory of the thread, do the
operations and then write it back than to write each op-
eration directly to the variable.

2.4.3 Atomics and Barriers
An atomic operation is an important part of parallel pro-
gramming, as atomic operations are done without an inter-
rupt. The memory does not change between the start and
the end of the function. In practice this is done through
temporary memory locking. Therefore using an excessive
atomic operations result in increased waiting time and re-
duce speed up.

Another functionality are barriers. There are two barriers,
a barrier for local and a barrier for local memory. A barrier
guarantees that all threads are at the barrier before the
threads can move on.

These functions are both useful, but as they are synchro-
nize functions, using often will increase waiting time in
threads and therefore reduce performance. Therefore they
should be used only when absolutely necessary.

3. RESEARCH QUESTIONS
The goal of the research is to find out which of the three
algorithms, Laarman et al., Wijs et al and our design has
the best performance. Therefore our main research ques-
tion is as follows:

• Does Laarman et al., Wijs et al or our design have
the best overall performance?

To answer this question it is divided in the following sub
questions that we answer for each design.

1. What is the speedup for large number of vectors?

2. What is the speedup for a single vector?

3. How does it perform when the hash table is getting
full?

4. RELATED WORK
4.1 Thomas Neele
This research is built upon the research of Neele. The im-
plementations have been built on the implementation de-
livered in this research. Neele in his research implements
the Laarman et al. hash table on GPU. He test the imple-
mentation on both CPU and GPU, using the speedup and
absolute speed as performance measure. We see that the
GPU has good speedup using all the workers. We also see
that eventually the GPU absolute performance overtakes
the CPU performance. This is argued using two measure-
ments, one which performs inserts and one that performs
finds.

Neele concludes that the Laarman design can benefit from
GPUs parallel architecture. However this conclusion is
made with only the workgroups and one worker. For ex-
ample in Neele’s research the GTX770 was used, which

3

we also used. The graphs of Neele’s research makes it ap-
parent there were 128 workers used, while there are 128
workgroups and 32 workers each. In our research we will
make use of the 32 workers available.

4.2 GPUExplore by Wijs et al.
The paper of Wijs et al. [7] is important for this paper.
Wijs et al. demonstrates that GPU based model checkers
are not only possible, it is a necessary evolution for model
checkers to increase their speed. They present a model
checker entirely for GPU, called GPUExplore. One of the
citations it uses is Laarman et al. [3] and the find-or-put
algorithm. They also redesigned Laarman et al. version
of find or put based on the architecture of the GPU. They
confirm that it has better performance than cuckoo hash-
ing. However it misses crucial data and experimentation
to confirm or deny if the redesign is effective. The redesign
of the GPUExplore compared to Laarman et al. original
design is expanded in the following section.

5. HASH TABLE DESIGNS
5.1 LTSmin
The design of the LTSmin version has been extensively
discussed in the section background and related work. In
this section we will discuss the problems with the design
when implementing it on GPUs in contrast to CPUs.

In the background we have discussed branch divergence.
Laarman et al.’s version experiences this problem on GPU.
For example one worker can complete execution at the
first position, yet he has to wait for another worker who is
still searching. All workers have to wait until the slowest
worker is done. This can be avoided by only using a single
worker per workgroup, however this also means the GPU
is not used optimally.

The design proposed in GPUExplore in Wijs et al.[7] dif-
fers from the pseudocode in algorithm 2. It is more in
line with how it is implemented in OpenCL, while still
conceptual the same.

Figure 3. Parallel search found in both GPUEx-
plore and in the proposed design

There are two important changes compared to Laarman
et al.. The first change is the addition of a parallel search.

