
Comparison of Verification Methods for Weak Memory
Models
Niels ten Dijke

University of Twente
P.O. Box 217, 7500AE Enschede

The Netherlands
n.t.tendijke@student.utwente.nl

ABSTRACT
Modern multi-core systems allow for reordering of mem-
ory instructions for performance reasons. This reordering
of instructions can be a source of bugs, especially in algo-
rithms which do not use locks for synchronization. Veri-
fication of concurrent code on relaxed memory models is
a computationally hard problem and many approaches to
verify software under these models have been proposed,
however no overview or comparison of current methods
exists. In this project we give an overview of three recent
verification methods for relaxed memory models. These
methods are mainly chosen because, next to being cited,
they have tools which can be used to verify concurrent
code. Furthermore, these methods are recent and should
give a good picture of the current state of the art. We
compare these methods on verification of real world soft-
ware, i.e. algorithms which have been proposed in research
or are used in industry, under commonly used weak mem-
ory models. This is done by running the tools against a
benchmark of concurrent C programs.

Keywords
Weak memory models, Program verification, Comparison,
Overview

1. INTRODUCTION
Nowadays, shared-memory multiprocessors are pervasive [18,
11] and have led to concurrent programming to become
mainstream. The main reason for using a multi-core ar-
chitecture is performance: the increase in single core per-
formance has stagnated since the mid-2000 and the use of
multiple cores has been the way to boost chip speed. How-
ever, concurrent code running on multi-core architectures
is more complex to understand and a source of bugs. Mod-
ern multi-core architectures such as x86, ARM or Power
allow for reordering of memory instructions for improving
performance [1]. In [21] Zucker et al investigate the per-
formance benefits of reordering, also called weak or relaxed
memory ordering and found a ten to forty percent increase
in performance. For example, a processor may use a store
buffer, to queue pending stores, while performing load in-
structions. Reordering of memory instructions especially
is a problem in lockless algorithms, which are not data

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy oth-
erwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.
20th Twente Student Conference on IT January 24th, 2014, Enschede,
The Netherlands.
Copyright 2014, University of Twente, Faculty of Electrical Engineer-
ing, Mathematics and Computer Science.

race free and must use explicit memory fence instructions
to prevent certain reordering. Insufficient fences lead to
concurrency bugs; on the other hand, too many fences
impact performance. In order to reason about the cor-
rectness of programs running on these systems a formal
description of memory with respect to read and write ac-
tions, or memory consistency model, is needed.

The complex behavior these models exude has lead to
several bugs in the past, even in production-level code.
Model-checking techniques are powerful tools to automat-
ically find these bugs [9]. More specifically, given a pro-
gram, a memory model and a set of safety properties, a
model checker outputs either that it has found no bugs or it
gives an error trace that leads to incorrect execution. How-
ever, verifying programs running on weak memory models
is generally very hard. Several methods exist to tackle the
verification problem [3, 14, 13, 7, 6]. Although these often
contain benchmarks, to our knowledge, no overview, let
alone comparison of current methods exists. The primary
aim of the project is to give an overview of current meth-
ods and to compare them on practicability in real world
use.

More specifically, we describe the techniques used and run
the tools corresponding to the methods on various concur-
rent algorithms used in research and industry. In partic-
ular we compare three contemporary methods (listed in
section 3) on the verification of concurrent programs run-
ning on various weak memory models.

Ideally the verification method should:

1. Be correct in as many instances as possible, this
means finding bugs in faulty code and not finding
them in correct code.

2. Be able to deal with various memory relaxations.

3. Be efficient enough for practical use.

The last point is hard to evaluate, in this project we run
a tool on an example for a maximum of 24 hours. The
methods are compared on these above points by running a
benchmark comprised of concurrent C programs of which
some of these programs are known to have bugs under
particular memory models. For each example the tools
are run using the supported memory models and check if
the output matches the expected output to compare the
methods on the first and second point. Lastly, we time
the tools for each example for the comparison of point 3.
We found that the verification tools manage to find bugs
in certain examples, however, the tools lack an easy to use
user interface and fail on some examples.

This paper is organized as follows: section 2 briefly de-
scribes the abstract behavior of the relaxed memory mod-
els which are used in the example cases for the tools and
shortly describes the verification problem. The next sec-
tion provides some information on how the verification
methods work. The later sections describe and discuss
the examples and the results for the tools.

