
Providing an Efficient Lockless Hash Table for Multi-Core
Reachability in Java

Bas van den Brink
University of Twente

P.O. Box 217, 7500AE Enschede
The Netherlands

b.vandenbrink-1@student.utwente.nl

ABSTRACT
In order to gain substantial performance when using state
space explorators in model checkers by using multiple cores,
the data structure that is being used has to be designed in
such a way that it can be used concurrently. Currently, an
efficient lockless hash table for state space explorators in
a model checker has been implemented in C. This article
provides a Java variant of this hash table that is scalable
in the number of cores by limiting cache updates and re-
fraining from using locks. Benchmarks are designed and
executed to show this scalability.

Keywords
hash table, multi-core data structures, lockless algorithms,
parallel programming, Java

1. INTRODUCTION
This article describes a Java variant of an implementation
of an efficient lockless hash table, used for state space ex-
plorators in model checkers. According to Laarman et al.,
“[a state space explorator] searches through all the states of
the program under verification to find errors or deadlocks”
[5]. In order to memorise states that have already been
visited, every visited state is stored as a state vector in a
data structure, which generally is a hash table. Boosting
the speed of reachability algorithms can be accomplished
by making use of multiple processor cores. However, this
requires a data structure that provides thread safe access
and is efficient when using multiple cores. According to
Oracle, “a procedure is thread safe when the procedure is
logically correct when executed simultaneously by several
threads” [6]. This implies that no data races may occur
when multiple threads access the data structure.

Concurrent data structures use synchronisation mecha-
nisms in order to prevent data races. When coarse-grained
synchronisation is used, large parts of the data structure
are locked when a thread accesses the data structure. In
the context of reachability problems, this significantly de-
creases performance. This performance decrease is even
greater when large state vectors are stored in the hash ta-
ble. This is the result of the whole hash table being locked
for a significant amount of time when large state vectors

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy oth-
erwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.
21st Twente Student Conference on IT June 23, 2014, Enschede, The
Netherlands.
Copyright 2014, University of Twente, Faculty of Electrical Engineer-
ing, Mathematics and Computer Science.

are written to the hash table, compared to cases where
hash tables are used to store relatively small data.

Therefore, fine-grained synchronisation, where only small
parts are locked at a time, is more suitable for this pur-
pose. However, Laarman et al. stated that this would still
be infeasible since ”the lock itself introduces another syn-
chronization point; and synchronization between processor
cores takes time”. Fine-grained synchronisation still re-
quires that processor caches are updated with every access
of the concurrent data structure. This is needed, since ev-
ery processor core has its own cache. Therefore, changes
in the state of a lock would otherwise not be observed by
other cores and thus data races may occur.

Hence, an efficient hash table has been proposed in by
Laarman et al. that is lockless [4]. The implementation
has been accomplished in C. While an interface could be
provided to use this implementation in Java, this solution
does not benefits from a number of advantages of the Java
language, such as cross-platform portability.

Therefore, a Java implementation of this hash table is a
better solution to use this hash table in model checkers
that are written in Java. However, since Java is a cross-
platform language, it uses a higher abstraction level of the
system it is running on. Hence, low-level APIs to control
cache updates, which are used in the C variant, are not
available in Java.

This paper therefore provides a Java variant of Laarman’s
hash table (algorithm 3 and 4). This hash table could
be used by any model checker that is written in Java and
scales well over the number of cores, because of its lockless-
ness and the limited number of cache updates. Further-
more, this paper provides benchmarks of this hash table
to show its scalability (section 4.2).

2. BACKGROUND
Atomic operations can be used to implement concurrent
algorithms without using expensive locks. While this in-
creases performance, it is more difficult to implement a
correct algorithm using atomic operations than implement-
ing an algorithm that uses locks. Laarman’s hash ta-
ble uses such atomic operations. Section 2.1 describes a
method, which is used by this hash table, to use atomics
in C. Java does provide different methods to implement
atomic operations. These methods are describes in sec-
tion 2.2.

Laarman’s hash table itself is described in section 2.3. Fur-
thermore, the basis of our hash table, Click’s hash table,
is described in section 2.4.