Data : size,Bucket[size], Data[size]
Input : vector
Output: seen

1 threadId ← get_local_id(0);
2 numOfWorkers ← get_local_size(0);
3 num ← 1 ;
4 local found ← false ;
5 local written ← false;
6 while true do
7 hash ← hashnum(vector) ;
8 index ← hash + threadId % size;
9 for i to cacheLineSize / numOfWorkers do

10 local selected ← numOfWorkers;
11 do
12 if Bucket[index] =

FULL ∧Data[index] = vector then
13 found ← true;
14 if found = true then
15 return true;
16 if threadId = 0 then
17 for j ← 1 to numOfWorkers do
18 if CAS(&Bucket[index], EMPTY,
19 WRITE)= EMPTY then
20 Data[index] = vector;
21 Bucket[index] = WRITE;
22 written ←= true;

23 if written then
24 return false;

25 while selected ! = numOfWorkers;
26 index ← index + numOfWorkers % size;

27 num ← num +1;
Algorithm 2: The find-or-put algorithm of Wijs et al.[7]
in pseudocode. It is an hybrid between our proposed de-
sign and the original Laarman et al. design, as it features
parallel search and sequential insertion

The parallel search can be found in block 12-15 in algo-
rithm 2. How it works is shown in figure 3. We have n
workers and each of these workers checks if they find the
given vector. If it is found, the worker sets the local vari-
able ”found” to true from false. Afterwards we check if
the local found variable is set to true. If this is the case,
we know that a worker has found the vector, therefore
the workgroup can report it has found the vector. The
parallel search is faster than Laarman et al.’s sequential
search incase the hash table is not empty. This is because
the workers inspect multiple positions in the hash table
concurrently.

The second change is the removal of the spinlock, which
we would have expected after the if block at line 16-24
in algorithm 2. This increases insert speed, yet gives the
possibility of false negatives. False negatives occur when
two threads have the same vector and try to insert them
concurrently. Both get inserted, while only one should.
This results in a small performance decrease, as the model
checker is now going to explore this state twice.

5.2 Our Design
The pseudocode of the proposed design is found at algo-
rithm 3. Compared to GPUExplore, we have changed how
vectors are inserted. A problem that occurs in the GPU-
Explore design is that when the workers have not found
the vector, and all positions are full, GPUExplore still has
to go through all positions in attempt to insert the vec-
tor. This is solved in our design by making the insertion
parallel. This is found in line 16-23 at algorithm 3.

4

Data : size,Bucket[size], Data[size]
Input : vector
Output: seen

1 threadId ← get_local_id(0);
2 numOfWorkers ← get_local_size(0);
3 num ← 1 ;
4 local found ← false ;
5 local written ← false;
6 while true do
7 hash ← hashnum(vector) ;
8 index ← hash + threadId % size;
9 for i to cacheLineSize / numOfWorkers do

10 local selected ← numOfWorkers;
11 do
12 if Bucket[index] =

FULL ∧Data[index] = vector then
13 found ← true;
14 if found = true then
15 return true;
16 if Bucket[index] = EMPTY then
17 selected ← index;
18 if selected = index ∧

CAS(&Bucket[index], EMPTY,WRITING)=
EMPTY then

19 Data[index]← true ;
20 Bucket[index]← FULL;
21 written ← true;

22 if written then
23 return false;

24 while selected ! = numOfWorkers;
25 index ← index + numOfWorkers % size;

26 num ← num +1;
Algorithm 3: Our proposed design in pseudocode. It
features parallel searching and insertion

Figure 4. Parallel insert in the proposed design.
If there is an empty bucket available, it selects it
using by data racing.

The parallel insertion is explained in figure 4. In our design
it is essentially the same as parallel searching. First we
set a local variable ”selected” to the number of workers
there are. When a worker has found an empty spot where
it is searching, it sets the local ”selected” variable to its

worker ID. If the ”selected” variable is set to a worker
id, the worker who has found it tries to write it to the
hash table. When this CAS operation succeeds, it sets
the local ”written” variable. This is so that other workers
know that the vector is inserted and the workgroup can
finish the execution. However, if the CAS operation fails,
the workers come in the while from line 25 in algorithm
3. This is essentially a spinlock. However this does not
prevent all false negatives. When the workers didn’t find
an empty spot they go to the next part of the cache line,
shown in algorithm 3 in line 26.