2. MEMORY CONSISTENCY MODELS
This section provides background on weak memory mod-
els which are supported by the methods under comparison.
TSO, PSO and RMO are defined in the SPARC architec-
ture manual [20]. The POWER model is described in [2],
however [3] only implements part of the POWER spec-
ification. These models provide an abstract view of the
possible behavior of multi-core architectures with respect
to memory operations.

2.1 Sequential Consistency
The simplest and most intuitive for programmers is se-
quential consistency defined in [12] as follows: “A multi-
processor architecture where the result of any execution
is the same as if the operations of all the processors were
executed in some sequential order, and the operations of
each individual processor appear in this sequence in the
order specified by its program.” What this means is that
there is some total order on the instructions of all the pro-
cesses and the per-process program order, i.e. the order
in which instructions should be executed according to the
program code, is preserved in the total order. In particular
the following ordering is preserved:

• Write-to-read order: Stores are not reordered af-
ter loads.

• Write-to-write order: Stores are not reordered
after stores.

• Read-to-read/write: Stores and loads are not re-
ordered before loads.

• Write Atomicity: All write to a location should
appear to all processors to have occurred in the same
order. This means a processor does not read its own
or other’s writes early.

This simplified model is often assumed when verifying
code [8, 5], however, in general does not properly char-
acterize all the behavior of memory of modern multi-core
architectures and may therefore not find all bugs. Though
in most programs this assumption often is sufficient, since
standard practice is to program shared memory using locks
to prevent data races. However there are situations where
correctness for SC is only a necessary condition for cor-
rectness, for example in lockless algorithms, one of which
we will study in the benchmarks.

2.2 Total Store Order
The Total Store Order(TSO) model relaxes the write-to-
read order. Possible behavior is illustrated by the program
below, which is a simplified version of Dekker’s mutual ex-
clusion protocol.

Proc1 Proc2
x=1 y=1
lock1=y lock2=x
if(lock1==0) if(lock2==0)
{critical section} { critical section }

If the reads of the values of x and y happen before they
are written (note that this does not violate the constraint
for a single processor that operations on the same location
occur in program order) both processes can enter the crit-
ical section at the same time. This can happen in the x86
architecture where stores are pushed onto a store buffer;
a read to another location than a store that was put in
the buffer previously can be executed before the store has
been written to memory. Note that this does not occur if
the multiprocessor system is sequentially consistent.

2.3 Partial Store Order
The next relaxation is Partial Store Order (PSO) model.
In essence it is a weakening of the TSO model which al-
lows for reordering of store operations, that is, it relaxes
the write-to-write memory order. This can happen if the
stores are written to different memory modules through
a general interconnection network. A store to one mem-
ory module may complete faster than another module and
thus reorder stores. The example below illustrates how
this relaxation can lead to undesirable behavior.

Proc1 Proc2
val=42 while(lock==0)
lock=1 { continue; }

result=val

Here it is possible that the result will not equal 42, if the
order of the write to val and lock by Process 1 is changed
and can occur under the the PSO model. This is not pos-
sible under TSO since the write of 42 to val has to occur
before the write of 1 to lock.

2.4 Relaxed Memory Order
The Relaxed Memory Order(RMO) is a further weakening
of PSO and TSO and allows read-to-read/write relaxation;
this means the reads are non-blocking, i.e. the processor
does not stall when performing a read operation. In the
previous example the second process can issue both reads
at the same time, resulting again in the value of result to
not be equal to 42. This is the case even if the write-to-
write order is enforced by memory fences (see section 2.6).
Another example to illustrate this behavior is given below:

Proc1 Proc2
val1=1 lock1 = val2
val2=1 lock2 = val1

Assuming val1 and val2 are both initialized at 0 and the
writes are executed in program order, it is possible that af-
ter execution of this code under the RMO model that lock1
equals 1 and lock2 equals 0. The read of val2 to lock2 can
be serviced by a non-blocking cache, with the old value
(0), while other read to lock1 reads the new value.

2.5 POWER
The POWER models is the model used in the ARM and
IBM POWER architectures and is a weakening of RMO.
POWER relaxes write atomicity, as explained earlier this
means writes do not reach all processors at the same time.
It is both possible that a processor reads its own writes
early and its possible for a processor to read others writes
early, which means a processor can read a write before it
is visible to the other processors. An example of possible
behavior is given below.