2.1 Atomics in C
A common atomic operation that is used by Laarman’s
hash table is the compareAndSwap (CAS) operation. Many

1

modern CPUs implement this operation as a processor in-
struction, which ensures atomic memory modification and
preserves data consistency if used in a correct manner.
This operation has three parameters: int* reg, int old-

val and int newval. reg is the location to be modified,
oldval the expected old value and newval the value that
is to be set at reg. Only one thread can execute a CAS

operation at a time. CAS checks whether *reg is equal to
oldval and sets newval when this results true. CAS returns
whether the operation has succeeded.

2.2 Atomics in Java
Since Java is a high-level language, it uses a higher abstrac-
tion level of atomic operations. These operations are bun-
dled in the toolkit java.util.concurrent.atomic. Ac-
cording to Oracle, this is ”[a] small toolkit of classes that
support lock-free thread-safe programming on single vari-
ables. In essence, the classes in this package extend the
notion of volatile values, fields, and array elements to
those that also provide an atomic conditional update opera-
tion of the form: boolean compareAndSet(expectedValue,

updateValue)” [7]. The compareAndSet method has the
same semantics as the CAS operation implemented in C
2.1, but has stronger reordering constraints.

According to the Java Language specification [2], the fol-
lowing is guaranteed when applying volatile to a field:
“A write to a volatile variable v synchronizes-with all
subsequent reads of v by any thread (where ”subsequent”
is defined according to the synchronization order).” In
short, when thread A write a volatile variable v, thread
B sees this write when it is reading this variable after the
write. This is accomplished by enforcing a memory fence.
A memory fence causes the compiler and CPU to enforce
an ordering constraint on memory operations issued before
and after the fence instruction. Therefore, the processor
caches are updated. Furthermore, the writes and reads of
volatile variables are atomic. The atomic toolkit uses
volatile variables underneath.

Furthermore, atomic classes use the Unsafe class for its
implementation. According to docjar.com, which contains
documentation for the OpenJDK API, sun.misc.Unsafe
is ”A collection of methods for performing low-level, un-
safe operations. Although the class and all methods are
public, use of this class is limited because only trusted code
can obtain instances of it.” [3]. It is however possible to
use instances for our hash table. Unsafe provides meth-
ods as compareAndSwapObject and compareAndSwapInt,
which are natively implemented by the Java Virtual Ma-
chine (JVM). The JVMs from Oracle and OpenJDK for
x86 processors use the compareAndSwap processor instruc-
tion to execute these methods.

Unsafe is used by the AtomicInteger class, which is a
class part of the atomic toolkit, that supports lock-free
thread-safe programming with integers, to implement the
compareAndSet operation. This is accomplished by using
compareAndSwapInt.

2.3 C variant hash table
Laarman et al. proposed the C variant of the lockless
hash table [4]. This hash table only contains one opera-
tion, the find-or-put operation. This operation searches
for a value. If it succeeds, true will be returned. Other-
wise, the value will be put into the hash table and false

will be returned. The pseudo code is shown in algorithm
1. Instead of utilising locks for providing thread safety, ev-
ery key-value pair contains a state, which can be Empty,
Write or Done. These states are encoded in the memoized

Data: size,Bucket[size], Data[size]
Input: vector
Output: seen

1 num← 1;
2 hash memo← hashnum(vector);
3 index← hash mod size;
4 while true do
5 foreach i in walkTheLineForm(index) do
6 if empty = Bucket[i] then
7 if

CAS(Bucket[i], empty, 〈hash memo,write〉)
then

8 Data[i]← vector;
9 Bucket[i]← 〈hash, done〉;

10 return false;

11 end

12 end
13 if hash memo = Bucket[i] then
14 while 〈−, write〉 = Bucket[i] do

...wait...;
15 if 〈−, write〉 = Bucket[i] ∧Data[i] =

vector then
16 return true;
17 end

18 end

19 end
20 num← num+ 1;
21 index← hashnum(vector) mod size;

22 end
Algorithm 1: The find-or-put algorithm [4]

hashes.