The algorithm does have false negatives. However, we
expect to have less false negatives than GPUExplore, be-
cause our inserts are faster. This means that there is a
smaller window for two vectors to both be inserted con-
currently. There is small chance that both vectors are
inserted at the same position. This would mean that one
workgroup repeats and finds the vector in this iteration,
preventing a false negative.

6. IMPLEMENTATION
This section goes into some of the challenges that where
encountered using OpenCL. OpenCL is low level, without
the abstraction away from the hardware as most popu-
lar language have these days. This resulted in some un-
expected problems while implementing the design. This
section goes into the encountered problems and chosen so-
lutions.

6.1 Intel SDK
While OpenCL has been standardized, it is to the man-
ufacturers to implement it and make it work with their
hardware. For this paper the Intel SDK have been used
for implementing the designs. These has some specific
bugs, for example when working with de HD4000 inte-
grated graphic cards, running driver version 10.18.10.4226
from 25-5-2015, it could not build kernels, while it worked
fine on other devices. It appears to be an Intel SDK /
driver bug, as it would get stuck in building. We tried to
avoid it, but there may be some quirks in the implemen-
tations influenced by the Intel SDK.

6.2 Less than 32 bit in OpenCL
Working with OpenCL a problem occurred when using
short scalar types. A short type is 16-bit in OpenCL. [4].
When working with an array made of unsigned shorts,
problems arise. When using the array indexing operator
or using pointer algorithm it would act as if the shorts
where 32-bit. Selecting a part of the array would return
a pointer twice as far and changing than expected. When
changing the value which the pointer points to, it also
would change the value indexed one further. These prob-
lems can be overcome using some pointer algorithm and
bitwise operators, yet for simplicity sake the 16-bit array
was quickly replaced by a 32-bit version. In the process
also using up more memory.

6.3 Printf Problems
The printf function was heavily used in the debugging
of the implementations. However the printf function was
harder to use than was initially expected. There were two
problems that where encountered. The first is the strict-
ness of the printf. If you do not use the correct flag for a
given variable, for example when you do not specify a long
when the variable is in fact long, it prints garbage values.
The second problem has not been verified, but it appears
that when the printf has more than 3 arguments, it will
print some of these wrong. This may be a problem with

5

the implementation of OpenCL library that was used.

6.4 Spinlock Struggles
The first spinlock was implemented naive, using a while
loop to check the given value, the implementation would
even end up not terminating. The thread went into a
deadlock. Apparently the bucket was not updated to the
local memory. The correct way to implement a spinlock is
having a global memory barrier call within the while loop,
or using another function that forces the global memory
to be updated. Experience proved that printf is one of the
functions that forces global memory to be updated.

7. VALIDATION METHOD
Verification of the code would be ideal, but unfortunately
it is out of scope for this paper. Therefore a set of re-
quirements has been chosen to get an indication of the
correctness of the code. All implementations used in this
paper were successfully tested using the methods below.

7.1 Filling It Until It’s Full
We use three different tests for checking the code. The first
step exists of filling the hashtable with unique vectors, as
much as the hashtable can hold, and checking if it always
returns false. This verifies that each insertion results in
a returned false. If there is a true returned, then inser-
tion went wrong. If the database was full before the all
vectors were inserted of was not full, it implies that there
are overwritten values or double values. Therefore if this
is not the case, it implies that each vector was correctly
inserted.

The second step is finding each unique vector we inserted
in the hashtable earlier. This should only return true. If
not, this implies that either searching went wrong or that
inserting went wrong. If it went right, it implies that we
can insert a least the used vectors and find it at least ones.

The third step is again finding each unique vector we in-
serted earlier. This is to verify that finding values does
not alter the hashtable.

7.1.1 Workgroups and workers
An important part of GPU programming is that it is cor-
rent concurrently. To verify this we use the above valida-
tion method using different configurations of the number
of workgroups and workers in each workgroup.