Proc1 Proc2 Proc3
val1=1 lock1 = val1 lock2= val1

Table 1. Summary of weak memory consistency models
W->R W->W R->RW Write atomicity

SC
TSO X
PSO X X
RMO X X X
POWER X X X X

With val1 initially at 0. It is possible for lock1 differ from
lock2, this can happen if the system uses a general inter-
connection network where the network does not guarantee
when stores are delivered to different processors. Proc2
could read the new value whereas Proc3 reads the old
value.
A summary of the models is given in table 1. An X indi-
cates the model relaxes that particular ordering.

2.6 Memory Fences
Certain reordering of memory instructions can be unwanted.
It is possible for the program to enforce certain order-
ing (and thus prevent incorrect execution) using memory
fences or barriers. These instructions guarantee that cer-
tain operations(read and/or write) finish before the mem-
ory fence. There are several types of fences, summarized
below.

Store barriers
A store barrier guarantees that all store instructions be-
fore the barrier are executed an thus visible to the other
processors. It does, however, have no guaranteed effect on
the loads.

Data dependency barriers
A data dependency barrier is used to maintain the ordering
of loads that are interdependent. If the result of a load
after a barrier depends on the result of a load before the
barrier, the data dependency barrier guarantees the first
load will be committed before the barrier and is accessible
for the second load.

Load barriers
The load barriers guarantees all load instructions before
the barrier are visible to the other processors. The par-
tial ordering on the loads has no guaranteed effect on the
stores.

General memory barrier
A general memory barrier is the load barrier and store
barrier combined: it is a partial ordering on the loads
and stores and guarantees all stores and loads before the
barrier are committed.

2.7 Compare-and-swap
The compare-and-swap (CAS) instruction is an atomic op-
eration which is often used in lockless concurrent programs
and is used to atomically update the value of a memory
location. An implementation is given in listing 1. The
CAS instruction receives three parameters. The first pa-
rameter is the address which is to be updated, the second
parameter is the value that is expected to be updated and
the last parameter is the new value. Starting with line
3 it goes into an atomic section where the if the value
in the memory location is updated if the current value in
the memory location equals the old (expected) value, i.e.
the memory location has not been updated by another

thread using the compare-and-swap operation before en-
tering the atomic section. The operation always returns
the value read in the atomic section (line 4 in the pro-
gram). Based on this value the caller of this function can
conclude the CAS operation succeeded or that another
thread modified the value. In general, a CAS instruction
only guarantees atomic updates to one particular memory
location. In some cases, however, for example in x86, a
compare-and-swap implies a general memory barrier.

Listing 1. Compare-and-swap

1 word cas (word ∗mem, word old , word new)
2 {
3 beg in atomic () ;
4 i n t cur rent = ∗mem;
5 i f (cur rent == old)
6 {
7 ∗mem = new ;
8 }
9 end atomic () ;

10 re turn cur rent ;
11 }

2.8 Verification
Verification of programs running under weak memory mod-
els is a hard problem.[4] studies the complexity theoretical
aspects of verifying finite state concurrent programs run-
ning under the TSO, PSO and RMO relaxed memory mod-
els. As mentioned before, a model checker, checks if par-
ticular properties are violated. In particular: given a (po-
tentially infinite) system with transitions between states,
it tries to find particular states (which could be violations
of safety properties). This problem is referred to as the
reachability problem and is decidable but non-primitive
recursive ([19] for definition) for TSO and PSO. Relaxing
the read->read/write order makes it undecidable, which
is the case for RMO and weaker models.

3. RELATED WORK
Several papers have been written on the subject; ranging
from better descriptions of weak memory models[16, 17]
to techniques to do verification. The strategy seems often
to be to prove a program running on a particular relaxed
model is sequentially consistent[6, 7, 14]. Since we are
interested in the practical state of research and compar-
ing methods purely theoretically is hard, the methods we
chose to compare have tools which can verify concurrent C
code. To our knowledge no other tools to verify concurrent
C code under relaxed memory models exist.