The find-or-put operation first hashes the value, which
is a state vector, and then checks the corresponding state.
Since the hashes are memoized, hashes are only calcu-
lated once per find-or-put operation. If the state equals
Empty, find-or-put uses CAS, explained in section 2.1, to
set the state from Empty to Write (line 9). If it succeeds,
find-or-put puts the value in the hash table and sets the
state to Done. If it fails, apparently another thread has
set the state to Write. Then, it waits until the state has
been set to Done (line 14) and checks whether the corre-
sponding state vector equals the one that has to be put. If
this is true, find-or-put has found the value and returns
true. Otherwise, linear probing will be used to find or put
the value.

Data: cache line size,Walk[cache line size]
Input: index
Output: Walk[]

1 start←
bindex/cache line sizec × cache line size;

2 for i← 0 to cache line size− 1 do
3 Walk[i]← (start+ index+ i)

mod cache line size;

4 end
Algorithm 2: Walking the (cache) line [4]

In order to achieve high performance, the number of cache
line updates are hereby limited. Algorithm 2 shows how
walking the cache line is accomplished. Instead of linear
probing across the border of cache lines, first the whole
cache line will be searched. If the value or an empty bucket
is not found within the cache line, the algorithm will probe
within a new part of the cache. Therefore, the cache has
only to be updated when an empty bucket or the value is

2

not found within a cache line.

Table 1 gives an example of the hash table. When using
linear probing, find-or-put first walks the cache line be-
fore comparing hashes stored at another cache line. This
is important, because it minimises the number of expen-
sive cache updates. In this example, using find-or-put

(v5) results in starting search at index 3. Index 2 will be
searched before jumping to cache line 1. The probe order
will therefore be 3→ 2→ 4.

Table 1. Example of a hash table
Cache line Index Key Value State

0

0 k1 v1 Done
1 k2 v2 Done
2 k3 ? Write
3 k4 v4 Done

1

4 k5 v5 Done
5 Empty
6 k6 v6 Done
7 k6 v7 Done

2.4 Non-blocking hash table in Java
A non-blocking hash table and hash map has already been
implemented in Java by Click [1]. This hash map has the
same operations and can therefore be used as an alterna-
tive for java.util.ConcurrentHashMap. However, Click’s
hash map performs better than ConcurrentHashMap when
using many threads and performs as least as good when
using few threads. Click’s hash table is a variant of Con-

currentHashMap which has the same behaviour as ja-

va.util.Hashtable. The main difference is that Click’s
hash table does not use locks at all, while Concurren-

tHashMap uses locks when writing entries.

The non-blocking hash table of Click uses one array of Ob-
jects for storing hashes, keys and values. Hereby, the first
entry contains a class named CHM for storing information
about the size of the hash table and defining methods to
efficiently resize the hash table when it is full. The second
Object contains memoized hashes of the keys. All other
even entries contain keys and all odd entries contain the
corresponding values. Table 2 shows the structure of this
Object array.

Table 2. Object array Click’s hash table
index content
0 CHM class

1 [hash 0, hash 1, ... , hash n]
2 key 0
3 value 0
4 key 1
5 value 1
... ...
2n + 1 key n
2n + 2 value n

Since an array is an object in Java, Click’s hash table only
stores references to vectors, which are integer arrays, in the
hash table. Therefore, storing a value in the hash table is
done atomically with a CAS operation. This would not be
possible in Laarman’s hash table, since his find-or-put

operation copy the whole vector. Doing this atomically
would lock the whole hash table for a significant amount
of time.

In order to ensure correctness, key-value pairs cannot be
removed from the hash table. Instead of removing this

Empty

 f null, nullg
Partially inserted

f K, nullg

Standard pair

f K, Vg

Deleted

f K, Tg

insert delete insert

Figure 1. States hashtable Cliff Click

key-value pair, the value will be replaced by a tombstone,
a specific Object for marking deleted values. Figure 1
shows the states a key-value can have. At first, both the
key and value are set to null. Thereafter, Unsafe is used
to do a CAS operation to set the key. If it fails, another
thread inserted a key just before this thread. This thread
then has to check whether the key and value that are put
by that thread are the same as we wanted to insert. If it
succeeds, this thread knows that this key is never going to
be removed. Then, this thread can set the corresponding
value by using CAS. If this succeeds, the key-value pair
has been put. Otherwise, another thread has inserted the
same key with another value, which will be overwritten.

