
Interactive Visualization of Fault Trees
Robert Maaskant
University of Twente

P.O. Box 217, 7500 AE, Enschede
The Netherlands

r.maaskant@student.utwente.nl

ABSTRACT
In this paper we present a case study of using interac-
tive visualization of fault trees and fault tree analysis to
improve understanding of the concept of fault trees and
the exploration of the results of their analysis. The fault
tree model is widely used by experts to analyze risks in
many different fields. We believe that the current way of
interacting with these fault tree models and the results of
their analysis is prohibitive to many non-technical users
and unnecessarily complicated for technical users. By cre-
ating a more intuitive method of interaction we hope to
spread their use and increase their effectiveness to lower
risks in fields that practice risk analysis. To create this in-
teractive visualization we first examined the fundamental
visualization principles and basic interaction techniques.
We then combined these principles with our knowledge of
fault trees to create a set of requirements for the visu-
alization. These requirements were then used to choose
a web framework and design a prototype visualization to
validate our hypothesis.

Keywords
Interactive Visualization, Fault Trees, Risk Analysis

1. INTRODUCTION
Risk analysis is important in many commercial fields. The
analysis is used to increase understanding of the risks, de-
termine the most effective strategy to decrease overall risk,
and prove compliance with legislation. One of the tools in
the toolkit of risk analysis is the fault tree (FT) model.
FTs enable the analysis of the occurrence of a specific un-
desired top level event in terms of basic system events of
which the risk profile is known. The constructed fault tree
can be analyzed in a variety of ways. The major distinc-
tion between the different types of analyses is that they are
either qualitative or quantitative [13]. Qualitative analysis
gives insight into the causes of failure, where quantitative
analysis gives insight into the probability of failure.

Currently the results of the analyses are usually visualized
using simple static graphics like tables, bar charts, and
scatter plots. This form of presentation can already offer
a lot of valuable insights into the risks modeled, but we

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy oth-
erwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.
24th Twente Student Conference on IT January 22th, 2016, Enschede,
The Netherlands.
Copyright 2016, University of Twente, Faculty of Electrical Engineer-
ing, Mathematics and Computer Science.

believe the presentation can be improved. This improve-
ment is important, because sight is ”not only the fastest
and most nuanced sensory portal to the world, it is also the
one most intimately connected with cognition” [6]. Thus
improved visualization could lead to better understanding.
To enable knowledge discovery from the analyses the vi-
sualization is made interactive. Interactivity is important
because it allows users to quickly adjust the visualization
to show the information required to validate or discredit
hypotheses they have.

To test the hypothesis that an interactive visualization of
FTs and FTAs can help in the understanding of the con-
cept of FTs and the exploration of the results of the FTA,
we will build a prototype application. The prototype will
be an interactive visualization built as a website. This is in
contrast to many current tools which are mainly command
line based or a graphical desktop application. If the soft-
ware runs on a website it can be easily accessed by anyone
with the right permissions at any time, at any location on
any Internet connected device. This further helps lower
the threshold to widespread use of the fault tree modeling
method, which hopefully leads to lowered risks, which is
the ultimate goal of fault trees to begin with.

This paper will start by explaining in some more detail
all concepts involved, followed by a brief overview of re-
lated work on this topic. It then goes on to describe the
set of requirements for the prototype, the prototype itself
and the results of a small user test. To finish off, conclu-
sions are drawn and recommendations for future work are
provided.

2. BACKGROUND
2.1 Fault Trees and Fault Tree Analysis
Fault trees model the occurrence of an undesired top level
event by, as the name implies, using a tree structured
model. In this model the root node represents the un-
desired event and the leaves the basic system events. The
top level event is broken down into it’s causes using a logic
gate. These intermediate events are then broken down fur-
ther into their immediate causes using more logic gates,
until all the leaves of the constructed tree are basic sys-
tem events.

Figure 1 shows an example fault tree. The top most node
in the tree represents the modeled undesired event. All
events, except basic events, are modeled as rectangles.
Basic events are the leafs of the tree and are modeled as
circles. All events are linked using logic gates. In stan-
dard fault trees (SFTs) the gates are limited to AND,
OR and K/N voting gates, which fail when all, one or k
child events fail respectively. Dynamic fault trees add pri-
ority AND (PAND), functional dependency (FDEP) and
spare (SPARE) gates. A PAND fails when all child events

1



No flow
to receiver

No flow into
Component B

0.3

No flow from
component B

0.2

No flow from
component A

0.5

0.2 0.3

No flow from
source 2

0.4

Component
B blocks flow

0.1

Figure 1. Example fault tree.

fail in the correct sequence, a FDEP indicates that if the
first child event fails, the other children fail as well, and a
SPARE indicates that if one of the children fails a spare is
activated and only when that spare also fails, the SPARE
fails.