8. MEASUREMENT METHOD
To answer the research questions, we have implemented
multiple ways to measure the implementation of the hash
table algorithms. There are two states an algorithm can
have. The first is that the vector is not yet in the hash
table, therefore it will insert the vector. The second state
is that vector is already in the hash table, therefore the
algorithm finds the vector.

Using these two states we have divided the measurements
in three test cases. The first test case is that we only find
vectors already in the hash table. The second test case is
where we only insert new vectors. Yet this is unrealistic
as there will be seldom a case where there are only inserts
of finds. Therefore the thirth test case is where we do a
combination of both, where half the vectors are inserted
and the other half are found.

These test cases have been executed while varying the
number of workgroups, workers and how full the initial
hash table is.

Table 1: Hardware and software used to gather the mea-
surements
Operating System Red Hat 4.4.7
GPU GeForce GTX770
Driver 319.23

8.1 Setup
The setup used to gather data is in table 1.

9. MEASUREMENT RESULTS
All previous mentioned designs have been tested. The
Laarman et al. design has been spit into two, one with
one worker and the one with 32 workers. These have been
split to find out how mutch branch divergence effects the
design. The names used in the graphs are as follows:

Laarman et al. - 1 Worker
The Laarman et al. algorithm using a single worker
per workgroup

Laarman et al. - 32 Workers
The Laarman et al. algorithm using 32 workers per
workgroup

GPUExplore
The GPUExplore algorithm from Wijs et al. using
32 workers per workgroup

Proposed design
The design that we propose in this paper, using 32
workers per workgroup

All the measurements have been exectued on the GTX770,
including Laarman et al. which originaly is designed for
CPU. Workers, like metioned in the background, are proc-
cessing units in a compute unit (workgroup). For the
GTX770 we have found that there are 128 workgroups
and each workgroup has 32 workers. When there where
made use of multiple workgroups, the number of workers
in these workgroups where the same.

9.1 Speedup for multiple vectors
Figure 5 shows the measurements using 1 - 128 work-
groups, which is the maximum for GTX770. This graph
is based on measurements test case 1, where we only find
vectors. This means that all the vectors already in the
hash table before we execute the algorithms. The y-axis
is the speedup compared to a one workgroup. What we
see is that Laarman et al. 1 worker, GPUExplore and the
proposed design have linear speedup. The Laarman et al.
32 workers has the best speedup, but slightly flattens at
the end.

6

0

100

200

300

400

500

600

700

800

900

0 50 100 150

S
P

E
E

D
U

P

WORKGROUPS

Laarman et al. - 1 worker Laarman et al. - 32 workers

GPUExplore Proposed Design

Figure 5. Test case 1 - the speed up of finding
vectors compared to a single workgroup

Figure 6 shows the measurements of using 1 - 128 work-
groups. This is the graph of test case 2, where vectors
are only inserted. The y-axis is the speed up compared to
a single workgroup. Here we see that Laarman et al - 1
worker and GPUExplore are both linear and overlap each
other. Our proposed design also is linear, but is steeper.
Finally Laarman et al. - 32 workers after around 75 work-
groups flattens, taking shape of half a parabola.

0

50

100

150

200

250

300

350

400

450

500

0 50 100 150

S
P

P
E

D
U

P

NUMBER OF WORKGROUPS

Laarman et al. - 1 worker Laarman et al. - 32 workers

GPUExplore Presented Design

Figure 6. Test case 2 - the speed up of inserting
vectors compared to a single workgroup

Figure 7 shows the measurements of using 1 - 128 work-
groups. This graph is a graph of test case 3, where vec-
tors are both inserted and found. The y-axis is the speed
up based on the execution time of a single workgroup.
Where we saw Laarman et al - 32 workers previously had
speedups of 400 in test case 2 and even 900 in test case
1, here it doesn’t reach a speed up of 50 and flattening
quickly. Moreover, where GPUExplore had both a steeper
speed up in test case 1 and 2 than Laarman et al. - 1

worker, here it is less steep.