3. PROBLEM STATEMENT
Our research goal is to provide an efficient lockless hash ta-
ble in Java for state space explorators. We want this hash
table to be scalable in the number of cores. Therefore,
the number of cache updates has to be limited. Instead
of the C operation compareAndSwap, Java variants of this
operation can be used can be used, which are explained
in section 2.2. It is however important to use alternatives
that limit the number of cache updates.

Therefore, using AtomicInteger, explained in section 2.2,
would not be a good alternative. Spinlocking by execut-
ing the get() method when another thread has won the
competition when setting the state to Write, is rather in-
efficient. This is the result of get() updating the cache
with every call, because AtomicInteger uses a volatile

value underneath. Furthermore, Java does not provide the
same functionality as C for walking cache lines as used in
algorithm 2. This is the result of Java being a high level
object-oriented language. Hence, low-level memory access
is not provided. This results in the following question: how
can the number of cache updates be reduced when looking
up values in our hash table in Java?

In the hash table implemented in C, cache updates are
explicitly defined. One situation to update the cache is
when some thread has changed the state of a certain row
in the hash table. Therefore, the spinlock used for wait-
ing until another thread completes writing a value does
not have to update the cache by every call of the get()

method. get() however does result in a memory fence and
therefore updates the cache. This has a negative impact
at the scalability in the number of cores. The second ques-
tion that is answered by this paper is therefore: in Java,
how can thread-safety of the hash table be achieved while
accomplishing close to linear scalability in the number of
cores?

3

Furthermore, in order to be able to verify whether our
research goal is achieved, benchmarks have to be executed.
Since only the hash tables will be benchmarked and not
the state space explorators that use them, the state space
explorators have to be simulated in order to benchmark
the hash tables in a manner that reflects the situation it is
going to be used in. Therefore, the third research question
is: how can our hash table be benchmarked with respect to
its intended purpose?

The last research question continues on the result of the
third research question. The fourth research question is:
using the techniques that are the result of the third research
question, how does the Java variant of the hash table per-
form in terms of time and scalability in the number of
cores?

4. METHODOLOGY
The research consists of two parts: implementing an effi-
cient lockless hash table and measuring its performance in
time and scalability. Therefore, this section is divided in
two parts: section 4.1, hash table and section 4.2, bench-
mark.

4.1 Hash table design
As explained in section 7 and in background section 2.4,
Click implemented an efficient non-blocking hash table for
general use in Java. This hash table is a concurrent version
of java.util.Hashtable and therefore offers much func-
tionality we do not need. However, it is significantly faster
and scales much better than java.util.Concurrent

HashMap, the concurrent version of java.util.HashMap,
since is does not use locks. Instead, it uses the CAS oper-
ation 2.1 to update its values. Therefore, this hash table
forms the basis of our hash table. There are however a
couple of differences between our hash table and Click’s
hash table:

• Every feature of java.util.Hashtable is implemented
by Click’s hash table. Therefore, the hash table also
supports operation to remove values, resize the hash
table and more which we do not need. When these
operations are not supported, the hash table can be
more efficient.

• A method that implements find-or-put, explained
in section 2.3, is needed for our hash table. This
method is not implemented by Click’s hash table.

• Since our hash table only contains vectors, no key-
value pairs are inserted, but only values. Perfor-
mance gain can be accomplished by only storing val-
ues and less memory is needed by the hash table.

There are two variants of the hash table. We will focus
at their variant of the find-op-put operation. Both vari-
ants use an array of integer arrays to store the vectors.
However, one variant, algorithm 3, uses an AtomicIn-

tegerArray to store the hashes, which stores integers as
volatiles.

The other variant, algorithm 4, uses a regular integer array
for storing the hashes. The latter however uses Unsafe’s
putIntVolatile() when putting an hash value in the ar-
ray to enforce a memory fence. Section 6 explains the
differences in more detail.