CBMC
CBMC incorporates the method described in Software ver-
ification for weak memory via program transformation [3].
The C program is first compiled into a GOTO-program,
which is an control-flow graph. This program is then used
as input for goto-instrument which generates an abstract
event graph. This graph is comprised of read and write

events which are related to each other. It then finds cy-
cles in the graph in which an execution which are valid
on the weak architecture but not on SC. In these cycles
it chooses one pair (for example a read and write pair)
to delay. In the Dekker example a write-read pair can be
delayed. These instructions are to be instrumented, in the
example this means the write gets appended to a buffer
which will flush nondeterministically.
The instrumented program can then be verified using SC
tools. In the experiments we used SatAbs since it provided
the best results according to the benchmarks performed
for[3].
CBMC supports TSO, PSO, RMO and POWER. The
method claims to be sound but not complete. The tool
is open-source and available on
http://www.cprover.org/wmm/.

Fender
In Dynamic Synthesis for Relaxed Memory Models [14] the
method behind the tool DFENCE is presented.
Weak behavior is simulated by using buffers; a per-thread
buffer for TSO and a per-variable for PSO. A scheduler
is used to find bad executions. At every scheduling point
a thread is selected. The scheduler can then either flush
the write buffer for TSO or flush the value of a particular
variable for PSO with a certain probability. At every step
it checks for safety violations (through assertions) and for
sequential consistency and linearizability. Once an ille-
gal execution is found, it can automatically be repaired
through a process Vechev et al. call Dynamic Synthe-
sis. First all the possible ways to avoid the executions
are computed. These are then appended to all pending
repairs. The repairs are then either enforced or accumu-
lated. This process continues until no violating execution
is found. When trying to find bad executions, the pro-
gram is run several tiimes and is in essence a probabilistic
method.
DFENCE supports TSO and PSO. The tool DFENCE is
available on http://practicalsynthesis.org/fender/.

CheckFence
The method behind Checkfence is described in Check-
Fence: checking consistency of concurrent data types on
relaxed memory models [6]. First it goes to a process
called “specification mining”: the program is encoded in
such a way that it becomes a satisfiability problem whose
solutions are possible serial executions. The observation
of input and output values during execution is added to a
set called the observation set. It then checks if the obser-
vations of executions under weak memory model are con-
tained in the observation set. If one is found that not is
included in the set, then this is a counterexample. Check-
Fence supports TSO and RMO. The tool is open-source
and available on http://checkfence.sourceforge.net/.

4. EXPERIMENTS
In order to compare the methods on the three points de-
scribed in introduction a benchmark of examples of con-
current C programs is used. [3, 6, 14] already have done
some benchmarks. These and one other program is listed
below, with their description, safety properties and ex-
pected result for SC, TSO, PSO, RMO and POWER (if
known). The different methods are tested on whether they
provide the right output. Next to that the time to verify
the programs will be measured, although this is not a very
precise method to measure efficiency, there is correlation
between the two.

4.1 Examples
The following examples have been taken from the papers
of the methods described in section 3 and one unpublished
paper.

Dekker’s mutual exclusion protocol
Dekker’s algorithm is the first known correct solution of
the mutual exclusion problem[10]. It fails however un-
der TSO and more relaxed memory models, since allow-
ing reads to be reordered before the writes can lead to the
threads entering the critical section at the same time.

Microsoft producer consumer
In [7] Burckhardt et al. find a bug in a Microsoft produc-
tion level concurrency library using the Sober tool. The
algorithm fails under TSO.

Michael and Scott Queue
The Michael and Scott queue [15] is a non-blocking con-
current queue, which without memory fences fails under
PSO and weaker.

Worker synchronization in PostgreSQL
In [3] a bug in the PostreSQL worker synchronization al-
gorithm is found when relaxing write atomicity which is
specific to the POWER memory model. Details on the
bug can be found in the mentioned paper.

Lockless split deque
This example is taken from an unpublished paper by Tom
van Dijk on a new concurrent work stealing deque algo-
rithm. A work stealing deque is a concurrent datastructure
where new tasks can be pushed on one end by the deque’s
owner and taken from the other end by the owner(pop)
or other worker threads(steal). In essence there can be
an infinite amount of worker threads, however we simplify
without loss of generality(symmetry) by having one thread
pushing and popping and 2 threads stealing (again by sym-
metry). The number of pushes is the same as the number
of pops; the number of steals can be arbitrary. Mutual
exclusion for stealing threads is provided trough a CAS
instruction. Since we want each task to be executed, but
not more than once the safety property are that each task
should only be taken exactly once, this means each task is
either taken by the owner or stolen by another thread. As
this algorithm has not been published it has been added
to the appendix.

