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Abstract
This research investigates what impact energy-awareness functionality has on an existing soft-

ware design. Energy-awareness has become increasingly important in software development;
especially for Cyber-Physical Systems. Nowadays society is more conscious about energy con-
sumption; optimising energy usage has become an important selling point. Self-adaptation of
system behaviour can heavily influence energy usage; especially for battery powered systems.
Information about power consumption can be used to plan ahead; the system can try to react
and adapt before it runs out of power. A lot of existing software systems have no notion of
energy; the introduction of energy to an existing system may result in side effects. These effects
or ripples are modifications that are caused when energy-awareness functionality is added to the
existing system. Energy-awareness functionality has a crosscutting nature; it is present through-
out the system from hardware driver to high level planning and adaptation components. This
may result in an implementation where this functionality is scattered and tangled with multiple
components; every component may contain statements concerning energy consumption.

To investigate the effects of introducing energy-awareness functionality to an existing design,
we conduct a case study. Initially we designed a base design which is energy unaware. However,
best efforts are made to prepare the design for future evolution. The base design is split into two
parts: the base system and the control system. The control system adapts the behaviour of the
base system. The initial design was composed of various design patterns. The Observer pattern
and Visitor pattern served as interfaces for the control system to the base system. The control
system follows the MAPE-K terminology which is commonly used to describe control loops. The
control system contains a state space (State pattern) to determine the most suitable adaptation.
A domain analysis is conducted to extract energy evolution scenarios. The energy-awareness
functionality introduced by these scenarios is added to the base design. We observed the design
ripples that occurred after implementation of the functionality by various techniques; an object
oriented (OO) and an aspect oriented (AO) design are evaluated. Both designs are evaluated
using various basic metrics (lines of code (LOC), number of components and operations). To
observe the diffusion of a concern over a design we use concern diffusion metrics. A scenario-
based analysis technique SAAM is applied to show evolution impact for each separate evolution
scenario.

The OO implementation suffered from the introduction of new events and states which are
needed to apply newly introduced adaptations. A lot of evolution ripples appeared in the control
system due to interface changes caused by the introduction of new observable and visitable com-
ponents. The measurements revealed that the AO implementation introduced energy-awareness
functionality mainly through new components instead of changing existing components. AO
allows the dynamic extension and implementation of existing interfaces through aspects which
solve the problems related to the introduction of new events and adaptations. The metrics con-
firm the assumption that energy-awareness functionality has a crosscutting nature. Although
best effort is made to modularise the initial design, OO and AO programming cannot prevent
the scattering and tangling of energy-awareness functionality throughout the designs. New in-
troduced events and states lead to state space evolution within the control system. State space
evolution cannot be achieved without rewriting the context class (OO) or context aspect (AO).

We investigated a number of established and experimental event-based approaches to deter-
mine if our design can benefit from them. EventReactor and its event module model look
promising in this regard. The event model of EventReactor provides loosely coupled event mod-
ules which are unaware of each other. The modules are linked together by events, they can react
to input events and can fire output events to notify other interested event modules. Future re-
search should address language level support as well as scaleability. Case studies on other types
of CPS should be conducted to be able to generalise the findings of this research.
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1 Introduction

Energy-awareness has become increasingly important in software development; especially
for Cyber-Physical Systems (CPS). Society has become more conscious about energy
consumption and optimisation of energy usage has become an important selling point.
Self-adaptation of system behaviour can heavily influence energy usage; especially for
battery powered systems. Battery-powered systems deal with a limited power supply
and need to save resources to be able to complete their tasks. The information about
power consumption can be used to plan ahead, the system should try to react and
adapt before it runs out of power. Running out of power in the middle of a task can
be undesired; especially if the task cannot be resumed if the system restarts. A lot of
existing software systems have no notion of energy. The introduction of energy-awareness
functionality to an existing system may result in side effects. These effects or ripples are
modifications that are needed to add the energy-awareness functionality to the existing
system. This may reveal flaws in the design or break down the design entirely. Therefore,
modularisation of this functionality will be a difficult task; energy-related code fragments
might be scattered throughout the entire code. Energy-awareness functionality has a
crosscutting nature; it is present throughout the system from hardware driver to high-
level planning and adaptation components. This may result in an implementation where
this functionality is scattered and tangled with multiple components; every component
may have statements concerning energy consumption.

1.1 Research Questions

Software evolution is a challenging topic, designers must take into consideration what
will happen if a new concern is introduced. The introduction of an unexpected concern
may break down the design completely. The question will rise if this is the fault of
the design or if it could have been prevented by taking different design choices. We
will investigate the introduction of energy-awareness functionality to Cyber-Physical
Systems. The following research questions are formulated:

• What are the effects on software modularity that follow from the introduction of
the energy concern to Cyber-Physical Systems?

• Can the energy-awareness concern be introduced to an existing Cyber-Physical
System without crosscutting existing concerns?

Answers to these questions should give insight in the effects that follow with the
introduction of energy-awareness functionality to an existing software system.

1.2 Related Work

This research focusses on the design and evolution of CPS and the impact of energy-
awareness functionality on the design. There are many topics related to CPS develop-
ment. For this reason we will focus explicitly on research related to CPS design methods
and challenges, and on energy-aware software development regarding CPS.
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De Lemos et al. (2013) [1] propose a roadmap for developing, deploying, managing
and evolution of self-adaptive software systems. Specifically, they focus on development
methods, techniques, and tools that they believe are required when dealing with software-
intensive systems that are self-adaptive in their nature. The research identifies four ma-
jor topics crucial for engineering self-adaptive software systems: design space, software
engineering processes, centralised to decentralised control, and practical run-time verifi-
cation and validation (V&V). Especially the decentralisation of control loops which form
the control system is interesting for this research. They use the MAPE-K [2, 3] termi-
nology and present the following patterns: Hierarchical Control, Master/Slave, Regional
Planner, Fully Decentralised and Information Sharing.

The following research challenges are formulated: the identification of what circum-
stances that decide the applicability of patterns, as well as which application domains
or architectural styles are better managed by patterns. Another major challenge is to
identify techniques that can be used for guaranteeing system-wide quality goals, and
the coordination schemes that enable guaranteeing these qualities. The focus of their
research is on the control system itself; instead of our research which focus is on the
coupling between the base system and control system. Their research is presented as a
roadmap for CPS development; instead of our research in which we conduct a case study
to find out if our assumptions of energy-awareness being a crosscutting concern is valid.

Te Brinke et al. (2013) [4] present a method for developing energy-aware software. In
green software development the reduction of overall energy consumption of the software
is an important issue. This can be achieved by energy optimisers; software can be made
energy-aware by extending its functionality with energy optimisers. Energy optimisers
monitor the energy consumption of software and adapt it accordingly. Energy is consid-
ered as a special kind of resource; a component may consume various resources, which
eventually may lead to the consumption of energy.

A method is proposed to design energy-aware software systems in such a way that
modularity is achieved in the design of such systems. Key steps in this method are the
identification of components, modelling of ports (interfaces), the modelling of resource
behaviour, analysis and finally the selection of most suitable optimiser component. They
illustrate the usefulness of their technique in a separate technical report where they apply
the method to a media player case study.

The main focus of this research is on model checking where our study presents a
complete implementation for a robotic system. Although the media player is also some
kind of CPS it does have access to a fixed power supply; the robot instead deals with
a limited power supply and needs more complex energy-awareness adaptation scenarios
to ensure maximal operation time and performance.

Next to the two papers discussed above which focus on development techniques, more
research has been done, of which three papers are relevant here. Salvaneschi, Ghezzi
and Pradella (2013) [5] perform a language level support analysis for self-adaptive soft-
ware systems. They state: ”Self-adaptive software has become increasingly important
to address the new challenges of complex computing systems. To achieve adaptation,
software must be designed and implemented by following suitable criteria, methods, and
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strategies.”
Their work focuses on finer-grained programming language-level solutions for CPS de-

velopment. Three main linguistic approaches are analysed: meta-programming, aspect-
oriented programming (AOP) and context-oriented programming (COP). Each approach
is analysed and compared on the following topics: application, behavioural change, mon-
itoring and finally variations and separation. The following research challenges were
formulated: modularisation, extensibility, performance impact, adaption to unforeseen
situations and impact on the development process.

The paradigms discussed in this article solve the problem of extending existing (main-
stream) languages with the flexibility required by self-adaptive systems. AOP, COP, and
meta-programming introduce new directions of variability to model behavioural adapta-
tion; they support interception to inject monitoring code, and the dynamic modification
of normal execution. They conclude that it is hard to provide conclusive arguments for
the benefits they achieve through the use of specific linguistic support. Empirical obser-
vation should be conducted on application development to be able to provide conclusive
arguments; our research may help to provide these arguments. Our research illustrates
that CPS development can profit from applying AO programming. The AO implemen-
tation of our design reduced the impact of energy-awareness evolution scenarios to the
existing design drastically. Existing components can be extended by aspects instead of
modified.

McKinley, Sadjadi, Kasten and Cheng (2004) [6] conduct a survey about approaches
that have been proposed for building software that can dynamically adapt to its environ-
ment (self-adaptive systems). Adaptations do not only involve changes in program flow,
but also run-time recomposition of the software itself. When designing self-adapting
systems three key technologies should be considered: separation of concerns, compu-
tational reflection, and component-based design. Together, they provide programmers
with the tools to construct self-adaptive systems in a systematic and fundamental way.
In addition they discuss how middleware supports compositional adaptation. Middle-
ware effectively provides a level of indirection and transparency that can be exploited
to implement adaptations.

They list a number of research projects and commercial software packages that sup-
port some form of compositional adaptation, and conduct a taxonomy that distinguishes
approaches by how, when, and where software composition takes place in these projects.
They identify the following key challenges: assurance, security, interoperability, and de-
cision making. They conclude that compositional adaptation is very powerful; however,
without appropriate tools to automate the generation and verification of code, it may
have a negative impact on the integrity and security of systems, instead of improving it.
Unlike our research they focus on analysing software composition in existing commer-
cial software packages; our research instead focusses on the application of commercial
software packages with respect to energy-awareness evolution.

Andersson, De Lemos, Malek and Weyns (2009) [7] present a paper in which they
focus on the lack of consensus among engineers on some of the fundamental underly-
ing concepts of self-adaptive systems. They try to solve this issue by exploring the
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role of computational reflection in the context of self-adaptive software systems. Reflec-
tion is about meta-computation, i.e., computation about computation. They identify
several reflection properties and group them in a reflection prism with three sides: Self-
Representation, Reflective Computation and Separation of Concerns.

Any computational system has a domain model, which corresponds to the type of
the application domain (business problem) addressed by the system. In a reflective
system, there is a distinction between the domain model and the self-representation. Self-
representation is a key characteristic of any reflective software system. Self-representation
has four key properties namely: type of representation, granularity, uniformity and com-
pleteness.

The reasons for using reflection in a system vary; the behavioural properties of a re-
flective system affect several system properties. Together these properties make up the
reflective computation side of the prism. Properties here are: type of reflection, causal-
ity, level-shifts and frequency of these shifts. In the context of reflective computation,
separation of concerns is vital as the reflective behaviour increases the systems overall
complexity.

If the reflective system is able to support separate models of different system aspects,
possibly at different reflective levels, the overall complexity can be reduced. Proper-
ties here are: disciplined split, transparency, hierarchy and extensibility. They apply
the properties of the reflective prism to different case studies and identify key chal-
lenges when building self-adaptive systems. These challenges lie in expressiveness of
self-representation, meta-level conflicts, uncertainty, autonomy and transparency. In
this research we apply the self-representation side of the reflection prism by conducting
a domain analysis, from which we extracted an environment model for the system. Our
system needs the environment model to be able to navigate and move around.

1.3 Proposed Solution

In order to investigate the effects of introducing energy-awareness functionality to an
existing software design we will follow this roadmap:

• Define a initial energy-unaware robot software design.

• Introduce energy-awareness functionality through evolution scenarios.

• Implement energy-awareness functionality in established techniques (OO and AO
programming).

• Experiment by conducting measurements on the OO and AO implementations.

• Evaluate how established and experimental event-based modularisation techniques
can help to solve the exposed problems.

Software engineering provides various established techniques to cope with evolution;
OO programming provides design pattern to decouple and modularise components. It is
assumed that the initial design is not aware of energy; however, best efforts are made to
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prepare the design for every possible evolution scenario. The patterns that we adopted
for implementing energy-awareness functionality via control loops are Observer, Visitor
and State pattern. The system can be made self-adaptive by adopting control-loops to
implement high-level adaptation mechanisms. Together control loops form the control
system; the control system is coupled to the base system by the Observer and Visitor
pattern.

The impact of energy-awareness evolution is illustrated by a case study: a security
robot patrolling an environment. The robot must adapt its behaviour depending on
its position in the environment and security threats. A domain analysis is conducted
to extract energy-awareness evolution scenarios. The energy-awareness functionality
introduced by the scenarios is added to the existing design adopting OO and AO pro-
gramming.

The OO model has many shortcomings, crosscutting concerns are hard to implement
in the object model. A concern is crosscutting if its implementation is scattered and
tangled within many components. The extension of fixed interfaces results in ripples
throughout all classes implementing these interfaces. Adding new functionality leads to
rewriting or adding new methods to existing classes. Dynamic class extension as well
as the dynamic interface declaration mechanisms provided by AO, solve many of these
problems. However, state space evolution and especially the introduction of new states
cannot be solved by aspects. Context-dependent state information prevents aspects from
isolating the state-context concern. Extension of each context is context dependent which
makes it impossible to generalise it into a reusable concern.

This research will compare OO and AO implementation using various modularity met-
rics and scenario-based analysis. Experimental event-based modularisation techniques
will be evaluated to see if a higher degree of decoupling and modularity can be achieved.
Since some of these techniques are still in development and only partially implemented
we cannot conduct measurements on it. However these experimental techniques will give
an insight in the (future) possibilities for modularising and decoupling energy-awareness
functionality from an existing design.

1.4 Thesis Outline

This research gives insight how the introduction of the energy-awareness concern to
an existing CPS affects the modularity of the design. In chapter 2 some background
information about CPS, control systems, energy, software evolution, modularity and
metrics is provided.

A case study is conducted to illustrate how an existing design is affected by the
introduction of the energy concern. Various techniques are applied and evaluated to
minimise evolution impact on the design.
In chapter 3 we will present the case study scenario and the respective requirements and
assumptions who have to be considered for the initial design. Further this chapter gives
an overview of the various design alternatives and design choices for the initial design.

The initial system design should be energy-unaware; however, best efforts should be
made to prepare the design for possible evolution. In chapter 4 we will introduce new
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requirements through energy evolution scenarios. The scenarios are extracted from the
conducted domain analysis. OO and AO implementations are presented; both imple-
mentations implement the energy evolution scenarios.

In chapter 5 we will present the evaluation method. Metrics are calculated for both
implementations and the results are compared. An overview of the applicability of
event-based modularisation techniques is given in chapter 6. Esper and EventReactor
are evaluated to determine how event-based modularisation can help to solve state space
evolution problems.

Finally conclusions and future work are discussed in chapter 7.

7



2 Background

In this chapter we introduce Cyber-Physical Systems [8, 9] and provide background
information to clarify the topic of CPS design. Typical CPS are closed-loop systems,
they adapt behaviour according to feedback provided by sensors. These feedback loops
are implemented by means of a control system. Some CPS like mobile systems deal with
a limited energy supply. Energy-awareness functionality should be introduced to these
systems to optimise their operation time. Energy management should be a self-adaptive
process. Self-adaptive[2] software systems are typically implemented by the MAPE-
K [2, 3] model. The key functions of self-adaptive control systems are: Monitor, Analyse,
Plan and Execute over a common Knowledge base. Due to the crosscutting [10] nature
of energy-awareness functionality, we assume introducing energy-awareness functionality
to an existing system may compromise the modularity of the design. We assume energy-
awareness functionality is introduced by evolution scenarios. To evaluate the modularity
of a design as well as the impact of evolution scenarios metrics must be identified to be
able to conduct measurements.