Both variants of the find-or-put operation have the same
structure. Since classes of the Atomic toolkit use volatile
variables underneath, every read results in a memory fence.

Data: size, Table[size][], Hashes :
AtomicIntegerArray(size)

Input: vector
Output: seen

1 hash memo← hash(vector);
2 index← hash memo & (size− 1);
3 while true do
4 if null = Table[index] then
5 if CAS(Tablet[index], null, vector) then
6 Hashes.set(index, hash memo);
7 return false;

8 end

9 end
10 while Hashes.get(index) = 0 do ...wait...;
11 if hash memo = Hashes.get(index) &

vector = Table[i] then
12 return true;
13 end
14 index← (index+ 1) & (size− 1);

15 end
Algorithm 3: The java variant of the find-or-put algo-
rithm using AtomicIntegerArray

Data: size, Table[size][], Hashes[size]
Input: vector
Output: seen

1 hash memo← hash(vector);
2 index← hash memo & (size− 1);
3 while true do
4 if null = Table[index] then
5 if CAS(Tablet[index], null, vector) then
6 putIntV olatile(index, hash memo);
7 return false;

8 end

9 end
10 while Hashes[index] = 0 do ...wait...;
11 if hash memo = Hashes[index] & vector =

Table[i] then
12 return true;
13 end
14 index← (index+ 1) & (size− 1);

15 end
Algorithm 4: The java variant of the find-or-put algo-
rithm using putIntVolatile

Therefore, this toolkit has not been used for storing state
vectors. Instead, Unsafe, explained in section 2.2, has
been used.

At first, the hash value of the vector is calculated. This
value is used to calculate the index of the array. Then, a
CAS operation will be executed with expected value null

and vector as the new vector. The CAS operation is needed
to ensure correctness. If this succeeds, this entry of the
array was empty and the new value has been put. Oth-
erwise, there already exists a vector on that entry. This
vector may have been put just before we wanted to put a
vector. Therefore, it is important that the CAS operation
is used, which enforces a memory fence.

After the negative result of the CAS operation, the hash
of the vector will first be compared with the hash of our
vector. This can be done fast, since an hash as an in-
teger. If they do not equal, the vectors cannot be equal
either. Otherwise, an expensive comparison between the
vectors will be done. If they are the same, the vector has
been found and true will be returned. Otherwise, linear

4

probing will be used to try other entries of the array.

The main difference with the hash table of Laarman et al.
is that only reference to vectors are stored by our hash
table, instead of the whole vector. This is caused by the
fact that an array is an object in Java. Therefore, putting
the vector in the hash table can be done in a single CAS

operation. We therefore do not need to implement the
Empty, Wait and Done states.

4.2 Benchmark design
The original hash table is designed to be used by LTSmin,
a model checker. However, LTSmin is implemented in
C and can therefore not use our hash table. Therefore,
LTSmin is edited in order to output state vectors that will
be stored in the hash table to a file. This file then contains
every state vector from states that the model checker has
visited and may include duplicated. Since reading files
is slow, this file will be preloaded as an array of integer
arrays prior to the actual benchmark.

OpenJDKs JHM API is used for the actual benchmarks.
According to the website, “JMH is a Java harness for
building, running, and analysing nano/micro/milli/macro
benchmarks written in Java and other languages target-
ting the JVM.” [8]. JHM allows us to only implement the
benchmark itself and use JHM as the framework which ex-
ecutes the benchmark. Furthermore, JHM warms up the
just in time (JIT) compiler of the JVM. Warming up the
JIT compiler ensures that the timings correctly reflects
the execution timings when used in a production environ-
ment. After a few iterations, code runs faster since it has
been compiled by the JIT compiler.

From the BEEM database, three examples are randomly
chosen. These examples are then explored by using the
modified LTSmin. Every state vector that is encountered
is then written to a file. These files form the input for
the three benchmarks. Since the hash table lookups are
redirected to the files, these files contain duplicate vectors,
in the same order they are put. This ensures that the
benchmarks reflects the original state space explorator.