4.2 Experimental setup
The results of the benchmark is presented per example
with a small discussion on the output for the tools of that
example in the Analysis section. The computer on which
the tools ran was an AMD Dual Core processor running
at 3 GHz with 2GB of RAM. We measured time by using
bash’s built in command time. The times displayed in the
results section will be the elapsed real (wall clock) time in
seconds. The examples are run five times to record mean
and variance.

5. RESULTS
Below are the results for the tools for the examples de-
scribed in the methods section. They are subdivided based
on the example and then further on verification method.
Each table under a particular example gives the results
for one method for that example. Each row depicts the
outcome for one specific model. The result “Successful”
means there are no bugs found, while “Failed” indicates a

bug. If the result of the example is known the expected
columns shows what the outcome should be. Detailed ex-
planation and analysis of the results can be found in the
analysis section.

5.1 Dekker’s algorithm
CBMC

Memory model Expected Result Mean SD
SC Successful Successful 0.2 0.12
TSO Failed Failed 1.1513 0.019
PSO Failed Failed 24.3 0.14
RMO Failed Failed 9.4 0.12
POWER Failed Failed 6.75 0.049

CheckFence
Memory model Expected Result Mean SD
TSO Failed - - -
RMO Failed - - -

CBMC works as expected and further inspection of the
trace points to the problem in the example. CheckFence
returns with a vacuous pass, which means it did not find
an execution and something did not go right. The source
of this problem is unknown.

5.2 Microsoft producer consumer
CBMC

Memory model Expected Result Mean SD
SC Successful Successful 0.6 0.12
TSO Failed Successful 3.04 0.019
PSO Failed Successful 3.01 0.022
RMO Failed Successful 3.02 0.032
POWER Failed Successful 3.03 0.018

CheckFence
Memory model Expected Result Mean SD
TSO Failed - - -
RMO Failed - - -

CBMC fails to find the error, CheckFence fails as before.

5.3 Micheal and Scott queue
CBMC

Memory model Expected Result Mean SD
SC Successful Aborts - -
TSO Successful - - -
PSO Failed - - -
RMO Failed - - -
POWER Failed - - -

CheckFence
Memory model Expected Result Mean SD
TSO Failed Failed 0.8 0.42
RMO Failed Failed 1.2 0.46

We reproduce the results with CheckFence. CBMC is not
able to run this example since it does not support dynamic
memory.

5.4 Worker synchronization in PostgreSQL
CBMC

Memory model Expected Result Mean SD
SC Successful Successful 0.05 0.016
TSO Successful Successful 8.02 0.062
PSO Successful Successful 17.51 0.077
RMO Successful Successful 18.3 0.16
POWER Failed Failed 19.3 0.36

CheckFence
Memory model Expected Result Mean SD
TSO Failed - - -
RMO Failed - - -

Checkfence fails(vacuous pass). The results described in [3]
are reproduced using CBMC.

5.5 Lockless split deque
CBMC

Memory model Result Mean SD
SC Successful 307 6.9
TSO Aborts
PSO Aborts
RMO Aborts
POWER Aborts

CheckFence
Memory model Expected Result Mean SD
TSO Failed - - -
RMO Failed - - -

CheckFence fails (vacuous pass). CBMC aborts under
weak memory models, this seems to be caused by a bug in
the instrumentation tool.

6. ANALYSIS
In this section we discuss the results of the benchmarks.
Firstly we will describe the results of CBMC, next we will
discuss the results of CheckFence. Unfortunately, we were
not able to run the benchmarks on DFENCE, this is left
for future work. We did run it on a provided example,
however it is not sufficient to draw conclusions. Lastly we
briefly describe how errors in programs can be traced by
the tools.
For CBMC we reproduce the published results in the Dekker
and PostgreSQL algorithms. For the example found by
the Sober tool instrumentation finds cycles, however Sa-
tAbs does not find a bug. The more complex lockless split
deque verifies successful under sequential consistency. The
instrumentation tool finds a lot of cycles (more than one
million for PSO), however SatAbs aborts when running
the instrumented program. Dumping the instrumented
program to C code seems to point to the source of this
problem which seems to be a bug in goto-instrument in
which pointer dereference does not occur correctly. Fixing
these errors manually and verifying the code with SatAbs
results in a running time over 24 hours. The Michael and
Scott queue example can not be implemented on CBMC,
since as far as we know goto-cc does not support dynamic
memory allocation. Using static memory (arrays) results
in the same bug observed in the Lockless split deque ex-
ample. Under SC, SatAbs fails with an error. The exact
reason is unknown.
CheckFence fails in all examples except for the Michael
Scott queue, which is supplied as an example with the tool.
The reason for the failure is not clear. Moreover, TSO does
not seem to be implemented or working on CheckFence,
since it provides the same output as RMO. Another point
to mention is that CheckFence requires the user to define
the input and output actions to observe, whereas CBMC
uses assertions.
When it comes to finding errors SatAbs provides a trace
of instructions of lines executed leading to the property
violation, but without the actual stores and loads. When
CheckFence finds an execution that is not included in the
observation set it provides a view of execution per thread