2.1 Cyber-Physical Systems

Cyber-Physical Systems [8, 9] are all around us, examples are traffic control and water
resource management systems. Robotic systems also fall in the category of CPS.

– CPS systems are typically closed loop systems, where sensors make measurements of physical
processes, the measurements are processed in the cyber subsystems, which then drive actuators that
affect the physical processes –

[Edward A. Lee, UC Berkeley]

CPS form the bridge between the cyber world and the real world. More formally,
they communicate with entities in the physical world and integrate computing with
monitoring and/or control. They react to stimuli from the outside world and adapt
their behaviour accordingly (emergent system behaviour) [8, 9].

Stimuli are triggers/events [8], events are occurrences/changes in properties of interest.
To observe the real world, CPS make use of sensors. Sensors can observe a small part
of the real world. Like distance to a wall, light intensity, battery power etc. Whenever
such properties of interest change this is considered an event.

Events provide a natural way for reactive systems to observe behaviour and to specify
component interfaces. Events can be used to specify coordination and composition of
components. The usefulness of events degrades over time; the longer it takes for the
system to react the greater the chance the response action is ineffective (soft-real time).
For example, imagine a robot following a wall; the robot corrects his behaviour according
to the distance to the wall. If a distance event is handled too late the actual distance
is different from the value the robot is trying to adapt to. In this case the adaptation
is only partially effective. After a certain amount of time the event becomes completely
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useless; for this reason events must be communicated in time.
CPS need to react to change continuously; the sequence of observing changes and

adapting accordingly is a never ending loop. Usually feedback loops ensure adaptation
to physical processes by the means of the computation of an advice/plan. This advice
contains one or multiple adaptations that correct/adapt the system.

Developing CPS is a challenging task [9]; software component technologies like object
oriented (OO) design and service-oriented architectures are based on abstraction that
are intended for software rather than physical systems. The gap can partially be closed
[9] with:

• advancements in formal verification;

• emulation and simulation techniques;

• certification methods;

• software engineering processes;

• design patterns;

• component technologies.

2.2 Energy

The electrical point of view of energy [11] is: energy is absorbed by or generated from
an electrical circuit. Energy is expressed by the following formula:

E(t) =

∫ t

0
P (τ)d(τ) (1)

Energy is power consumed over time, power can be defined as the amount of energy
consumed per unit of time. Power is expressed by the following formula:

P (t) = V (t) ∗ I(t) (2)

Power P at a certain moment in time is the product of the voltage V and current I at
that moment in time.

With this physical information we can consider energy from a software point of view.
Before one can consider energy in a software system one should have a notion what
energy is and how to measure it. Each hardware component may use a different amount
of energy. Sensors can be used to measure energy levels; alternatively static values can
be introduced based on datasheet information of the hardware components, in order to
simulate energy consumption of components. In the last scenario energy consumption
is based on assumptions. Either way this information should be added to software
modules who directly interact with the hardware. More complicated energy scenarios
affect planning and strategy modules. Software evolution is an ongoing research topic;
writing and rewriting software is a costly process. A design fit for evolution can save a
lot of effort and money.
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2.3 System Control

Control systems are interdisciplinary; there exist physical control systems [12] as well as
software control systems. Physical control systems, also called feedback or closed-loop
systems, are used in mechatronics. Optimising machinery movements is an example
of their application. These control systems can be implemented in either hardware or
software and are applied in embedded systems. Software control on the other hand is
implemented by feedback loops, keywords here are monitoring, analysing, planning and
executing adaptations.

2.3.1 Physical Control

Physical control realised by so-called control or closed-loop systems [12] work with a
closed loop. The error in the output is fed back to the input in order to determine
if additional correction is needed. Control systems provide a way to modify dynamic
system behaviour through a feedback mechanism. A typical physical control system is
modelled in a block diagram a general model is displayed in figure 1.

Figure 1: Physical control system

The preferred output value of the system is defined by the set-point or reference value.
One must define a monitor to achieve this, the monitor compares the system output (Y)
to the set-point value (U). The output of the monitor is called the error signal, the error
signal (e) is the difference between the desired system output and the actual system
output. The error signal is fed back as input to the system or plant to correct the
output signal in order to decrease the gap between the actual output and desired output
signal. The mathematical representation of the relation between the input and output
can be expressed by a differential equation. This equation is called the system function
or transfer function [12](p. 34-38). A control system can be turned into a closed-loop
system if the output is measured before it is compared to the reference value. A non
closed-loop system receives no feedback from the outside world.

These systems can be partitioned into two categories namely linear and non-linear
systems [12](p. 39-52). If a system is modelled as a linear system, the output is propor-
tional to the input. Linear systems are useful for modelling mathematical systems but
not for modelling real world systems; most real world systems are non-linear systems.
Control systems are applied in a wide range of fields, examples are climate control, neural
networks and medical systems.
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2.3.2 Software Control

Software control is not limited to controlling a systems output, software control can
model many complex feedback mechanisms. Software control systems are often referred
to as self-adaptive systems. Complex systems with a wide variety of sensors and actuators
can be modelled by various overlapping feedback [2] mechanisms. System behaviour
optimisation is the main goal of software control; examples are controlling computation
or request load for processor and server control systems. Another example would be an
energy-management optimisation system.

Self-Adaptive Systems A lot of software systems must adapt to a changing environ-
ment. A server system for example, which will get increasingly more requests and there-
fore needs to deal with an increased workload. By detecting changes in the environment
the system can predict what is going to happen and deal with it accordingly. In the
example of the server system this could be the increment of the capacity. In this case,
adding additional servers to a virtual machine can be a appropriate adaptation. This
server system is an example of a self-adaptive system [2]. The adaptation functionality
can be implemented as a feedback loop. A typical cycle would be: measure deviations
(observe), comparison to a reference value (analyse), planning the best possible action
(plan) and the adaptation to a changing environment (act).

Base System and Environment The base-system interacts with the outside world
called the environment; the environment is the relevant part of the real world. The
system interacts with the environment through sensors. Sensors measure certain chang-
ing variables in the environment. These changing variables give the base system insight
on what is happening in the environment. This information is crucial for self-adaption;
without stimuli there is nothing to adapt to.

MAPE-K MAPE-K [2, 3] or Monitor-Analyse-Plan-Execute over a Knowledge base is
a common terminology used to describe control loop systems. The principle is illustrated
by figure 2; the figure shows the base system and the way it interacts with the auto-
nomic control component. This autonomic control component or control system exists
of four sub-components which have a common knowledge base. The interaction with the
controlled resource is handled through sensors and effectors.

11



Figure 2: MAPE-K principle

We will briefly introduce the four control components as well as the knowledge base.
The knowledge base can be accessed by multiple control loop components; however, it is
in particular important to the analyser component. For this reason we will discuss the
analyser and knowledge base together.

Monitor The monitor collects relevant information regarding the behaviour/structure
of the base system (managed resource). Additionally it may collect information from the
environment. Examples are: changing variable values and current state of the system.
The base system and environment can be seen as subjects of the monitor. The monitor
simply passes the data from the base system to the analyser. Therefore, it acts as an
interface for the control loop to the base system. Complex systems that deal with many
high rate data flows may have to deal with hardware limitations, e.g. insufficient memory
and high CPU loads. In these cases data compression should be applied; average values
can be used or some other correlations over a set of samples can be applied.

Analyser and Knowledge Base The data passed by the monitor component must be
analysed. The analyser component processes the data and should be able to detect
undesired values. First the analyser interprets the data; by giving an interpretation to
the data it becomes possible to compare it against a reference model (Knowledge base).
Deviations from the reference model indicate the system is not longer functioning as
desired, given the apparently changing environment. Therefore the control loop should
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determine on an adequate action/adaption. The control system should plan how to
adapt the base system.

Planner The planner component is closely related to the analyser; once the data is
analysed there must be some coordination to adapt the base system. Analysers become
more useful if historical information is taken into account. State-charts can be used
to keep track of what happened in the near history. When the past is known, it be-
comes possible to spot trends and predict what can happen in the future. Taking this
information into account, adaptations become more effective and the performance of the
managed resource can be optimised. The planner takes new analysed data and current
state information into account when determining the next state. New states may con-
tain one or more adaptation actions; these adaptation values are send to the respective
executors.

Execute Executors apply adaptations determined by the planner component. In prac-
tise this will mean the system switches behaviour; examples are optimal performance
mode, energy saving mode or threat mode for tasks that require immediate attention.
Adaptations are executed on the managed resource by so called effectors; effectors change
the behaviour of the managed resource.

2.4 Software Evolution

Already in the early 70s Lehman et al. formulated laws/properties regarding software
evolution [13]. These laws give insight on how software evolution shapes the program.
The term E-type systems is used for software systems embedded in a real-world domain.
Lehman formulated the following laws [13]:

• ”Continuing Change” – an E-type system must be continually adapted or it be-
comes progressively less satisfactory

• ”Increasing Complexity” – as an E-type system evolves, its complexity increases
unless work is done to maintain or reduce it

• ”Self Regulation” – E-type system evolution processes are self-regulating with the
distribution of product and process measures close to normal

• ”Conservation of Organisational Stability (invariant work rate)” - the average effec-
tive global activity rate in an evolving E-type system is invariant over the product’s
lifetime

• ”Conservation of Familiarity” – as an E-type system evolves, all associated with
it, developers, sales personnel and users, for example, must maintain mastery
of its content and behaviour to achieve satisfactory evolution. Excessive growth
diminishes that mastery. Hence the average incremental growth remains invariant
as the system evolves.
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• ”Continuing Growth” – the functional content of an E-type system must be con-
tinually increased to maintain user satisfaction over its lifetime

• ”Declining Quality” – the quality of an E-type system will appear to be declining
unless it is rigorously maintained and adapted to operational environment changes

• ”Feedback System” (first stated 1974, formalised as law 1996) – E-type evolution
processes constitute multi-level, multi-loop, multi-agent feedback systems and must
be treated as such to achieve significant improvement over any reasonable base

These laws formulate the basics of software evolution. Empirical evidence [14] has
been conducted to see if these laws still hold for modern day open source projects.
There are indications that Continuing Change, Increasing Complexity, Self Regulation,
and Continuing Growth are still applicable to the evolution of modern day open-source
software projects.

Interesting are ’change hot spots’ [14], this are code fragments where changes concen-
trate. A small percentage of the total code that contain a high percentage of changes.
Interface changes almost never happen after the initial design. Implementation changes
are more likely to occur.

2.4.1 Scenarios

Software evolution in general is scenario-driven; but what exactly does this mean, we
give the definition of scenario according to Merriam-Webster:

– scenario: ”a description of what could possibly happen” –

[Merriam-Webster]

Scenarios are descriptions of possibilities that may occur. The evolution of software is
shaped by newly introduced scenarios. Software modules must be rewritten or extended
to satisfy a growing set of requirements introduced by evolution scenarios.

A design should be prepared to cope with evolution; evolution scenarios should be
taken into account when modelling a software design. Evolution scenarios should be
extracted by conducting a domain analysis. The domain analysis [15] should map all
possible relevant entities and relations in the system domain; this process is called domain
scoping. In many cases not only the technical (functional) aspect but also the economic
aspect should be considered.

The domain analysis is just a small part of a larger process called domain engineering
[15]. Systematic software reuse can be achieved by analysing the application domain.
Analysing the application domain results in the identification of commonalities. Com-
monalities form the basis of reuse within a software product line.

Various domain analysis methods exist; FODA [16] and ODM [17] are examples. We
will not describe these methods in detail since they are outside of the scope of this
research, but we will leave them here for the interested reader.
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With the cause for software evolution identified, it is now time to move on to modular-
ity. Modularity is the keyword to achieve a highly decoupled design. Evolution scenarios
will test the evolvability and modularity of a design, design flaws can be revealed if the
design is static and non-modular.

2.4.2 Modularity

Modularity is an important topic in software design; generally, system functions are
decomposed into reusable independent modules. A design is modular if modules have well
defined interfaces resulting in loosely coupled components fit for reuse. Modules should
be designed in such a way that they are loosely coupled to each other and communicate
with each other via their interfaces. Modular designs are said to be more evolvable;
future functionality can be added with less impact. A loose coupling and well defined
interfaces create the possibility to reduce the ripple modification effects, once a module
needs to evolve.

An indication of the modularity of a design can be obtained when looking at certain
evolution aspects of its components [18]. The survival rate of a component indicates
how important it is. It indicates the degree in which the component can be removed
or replaced over time. Maintainability is another important aspect; maintainability of
a component indicates the component’s stability. The stability of a component is the
degree in which changing requirements affect it. For the system as a whole one should
consider component augmentation. Component augmentation indicates how easily new
components can be added to an existing design. Together these aspects give insight in
how a component will evolve, as well as the likelihood of the component disappearing
from the design.

Tight coupling indicates a high dependency of other components; a high dependency
means a higher survival rate. Killing such components results in a lot of unwanted effects.
Throughout the design, many other components may depend on the killed component;
all of these components need to be updated. This implies that these components are
less adaptable in terms of substitution or exclusion. The impact of changes in these
components may be amplified due to the high amount of dependencies. Which in turn
may result in more maintenance effort. Due to their high dependencies augmentation
will also be harder for such components.

Core components tend to deal a lot with these problems; core components are com-
ponents that were present in the initial design; destined to be long lasting. These often
tightly coupled components are vital to the system; naturally this comes with a higher
survival rate. However, it can be expected that core system functionality changes quite
often. Each new version of the system strives to improve performance, made possible
by new advances in technology. This will make some core components obsolete or an
opportunity arises to replace them. However, adapting tight coupled components is a
difficult task and may affect many other parts of the design.

One must be aware of tight coupled components and the constraint they place on the
design. These components are hard to remove and result in reduction of future flexibility.
This results in more maintenance effort due to design changes [18] in future versions.
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This problem is magnified by code reuse. Legacy code is used as a platform to build
new versions on top of. This legacy code will hardly be rewritten; existing problems are
magnified when used in the dependent code.

The core components for a self-adaptive design are the MAPE-K components which
form the control system. The base system can be considered as legacy code; it is deemed
undesired to make modifications to the base system made necessary by evolution. The
control system components should be designed in a modular way so they can be flex-
ibly coupled to the base system. Evolution capabilities of these components should
be considered carefully. The energy-awareness functionality especially may affect these
components; energy-awareness functionality most likely will introduce new events and
adaptations. Events and adaptations directly relate to the monitor and executor com-
ponents of the control system. However, not all concern can be modularised, this brings
us to the next topic: crosscutting concerns.

2.4.3 Crosscutting Concerns

Concerns of a program that affect other concerns are called crosscutting concerns [10].
Trying to separate such a concern in a modular and decoupled way, results in a scattered
concern throughout the design and implementation. Dependencies between modules can
become polluted when trying to implement such a concern. This pollution is called tan-
gling; in practise this results in modules that heavily depend on each other. There is
evidence suggesting [10] that crosscutting concerns cause defects in software. The more
a concern is scattered the more likely it will cause defects. This effect is evident and inde-
pendent of the size of the concerns implementation (in terms of LOCs). The separation
of such concerns are hard to achieve in an OO design. Design patterns [19] are already
a big improvement. Design patterns are designed to decrease coupling between compo-
nents and increase the components modularity. However, even with the help of these
patterns OO falls short when implementing crosscutting concerns; this is illustrated by
Eaddy, Zimmermann, Sherwood, Garg, Murphy, Nagappan, and Aho [10]. They explain
the pros and cons of various design patterns and how they are suitable to modularise
crosscutting concerns, based on modularity, uniformity, transparency and reusability.
Further they show how these patterns can be improved with AO techniques.