0

50

100

150

200

250

0 50 100 150

S
P

E
E

D
U

P

NUMBER OF WORKGROUPS

Laarman et al. - 1 Worker Laarman et al. - 32 Workers

GPUExplore Proposed Design

Figure 7. Test case 3 - the speed up of insert-
ing and finding vectors compared to a single work-
group

9.2 Speedup Single Vector
Figure 8 shows the speed up of a single vector in test
case 3. The speedup is compared to the speed of one
workgroup with one worker. Here we see that the speed
up of a single vector is reduced per worker increases, but
unlike GPUExplore and our proposed design, which each
worker a extra vector is able to be processed. We see that
a single vector is processed faster with the first 8 workers
with GPUExplore and our proposed design.

0

0.5

1

1.5

2

2.5

3

0 10 20 30 40

S
P

E
E

D
U

P

WORKERS

Laarman et al. GPUExplore Proposed Design

Figure 8. Test case 3 - The speed up for a sin-
gle vector compared to a single workgroup with a
single worker

9.3 Hash table size differents speedup
While in theory we often assume hash tables have a con-
stant execution rate, in practice they do not. The graph

7

has this ideal line of a constant execution speed. In Figure
9 we show the speedup of the designs when they are used
in a database that is filled. The speedup is based on the
performance of an empty database. We see our proposed
design has an almost constant speedup until the database
is half. Laarman et al - 32 Workers has the worst per-
formance which execution time almost dubbles when the
hash table is one tenth filled.

0

0.2

0.4

0.6

0.8

1

1.2

0 0.2 0.4 0.6 0.8 1

S
P

E
E

D
U

P

NUMBER OF WORKGROUPS

Laarman et al. - 1 Worker Laarman et al. - 32 Workers

GPUExplore Proposed Design

Ideal

Figure 9. The measured speedup of the three al-
gorithms inserting vectors and finding them at the
same time.

10. DISCUSSION
10.1 Laarman et al. - 32 Workers
Laarman et al. with 32 workers uses the GPU optimal,
which in this case is 128 workgroups with each 32 work-
ers. In this case we have the best finding and inserting
performance. However, in the context of figure 8 this be-
comes clear that if we have a low number of vectors instead
of batches of 128*32 vectors, the slowdown is significant.
What we see with 32 workers is that it is possible for sin-
gle vector to actually take 5 times as long, which would
not be the case if we only had one worker per workgroup.
This is caused by branch divergence in the workers.

This branch divergence problem with Laarman et al. be-
comes obvious in test case 3, as shown in fig 7, where it
had the worst speed up.

10.2 Laarman et al. - 1 Worker
The two problems, reduced single vector performance and
bad performance while searching and inserting, which we
have with 32 workers is solved by only using a single worker
in each workgroup. This also means we only use 1/32 of
the GPUs potential. This version was tested by Neele
as mentioned in the related works section. Neele found
a speedup of 0.43 per workgroup on the GTX770. We
however found an average speedup of 0.89 per workgroup,
and a speedup of 0.85 per workgroup when using all the
workgroups. Even though we don’t use the GPU optimal,
the speedup and performance are still good.

In Figure 9 we find that Laarman et al. design does not
have a constant execution time. It gets around 0.13 times
slower for each 10 percent that the database is filled.

10.3 Wijs et al.
The first that stands out is that Wijs et al. has a worse
speed up in test case 1 our design, as shown in figure 5. As
they both make use of parallel searching, we would expect
the same speedup. This is because when Wijs et al. has
not found the vector in the part where the workers are
searching, while this part is filled, it has to go through the
insertion loop before it can search further. This explains
why it performs better than Laarman et al. but worse than
our design. Wijs et al. performance slightly better than
the Laarman et al.. We find in figure 9 that GPUExplore
performance near constant in execution time, with only
a slight steep down. Test case 2, as shown in figure 6,
speedup is equal to Laarman et al. - 1 worker, as expected.