and per line it displays which values are stored and loaded
and to what location.

7. CONCLUSION
Firstly it can be said that the tools are not easily acces-
sible: Although the tools are open-source software, only
CBMC provides a working binary. Both CheckFence and
DFENCE require changes to the source code in order to
compile without errors. Furthermore, the tools do not
have a manual on how to use them. This is especially im-
portant considering they each support a subset of the C
language and use their own built-in constructs for spawn-
ing threads, using locks, atomic operations, etc.
As far as the results go, we can conclude the tools fail
on each other’s examples. The instrumentation tool of
CBMC does not support dynamic memory allocation and
there seems to be a bug when accessing array elements.
CheckFence fails on the other examples; the reason for
this however is not known. When it comes to memory
model support, CBMC supports the most models. Effi-
ciency wise, it is hard to quantitatively conclude anything
about the results. It seems to be very discrete, either it
fails, or it runs for a few seconds, or it runs for longer than
24 hours.

8. FURTHER WORK
This project serves as an overview of the state of research
in verification of software under weak memory models. An
important goal of research in this field is a tool which can
be used to analyze real-world concurrent software under
various relaxed models. Clearly, current tools are insuffi-
cient: DFENCE and CheckFence lack a good user inter-
face and overall it was hard to find a non-trivial example
which all tools could handle. It is hard to compare the
verification methods solely on the information provided in
the papers. Tool-wise CBMC supports the most memory
models and has a very flexible and straightforward way of
doing the actual verification. Fixing the pointer bug and
allowing for dynamic memory allocation should open it up
to more examples. CheckFence seems to have some bugs
which need to be fixed (see results and analysis section),
the source of the bugs have not been found. DFENCE
could definitely use a better user interface which would
open it up for testing more examples. The program now
needs to be recompiled for each new example. We recom-
mend new tools or improvements of these tools to at least
run the benchmarks described in the method section. A
further study in the current state of research in the ver-
ification of relaxed memory models could expand on the
results gathered by running DFENCE and other new tools
on the benchmark.

9. REFERENCES
[1] S. V. Adve and K. Gharachorloo. Shared memory

consistency models: A tutorial. computer,
29(12):66–76, 1996.

[2] J. Alglave, A. Fox, S. Ishtiaq, M. O. Myreen,
S. Sarkar, P. Sewell, and F. Z. Nardelli. The
semantics of power and arm multiprocessor machine
code. In Proceedings of the 4th workshop on
Declarative aspects of multicore programming, pages
13–24. ACM, 2009.

[3] J. Alglave, D. Kroening, V. Nimal, and
M. Tautschnig. Software verification for weak
memory via program transformation. In
Programming Languages and Systems, pages
512–532. Springer, 2013.

[4] M. F. Atig, A. Bouajjani, S. Burckhardt, and
M. Musuvathi. On the verification problem for weak
memory models. In ACM Sigplan Notices,
volume 45, pages 7–18. ACM, 2010.

[5] D. Beyer, T. A. Henzinger, R. Jhala, and
R. Majumdar. The software model checker blast.
International Journal on Software Tools for
Technology Transfer, 9(5-6):505–525, 2007.

[6] S. Burckhardt, R. Alur, and M. M. Martin.
Checkfence: checking consistency of concurrent data
types on relaxed memory models. In ACM
SIGPLAN Notices, volume 42, pages 12–21. ACM,
2007.

[7] S. Burckhardt and M. Musuvathi. Effective program
verification for relaxed memory models. In Computer
Aided Verification, pages 107–120. Springer, 2008.