2.4.4 Modularising Energy

A robotic/cyber physical system is a combination of hardware and software. The intelli-
gence is encoded in the software whereas the interaction with the environment is handled
by the hardware. Actuators like engines for moving and sensors for measuring changes in
the environment are examples of hardware interaction with the environment. The soft-
ware communicates with the hardware through third party libraries. Most components
do not provide energy information since this requires additional sensors; adding energy
sensors will increase the production costs. In order to monitor the energy consumption
of each individual component, each different hardware component needs its own energy
sensors.
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The readings of these sensors should be coupled (software) to the hardware component
they are measuring. Each hardware-driver component deals with energy; each compo-
nent must implement energy-awareness functionality. Considering energy is one thing,
but to actually use it for a high level scenario is something else. New plans and strategies
based on energy need to be implemented. Sensor readings can be stored for optimisation
of the system (improved performance based on history). Energy-awareness functionality
is not only present in low level hardware drivers but also in the higher level planning
components. These are the characteristics of a crosscutting concern. It is impossible to
isolate such a concern into a single separate component. The modularity and coupling
between components of a program determine if a design is modular and reusable. Cross-
cutting concerns break down the design and result in a tangled implementation. To be
able to evaluate the modularity and evolvability of a system metrics are needed.

2.4.5 Metrics

Separating concerns is achieved by implementing modular and decoupled modules that
deal with different concerns. Each module should deal with its own concern and ideally
not be aware of other modules. To be able to determine if a good separation of concerns
is achieved the coupling between the various concerns present in the system should be
determined [20]. Metrics provide a way to evaluate modularity, separation of concerns
and scenario impact.

Concern diffusion metrics There exist some metrics to evaluate the separation of con-
cerns; these metrics are called concern diffusion metrics [21]. Concern Diffusion over
Components (CDC) [21], Concern Diffusion over Operations (CDO) [21] and Concern
Diffusion over Lines of Code (CDLOC) [21] indicate the impact of a concern in a pro-
gram. The number of classes (aspects in AO) that contribute to the implementation of
a concern are indicated by CDC. CDO gives an indication of the number of methods
(advices in AO) that contribute to the implementation of a concern. CDC and CDO
together give insight in the degree the concern is scattered at various granularity levels.
CDLOC indicates the number of transition points of each concern in terms of lines of
code. Code must be partitioned in two parts; code that implements a given concern and
code that does not, transitions in both ways are counted. A high value indicates a high
mingling of concern code within the implementation of the components, whereas a low
value indicates that the concern is localised in the concern code. CDLOC indicates the
degree in which a concern is tangled.

Scenario-based Analysis Since the new concern is introduced through various evolu-
tion scenarios, another evaluation technique called SAAM [22] might be more suitable.
SAAM (Software Architecture Analysis Method) is a scenario based analysis technique.
SAAM provides us with various minor metrics to validate the impact of specific evolu-
tion scenarios. This way we can isolate the impact of each scenario related to a concern,
instead of the degree to which the concern is scattered or tangled. Metrics to consider

17



are new, changed or deleted classes, methods or LOC. If one explicitly wants to measure
the degree of reuse of classes or methods, inheritance metrics [23] should be considered.
Inheritance metrics capture the reusability of class and method bodies.
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3 Cyber Physical System Case Study: Patrol Robot

A typical example of a CPS is a system which interacts with its environment. For this
case study a robotic system is chosen as example, more specific a robotic system which
moves around through a environment. Sensor data provides the robot with feedback
from the environment, adaptations can be made according to the incoming sensor data.
Navigation through the environment requires an environmental model. The system
should be able to visit points of interest in the environment; these points of interest or
waypoints are locations in the environment where actions must be performed. The robot
must be able to travel through the environment visiting a list of waypoints, a route. The
robot used in this case study is a EV3 LEGO robot [24], this robot can be programmed
in Java using the Lejos API [25], this API runs on a customised java embedded JRE
[26].

In this chapter we will describe the application scenario and requirements for the
initial system. The initial system design should be energy-unaware but best efforts
should be made to prepare the design for possible evolution. Chapter 3.3 will describe
the initial design with the respective design alternatives and choices. Chapter 4 will
introduce new requirements through energy evolution scenarios. Evolution scenarios are
identified by conducting a domain analysis. An OO and AO implementation are given;
both implementations implement the energy evolution scenario. Finally in chapter 5 the
evaluation method is described, metrics are calculated for both implementations and
results are compared.

3.1 Application Scenario

In some buildings like banks/research facilities, there may be a need for security pa-
trolling. The task to check if there are any intruders is time consuming and repetitive;
this task can be done manually or can be automated. Automation can be achieved by
installing various cameras in the building but this may be quite expensive and overkill
for a relative simple task. A simple robot could easily patrol a predefined environment
and check for signs of intruders. In the most simplified scenario the robot traverses the
environment by following a specific route. If the robot comes across an open door it will
see this as a possible security breach. The robot may decide to check the route more
frequently if a lot of doors are open. The robot has a limited power supply so it should
consider energy usage when undertaking action. If the robot threatens to run out of
energy before its shift ends it should adapt its behaviour accordingly. The patrolling
frequency depends on the open doors encountered and energy left in the battery. A
possible strategy could be to check areas without a security breach less frequently to
save power.

3.2 Requirements

The system should fulfil various requirements in order to be able to navigate, patrol and
adapt its behaviour. Since we are conducting research only functional requirements will
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suffice. Given the information from the introduction and the application scenario the
following list of requirements is composed:

R1: The robot should be able to navigate from one point in the environment to another
point taking the shortest path.

R2: The robot should be able to detect doors.

R3: The robot should be able to detect obstacles.

R4: The robot should be able to detect crossings and corners.

R5: The robot should be able to patrol the environment.

R6: The robot should be to adapt its resting time between two tours (patrol cycles),
in case of few to none open doors in the last three tour the resting time should be
doubled.

R7: The robot should be able to adapt its behaviour in case of a security breach (if
there are open doors detected on a tour).

R7. 1: The robot should be able to stop patrolling and check the exit of the building
in case of a security breach.

R7. 2: The robot should be able to sound an alarm in case of a security breach.

Requirements do not capture all functionality; for simplicity some assumptions are
made. The following assumptions are made about the robot:

A1: It is assumed the environment model is known to the robot.

A2: It is assumed the environment is a maze of corridors which may cross each other.

A3: It is assumed that when the robot starts its first patrolling cycle the battery is
fully charged.

A4: It is assumed the battery capacity is sufficient to patrol the environment at least
once.

There are many different design options that can be used to model a CPS, however this
research will place some constraints on the possible design options. The initial design
choices must take into account:

RD1: The design choices must be based on evolvability, decoupling and modularity.

RD2: The design choices should take reuse into account.

Implementing software in a reusable yet modular way is the main goal of this case
study. A design without reuse capabilities cannot evolve without rewriting large chunks
of code.
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3.3 Initial Design Of The Robot

Initially the system is energy-unaware so it does not take energy usage into account. The
designed system exists of a base system which is controlled by a control system. This
chapter will present design alternatives for the initial energy-unaware design. Based on
the requirements design choices are made to maximise the evolution capabilities of the
design. Finally, the initial base system design is presented which will serve as the base
system in the OO and AO implementations of this research.

3.3.1 Design Alternatives

To prepare the design as best as possible for future evolution, many design options
should be considered; we will present the design options for the environment model and
the control part of the system.

Environment Model The environment model of the robot must be modelled into some
sort of map which the robot can use to navigate, this process is called mapping. Re-
search about environment mapping for the predecessor of the EV3 robot is conducted
by Oliveira, Silva, Lira and Reis [27] . This research classifies robotic mappings as either
metric or topological. Where a metric approach determines the geometric properties of
the environment, the topological approach determines the relationships of locations of
interest in the environment. Another way to classify mappings would be to partition
them world-centric or robot-centric. Where world-centric mappings represent the map
relative to some fixed coordinate system, robot-centric mappings represent maps relative
to the robot.

This research compares the standard mapping method of the Lejos framework to their
own optimised mapping method. The environment mapping implemented by the Lejos
framework is a world-centric and metrical approach; the robot moves forward from a
known starting point, until an obstacle is detected with the ultrasonic sensor. Once an
obstacle is detected the robot will drive backward and rotate to avoid the obstacle; by
doing this the robot is mapping the environment on a 80x80 matrix which represents the
environment. In the real world this matrix covers 16 square meters, allowing a detailed
representation of small environments. This method is improved by applying a system of
probabilistic mapping based on the Bayes [28] method. This means that the points in
the matrices receive values that represent the probability of an obstacle being present at
that point in the environment. Low values indicate that the probability of an obstacle
is high, whereas a high value indicates a low probability of an obstacle present at that
location.

The Lejos API provides an even simpler environment mapping method namely the
line map [29]. The environment is represented by line segments; every time the robot
turns a new line is started and created in the map. This method is world-centric and a
metrical approach, the position of the robot is tracked by observing motor movements.
Tracking the robot position based on rotation and speed by motor movement is not very
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reliable. If an error is made there is no reference for correcting; this result is magnified
by subsequent errors.

The conclusion of both of these methods is that we need a high probability of validating
an obstacle or waypoint. Both approaches can only map a small sized environment, the
patrol environment is too large for both approaches. For this reason a graph [30, 31]
like mapping method should be considered. The limited sensors of the robot allow the
detection of walls, doors and corners, which can be used as waypoints or validation points
in the environment. If the robot has a predefined map of the environment available it
can explore this environment from a known starting point. These waypoints can be used
to validate the position of the robot in the environment model. Again this approach is
world-centric and metrical, a topological mapping is not suited for simple environment
mapping with as main goal navigation.

Navigation Navigation through the environment should be strategy-based; various
strategies should be defined to calculate a route between two points. Possible strategies
could be the shortest route, the most efficient route based on the number of obstacles,
corners and doors on the route. There is only one possible option for this especially in
the case of a graph-based model namely the Strategy pattern [19]. The Strategy pattern
defines an interface defining all possible methods that must be affected by a certain
strategy. Each concrete strategy must override the methods defined by the pattern’s
interface. Changing strategies is not only related to navigation but also closely related
to applying behavioural adaptations.

Control loop Architecture For the control part of the system a control loop architec-
ture should be adopted following the MPAE-K terminology. Properties of interest of
the base system must be observed and adaptations must be executed to adapt the base
system behaviour. We will discuss design choices for the following three aspects:

• observation

• control

• adaptation

Observation The base system must be observed to monitor changes in behaviour and
environment. OO provides various options for the observation of so-called subject ob-
jects; we will discuss two of them. The first approach is a message bus in combination
with a queue, the subjects can post updates to the message bus and the messages are
buffered in a queue. The observer can read the incoming messages by applying the FIFO
(first in first out) mechanism. A drawback of this approach is that messages are handled
in a uniform way, but not explicitly forwarded to a specific observer. All observers must
check the queue for updates even if the update is not relevant for them. The second
approach is by applying the Observer pattern [19]. The Observer pattern excels in the
decoupling of subject and observer. The subject must implement the subject interface
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which defines methods for attaching observers, detaching observers and notifying up-
dates to observers. The observer must implement the observer interface which contains
a single action method which is triggered when subjects notify an update. The attach-
and detach-mechanism ensure that only interested observers are notified when an update
is posted.

Control The control part of the software follows the MAPE-K terminology, resulting
in four different components. These four components form a control chain or control
loop which has as input observed values of interest of the base system and the output
exists of adaptation applied on the base system. Challenges in modelling this part of
the system come from the fact that multiple data types must be processed. To tackle
this problem two solutions exist, namely creating one uniform data handling method or
creating a handler method for each different data type.

The uniform data handler method results in monitor, analyser and planner interfaces
defining one method. Each component, whether monitor analyser or planner, must
perform a cast of the uniform argument before performing actual operations on it. Due
to all arguments being cast the introduction of new data types by possible evolution
scenarios would not be a problem anymore; any argument can be casted to the correct
type respectively. Adopting this method which in essence takes over the role of the
compiler comes with a lot of problems. Casting is deemed unsafe and encourages runtime
errors, aside from that handling data in a uniform way neglects all the features the object
model gives us.

The second option of creating a data handler for each possible data type (unique data
handler) will result in monitor, analyser and planner interfaces defining handlers for
every possible data type; each handler will have its own data type as argument. Each
event from the base system which has another data type as argument results in a new
handler.

Adaptation Applying adaptations to the base system can be achieved in various ways;
the main problem here is the need to extend existing objects with new functionality.
An option would be to simply extend existing classes by defining new methods and
fields within already existing classes. However, by doing this existing components are
directly affected by evolution. A possible solution is the adoption of the Strategy pattern
[19], a new strategy can be used to introduce new behaviour for existing functionality.
Depending on the strategy the object may execute the operation in a different way.
The Visitor pattern [19] also provides a way to define new functionality for existing
components. The Visitor pattern defines two interfaces, the visitor and the visitable
interface. The visitable interface defines the accept method, which calls the visit method
of the visitor interface. The visitable component passes itself as an argument to the visit
method. The visitor interface defines visit methods for each of the visitable components,
concrete visitors can implement these methods and enrich the functionality of these
components in order to apply adaptations.
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3.3.2 Design Choices

This section will present the initial design choices regarding the base system and control
part of the system. The design choices regarding the environment model as well as the
choices related to the interaction between the base system and the control system are
given. The choices regarding interaction of the base system and control system affect
both systems. However since ideally the base system is unaware of the control system
these design choices are discussed together in the control system section.

Environment Model Requirements R1 to R5 specify properties which should be ex-
tracted and stored within the environment model. Requirements R2 to R4 mention that
points of interest (waypoints) should be detected; these waypoints come in various forms
like doors, crossings and obstacles. Requirement R1 states that the robot should be able
to navigate from one point in the environment to another point. These requirements are
properties best modelled in a graph-like environment. The probabilistic matrix mapping
and line-map approach do not allow the explicit declaration of waypoints. Determining
the positions of the robot on such maps must be determined from motor movement; this
way of determining the position is likely to fail due to incorrect feedback from sensors
data. Position errors are amplified with each new error, until the robot is completely
lost. In general these environment models provide too much detail and do not provide
enough certainty.

With the graph model the robot can verify its position on each waypoint; doing this
the impact of multiple errors will be minimised since the position can be verified at
fixed predefined points in the environment. A metrical and world-centric graph-based
environment model satisfies all requirements related to the environment model.

Control System For the control system we will give the design choices for the three
sub-aspects: observing, control and adaptation. Observing and adaptation choices do
not only impact the control system but also the base system.

Observing Requirement R7 requires the observation of the security state of the system.
The observation mechanism should couple the base system to the control part of he
system. The Observer pattern provides a decoupled and modular way to introduce new
observable subjects. New subjects need to implement an observable interface and define
an update method to notify interested observers which can register and de-register.
In contrast to the message-bus solution only interested observers are notified avoiding
possible data race problems. The message queue buffering the uniform data messages
must be synchronised since multiple listener threads will poll for new messages at the
same time. The message-bus solution cannot be reused (RD1) without casting the
messages after extraction of the queue. The Observer pattern is designed for reuse; the
attach, detach and update mechanism can be reused for every new observer and subject
respectively. The Observer pattern focusses on decoupling and reuse and for that reason
it is more suitable for evolution.

24



Control loop coupling The design options for the control part of the system are not
based on the functional requirements. The design requirements RD1 and RD2 state that
reuse decoupling and modularity should be taken into account. However, since we are
following the MAPE-K terminology the components are fixed, however this is not the
case for the coupling between the components. Two alternatives were discussed in the
design choice section, the uniform data handler and the unique data handler method.
The uniform handler can be defined in the respective MAPE component interfaces and
be reused without modifying interfaces. The only drawback is that a cast should be
applied before the data can be accessed. The unique data handler method defines data
handlers for each data type in the control components. However, without performing a
cast, data can not be accessed. Both design options are possible according to the design
requirements. As said, casting is deemed unsafe and encourages runtime errors, aside
from that handling data in a uniform way neglects all the features the object model gives
us. In a sense such a mechanism is an extension of the compiler which is forcefully told
what to do. One could go even further and store every object in a bitmap and write a
custom interpreter to be as flexible as possible, completely ignoring the object model.
However, by doing this the implementation would not be object oriented anymore. For
this reason the unique data handling method is adopted in the initial design.