For each benchmark, the corresponding vector file is di-
vided in eight chunks. Each thread gets one chunk to
lookup in the hash table. This means that every thread
lookups the same amount of vectors. Therefore, if threads
are not given an equal amount of processor time by the
thread scheduler, one thread is done earlier than another
thread. In a real situation, a load balancer ensures that
every thread has to do some task. Therefore, a simple solu-
tion is implemented to simulate the benchmark by looking
up random vectors from the vector file after a thread fin-
ished its work. However, after measuring how many ran-
dom vectors a thread lookups, it can be concluded that
this is only a very small percentage. Therefore, there is no
need to simulate the load balancer. Current benchmarks
do not simulate the load balancer.

Table 3 shows some details about the benchmarks.

Table 3. Details per benchmark
BEEM file Length Vectors Uniques
firewire tree.2.dve 83 5693 2441
elevator2.2.dve 16 1036801 179200
hanoi.2.dve 53 1594321 531441

The setup of the computer used for the benchmarks is as
follows:

CPU Intel Core i7-2630QM @ 2.00 GHz, with 4 cores and

8 threads using hyperthreading.

RAM 4 GB

OS Windows 8.1 x64

JVM Oracle JDK 7 Update 60 (HotSpot)

5. RESULTS
Both variants of the hash table are benchmarked.

The results of the two sets of benchmarks are represented
in figure 2 and figure 3. Every benchmark is executing five
times, each time using a different amount of threads. Each
benchmark is executing using one, two, four, six and eight
threads. At the y-axis, the average time per operation in
µs/operation is shown. This indicates the speed of the
hash table.

2 4 6 8

100

150

200

250

300

Number of threads

A
v
er

a
g
e

ti
m

e
in
µ
s/
op
er
a
ti
on

F ireWireTree 2

Elevator2 2

Hanoi 2

Figure 2. Benchmark results putVolatileInt vari-
ant

2 4 6 8

100

150

200

250

300

Number of threads

A
v
er

a
g
e

ti
m

e
in
µ
s/
op
er
a
ti
on

F ireWireTree 2

Elevator2 2

Hanoi 2

Figure 3. Benchmark results AtomicIntegerArray
variant

The curve of the three benchmarks do have almost the
same shape. Increasing the number of threads from one
to two results in a minor increase of time per operation.
Increasing the number of threads from two to four results
in a more significant increase of time per operation. It has
to be mentioned that the overall amount of work doubles

5

when the number of threads doubles, since every thread
always gets the same amount of vectors allocated, even
when the number of threads increase. The curves become
steeper when the number of threads is greater than 4.

6. DISCUSSION
This section is aimed at discussing the correctness of our
hash table. Furthermore, the results of the benchmarks
are interpreted in section 6.2. Moreover, some test cases
are designed. These are discussion in section 6.3.

6.1 Correctness
While lockless data structures, if well designed, can per-
form significant better that data structures that do use
locks, it is less clear whether they are correct or not. A lock
can ensure that only on thread can access (parts of) the
hash table. By locking the correct components of the hash
table, correctness can be show straightforwardly. Since
multiple threads can access a lockless hash table simulta-
neously, correctness is more difficult to prove. To ensure
correctness, this has to be mathematical proven for every
state the hash table can occur in. This is however outside
the scope of this research.

Therefore, this section describes a critical situation and
shows that our hash table is correct in this situation. It
will therefore be plausible, not proven, that our hash ta-
ble is correct. Only the correctness of algorithm 4 will be
shown. It should follow that algorithm 3 is correct too,
since there are minor differences in semantics. The great-
est difference is that algorithm 3 has an extra memory
fence at line 10. This section will show that this memory
fence is redundant.

A critical situation is shown in figure 4. Here, thread t1

uses the CAS operation to put a value in the hash table.
Then, it updates the corresponding hash value. However,
before the update, thread t2 reads this hash value. The
hash value is used for a first check to determine whether
two vectors are equal. When the hashes are not equal,
the vectors cannot be equal too. Therefore, thread t2 will
wait by spinlocking until the hash value is updated too
(line 10). It is therefore important that updating the hash
value enforces a memory fence. Reading a hash value does
not need to enforce a memory fence, since every change
already enforces a memory fence. Therefore, a read always
sees the most recent value.