[8] E. Clarke, D. Kroening, N. Sharygina, and K. Yorav.
Satabs: Sat-based predicate abstraction for ansi-c.
In Tools and Algorithms for the Construction and
Analysis of Systems, pages 570–574. Springer, 2005.

[9] E. M. Clarke, O. Grumberg, and D. A. Peled. Model
checking. MIT press, 1999.

[10] E. W. Dijkstra. Co-operating sequential processes. f.
Programming Languages. Academic Press, New
York, 1968.

[11] P. Gepner and M. F. Kowalik. Multi-core processors:
New way to achieve high system performance. In
Parallel Computing in Electrical Engineering, 2006.
PAR ELEC 2006. International Symposium on,
pages 9–13. IEEE, 2006.

[12] L. Lamport. How to make a multiprocessor
computer that correctly executes multiprocess
programs. Computers, IEEE Transactions on,
100(9):690–691, 1979.

[13] A. Linden and P. Wolper. A verification-based
approach to memory fence insertion in relaxed
memory systems. In Model Checking Software, pages
144–160. Springer, 2011.

[14] F. Liu, N. Nedev, N. Prisadnikov, M. Vechev, and
E. Yahav. Dynamic synthesis for relaxed memory
models. In ACM SIGPLAN Notices, volume 47,
pages 429–440. ACM, 2012.

[15] M. M. Michael and M. L. Scott. Simple, fast, and
practical non-blocking and blocking concurrent
queue algorithms. In Proceedings of the fifteenth
annual ACM symposium on Principles of distributed
computing, pages 267–275. ACM, 1996.

[16] S. Owens, S. Sarkar, and P. Sewell. A better x86
memory model: x86-tso. In Theorem Proving in
Higher Order Logics, pages 391–407. Springer, 2009.

[17] S. Sarkar, P. Sewell, J. Alglave, L. Maranget, and
D. Williams. Understanding power multiprocessors.
In ACM SIGPLAN Notices, volume 46, pages
175–186. ACM, 2011.

[18] B. Schauer. Multicore processors–a necessity.
ProQuest Discovery Guides1–14, 2008.

[19] T. A. Sudkamp and A. Cotterman. Languages and
machines: an introduction to the theory of computer
science, volume 2. Addison-Wesley Reading, Mass.,
1988.

[20] D. L. Weaver and T. Gremond. The SPARC
architecture manual. PTR Prentice Hall Englewood
Cliffs, NJ 07632, 1994.

[21] R. N. Zucker and J.-L. Baer. A performance study of
memory consistency models, volume 20. ACM, 1992.

APPENDIX

Listing 2. Lockless split deque by T. van Dijk

1 def s t e a l () :
2 i f a l l s t o l e n :
3 return NOWORK
4 (t , s) = (t a i l , s p l i t)
5 i f t < s :
6 i f cas ((t a i l , s p l i t) , (t , s) , (t +1, s)) :
7 return WORK(t)
8 else :
9 return BUSY

10 e l i f not movesp l i t : movesp l i t = 1
11 return NOWORK
12
13 def push (data) :
14 i f head == s i z e : return FULL
15 wr i t e task data at head
16 head = head + 1
17 i f o a l l s t o l e n :
18 (t a i l , s p l i t) = (head−1,head)
19 i f movesp l i t :
20 movesp l i t = 0
21 a l l s t o l e n = 0
22 o s p l i t = head
23 o a l l s t o l e n = 0
24 e l i f movesp l i t :
25 grow shared ()
26
27 def grow shared () :
28 new s = (o s p l i t+head+1)/2
29 s p l i t = new s
30 o s p l i t = new s
31 movesp l i t = 0
32
33 def sh r ink shared () :
34 (t , s) = (t a i l , s p l i t)
35 i f t != s :
36 new s = (t+s)/2
37 s p l i t = new s
38 MFENCE
39 t = t a i l # read again
40 i f t != s :
41 i f t > new s :
42 new s = (t+s)/2
43 s p l i t = new s
44 o s p l i t = new s
45 return False
46 a l l s t o l e n = 1
47 o a l l s t o l e n = 1
48 return True
49
50 def pop () :
51 i f head == 0 :
52 return EMPTY
53 i f o a l l s t o l e n or (o s p l i t == head and sh r ink shared ()) :
54 head = head−1
55 return STOLEN(head)
56 head = head−1
57 i f movesp l i t :
58 grow shared ()
59 return WORK(head)