Adaptation For applying adaptations two solutions were provided, namely the Strategy
and the Visitor pattern. The Strategy pattern solution cannot define strategies for
objects which do not share a common super type. According to R7.1 and R7.2 at least
two different adaptations should be executed, changing route and sounding an alarm
respectively. The adaptations in the requirements do not share any common features; if
the Strategy pattern should be used Strategy patterns for both objects should be defined.
Each new type of action will result in a new Strategy pattern for the object the action
is defined on. The Visitor pattern provides a more dynamic way to apply adaptations
for different objects. Each concrete visitor must implement the visitor interface which
defines action methods for all visitable objects. Each concrete visitor can apply multiple
adaptations for different objects. The looser coupling with the base system together
with the handling of different objects makes the Visitor pattern more suitable to cope
with evolution.

3.3.3 Initial Design

With the design choices known, the initial design can be implemented. This section
describes how the base system design is implemented. The base system design is fixed
and is used as a basis for both the OO and the AO implementation. Therefore the initial
control part of the system is given in the form of a state space diagram; the reason for
this is to abstract from language and method constraints.

Base system The initial design as depicted in figure 3 is energy-unaware. The base
system contains all base functionality. The most important concerns are:
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• Behaviour (blue)

• Environment (red)

• Routing (green)

The initial design is written in OO and provides all initial functionality to adapt
system behaviour defined by the initial system requirements.

Figure 3 outlines the base systems design; various patterns were applied. The sys-
tem/robot is composed of various components like sensors, ports, mechanisms actuators
(engines). There is no predefined configuration; any sensor can be connected to any
port. A pattern called the AnyMorphology pattern [32] is used to configure the system
and the hardware components it is composed of. Since any part can be coupled to any
other part, a high degree of decoupling is achieved. This makes it possible to configure
the system as the user desires with an almost unlimited amount of freedom. Without
this pattern new components must explicitly define how they can be coupled to other
components. Without a clear general interface extending the system with new hardware
the designs modularity would break down. The pattern’s generic way of handling and
coupling components maximises evolvability concerning new hardware components.
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Figure 3: Base system design environment, routing and robot model
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The environment is graph-based, corridors can be seen as edges and waypoints as
nodes, waypoints can be doors, crossings or obstacles. Edges connect nodes and form
a graph [33]. The environment can be traversed following a path. A path is a list of
nodes or waypoints and can be traversed by going from one node to the next. The robot
needs some sort of verification points within the environment. Although the sensors are
limited, it is possible to detect and follow a wall; corners and crossings can be detected
and used as waypoints in the environment. After detection of a waypoint the robot can
update the position in the environment. These waypoints which are modelled as nodes
in a graph ensure a reliable way to navigate through the environment.
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Figure 4: Base system design robot model and behaviour
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The behaviour is modelled as a subsumption architecture [34] which is illustrated in
figure 4. The arbitrator takes various behaviours as input: CheckDoors, EvadeObstacle,
FollowWall and Navigate. Each behaviour becomes active once it is triggered. Since the
wall serves as a orientation point the robot moves forward along the wall; therefore this
behaviour is active most of the time. If a door, crossing or obstacle is detected, other
behaviours will take over control of the system. The navigator will update the position
of the robot after a new waypoint is detected and passed. A path can be generated
in different ways using the Strategy pattern [19]. Initially the system uses the Dijkstra
shortest path [30, 31] strategy to navigate from one point in the environment to another.

This system will function as the base system; it needs control to adapt to changes.
Changes in the environment must be observed, analysed and adaptations must be applied
depending on the state of the system.

Control loops The base system is controlled by several control loops. The control loop
architecture will be described in MAPE-K [3] terminology: Monitor, Adapt Plan and
Execute. The Knowledge Base will be hardcoded within the analyser components. The
monitor component serves as the interface to observe the base-system. Concrete monitors
must be defined to observe various parts of the system. The executor component serves
to apply adaptations to the base system. These adaptations are triggered depending
on the current state of the planner component. The initial requirements define various
scenarios. Figure 5 gives an overview off all initial control states and their hierarchy.
A state space diagram is chosen as representation method. The reason for this is to
abstract from language and method constraints.

Base Scenario Initially two control loops are present, the first control loop monitors
the security state of the system (figure 5 left) and regulates the resting time between
two tours.
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Figure 5: Initial state space

A tour is a patrolling cycle of the environment. The security state depends on the open
doors found on the route. More open doors translate into a higher security threat. The
overall security level of the system should be optimised. If there is a high security threat
the patrolling rate should be intensified. A lower security threat means the system is safe
so the interval between two tours can be extended. The interval between two patrolling
tours will be adapted to the security state of the system.

The second control loop determines the system mode (figure 5 right); it also observes
the security state of the system. Initially it has two states; patrol/tour or visit the exit
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of the building. If the system detects a high security threat it should stop patrolling and
travel to the exit of the building; if the exit (a door) is open it should sound the alarm.
Once the alarm is sounded the robot can resume patrolling. This control loop adapts
high level system behaviour. All control loops are managed by a super control loop. The
super control loop can switch control loops on and off; therefore it is in control of the
system.
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4 Energy-aware Robot Design

Software evolution is scenario-driven; scenarios introduce new requirements which force
the change or extension of a software program. So far in this case study, energy was not
considered in the design; however, the best efforts were made to prepare the design for
every possible evolution scenario. Energy is a relevant topic for possible evolution for
a CPS; CPS often deals with energy management and in our robot case with a limited
power supply. To extract energy evolution scenarios a domain analysis is conducted.

4.1 Domain Analysis

Before energy scenarios can be considered the domain must be analysed. The domain
can be divided into two parts namely the system, in this case the robot, and the world
surrounding the system called the environment. The robot consists of various hardware
parts like sensors, actuators (motors) and a power supply. Some level of abstraction is
required here since not every part of the robot is relevant. For example the robot is
built from various lego blocks; however it is not necessary to explicitly analyse every
lego part used. The environment can be treated into endless detail; however for it to be
useful to the robot again some abstractions must be applied. The robot model and the
environment model are depicted in figure 6.

Figure 6: Domain model

The robot model exists of various sensors, motors and a power supply/battery; only
actuators and sensor parts are shown for abstraction. The model is based on the view
the robot has on the environment; cardinalities are given to clarify the relation between
the components. The robot follows the wall (the robots rides along side the wall) and
can come across doors and obstacles; once the robot finds a corner it reached the end
of a corridor and possibly arrived at a crossing. The environment model can be seen as
a graph with nodes and edges. Nodes are abstracted as waypoints which can be doors,
obstacles and crossings; edges are the walls which connect the various waypoints. This
model provides sufficient detail to extract energy evolution scenarios.
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4.2 Scenarios

The most simple scenarios are based on the robot itself; the robot consumes energy
and it has sensors which can measure current and voltage. Measuring in itself is not
a scenario; therefore an action or adaptation must be defined if the measured value is
below or above a certain threshold.

Voltage in itself is no indication of the amount of energy left in a battery. However
below a certain threshold it can be assumed the battery is almost empty. If this happens
while the robot is away from its base-station (it is patrolling) there is a problem. If the
robot runs out of energy during a patrolling cycle it will be stuck somewhere on the
route without any options. At the base station a charger can be placed so the robot can
recharge itself. In any case it is vital that the robot reaches the base station before it
runs out of energy. The following two scenarios should make this possible:

V1: If the voltage reaches the critical point, abort the current task and return to the
base station taking the shortest path.

V2: If the voltage reaches the critical point, only the behaviours responsible for moving
must kept activated.

Both scenarios complement each other and can coexist; V2 increases the chance of
success of scenario V1. Note that it is not certain that the robot will reach the base
station. There is no historic energy consumption information, only a voltage threshold.
If for some reasons the robot consumes more energy than assumed, the voltage may
drop sooner than expected. Even if the robot notices in time the voltage drops below
the threshold, this is not enough to ensure the robot reaches the base station.

Another scenario can be extracted by monitoring the current drawn from the power
supply. If the drawn current is too high it could fatally damage the system. Although it
must be noted this functionality is usually implemented by hardware we will still consider
it. A current threshold could be defined just below the critical value to shutdown the
system correctly instead of waiting for the hardware to shutdown the power supply.
With this knowledge we can define another evolution scenario:

A1: If the current reaches the threshold value (a value just below the critical value),
shutdown the system to prevent information loss.

All of the scenarios so far are based on observing sensor values and taking action if
a value becomes critical. Scenario V1 states that the robot should be able to reach the
base-station at any time, however making this assumption based on voltage reading is
far from reliable. Voltage by itself does not provide a reliable way to estimate how much
energy is left in the power supply. For this reason energy data must be calculated and
stored for future use.

An example environment with nodes and edges is shown in figure 7. It can be seen
energy is used to perform an action (activity energy) when arrived at a node. Energy
is also used to travel from one node to another (move energy). The left-hand side of
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the figure shows a graph model of the environment, whereas the right-hand side of the
figure depicts the graphs nodes and edges within the actual environment.

Figure 7: Environment example

To estimate if the robot can return to the base station for every node and edge the
energy consumption must be known. Energy consumption can be obtained by performing
a exploration tour through the environment. During this tour energy consumption will
be stored for each node and edge; this historic information should be used when planning
a route through the environment. In this case, if the robot runs low on energy it can
compare the energy left in the battery with the energy needed to travel the most energy
efficient path back to the base station. If this check is performed at every new waypoint
where the robot arrives, this will be far more reliable then only checking the voltage
level.

To increase the chance of the robot to arrive at the base station before it runs out of
energy the following scenarios should be added to the list of evolution scenarios:
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• Power

P1: The system shall calculate the power for the entire system. (One current
meter and voltage meter attached to the battery supply.)

• Energy

E1: Calculate energy consumption between two points in time.

E2: The system can store energy measurements for later use.

E3: The system is able to travel between two waypoints using a path that con-
sumes minimal energy. Energy management is based on historic information.

E4: The system is able to return to the base station at all time before it runs out
of energy.

Where the first scenarios were almost entirely based on the system (the robot) there
was no feedback from the environment model; the latter one introduces historic in-
formation stored within the environment model which can be used to optimise energy
management.

State space evolution All new states and events introduced by the different evolution
scenarios affect the control system’s state space. The impact on the control system’s
state is illustrated in figure 8, news states and events are shown in red. A new shutdown
state is introduced by scenario A1 to stop the system in case of an emergency; this
state is triggered by a critical current event. We see two new states in the control loop
which determines the system mode; the exploration state is introduced by E3 and a
emergency state is introduced by scenarios V1 and E4. The newly introduced events
are critical voltage and critical energy respectively. These events form new transitions
in the rest-time process and affect existing transitions in the system-mode process.
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Figure 8: Initial state space
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An entire new process is added to measure energy and can be seen in the middle of
figure 8. This process measures energy and stores energy usage concerning waypoints
and edges in the environment model. This new process is introduced by scenarios E1 and
E2. Two new events are introduced: one to start measuring and one to stop measuring.

4.3 Evolution Impact on OO Implementation

In this section we will discuss the implementation for the initial base-scenario as well
as the impact of the energy evolution scenarios on the initial design. The main focus
is on the control part of the system and the interaction of the control system with the
base system. The control-part of the system is implemented conform to the MAPE-K
terminology. Challenges here are how to observe the base system’s properties of interest
and how to apply adaptations to the base system without tangling the control loop
architecture and the base system. Rewriting part of the base system to extend it with
new functionality is deemed undesired. This section will assume the initial design of the
base system and describe the control system architecture before and after evolution as
well as the evolution impact on the base system.

4.3.1 Initial Control System Architecture

The observation interface of the control system architecture is implemented using the
Observer pattern [19]. Observable subjects implement the subject interface of the Ob-
server pattern, allowing them to be observed by multiple observers. The observers are
automatically notified once the subject is updated by the base system. The observer
must be registered to the subjects before they receive updates. In the control system
architecture the monitor components are the observers; concrete monitors implement
the observer interface.

To apply adaptations to the base system the Visitor pattern [19] is adopted. Once
visitable components implement the visitable interface, they can be visited by external
components. After a visitable class accepts the visitor, the visitor can apply adaptations
to the visitable class. Concrete visitors can define new functionality without rewriting
the visitable class. This mechanism allows the extension of existing classes in a modular
and decoupled way. The Visitor pattern is used to let the executor components of the
control loop apply adaptations to the base-system. Executors implement the visitor
interface which defines abstract methods for all visitable components.
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Figure 9: Base scenario control loop architecture
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The complete control system implementation for the base scenario (without energy)
is depicted in figure 9. The class diagram shows red classes which are the interfaces/ab-
stractions of the four control loop components. Note that the controlState component
is not a control loop class, the planner class contains states and depending on the state
different adaptations can be applied. Green classes represent the Observer and Visitor
pattern interfaces; they form the coupling between the control system and base system.
All concrete control loop classes introduced by the base-scenario are coloured yellow.

4.3.2 Base-scenario Implementation

Two control loops can be distinguished in figure 9, namely the security-loop and system-
mode-loop. Both loops share the mutual security-state monitor; the system-mode-loop
adapts routing strategies according to this information, whereas the security-loop adjusts
the resting time to the security state of the system.

The observable and visitable components of the base system are depicted in figure 10.
These are the components which supply information (observable) to the control loop
and the components which allow the application of adaptations (visitable) to the base
system.

Figure 10: Coupling control system architecture to the base system.

Initially only the security state is observed; depending on the state adaptations must
be applied to the navigation and patrolling components. The current route of the robot
can be adjusted in the navigator, whereas the resting time (time between two tours) can
be adjusted through the patrolling class.

4.3.3 Energy-awareness Evolution Impact

The Observer and Visitor pattern ensure a high degree of modularity and decoupling.
The design choices where made to maximise reuse, decoupling and modularity. To test
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the system’s evolvability energy-awareness functionality is introduced. By introducing
energy-awareness functionality the number of observable and visitable components is
increased. Figure 11 shows all new observable and visitable classes. Blue classes are
newly introduced classes, red classes need modification to satisfy the new requirements.

Figure 11: Modification to the base system

Figure 11 shows the voltage and ampere fields (both data fields in the battery class
modelled as a separate class) as two of the new observable classes (blue). These classes
are introduced because before energy can be considered we need to measure voltage and
current. With voltage and current known at a given moment in time, power (formula
2) can be calculated for that moment in time. Evolution scenario’s V1,V2, E3 and E4
adapt the behaviour of the robot. Because of this the navigator will need additional
adaptations; new visitors must be declared to add additional adaptation functionality.
Recall that the robot should be able to notice when it is running out of energy; the robot
should return to the base station as soon as it is running low on energy. A new route
must be calculated to navigate from the current position back to the base-station.

These newly introduced observable classes affect the monitor interface; new event han-
dlers must be created to handle each new observable class. This will not only affect the
monitor but also the analyser and planner components of the control loop architecture.
Each of these classes must handle the new event, for which they need a handler. The
same applies to new visitable components, which need new adaptation handlers. Figure
12 illustrates the ripples caused by evolution for the Visitor pattern.
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Figure 12: Ripples due to interface change visitor example

Each extension of the visitor interface by a new visitable class results in modifica-
tions of all existing concrete visitors. In this case the visitors are the concrete executor
components of the control loop architecture. All concrete executors must make the new
method to visit the new visitable class concrete. This means all concrete executor classes
suffer from the introduction of newly introduced visitable classes.
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Figure 13: Scenarios for introducing new events.

All concrete monitor, analyser and planner components suffer from the introduction of
newly introduced observable components. They must implement the new event handlers
defined by the respective interfaces. The new event handlers influence the planner class
the most, the state space must be extended by new events and actions (adaptations). The
scenarios to introduce new events in this case study are given in figure 13. New events
can affect existing transitions (figure 13(a)) but they also can form new transitions to
new states (figure 13(b)). Another option is a transition from a new state to an existing
state (figure 13(c)). A final possibility is that a new event forms a transition from one
existing state to another existing state. This option is not shown in figure 13 because it
is unlikely to happen; only if the initial state space was incomplete or badly modelled
this option is possible. We do not consider this scenario as evolution impact but as a
result of poor design of the state space.
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Figure 14: Introduction of new states and events.