Wijs et al. has overall better performance than Laarman
et al - 1 Worker, yet an unexpected bad performance when
we are both inserting and finding. In conclusion the GPU-
Explore algorithm is slightly better than Laarman et al on
GPU.

10.4 Our Design
It is clear that the proposed design has the best perfor-
mance overall. What we find in figure 9 is that our pro-
posed design has an almost constant execution time for the
database, from empty until it is half full. The speedup for
all the three test cases is the steepest. However it needs
around 16 workers to scale well, as shown in figure 8. Com-
pared to a single worker in a single workgroup, a vector
would be 6 times slower inserted with the maximum work-
groups.

11. CONCLUSION
In conclusion our design performance is the best among
the three designs. It overtakes both finding and inserting
by making efficient use of the workers that are available.
With these workers we get a speedup of around 1.6 per
workgroup. Unlike Laarman et al. which does not scale
using multiple workers as a consequence of branch diver-
gence.

Our design scales when we are inserting, unlike GPUEx-
plore. Insertion takes longer than finding a vector, because
it needs to know that the previous positions where full, fol-
lowed by a CAS operation. That in combination with the
expected lower number of false negatives, we can conclude
our proposed design performance better.

We have an indication that our design could increase the
performance of model checkers, however we cannot con-
clude it. Like mentioned in the section on the designs,
the proposed design has some false negatives, which im-
pacts the performance negative. To conclude the proposed
design performance better we need to implement it in a
model checker.

Even through the scaling is promising, there is still a prob-
lem of memory. From Neele: ”Even the most expensive
GPUs have a memory size of only 12 GB, whereas a high
end server may have more than 100 GB of main memory.
The potential of a model checker largely depends on the
amount of memory it can allocate.”

12. FURTHUR WORK
Unfortunately we have not had the time to implement all
ideas for the design. The original idea of the algorithm is
splitting it in the local memory of the workgroups. Where
the vector was to be placed is decided by the hash. The
hash can be calculated by a different workgroup, which
can do 32 at once because of the workers. In theory this

8

should increase the performance even above the proposed
design in this paper. Further work could try to implement
these features in the algorithm.

Further research could be performed using the algorithm
proposed in this paper and implement in a model checker.
For example it could be tested in LTSmin. To evaluate if
using GPUs for the hash table is useful and does increase
performance.

As last I would like to question if the hash table is the best
part of the model checker for parallel computing. A hash
table makes use of a hash function with low collision to find
a random position that has a good chance to be unique.
This results in fast finding and inserting. This means that
until the hash table is getting full, the workers are often in
a position where they are doing nothing. What we suggest
is looking at another storage system, like a tree, where
parallel computing has the potential to scale optimal with
the number of workers.

13. REFERENCES
[1] Khronos products. https://www.khronos.org/

conformance/adopters/conformant-products.
Accessed: 2015-10-7.

[2] D. B. Kirk and W. H. Wen-mei. Programming
massively parallel processors: a hands-on approach.
Newnes, 2012.

[3] A. Laarman, J. Van de Pol, and M. Weber. Boosting
multi-core reachability performance with shared hash
tables. In Proceedings of the 2010 Conference on
Formal Methods in Computer-Aided Design, pages
247–256. FMCAD Inc, 2010.

[4] L. H. Munshi and Aaftab. The opencl specification.

[5] H. Sutter. The free lunch is over: A fundamental turn
toward concurrency in software. Dr. Dobb’s journal,
30(3):202–210, 2005.

[6] J. Tompson and K. Schlachter. An introduction to the
opencl programming model. Person Education, 2012.

[7] A. Wijs and D. Bošnački. Gpuexplore: Many-core
on-the-fly state space exploration using gpus. In Tools
and Algorithms for the Construction and Analysis of
Systems, pages 233–247. Springer, 2014.

9