After the hash value is updated, thread t2 will not spin-
lock any more, since this value does not equal zero. Since
thread t2 wants to find-or-put a different vector than
t1, the hashes do not equal either. Therefore, the index,
which is based on the hash value, will be updated. Then,
CAS is used for updating the vector. No other thread is
putting a vector in the same bucket, thus the CAS opera-
tion returns true. As the final step, t2 updates the hash
value.

We have now shown, but not proven, that our hash table
is correct in this situation with two threads. However, a
situation where a thread reads the hash table just before
another thread has updated it, is very rare when using a
consumer computer. Therefore, there is a possibility that
other situations arise at different hardware that are not
foreseen. Excluding those erroneous situations requires
mathematical validation.

6.2 Benchmarks
Section 5 shows the results of the benchmarks. There is
not much difference between the benchmarks of the Atom-

icIntegerArray and putIntVolatile variant of the hash

Hash tablet1 t2

CAS vector

success

update hash

CAS vector

read hash

read hash

failed

0

does not match

CAS vector

Increment index

Update hash

success

Figure 4. A critical situation

table. Therefore, using AtomicIntegerArray results in al-
most the same performance as using putIntVolatile for
storing the hashes, in our case.

There could however exist cases in which the AtomicInte-

gerArray has low performance. Since AtomicIntegerAr-

ray uses a volatile variable for each element, reading a
value from the array enforces a memory fence. Therefore,
the cache of every processor core will be updated. At line
10, every get() thus enforces a memory fence. When this
variant is used on a machine with many processor cores, a
situation as the one described by figure 4 is more likely to
occur. Then, one of the threads will spinlock at the get()

operation. Since this operation enforces a memory fence,
all the caches of every core will be updated many times.
Therefore, the variant that uses the putIntVolatile op-
eration is more efficient in this case.

The lines in both graphs in section 5 become steeper when
the number of cores exceeds four. This could be the result
of the fact that the benchmarks are run at a machine which
only has four cores with hyperthreading. Hyperthreading
enables the processor to behave as having more cores, in
our case eight. Accordingly, each thread has less processor
cycles per second compared to the case where at most
four cores are active, while the amount of work per thread
remains equal. Therefore, it cannot be concluded that the
scalability decreases when enabling more than four cores.

6.3 Test cases
In order to test whether the hash table behaves correctly,
two test cases are set up. The first test case uses a file
with 4880 state vectors. Half of the state vectors are du-
plicate. Eight threads are then started with 1220 vectors
assigned to each of the thread. Each thread then con-
currently stores its chunk of vectors one at a time. The
output shows that half of the vectors are already found
in the hash table. Therefore the hash table has succeeded
this test.

6

The second test case is intended to detect possible dead-
locks. This test uses a vector file with 1594321 state vec-
tors. The method for collecting these vectors is described
in section 4.2. The BEEM example that has been used is
hanoi.2. Each threads gets one hundredth of the vector
file assigned. Then, these threads are started. The result
of this test was that the test terminated correctly and no
exceptions were thrown. While this does not show that
no deadlock could occur, it is an indication that our hash
table works well on a machine with multiple cores.

7. RELATED WORK
An efficient lock-free hash table implemented in Java al-
ready exists [1]. However, this is a multi-purpose hash
table. Therefore, this hash table has much overhead con-
sidering the purpose of our hash table, since it provides
operations that we do not need. An example of an op-
eration we do not need is the remove operation, which
removes a value from the hash table. Nevertheless, this
hash table forms the basis of the hash table described by
this paper and is therefore explained in more detail in sec-
tion 2.4. Another extensible lockless hash table has been
proposed by Shalev et al. [9]. However, this hash table
is implemented in C++ and is therefore less suitable for
using as basis for our hash table.