State space evolution of the planner leads to rewriting the state space context. The
generic impact of state space evolution is shown in figure 14. New state fields and event
handlers must be introduced to existing contexts. New event handlers affect the context
interface. In our case the planner class is the context; therefore new event handlers must
be added to the planner interface. This means that every concrete planner must make
the new event handler concrete.

All MAPE-K components suffer from evolution; the Monitor, Analyser and Planner
components suffer from the introduction of new events handlers, whereas the Executor
class suffers from the introduction of new adaptation handlers. If we look at the control
loop design as a whole as depicted in figure 15 it can be seen that it almost breaks down
completely after energy is introduced.
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Figure 15: Ripples due to interface changes after introduction of energy evolution sce-
narios

45



As can be seen in figure 15, all control loop components are affected when energy-
awareness functionality is introduced. Interface changes force concrete classes to make
new events or adaptation handlers concrete.

Conclusion The main problems the OO design suffers from are all related to the in-
troduction of new events. The base system must be adapted to be able to notify the
event to the control system. The control system interface needs modification with each
newly introduced event. New events lead to state space evolution of the planner class
of the control loop architecture. State space evolution results in rewriting the state
space context. New states apply new forms of adaptation through the Visitor pattern.
New visitable base system classes must accept visitors and the visitor interface must be
extended with a handler for each of these classes.

4.4 Evolution Impact on AO Implementation

AO provides solutions for many problems in the OO implementation. The AO join-point
model and point-cut mechanism allow to define new functionality for existing classes in
the form of advices. It also provides mechanisms to implement interfaces and additional
methods by the means of aspects to extend existing classes. This section will focus on
how AO can solve the problems present in the OO implementation.

4.4.1 AO Improvements Initial Control System Design

The AO point-cut mechanism can be used to create a looser coupling between the base
system and control system. All problems encountered in the OO implementation can be
traced back to the control system coupling and interaction with the base system. Recall
that the Observer and Visitor patterns did not cope well with new events and adaptations
introduced by evolution scenarios. To cope with evolution, interfaces had to be extended,
existing concrete classes implementing these interfaces needed to be updated to handle
the new interface methods. AO allows the extension of existing classes and interfaces
by means of aspects. Research is conducted on how design pattern modularity can be
improved by adopting AO techniques [19, 35]. Sant’Anna, Garcia, Kulesza, Lucena and
Von. Staa [35] conducted a research which provides a comparison between an OO and an
AO version of most of the known design patterns. Recall that evolution ripples appeared
with the introduction of new events (Observer) and new adaptations (Visitor). Also the
control loop interfaces were affected by the introduction of new events. It must be noted
that the AO implementation does not run on the robot and is simulated on a standard
java platform on a general purpose computer.

Observer Pattern Where the OO implementation explicitly must update the data field
we want to observe, in the AO implementation a point-cut can be defined to intercept the
update method. Once the update method is intercepted it can access the changed data
field. The point-cut and advise in listing 1 illustrate how an update method is intercepted
and passed down to the concrete observers which are the monitor components of the
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control loop. The OO Observer pattern can be replaced by an AO implementation of the
pattern. The AO implementation is taken from a study conducted by Hannamann and
Kiczales [19]. In the AO implementation of the pattern, observable components in the
base-system no longer need to implement an observable/subject interface. This solves the
problem of unwanted modifications to the base-system code caused by the introduction
of new events. This results in a control system which is completely decoupled from the
base system.

The AO Observer pattern is implemented as shown in listing 1. The aspect declares
two interfaces namely Subject and Observer. These interfaces must be implemented
by the respective concrete subjects and concrete observers. A abstract point-cut and
method are declared that must be made concrete by a concrete observer aspect. The
subjectChange point-cut can handle all concrete subjects in a uniform way. The up-
dateObserver point-cut must have a concrete advice declared in the concrete observer
aspects. This is due to the fact that the concrete subject update data may be in different
formats; each type must be passed to an analyser of the same type.
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Listing 1: Abstract Observer pattern aspect [35]

protected interface Subject { }

protected interface Observer { }

protected abstract pointcut subjectChange(Subject s);

after(Subject subject ): subjectChange(subject) {

Iterator iter = getObservers(subject ). iterator ();

while ( iter.hasNext () ) {

updateObserver(subject , (( Monitor)iter.next ()));

}

}

protected abstract void updateObserver(Subject subject , Monitor observer );

A concrete observer aspect is shown in listing 2. The aspect declares interfaces for the
concrete subject and concrete observer classes. The subjectChange point-cut is made
concrete and declared in the update-method of the concrete subject. The updateOb-
server method must be made concrete to notify components interested in the new data.
In our case the observer fulfils the role of the monitor component of the control loop
architecture, so the monitor will notify registered analysers who can process the data.

Listing 2: Concrete observer aspect [35]

declare parents: ConcreteSubject implements Subject;

declare parents: ConcreteObserver implements Observer;

protected pointcut subjectChange(Subject subject ):

call( [returntype] [methodToInterceptConcreteSubject] ) && target(subject );

protected void updateObserver(Subject subject , Monitor observer) {

observer.notifyAnalyzers(subject.getUpdate ());

}

The aspect shown in listing 2, supported with aspects to extend the control loop
interfaces and the concrete control loop components, solves the problems present in the
OO Observer pattern. Listing 3 illustrates how all control loop components can be
extended without modifying the existing class.
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Listing 3: Visitor pattern extension AO

public abstract class Monitor{

public abstract void notifyAnalyzers(int update );

}

public class ConcreteMonitor extends Monitor{

public void notifyAnalyzers(int update ){

//code

}

}

public abstract aspect MonitorAspect {

public abstract void Monitor.notifyAnalyzers(New_Type update );

}

public aspect ConcreteMonitorAspect extends MonitorAspect{

public void SecurityMonitor.notifyAnalyzers(New_Type update) {

// code

}

}

The monitor component is used as example; it defines an event handler for a specific
data type. After evolution new events with different data types are introduced. New
event handlers are added to the existing object by the means of an aspect. The abstract
class (in this example) or interface is extended by an abstract aspect defining abstract
event handlers. These new abstract event handlers must be made concrete by a concrete
aspect. The concrete aspect defines the new concrete event handlers for the concrete
monitors.

Visitor Pattern The other connection to the base system, the Visitor pattern, whose
purpose is to add new functionality to base system components, can also benefit from
AO mechanisms. In AO programming it is possible to declare a parent class for existing
classes. This mechanism can also be used to let a class implement an interface. Addi-
tionally it can be used to implement the concrete methods defined by this interface for
the respective class. This way an existing class can be enriched without modifying the
existing code of the base system. Also visitable base system components do not need to
implement the visitable interface anymore. A visitable component had to implement the
visitable interface to give visitors permission to visit it and apply adaptations. An aspect
can declare a parent for a concrete visitable class and therefore let the class implement
the visitable interface. The concrete accept method defined by the visitable interface
can be made concrete in this aspect.

The AO implementation of the Visitor pattern uses aspects to solve evolution problems
present in the OO version of the pattern. The original OO Visitor pattern is enriched
by extending the visitor interface as in listing 4.
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Listing 4: Visitor pattern extension AO

public interface Visitor {

public abstract void visit(Type_1 visitable );

...

public abstract void visit(Type_n visitable );

}

public aspect VisitorAspect {

public abstract void Visitor.visit(NewType_1 visitable );

...

public abstract void Visitor.visit(NewType_n visitable );

}

The existing interface is extended by an aspect which declares new abstract methods
for the interface. This allows the programmer to extend an interface without rewriting
it. Any concrete class implementing the interface must still be extended by the new
methods declared by the aspect. The aspect code to declare new methods for a concrete
existing visitor class is given in listing 5.

Listing 5: Visitor pattern extension AO

public aspect ConcreteVisitorAspect {

public void ConcreteVisitor.visit(NewType_1 visitable) {

// custom code

}

...

public void ConcreteVisitor.visit(NewType_n visitable) {

// custom code

}

}

The aspect declares a new concrete method for every visitable component declared by
the VisitorAspect from listing 4. This mechanism allows the extension of existing visitor
classes by aspects without rewriting.

Another problem present in the OO version of the pattern, were the ripples that
occurred when new visitable components were introduced by evolution. In OO, visitable
classes (base system component) had to implement the visitable interface and they had
to make the accept method concrete, resulting in unwanted modifications of the base
system. Again an aspect can be used to declare a parent class for a concrete visitable
component. The same aspect can make the accept method concrete, illustrated in listing
6.
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Listing 6: Visitor pattern extension AO

public interface Visitable {

void accept(Visitor visitor );

}

public aspect VisitableAspect {

public void MyVisitableClass.accept(Visitor visitor) {

visitor.visit(this);

}

declare parents: MyVisitableClass implements Visitable;

}

The visitable interface remains the same as in the OO implementation. The declaration
of visitable classes is now handled in the aspect code instead of in the base system
code. The visitable aspect declares a parent class, the Visitable interface; the accept
method declared by the Visitable interface is made concrete. This AO implementation
of the visitor pattern decouples the visitor pattern from the base system. New visitable
components can be made visitable by aspect code. Also the abstract visit methods can
be added to the existing interface within aspect code. Evolution of the pattern interfaces
is solved by creating aspects defining evolution functionality.

State space Evolution Although AO programming allows us to extend existing classes
and interfaces, this mechanism should not always be used. Reuse should be considered
when applying aspects. There was one other problem present in the OO implementation
regarding the state space evolution. This is best illustrated when focussing on the
evolution of the state space of the planner components of the control loop. Recall there
was a problem when introducing new states and events to an existing context.

AO programming allows the programmer to declare an around advice to override the
execution of the method that determines the next state. For this to work, existing states
should be known, or, better the context should be known. One cannot extend an existing
context if this context is not known. AO programming provides some mechanisms that
can help to solve this problem. In AspectJ aspects can be declared privileged; if an
aspect is declared privileged it can access private and protected members of classes, for
which it defines new functionality (methods or advices). However, reusing this solution
for multiple contexts is impossible. Let us illustrate this problem in detail by showing
some code fragments.

In listing 7 an abstract and concrete context are declared in OO; in addition an
abstract aspect is declared to enrich the abstract context. The AO aspect adds new
states and event handlers to the abstract context class.
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Listing 7: Context code

public abstract class Context{

protected State currentState;

public abstract void HandleEvent_X ();

public abstract void determineNextState ();

}

public class ConcreteContext extends Context{

private State state_1;

...

private State state_n;

public void HandleEvent_X (){..}

public void determineNextState (){..}

}

public abstract aspect AbstractContextAspect {

public abstract void HandleNewEvent_X ();

public abstract pointcut stateChange(Context c);

public abstract pointcut stateInit(Context c);

}

The OO context’s abstract methods are made concrete in the ConcreteContext class.
States are context dependent and therefore declared in the ConcreteContext class. The
abstract context class only defines a currentState field to keep track of the current
system state; every other functionality is encoded in the ConcreteContext class. The
abstract aspect defines a new abstract event handler and two point-cuts, one to override
initialisation of the initial state (stateInit) and another to override the state-transitions
(StateChange). Note that in the abstract aspect the abstract context object is used as
parameter for both abstract point-cuts. This is necessary since we want to reuse the
point-cuts; concrete aspects should make these point-cuts concrete.

However, when concrete advices are defined we need to handle every context in an
individual way. Every context has its own unique states and transitions. The goal
is to extend the state space of the concrete contexts; existing states and events can
be accessed if the concrete aspect is declared privileged. The problem is that concrete
context states cannot be accessed if the context is passed like a general context parameter
to the advices. Of course it is possible to perform a cast, but we already deemed casting
as unsafe and undesired in the OO implementation. However, if we consider casting
applied in a generic way as encoded in listing 8, it is potentially more reliable.
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Listing 8: Generic casting example

advice () : pointcut () {

Class c = Class.forName(returnConcreteClass ());

AbstractClass ac = (AbstractClass)c.newInstance ();

// advice code

}

public class ConcreteContext{

public String returnConcreteClass () {

return "ThisIsMyConcreteClass";

}

}

As can be seen it is possible to statically look up a class and use reflection to make
the explicit cast. Before doing anything concrete in the advice, a method is called to
request the string identifier for the concrete context to apply the cast. After the cast it
is possible to access private and protected states of the context. At first this dynamic
casting solution does look quite dynamic and casting errors seem unlikely. However, if
other non-context classes use a similar construct, they can be mistaken for a context
class. If this happens the cast will still fail at runtime since there is no guarantee the
program is dealing with a context.

Listing 9 illustrates the complete aspect code to extend a existing state space.

Listing 9: A concrete context aspect extending AbstractContextAspect

priviliged aspect ConcreteContextAspect {

public void HandleNewEvent_X ()

public pointcut stateChange(Context c):

call(void ConcreteContext.determineNextState (..)) && target(c);

void around(Context c): stateChange(c) {

ConcreteContext cc = (ConcreteContext) c;

// transition code

... // set state

}

public pointcut stateInit(Context c):

initialization( ConcreteContext.new (..))&& target(c);

after(Context c): stateInit(c) {

ConcreteContext cc = (ConcreteContext) c;

// set initial state

cc.currentState = cc.state_1;

}

}

As can be seen, in every advise a cast must be performed before one can access existing
(private) states and event information from the concrete contexts. Aside from potential
casting errors, the mechanism can still work if we do not take reuse of code into account.
However, one of the goals of this study is to maximise reuse of code. Even if we do
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not consider reuse, new future evolution scenarios may introduce other new states which
force the change or declaration of a new advice to override the advices defined by the
concrete context aspect. New evolution will lead to stacking advices on top of each other
to cope with evolution.

4.4.2 Base-scenario Implementation

The AO improvements of the Observer and Visitor pattern increased the modularity
and decoupling of the design. The application of aspect code in the existing control loop
architecture is depicted in figure 16. The observer and visitor interfaces are coloured
green to indicate the coupling to the base system. Control loop interfaces are coloured
red to point out the abstract control loop architecture components. Aspect code mod-
ifications are shown in red squares and circles. We will point out the modifications
one by one starting from the left-hand side. The Observer pattern is extended with a
point-cut to intercept the update methods of the respective subject classes in the base
system. For this reason the base system no longer suffers from the introduction of new
observable subjects. Newly introduced event handlers can be added by means of aspect
extensions of the control loop interfaces. Figure 16 (middle) shows the extension of the
monitor, analyser and planner component interfaces; as well as the aspect extension of
the respective concrete components. To extend the respective component interfaces with
new event handlers, abstract aspects are defined; concrete aspects can make the newly
introduced event handler concrete for every concrete monitor, analyser and planner.
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Figure 16: Base scenario control loop architecture AO
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The right-hand side of figure 16 shows the application of aspect code in the Visitor
pattern. New visitable components can be added to the visitor interface in the same way
the control loop interfaces are extended. An abstract aspect is defined to extend the
visitor interface; for each existing concrete visitor a concrete aspect can be defined to
make the newly introduced visitor methods concrete. The coupling to the base system
which is the visitable interface can be extended in a similar way. The visitable interface
does not need modification, however the accept method needs to be made concrete for all
concrete visitable components. A concrete aspect can be defined to let a new visitable
component implement the visitable interface; then the accept method defined by the
visitable interface is made concrete in the same aspect. This solution again result in no
evolution impact to the base system at all.

4.4.3 Energy-awareness Evolution Impact

AO solved quite some evolution problems present in the OO implementation. The base-
system is completely unaffected when new components must be made visitable or ob-
servable. Also the Monitor, Analyser and Planner components do not suffer from the
introduction of new events anymore, they can be extended by aspects defining new event
handlers.

Compared to OO many problems are solved and a higher degree of decoupling between
the base system and control system is achieved. The problems related to the extension
of control loop interfaces with new events and adaptations are completely solved; aspects
add new functionality to existing components. The only problem remaining in the AO
implementation is state space evolution. Aspects cannot prevent rewriting existing state
space contexts. The main reason for this is that the introduction of new states leads to
rewriting the state space context. Even if aspects are used to override state transition
with the point-cut and advice mechanism, future evolution still leads to rewriting the
advice. The advices are stacked on top of each other, old advices become obsolete
and overridden by new advices. New advices should take into account every earlier
advise the state space is scattered over; this will lead to rewriting the state space in the
new most recent advice. Which is essentially the same outcome as we had in the OO
implementation. Other techniques should be considered to find a solution for the state
space evolution problem; event-based modularisation techniques possibly can provide a
solution.
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5 Experiments

To be able to determine which of the implementations performs better regarding de-
coupling, component extension and modularity, we conducted a series of measurements.
Various metrics are used to evaluate the modularity and growth. To evaluate the impact
by scenario, SAAM [22] is applied. This scenario-based evaluation technique illustrates
impact by scenario, for every evolution scenario minor metrics (number of LOC, com-
ponents and operations) are measured to give insight in the impact of every separate
scenario on the implementation. The OO and AO implementation are compared on con-
cern diffusion metric [21]. Concern diffusion metrics can be compared if components and
operations related to a concern in both implementations are calculated. The number
of components (3) can be calculated by adding up all classes and aspects. We use #
symbol to indicate ’number of’.

#Components = #Classes+ #Aspects (3)

The number of operations (4) can be calculated by adding up all methods and advices.

#Operations = 1 ∗ #Methods+ #Advices (4)

This chapter will describe the evaluation method, e.g. which metrics and tools are
used to evaluate the OO and AO implementations. The results are presented separately
for the OO and AO implementations before the results are evaluated and compared to
each other. Finally an interpretation and a discussion about the results are given.

5.1 Quantitative Evaluation of Evolution Impact

To evaluate the OO and AO implementation we will perform a quantitative evaluation
of evolution impact. We will give an overview of the metrics used for evaluation as well
as of the tools we used to extract them.

Tools and Metrics General metrics are extracted by a tool called Metrics 1.3.6 [36].
This tool can be added as a plugin to eclipse; once activated every time a project is build,
metrics will be calculated for the project. The tool provides a wide range of metrics,
however not all metrics are suitable to determine evolution impact. The following metrics
are selected to show evolution impact:

• Components

– #classes*

– #aspects*

• Operations

– #methods*

– #advices (counted as methods)*
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• #LOC (excluding comment and blank lines)*

A star indicates that the metric can be extracted by the tool; with these metrics some
additional metrics can be calculated. AO code influences how the metrics are counted.
If the tool deals with aspect code aspects are counted as classes and advices are counted
as methods.

SAAM General metrics do not measure scenario-based evolution impact; to evaluate
the effect of evolution between two subsequent software versions SAAM is applied. A
quantitative evaluation of scenario-based evolution is achieved by applying various minor
metrics (listed below). Metrics are gathered in various subcategories: classes, aspects,
methods and lines of code:

• Classes

– #new

– #changed

– #deleted

• Aspects

– #new

– #changed

– #deleted

• Methods

– #new

– #new methods existing classes

– #changed

– #deleted

• LOC (excluding comment and blank lines)

– #new

– #deleted

A component or operation is changed if it is modified in a newer software version.
Note that there is no metric for changed LOC; to detect if a line of code is changed is
very hard to determine. There exist algorithms [37] that can make a fair guess if a line of
code is changed but there is no absolute certainty. A new line is a line of code present in
the new version and not in the old version. Some new lines can be changed lines of code
but it is impossible to detect which lines are new and which lines are changed. A deleted
line of code is a line of code present in the old version but not in the new. A deleted
line could be changed into a new line of code but again in this case the line should be
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categorised as a changed line of code. However one cannot say with certainty if a line
is changed or not. Therefore lines are categorised into new and deleted lines of code.
The sum of all new LOC and deleted LOC is the number of different LOC between two
subsequent software versions.

RippleTool To extract these metrics our tool called RippleTool [38] is used. This tool
extracts the different metrics between two subsequent source code versions. Conventional
version management tools like Git [39] only provide metrics related to LOC (including
comment and white spaces). There exist additional plugins like GitStats [40] which
can generate metrics related to author and commented LOC. These metrics do not give
insight in the changes between two versions of source code. The Metrics 1.3.6 [36]
includes empty lines and comment into the LOC count; RippleTool extracts new and
deleted LOC metrics which do not include comment and empty lines.

RippleTool takes as input two different source code versions and outputs a log con-
taining the modifications. The same metrics can be extracted from aspect files without
problems. However, aspects are not counted as classes but as separate entities. If the
project contains aspects, the tool will calculate separate metrics for the aspect and object
part.

The metrics extracted with RippleTool can be used to calculate concern diffusion met-
rics [21]. Concern diffusion metrics express the diffusion of a concern over components
(CDC) or operations (CDO). All changes between the version before evolution and the
version after evolution are caused by the energy evolution functionality. The number
of components can be calculated with formula (3); this must be done manually and is
not done by the tool. Also the number of operations must be calculated manually and
can be done by formula (4). A simple addition of changed and new components in the
evolved software version can be made to calculate the CDC metrics:

#ConcernDiffusionoverComponents(CDC) =

#New Components+ #Changed Components (5)

The CDO metric can be calculated by adding up all new and changed operations in
the evolved software version:

#ConcernDiffusionoverOperations(CDO) =

#New Operations+ #Changed Operations (6)

Together these metrics will give a good overview what the effects of the different
evolution scenarios are. Which components are affected by which scenarios and especially
where and if ripples appear in the design.
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5.2 Results

This chapter will present the results separately for the OO and AO implementation for
both implementations; a short explanation is given how the results relate to the problem
parts of the designs.

5.2.1 The Impact of Energy-awareness Functionality to the OO Design

The general metrics of the design are given in table 1. Metrics are calculated before and
after evolution; the base system and control system metrics are given separately .

# of
classes/
components

# of
interfaces

# of
methods/
operations

# of interface
methods

LOC

Base System
Before Evolution

36 3 255 4 1841

Control System
Before Evolution

22 1 61 1 447

Base System
After Evolution

36 3 257 6 1857

Control System
After Evolution

42 2 171 2 1133

Total Before
Evolution

58 4 316 5 2288

Total After
Evolution

78 5 428 8 2990

Difference +20 +1 +112 +3 +702

Table 1: OO metrics before and after evolution.

From these general metrics we can conclude that the program evolved and grew in
size. Table 2 illustrates what impact the various separate scenarios had on the code and
how they affected the program structure. To be able to calculate these metrics the code
version before evolution is compared to the code version after evolution. Note: with
”new operations” new operations in existing components are meant, new operations in
new components are not counted.
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Scenarios
#changed
classes

#changed
operations

#new
operations

#new
states

#new
events

V1 11 3 11 1 1

V2 14 3 14 1 1

All voltage
scenarios

14 3 14 1 1

A1 11 3 11 1 1

All current
scenarios

11 3 11 1 1

P1 0 0 0 0 0

All power
scenarios

0 0 0 0 0

E1 0 0 0 0 0

E2 15 4 15 2 2

E3 16 4 16 3 2

E4 16 4 16 4 3

All energy
scenarios

16 4 16 4 3

All scenarios 16 4 28 5 5

Table 2: OO metrics by evolution scenario.

Naturally there are also general metrics to illustrate the difference between an old and
a newer software version. Especially how many new code is added and deleted(LOC).
Metrics for components (classes) and operations (methods) are also given. Note that the
sum of deleted and new lines of code is different from the growth in LOC indicated by
table 1. The reason for this is that the results of table 1 are extracted with the Metrics
1.3.6 [36] tool which does count comment and empty lines also as LOC, whereas the
metrics from table 3 are extracted with RippleTool [38], which does not count comment
and empty lines as LOC.
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Metric #

New Classes/Components 19

Changed Classes/Components 17

New Interfaces 1

New Methods/Operations 112

Changed Methods/Operations 2

New Interface Methods 3

New Methods/Operations existing component 28

New Interface Methods existing interfaces 2

Changed Methods/Operations 5

New/Changed LOC 706

Deleted LOC 27

Table 3: OO implementation change metrics (difference between before and after evolu-
tion)

With this information it becomes possible to calculate the concern diffusion metrics
for the energy-awareness concern. The concern diffusion metric results can be seen in
table 4. Without comparisons the result of this metric do not tell us much.

Metric #

CDC 36

COC 130

Table 4: OO concern diffusion metrics for the energy-awareness concern

The metrics show only that a small portion of the new methods affects existing com-
ponents, indicating a lot of new functionality could be added in a modular and decoupled
way. Some LOC disappeared due to rewriting of the state space context in the planner
components of the control system.

If these results are analysed in more detail, we find that most scenario’s affect the con-
trol system architecture. Table 5 lists the components and which scenarios affect them.
The components which are listed must be modified to implement the listed scenarios.
Scenarios add new methods or change existing methods to existing classes.
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Module Scenarios

Monitor interface + concrete Monitors V1, V2, A1, E2, E3, E4

Analyzer interface + concrete Analyzers V1, V2, A1, E2, E3, E4

Planner interface + concrete Planners V1, V2, A1, E2, E3, E4

Visitor interface + concrete Executors V2, E2, E3, E4

MyArbitrator V2

SuperPlanner (concrete Planner) A1

PhysicalConcept E2, E3, E4

Navigator E3, E4

Table 5: Impact scenarios on components

After looking at the results, the question rises if these problems could have been
avoided, or if different design choices would have resulted in a different outcome. There-
fore the control loop architecture should be examined. Especially the problems related
to both interfaces to the base system; the observer and visitor pattern. Both the in-
troduction of new events and adaptations boil down to the introduction of new object
types; new handlers must be created to handle the new data types. Given the assump-
tion to maximise reuse within the design, there is one other option to resort to: casting.
Casting gives the programmer the option to handle data in a uniform way regardless the
format. Before applying operations on the data, a cast should be made to cast the data
back to the original format. Since casting is static, casting might fail on runtime if the
object is casted to a type which is not the object type or a supertype of the object to be
cast. Methods with a general parameter are more flexible but eventually the data must
be extracted to analyse them. If we take the control system architecture as example, it
is possible to generalise the monitor data. It is not until the data arrives at the analyser
that a cast is required. If this principle is applied only the planner component will deal
with the introduction of new events. However, as said, casting is deemed unsafe and
encourages runtime errors. Handling data in uniform way neglects all the features the
object model gives us; in a sense by using such a mechanism the compiler is extended
and told forcefully what to do. One could go even further and store every object in a
bitmap, and write a custom interpreter to be as flexible as possible completely ignoring
the object model. Considering this, the conclusion would be OO cannot solve the prob-
lems introduced by energy evolution scenarios. Other options should be considered to
intrude the energy aspect to an existing software program. Energy crosscuts the entire
control system architecture and is tangled in most of its components after evolution.

5.2.2 The Impact of Energy-awareness Functionality to the AO Design

The general metrics of the AO implementation are given in table 6. Metrics are calculated
before and after evolution; base program and control system metrics are separated.
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# of
operations

# of
interfaces

# of
methods

# of
interface
methods

LOC

Base System
Before Evolution

38 0 264 0 1867

Control System
Before Evolution

26 5 78 4 533

Base System
After Evolution

38 0 264 0 1867

Control System
After Evolution

65 6 207 5 1343

Total Before
Evolution

64 5 342 4 2400

Total After
Evolution

103 6 471 5 3210

Difference +39 +1 +129 +1 +810

Table 6: AO metrics before and after evolution.

As with the OO implementation, these general metrics give no information regarding
ripples or changed components or methods. However if we look in detail to the base
system before and after evolution, it can be seen it has not changed. This is a first
indication that evolution impact is reduced. Again it can be concluded that the program
evolved and grew in size.

Let us have a look at what impact the various separate scenarios had on the code.
Table 7 illustrates the impact of various scenarios on the code. To be able to calculate
these metrics the code version before evolution is compared with the code version after
evolution.
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Scenarios
#changed
components

#changed
operations

#new
operations

#new
states

#new
events

V1 2 2 0 1 1

V2 2 2 0 1 1

All voltage
scenarios

2 2 0 1 1

A1 2 2 0 1 1

All current
scenarios

2 2 0 1 1

P1 0 0 0 0 0

All power
scenarios

0 0 0 0 0

E1 0 0 0 0 0

E2 2 2 0 2 2

E3 2 2 0 3 2

E4 2 2 0 4 3

All energy
scenarios

2 2 0 4 3

All scenarios 4 4 0 5 5

Table 7: AO metrics by evolution scenario.

Naturally there are also general metrics to illustrate the difference between the old
and newer version of the software. Especially how many new code is added and deleted
(LOC). Metrics for components (classes and aspects) and operations (methods and ad-
vices) are given in table 8. Again, the results of table 6 are extracted with the Metrics
1.3.6 [36] tool which does count comment and empty lines also as LOC, whereas the
metrics from table 8 are extracted with RippleTool [38], which does not count comment
and empty lines as LOC.
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Metric #
New Classes 19

New Aspects 20

New Components Total (OO+AO) 39

Changed Components Total (OO+AO) 4

New Methods OO 77

New Methods existing components Total (OO+AO) 0

New Point-cuts AO 6

New Methods/Advices AO 24

New Operations Total (OO+AO) 101

Changed Operations Total (OO+AO) 4

New LOC OO 531

New LOC AO 172

New LOC Total (OO+AO) 703

Deleted LOC OO 20

Deleted LOC AO 0

Deleted LOC Total (OO+AO) 20

Table 8: AO implementation metrics.

With these information we can calculate the concern diffusion metrics for the energy-
awareness concern as illustrated in table 9. Like we said before, these metrics do not say
much unless compared with another implementation.

Metric #

CDC 43

COC 105

Table 9: AO concern diffusion metrics for the energy-awareness concern

The high amount of new aspects can be explained by the fact that every concrete
control system component has its own concrete aspect module. Aspects extend the
existing OO object with new functionality like new event or adaptation handlers. Some
lines of code disappeared; the reason for this is that the state space context in the planner
components of the control system architecture had to be rewritten.

5.3 Evaluation

The metrics have already been given for the OO and AO implementation. However,
without comparison metrics are useless. Although one can come up with the best possible
design/implementation, it is not proven until measurements are extracted and compared
to measurement data of other implementations.
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5.3.1 Comparison

This section contains a comparison of both implementation before and after evolution.
The implementations are compared on general metrics, concern diffusion metrics and
finally a SAAM analysis.

Before Evolution Table 10(left) shows all generic metrics results for both the OO
and AO implementation. Base system and control system code are distinguished for
components, operations and LOC.

Before Evolution After Evolution
Metric

OO AO OO AO

COMPONENTS Base System 36 38 36 38

COMPONENTS Control System 22 26 42 65

COMPONENTS Total 58 64 78 103

OPERATIONS Base System 255 264 257 264

OPERATIONS Control System 61 78 171 207

OPERATIONS Total 316 342 428 471

LOC Base System 1841 1867 1857 1867

LOC Control System 447 533 1133 1343

LOC Total 2288 2400 2990 3210

Table 10: OO and AO implementation compared before and after evolution

We see that the AO implementation has slightly more components before evolution,
caused by the fact that aspects extend existing classes. A class is no longer modified
when introducing new functionality; instead new functionality is introduced in new com-
ponents. We see that the number of methods is constant in the base system for the OO
and AO implementation where one would think the number of methods should decrease
in the AO implementation due to the removed components. This is caused by the fact
that the AO implementation did not run on the robot; it needs some simulation code to
run on a standard java platform. Table 11 shows the simulation code metrics. To get
the results without the simulation code, the general metrics of the base system before
and after evolution must be subtracted from the simulation code results.