8. CONCLUSIONS
We designed a Java variant of the lockless hash table pro-
posed by Laarman et al. [4]. This hash table is aimed
for concurrent state space explorators for model checkers.
Furthermore, a state space explorator is simulated in order
to benchmark the hash table in way respecting its intended
purpose. The remaining part of this section is aimed at
answering the research questions.

1. How can the number of cache updates be reduced when
looking up values in our hash table in Java?
Our hash table is designed in a way that only updates
of vectors (the values) and hash values result in memory
fences. A memory fence causes a central processing unit
or compiler to enforce an ordering constraint on memory
operations issued before and after the fence instruction
and therefore forces the caches to update. Hence caches
are not forced to update when reading values.

2. In Java, how can thread-safety of the hash table be
achieved while accomplishing close to linear scalability in
the number of cores?
Thread-safety is achieved by using atomic operations that
enforces a memory fence when updating values and hashes.
This enforces the synchronised-with relationship. Hence,
these updates are visible for other threads. Scalability that
is close to linear is accomplished by refraining from using
locks and limiting the number of cache updates. Bench-
marks show that our hash table is scalable when using a
limited number of cores.

3. How can our hash table be benchmarked with respect to
its intended purpose?
The hash table is intended for state space explorators.
Since the state space explorator that uses the hash ta-
ble of Laarman et al. [4] is written in C, and our hash
table is intended to be a Java variant of that hash table,
we simulated this state space explorator. Files with state
vectors are generated from BEEM examples, as explained
in section 4.2.

These are used as input for the benchmark to put in the
hash table.

4. Using the techniques that are the result of the third
research question, how does the Java variant of the hash
table performs in terms of time and scalability in the num-
ber of cores?
Benchmark results show that the hash table scales linear
when using a limited number of cores. We did not bench-
mark the hash table with a machine that has more than
four CPU cores. We expect however that the hash table
will scale linear too when used on a machine that has more
CPU cores, up to a certain limit.

8.1 Future work
As mentioned in section 6.1, the correctness of our has ta-
ble is not mathematical verified. Therefore, we cannot be
sure that our hash table performs well in every situation.
While this hash table is tested, as explained in section
6.3, these test cases are executed on a machine with a lim-
ited number of cores. While not expected, usage of this
hash table in environment with many cores could lead in
unexpected results. Therefore, future work can be accom-
plished in the verification of this hash table.

While we expect that the scalability in our hash table holds
when using it on a many-core machine, the hash table is
only benchmarked on a machine with four cores. It is
therefore recommended to benchmark this hash table on
a machine with many cores. Furthermore, our hash table
has not been compared with Laarman’s hash table. This
can be accomplished by porting the benchmark to the C
language and executing both versions of the benchmark
while using the same vector files. The results can be used
to compare the two variants.

9. REFERENCES
[1] C. Click. A lock-free hash table. In JavaOne

Conference, 2007.

[2] J. Gosling, B. Joy, G. Steele, G. Bracha, and
A. Buckley. The java language specification - java se
7 edition, 2013. [Online; accessed 9-June-2014].

[3] Jax Systems LLC. sun.misc.unsafe, 2011. [Online;
accessed 29-May-2014].

[4] A. Laarman, J. van de Pol, and M. Weber. Boosting
multi-core reachability performance with shared hash
tables. In Proceedings of the 2010 Conference on
Formal Methods in Computer-Aided Design, FMCAD
’10, pages 247–256, Austin, TX, 2010. FMCAD Inc.

[5] A. Laarman, J. van de Pol, and M. Weber. Parallel
recursive state compression for free. In A. Groce and
M. Musuvathi, editors, Model Checking Software,
volume 6823 of Lecture Notes in Computer Science,
pages 38–56. Springer Berlin Heidelberg, 2011.

[6] Oracle. In Multithreaded Programming Guide, page
205. Oracle, October 2012.

[7] Oracle. Documentation of java.util.concurrent.atomic,
2013. [Online; accessed 23-March-2014].

[8] Oracle. Openjdk: Jhm, 2014. [Online; accessed
30-May-2014].

[9] O. Shalev and N. Shavit. Split-ordered lists:
Lock-free extensible hash tables. J. ACM,
53(3):379–405, May 2006.

7