Metric #

Classes 1

Methods 15

LOC 79

Table 11: AO simulation code metrics

The AO point-cut mechanism increases the decoupling between the control system
and the base system. Components can be observed by intercepting the execution flow

67



of the update methods; a return value can simply be intercepted. The LOC are more
or less the same for both implementations; the only difference lies in the control system
code; the aspect version contains slightly more code due to the aspect code being more
elaborate.

After Evolution Table 10(right) shows all generic metrics results for both the OO and
AO implementation after evolution. It can be seen that the amount of components and
operations in the control system increased drastically after evolution. Especially in the
AO implementation there are a lot of new components; mainly caused by the fact that
the AO implementation hardly contains rewritten components after evolution. Existing
components are extended with aspects to encode new functionality. Each aspect counts
as a new component resulting in a high amount of components for the AO control
system implementation. The results show clearly that the base system is not affected by
evolution in the AO implementation. The general conclusion is the AO implementation
needs more code to implement the functionality introduced by evolution.

If we compare the energy-awareness concern diffusion metrics (table 12), we see that
the AO implementation needs more components and slightly less operations to implement
the functionality introduced by evolution scenarios.

Metric OO AO

CDC 36 43

CDC 130 105

Table 12: OO and AO implementation diffusion metrics compared

SAAM From the general metrics we concluded that the AO implementation needs
more code to implement the energy functionality. However, how this code distributed
over the components, and in what way it is introduced cannot be concluded from these
metrics. They do not show if energy functionality affects existing components or if it
can be introduced by new components.

Table 13 shows the results of the SAAM analysis for both the OO and the AO im-
plementation. It can be seen that the AO implementation hardly contains changed
components and operations. Only the introduction of new states leads to rewriting
components and operations; this is the case for all scenarios except P1. The states are
introduced in both the initial control loops and the super control loop resulting in three
changed components. The respective state space contexts are rewritten to introduce the
new states.
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#changed
classes

#changed
operations

#new
operations

#new
states

#new
events

Scenarios
OO AO OO AO OO AO OO AO OO AO

V1 11 2 3 2 11 0 1 1 1 1

V2 14 2 3 2 14 0 1 1 1 1

All voltage
scenarios

14 2 3 2 14 0 1 1 1 1

A1 11 2 3 2 11 0 1 1 1 1

All current
scenarios

11 1 3 1 10 0 1 1 1 1

P1 0 0 0 0 0 0 0 0 0 0

All power
scenarios

0 0 0 0 0 0 0 0 0 0

E1 0 0 0 0 0 0 0 0 0 0

E2 15 2 4 2 15 0 2 2 2 2

E3 16 2 4 2 16 0 3 3 2 2

E4 16 2 4 2 16 0 4 4 3 3

All energy
scenarios

16 1 4 2 16 0 4 4 3 3

All scenarios 16 4 4 4 28 0 5 5 5 5

Table 13: OO and AO metrics by evolution scenario.

The new operation column in table 13 shows the AO implementation does not intro-
duce a single new operation to existing components after evolution. In terms of changed
operations and components the AO implementation is superior to the OO implemen-
tation; despite the greater amount of LOC, operations and components. The AO code
extends components without rewriting, creating a looser coupling between the initial
code (legacy code) and code introduced after evolution.

5.3.2 Interpretation and Discussion

The introduction of the energy-awareness concern to the OO implementation resulted
in a lot of design ripples. The introduction of new events and adaptations had a big
impact on the control system architecture. The monitor, analyser and planner compo-
nents needed to be extended with new event handlers. This resulted in interface changes;
every concrete component implementing the interfaces also suffered since they had to
make the new abstract interface methods concrete. New adaptations handlers affected
the Visitor pattern as well as the State pattern. New adaptations led to new or changed
system states i.e. state space evolution. AO allows the dynamic extension of interfaces;
new concrete components can implement the interfaces by the declare mechanism. New
concrete components can be extended by concrete aspects to implement new interface
methods introduced through evolution. This solves the problems related to the introduc-
tion of new events and adaptations. However, state space evolution remains a problem.
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The introduction of new events to the state context is solved by the dynamic extension
and declare mechanisms. Introducing new states on the other hand is still a problem,
new states lead to rewriting the existing context code. Overriding the execution of the
context with a point-cut is possible but will lead to the stacking of advices on top of
each other after each new evolution version of the program.

5.3.3 Conclusion

The measurement results look quite typical for an OO and an AO implementation of the
same program; the AO implementation adds new functionality through new code whereas
the OO implementation must implement new functionality through modifying existing
components. The higher amount of code in the AO implementation can be explained
by the fact the AO code contains code to intercept join-points to which the advices will
be applied. In general, AO uses more code to implement new functionality; however,
the newly introduced code is more decoupled from the existing implementation. Where
in the OO implementation the addition of new functionality results in the rewriting
of existing components and methods, AO introduces new functionality through new
components, dynamically extending existing component by aspects. This information
cannot be extracted from the general and concern diffusion metrics results. Only after
applying the scenario-based analysis technique SAAM, we found that AO introduced new
functionality in a decoupled way. Various minor metrics illustrated the impact for each
separate scenario. The results showed that the AO implementation performed better
than the OO implementation with respect to rewriting code. SAAM also illustrated
the energy-awareness functionality crosscuts various other concern. A closer look at the
new and changed components revealed that the concern was scattered throughout the
implementation. From the actual measuring of energy within the base system; to the new
adaptations handlers introduced to optimise energy usage. Even though AO succeeded
into extracting energy-awareness functionality from the base system implementation,
energy remains scattered across various separate aspects. As said, AO can not solve the
state space evolution problem. Other approaches, like context oriented programming
and event-based modularisation techniques, should be considered when attempting to
solve this problem. Especially event-based modularisation may provide a solution for
this problem, since events form the coupling between states and have a big impact on
the state space context.
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6 Beyond Objects

An object oriented or aspect oriented approach are not the only options to implement
control systems. As presented in the background chapter, process control is closely
related; Shaw [41] presents a software design paradigm based on process control. She
argues that: ”Unlike object oriented or functional design, which are characterised by the
kinds of components that appear, control system designs are characterised both by the
kinds of components and the special relations that must hold among the components.”

Event-based modularisation techniques can provide a solution. In this chapter we will
give an overview of known event-based extensions for OO programming. Additionally we
will evaluate two event-based modularisation techniques (Esper [42] and EventReactor
[43]) in detail. We evaluate where these techniques can help to increase the decoupling
and modularisation of the control system design. Esper is an established OO exten-
sion which provides a solution for complex event processing; events can be filtered by
event queries, providing a way to process large quantities of events. EventReactor is
a experimental project which uses events as a basis for modularisation. EventReactor
allows the declaration of event modules; event modules are decoupled modules which are
triggered by input events. The modules can perform adaptation actions and produce
output events to trigger other event modules.

We will give a brief overview of existing event-based modularisation techniques for
various languages. We will discuss Esper and EvenReactor in detail and point out where
our design can benefit from these techniques.

6.1 Existing Event-Based Modularisation Techniques

Event-based modularisation [44] techniques especially focus on the interaction and rela-
tion between components through events. The state space evolution problem we identi-
fied could possibly be solved by applying event-based modularisation techniques. There
exist established event-based extensions for OO programming; an overview is given
Malakuti and Aksit [44]. They give the event-delegate mechanism of the C# program-
ming language as example. Escala an extension to the Scala programming language,
Scala is both functional and object oriented, is given as another example. They also
address the Ptolemy programming language which is used to implement crosscutting
concerns in Java programs. Although all these mechanisms/languages allow the use of
events in OO programming languages they have shortcomings. The first two techniques
suffer from the same problems as the AO implementation. One of these problems is the
lack of DSL support to implement the reactive (control) system. The implementation of
constraints among multiple reactive parts may scatter across and tangle with the reactive
system, which may introduce reuse anomalies. The event selection predicates/handlers
have limited expressive power to select the event calls of interest. This forces the pro-
grammer to define complex selection semantics in the reactive part, which increases the
complexity of implementation and reduces its reusability. Ptolemy suffers from limited
expressive power to select the events of interest, queries can only be expressed over event
types. Another potential problem arises if complex binding semantics are needed. These
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must be expressed as a part of the handler method which reduces the reusability of these
methods. In Ptolemy handler methods and point-cut expressions are defined within one
class. The reusability of handlers for different events is reduced by such a tight coupling
of handler methods to the specification of events of interest. Another problem is that the
necessary interaction constraints must be programmed as part of handler methods. In
the case different constraints are needed due to evolution requirements this may reduce
the reusability of handler methods.

These techniques do not solve the evolution ripples present in the control system. The
Observer and Visitor pattern still suffer from the introduction of new event types and
adaptation types.

6.2 Esper

Esper [42] is an OO extension designed for complex event processing (CEP). This in-
cludes event series analysis, and is available for Java and .NET.

6.2.1 Overview

Esper works more or less like a database turned upside down. Queries can be defined
before the data is present. Like a filter, data that meets the requirements specified by the
query is filtered out and can be processed in more detail, saving computation/processing
time. A normal database on the other hand stores data; queries can be executed on the
database to acquire a set of data, whose members share one or more specific properties.

Esper is designed for applications that must process events (messages) in real-time
or near real-time. According to the Esper manual [42] Esper is especially suited for
application that deal with high quantities of events:

– This is sometimes referred to as complex event processing (CEP) and event series analysis. Key
considerations for these types of applications are throughput, latency and the complexity of the
logic required.

• High throughput - applications that process large volumes of messages (between 1,000 to
100k messages per second)

• Low latency - applications that react in real-time to conditions that occur (from a few
milliseconds to a few seconds)

• Complex computations - applications that detect patterns among events (event correlation),
filter events, aggregate time or length windows of events, join event series, trigger based on
absence of events etc.

The Esper engine was designed to make it easier to build and extend CEP applications.–

[Esper Reference V5.0.0]
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6.2.2 Applicability Case Study

Esper can be used to make the Observer pattern obsolete. Events can simply be fed to
the Esper engine and queries can be defined to select them where needed. Components
in the control loop architecture where Esper can be applicable are the monitor and
possibly the analyser components. The monitor must define an Esper query to select all
relevant events. These events should be passed down to the appropriate handlers; the
handlers pass the events to the appropriate analysers. The analyser evaluates the events
and determines if they require further action. Esper can be applicable in the analyser
component if large sets of events are passed down from the monitor component. The
analyser could define a more specific query to filter out events that require adaptation.
However, robot control systems have quite a different event / latency profile then Esper
is made for, for the number of events that need to be analysed is too limited. Even under
extreme circumstances 50 events per second would be considered as a lot. Assuming the
system processes incoming events four or five times a second the set of events selected
by the monitor will be smaller than five and probably even one in some cases.

Of course it is possible to make the monitor interval longer but by doing so adaptations
will be applied too late. Events are only useful for a certain amount of time; for our
patrol robot an interval of a second would already be too long. Although Esper can be
applied it must be noted that Esper is designed to process high quantities of events. The
event quantities we deal with in our case study do not even come near the quantities
(1K to 100K per second) Esper is designed for.

Although Esper can make the observer interface components obsolete, ripples caused
by the introduction of new events will still be present in the control loop architecture.
The main problems were caused by the introduction of new events to the monitor,
analyser and planner components. These components need new methods/handlers to
handle new events.

Figure 17 illustrates where Esper can be applied in the existing architecture. We see
the observer interface becomes obsolete and the Esper queries are defined in the monitor
and analyser components.
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Figure 17: Security planner state space

Esper can be used to spot trends and predict emerging behaviour to some extent. A
sequence of events may be used to extract information that can be used to detect and
fire new events. How fast energy is drained from the battery, for example. If the robot
uses a lot of energy in a short window of time, this could mean that something is wrong
with the system. This phenomenon can be detected by observing multiple events of the
same type for a certain amount of time. If a trend is detected, an event could be fired
to notify the system something is happening. However, this does not necessarily mean
something is off; it could also mean the robot just arrived on a place in the environment
where there are a lot of obstacles, corners or doors to check. Nevertheless this mechanism
can be used for future prediction. For this information to be useful we should define
complex energy monitoring algorithms which excel in power saving and optimisation.
Unfortunately these algorithms are outside the scope of this research.

Aside from applicability, the problem that events must be published from within the
base system remains. The introduction of each new event still requires a modification
of the base program. Each event has to be fired from within a base system class. The
method that determines if the event must be fired must be modified; this is illustrated
in figure 18. Since Esper makes the Observer pattern obsolete the base system does not
longer need a subject interface for observable classes (classes that fire events).
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Figure 18: Security planner state space

6.2.3 Conclusion

Esper is useful for applications that deal with high quantities of events. SQL-like queries
can be defined to filter out relevant events that need to be processed in more detail. Our
patrolbot case study does not deal with high quantities of events. Although Esper can
be applied, it will not solve the evolution problems present in the OO and the AO
implementation. The problems related to the introduction of new events were:

• Ripples caused by introduction of new events (new data types need new handlers)

• Base system code must be changed to fire new events. Events cannot be extracted
from the base system with a point-cut-like mechanism as is possible in AO; they
need to be fired from within the base system code.

The overall conclusion is that Esper cannot help us to solve any of the evolution
problems we encountered in the OO implementation. If we decide to focus on future
research about complex energy optimisation algorithms, Esper should be re-evaluated.
Especially applications that deal with high quantities of events can profit from Espers
event processing mechanism. However, in our case study the amount of events that must
be processed is too few in number to fully utilise Espers event processing power.

6.3 EventReactor

Malakuti and Wilke [45] designed the GreenDev framework to extend existing applica-
tions with energy-awareness functionality through event modules.

To effectively extend legacy applications with energy-awareness functionality, dedi-
cated modularisation mechanisms are required. The GreenDev framework integrates
energy testing and event-based modularisation for this matter. Energy testing helps
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identifying the energy-related interfaces of applications to the energy-awareness func-
tionality, where event-based modularisation helps to modularise and decouple this func-
tionality from the base functionality of the applications.

In GreenDev there is no need to manually inspect base applications to identify energy
join points and activate these join points. Instead, the specification of energy-related
events, can be defined transparently from the actual implementation of the base appli-
cation. Therefore, structural changes in the application, e.g. changes in method names
and class hierarchies, do not influence the event module specifications. In this chapter
we will evaluate the EventReactor language presented in their paper.

6.3.1 Overview

EventReactor [43] is a event-based modularisation technique; events modules are coupled
by input and output events. A module can be activated or triggered by one or more
events; a module can apply an operation or adaptation as response. This response or
adaptation can publish a new event if needed (output event). An output event can be
a trigger for another event module. An event reactor module is depicted in figure 19. It
shows how reactor chains link events to reactor modules, which contain action classes to
apply adaptations or fire new events. The EventReactor engine captures all events fired
from within the base system. Events are published to the EventReactor engine; event
modules define a Prolog query to specify the activation or selection criteria to activate
the module. Events contain various distinct properties; the selector criteria can select
events based on the value of such properties.

Figure 19: EventReactor overview

The use of input and output events creates a very loose coupling between event mod-
ules. If a module must be activated by a new event, the selector (input interface) query
must be modified. New reactors to existing events can be added to the reactor chain; a
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reactor chain links a reactor to the events selected by the selector query. Reactors define
actions/adaptations in the form of actions classes. Actions classes are java objects that
apply adaptations at runtime to the base system.

6.3.2 Event Reactor MAPE-K Implementation

In order to implement MAPE-K in EventReactor we need various reactor chains and
reactor types. Reactors are concrete instantiations of reactor-types. There are two main
alternatives to implement MAPE-K loops in event reactor. All MAPE-K components
can be implemented in one reactor module or all modules can be implemented in separate
reactor modules.

Single Control loop Reactor Module In figure 20 a event module design is presented
which implements all MAPE-K components in one single module. The module is trig-
gered by one or more base events. Each module can fire synchronisation events to notify
other control reactors. A module can define multiple action classes to apply adaptations
to the base system.

Figure 20: EventReactor MAPE-K design

When taking the reuse requirements into account, one immediately notices that this
approach does not perform well concerning reusable modules. Especially the monitor
and analyser functionality must be recoded in every new control loop module.

Separate Reactor Modules Control Loop components Given the event-based ap-
proach of EventReactor, separate modules for each MAPE-K component coupled by
events are a more logical approach. An overview of the MAPE-K implementation in
separate reactor modules is given in figure 21. Every reactor is loosely coupled to other
reactors further in the chain.
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Figure 21: EventReactor MAPE-K design

Monitor (Reactor) The monitor must intercept instances of a specific type of event
from the base system. The base event is linked to the monitor module by a reactor
chain. Each event type needs its own monitor. The sole function of the monitor is
to deliver/link the base event to the appropriate analyser. Various interested reactors
(analysers) can react to the output event produced by the monitor module.

Analyser (Reactor) +Knowledge Base Analyser reactor chains link one or more mon-
itor events to the analyser reactor. The analyser component analyse/determines if the
event needs additional processing. To determine if an event needs additional processing
the data-field of the event must be compared to some kind of knowledge base. This
knowledge base can be hardcoded into the analyser component; if the system must be
dynamically configurable, values could be stored in a configuration file and read from
there. In this case the event indicates that the system needs to adapt(for example power
levels become critical); the analyser component must fire a new planner output event.

Planner (Reactor) The planner component keeps track of the current system state
and adapts this state depending on the events that reach this component. The events
that reach/trigger this component are analyser output events. Depending on the system
state the planner will fire adaptation/executor-events. Executor events indicate what
kind of adaptations must be applied.
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Executor (Reactor) The adaptation events fired by the planner reactors are linked to
the executor reactors by executor chains. The executor reactors must have concrete
action classes whose purpose is to apply adaptations in the base system. The action
classes are java classes which can apply adaptations to the base system.

The separation of MAPE-K modules results in a loosely coupled control system where
modules interact by events. Since modules are unaware of other modules but only of
events, reuse becomes easy. If a new or existing module is interested in a certain output
event produced by another module, it can be defined in the selector query present in
the input interface of the respective module. Other modules further in the chain do not
suffer from modifications unless the output event of the module is altered.

6.3.3 Applicability Case Study

Our case study contained various control loops which can be modelled using event mod-
ules. If we apply the second approach to our case study the control system design will
contain the modules depicted in figure 22. White modules are present in the initial
design which was energy-unaware. Red modules are the modules introduced by the en-
ergy evolution scenarios. Modules communicate through events and do not follow fixed
interfaces.
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Figure 22: EventReactor design (red components and events are introduced after evolu-
tion)
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It can be seen that new event modules are coupled to events. Existing modules can
react to new events if their selector query is modified, as illustrated in listing 10. For
each new event a selector identifier must be added, which can be used to modify the
selector query. The new event can be added to the existing list of events in the selector
query which triggers the respective reactor chain.

Listing 10: Triggering existing modules with new events

eventpackage ExistingConcern_X{

selectors

existingEvent = { E| isEvent(E),

hasAttribute(E, ’name’, ’existingE ’)

hasAttribute(E, ’publishername ’, ’SomeExistingConcern.Module_Y ’)

}

newEvent = { E| isEvent(E),

hasAttribute(E, ’name’, ’newE’)

hasAttribute(E, ’publishername ’, ’SomeExistingConcern.Module_Z ’)

}

eventmodules

Module_X := {existingEvent , newEvent} {"publisher"} <-

ExistingReactorChain () ->{};

}

Listing 11 illustrates how existing reactor modules can be modified when existing
action classes must fire new events. Naturally the action class defining the adaptation
action must be modified as well. A new method which fires the new event must be added
to the existing actions class.

Listing 11: Extending existing action classes with new events

reactortype Reactor {

action = AdaptationClass;

events = {Event_X , newEvent_X ;}

}

This event-based approach results in separate modules loosely coupled to each other.
New modules can easily be added without much impact.

6.3.4 Conclusion

Unfortunately EventReactor is still under development, resulting in limited implemen-
tation of all the possibilities. For this reason this research does not cover a complete
event reactor implementation for the control loop architecture. However, EventReactor
can solve problems that emerge when a control loop architecture evolves. Extension
with new events becomes easy, new events can be defined and dynamically added to the
selector query of the interested reactor-chains.

Defining additional adaptation components and the coupling of these components to
the existing base system is handled by reactor modules. A new reactor can be defined
and added/coupled to the list of already existing reactors. The reactor can define an
action to apply the actual adaptation. However, to apply the adaptation to the base
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system some kind of mechanism must be used. Right now the current EventReactor
implementation does not contain a point-cut-like mechanism as defined in AO program-
ming. The execution of an existing base system method cannot be intercepted to add
advice code in which an event could be fired. Since EventReactor cannot use such a
mechanism, it should resort to the Visitor design pattern used in the OO implementa-
tion. The lack of a point-cut-like mechanism also affects the base system once a new
event is introduced. Events must be fired from within the base system code and pub-
lished to the EventReactor engine. Resulting in modifications to the base system once
a new event is introduced. Due to the event-based approach state spaces are formed
by various separate modules. Instead of one module defining the context of the states,
each module/state defines its own coupling to other states/modules. This allows a more
dynamic extension of existing state spaces.

The current EventReactor implementation is limited in its expressiveness. In order
to improve the expressiveness of EventReactor regarding state space models a domain-
specific language extension should be considered. This domain-specific language should
allow the definition of a state space in separate super modules. Now it is not possible
to define state space in modules a state space must be built out of numerous separate
modules. This results in a cluttered implementation in which it is hard to tell which
modules belong to the state space and which do not.

6.4 Conclusion

Event-based modularisation solutions provide a different view on modularisation. How-
ever, most solution are extensions to existing techniques. This limits the expressiveness
and possibilities since most solution are bound to one language. EventReactor is the only
technique we evaluated which tries to abstract from language level limitations. Despite
these shortcomings event-based modularisation should be considered more thoroughly
in future research regarding CPS design.
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7 Conclusion

This research tries to illustrate how energy-awareness functionality affects the modu-
larity of an existing CPS design. We prepared an initial design as best as possible for
future evolution. A domain analysis was conducted to extract energy-awareness evolu-
tion scenarios. After implementing the energy-awareness functionality in OO and AO
programming, we conducted a series of measurements to find out if energy-awareness
functionality indeed affects the modularity of the design.

At the beginning of this research two research questions were formulated which we
will try to answer here:

• What are the effects on software modularity that follow from the introduction of
the energy concern to Cyber-Physical Systems?

The effects of adding energy-awareness to an existing system differ for both imple-
mentations. Where the OO implementation did not cope well with the introduction of
new events and states to apply adaptations, the AO implementation dynamically ex-
tends components by new event handlers and adaptation handlers by means of aspects.
Unfortunately, state space evolution remained a problem that could not be solved by
aspects, given the constraints we placed on the design. These constraints were about
maximising reuse; reuse is not possible without performing casts. Casts were deemed
undesired because they ignore the core principle of the object model; objects which no
longer have a type and cannot be used until the compiler is told how to handle these
objects.

• Can the energy-awareness concern be introduced to an existing Cyber-Physical
System without crosscutting existing concerns?

The measurement results supported the claim that energy-awareness functionality is a
crosscutting concern. Energy-awareness functionality is present in many classes and
aspects. The conclusion is that energy-awareness functionality can be decoupled from
most components but it cannot be modularised into a single component.

We evaluated event-based modularisation techniques to illustrate where our CPS de-
sign can benefit from these new and sometimes experimental techniques. EventReactor
looks the most promising event-based modularisation solution; despite its immaturity,
EventReactor and its event module model may provide solutions for the state space evo-
lution problem. However, at this moment EventReactors potential cannot be reflected
in measurements. For example the events must be fired from within the base system,
resulting in unwanted modifications to legacy code.

During this research we faced some problems related to language support to CPS.
Although the robot could be programmed in JAVA, language support for the embedded
JVM of the robot was limited.

For example, it was not possible to run the AO (AspectJ) implementation on the
robot. AspectJ runs on all standard JAVA virtual machines [46]. However Lejos[25]
runs on a modified embedded VM [26], older versions of Lejos run on a VM called
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tinyVM [47]which is a subset of the standard JVM. TinyVM has some limitations and
can only load a limited amount of classes.

Not all linguistic JAVA statements are supported; TinyVM does not support switch
statements for instance. More recent Lejos versions are based on JAVA embedded SE
[26]. Unfortunately, documentation is incomplete and scattered around the fora. The
fora indicate that still not all linguistic JAVA statements are supported. Without com-
plete documentation one can assume that similar limitations as the ones for TinyVM
prevent AspectJ-support for the Lejos platform.

Similar problems prevent EventReactor from running on the Lejos platform. For
example, EventReactor has many third party dependencies which must be loaded before
EventReactor can run.

7.1 Future Work

This research made a first attempt to illustrate the effects of introducing energy-awareness
functionality to an existing CPS design, however, it is too early for explicit claims. Fu-
ture research should be conducted on other types of CPS to be able to generalise our
findings. The robot system is quite limited with respect to the amount of events per
second; the scalability of the proposed design should be investigated. In systems that
deal with a high amount of events per second, event processing techniques like Esper
should be applied.

We investigated how event-based modularisation techniques can provide solutions
for the problems identified in this research. We will provide some recommendations
for event-based modularisation techniques and EventReactor in particular. A domain-
specific language extension could improve the expressiveness regarding state space mod-
els. In the case of EventReactor state spaces must be defined in separate event modules
instead of being grouped in a super module. This may result in a cluttered implemen-
tation in which it is hard to tell which modules belong to the state space and which
not. In none of the evaluated techniques it was possible to extend the base system with
new events without rewriting. The lack of an aspect-like point-cut mechanism to ex-
tract events from the base system is a topic which should be improved. For example,
in the current EventReactor implementation events must be fired from within the base
system, resulting in unwanted modifications to the base system. Despite the limitations
of existing event-based modularisation techniques, event-based modularisation promises
to be a useful asset for developing CPS in the future.

Another topic for future research is language support. AO and event-based modulari-
sation techniques are optimised for usage on general purpose platforms. CPS platforms
often are a subset of these platforms limiting the possibilities of using state-of-the-art
techniques. When developing AO and event-based modularisation techniques this should
be taken into account.
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[7] J. Andersson, R. De Lemos, S. Malek, and D. Weyns, “Reflecting on self-adaptive
software systems,” in Software Engineering for Adaptive and Self-Managing Sys-
tems, 2009. SEAMS’09. ICSE Workshop on. IEEE, 2009, pp. 38–47.

[8] C. Talcott, “Cyber-physical systems and events,” in Software-Intensive Systems and
New Computing Paradigms. Springer, 2008, pp. 101–115.

[9] E. A. Lee, “Cyber physical systems: Design challenges,” in Object Oriented Real-
Time Distributed Computing (ISORC), 2008 11th IEEE International Symposium
on. IEEE, 2008, pp. 363–369.

[10] M. Eaddy, T. Zimmermann, K. D. Sherwood, V. Garg, G. C. Murphy, N. Nagappan,
and A. V. Aho, “Do crosscutting concerns cause defects?” Software Engineering,
IEEE Transactions on, vol. 34, no. 4, pp. 497–515, 2008.

[11] New Mexico Solar Energy Association, “Energy Concepts Primer.” accessed:
2015-01-19. [Online]. Available: http://www.nmsea.org/Curriculum/Primer/
energy physics primer.htm

85



[12] J. van Amerongen, Dynamical systems for creative technology. Controllab Products
BV, 2010.

[13] M. M. Lehman, J. F. Ramil, P. D. Wernick, D. E. Perry, and W. M. Turski, “Metrics
and laws of software evolution-the nineties view,” in Software Metrics Symposium,
1997. Proceedings., Fourth International. IEEE, 1997, pp. 20–32.

[14] G. Xie, J. Chen, and I. Neamtiu, “Towards a better understanding of software
evolution: An empirical study on open source software,” in Software Maintenance,
2009. ICSM 2009. IEEE International Conference on Software Maintenance (ICSM
2009). IEEE, 2009, pp. 51–60.

[15] M. Harsu, A survey on domain engineering. Citeseer, 2002.

[16] K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak, and A. S. Peterson, “Feature-
oriented domain analysis (FODA) feasibility study,” DTIC Document, Tech. Rep.,
1990.

[17] M. Simos, D. Creps, C. Klingler, L. Levine, and D. Allemang, “Organization domain
modeling (ODM) guidebook version 2.0,” 1996.

[18] A. MacCormack, J. Rusnak, and C. Y. Baldwin, “The impact of component modu-
larity on design evolution: Evidence from the software industry,” Harvard Business
School Technology & Operations Mgt. Unit Research Paper, no. 08-038, 2007.

[19] J. Hannemann and G. Kiczales, “Design pattern implementation in Java and As-
pectJ,” in ACM Sigplan Notices, vol. 37, no. 11. ACM, 2002, pp. 161–173.

[20] E. Figueiredo, C. Sant’Anna, A. Garcia, T. T. Bartolomei, W. Cazzola, and
A. Marchetto, “On the maintainability of aspect-oriented software: A concern-
oriented measurement framework,” in Software Maintenance and Reengineering,
2008. CSMR 2008. 12th European Conference on. IEEE, 2008, pp. 183–192.

[21] C. Sant’Anna, A. Garcia, C. Chavez, C. Lucena, and A. Von Staa, “On the reuse and
maintenance of aspect-oriented software: An assessment framework,” in Proceedings
of Brazilian Symposium on Software Engineering, 2003, pp. 19–34.

[22] R. Kazman, G. Abowd, L. Bass, and P. Clements, “Scenario-based analysis of
software architecture,” Software, IEEE, vol. 13, no. 6, pp. 47–55, 1996.

[23] K. Rajnish, A. K. Choudhary, and A. M. Agrawal, “Inheritance metrics for object-
oriented design,” International Journal of Computer Science & Infomation Tech-
nology, vol. 2, no. 6, 2010.

[24] LEGO Mindstorms, “Ev3.” accessed: 2015-01-19. [Online]. Available: http:
//www.ev-3.net/en/archives/850

[25] Lejos, “Java for LEGO Mindstorms.” accessed: 2015-01-19. [Online]. Available:
http://www.lejos.org

86



[26] Oracle, “Java for LEGO©Mindstorms EV3.” accessed: 2015-01-19. [On-
line]. Available: http://www.oracle.com/technetwork/java/embedded/downloads/
javase/javaseemeddedev3-1982511.html

[27] G. Oliveira, R. Silva, T. Lira, and L. P. Reis, “Environment mapping using the
lego mindstorms nxt and lejos nxj,” in 14th Portuguese Conference on Artificial
Intelligende, EPIA 2009, 2009, pp. 267–278.

[28] G. Casella, “An introduction to empirical bayes data analysis,” The American
Statistician, vol. 39, no. 2, pp. 83–87, 1985.

[29] Lejos, “Lejos api, java for lego mindstorms.” accessed: 2015-01-19. [Online].
Available: http://www.lejos.org/nxt/pc/api/index.html

[30] E. W. Dijkstra, “A note on two problems in connexion with graphs,” Numerische
mathematik, vol. 1, no. 1, pp. 269–271, 1959.

[31] T. H. Cormen, C. E. Leiserson, R. L. Rivest, C. Stein et al., Introduction to algo-
rithms. MIT press Cambridge, 2001, vol. 2.

[32] D. Brugali, “Software abstractions for modeling robot mechanisms,” in Advanced
intelligent mechatronics, 2007 IEEE/ASME international conference on. IEEE,
2007, pp. 1–6.

[33] J. A. Bondy and U. S. R. Murty, Graph theory with applications. Macmillan
London, 1976, vol. 6.

[34] J. Simpson, C. L. Jacobsen, and M. C. Jadud, “Mobile robot control,” in Commu-
nicating Process Architectures 2006: WoTUG-29: Proceedings of the 29th WoTUG
Technical Meeting, 17-20 September 2006, Napier University, Edinburgh, Scotland,
vol. 64. IOS Press, 2006, p. 225.
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