Fault tree analysis can be divided into two major cate-
gories: qualitative and quantitative. Qualitative analyses
include determining minimal cut sets (MCS) and minimal
path sets (MPS). Minimal cut sets is a minimal set of ba-
sic events that if they all fail can create a top level event
failure. Minimal path sets are the opposite: they are the
minimum set of basic events that prevent the possibility
of a failure. Quantitative analyses can be divided into dis-
crete and continuous time analyses. Discrete time analy-
ses include calculating failure probabilities and computing
the expected number of failures for a certain mission time.
Continuous time analyses include calculating the availabil-
ity, mean time to failure and expected number of failures.

2.2 Information Visualization
We look at interactive visualizations to increase under-
standing of FTs and FTAs because according to Colin
Ware ”the human visual system is a pattern seeker of enor-
mous power and subtlety. The eye and the visual cortex of
the brain form a massive parallel processor that provides
the highest-bandwidth channel into human cognitive cen-
ters. At higher levels of processing, perception and cog-
nition are closely interrelated, which is the reason why
the words ’understanding’ and ’seeing’ are synonymous.”
[16]. From this fact, the conclusion can be drawn that to
increase understanding of a new concept, it should be vi-
sualized. Visualizing data in a graphic this way is called
an infographic.

Before we can create infographics we must understand the
workings of perception. Without a basic understanding
of perception we would risk creating incomprehensible or
misleading visualizations. The insights necessary to un-
derstand the design choices we made further on, are ex-
plained below.

According to Stephen Few [6] there are three important
basic aspects of perception worth noting. First, we do
not attend to everything that we see. Visual perception is
selective, as it must be, for awareness of everything would

overwhelm us. Our attention is often drawn to contrasts to
the norm. Second, our eyes are drawn to familiar patterns.
We see what we know and expect. Third, memory plays an
important role in human cognition, but working memory
is extremely limited.

Furthermore there is a limited set of attributes, called the
pre-attentive attributes, that determine what draws at-
tention [6]. Only two of these are perceived quantitatively
with high degree of precision: length and 2-d position.
The most important elements should thus be modeled us-
ing these properties.

In order to display quantitative information visually the
following rules should be adhered to according to Edward
Tufte [15]:

1. Enforce graphical integrity

2. Optimize Data-ink = Data-ink
Total ink used to print graphic

3. Avoid chart junk

4. Achieve high data density

5. Use small multiples

Enforce graphical integrity means data should be repre-
sented fairly. For instance, an y-axis on charts should not
start on anything other than zero, otherwise it becomes
hard to compare values of y. This could happen for ex-
ample if the y-axis starts at 8 and end at 12. Say A has
a value of 9, and B a value of 10. A would then seem to
be half the value of B, where in reality it is only one tenth
less than B. Optimizing data-ink ensures no unnecessary
visual information needs to be processed in order to see
the same thing. Avoid chart junk means that one should
refrain from adding artistic details that distract from the
actual data. This stems from the belief that the data
is beautiful and should be interesting enough of its own
accord. Achieving high data density means we should at-
tempt to cleanly incorporate as much data as we can into
one visualization, allowing us to explore more data at once.
Small multiples is a method in which data is partitioned
and each partition is shown in the same manner and on
the same scale to enable comparison between partitions.
For example displaying the average temperature by time
of day partitioned into the months of the year would en-
able us to quickly compare the difference in temperature
by time of day between months.

2.3 Interactivity
Static infographics are limited in their use because one im-
age can not be designed to answer all the questions that it
provokes. To explore the information further and answer
our questions we need to introduce interactivity. Accord-
ing to Stephen Few there are 13 elementary operations for
interactivity that enable analysis. They are: comparing,
sorting, adding variables, filtering, highlighting, aggregat-
ing, re-expressing, re-visualizing, zooming and panning,
re-scaling, accessing details on demand, annotating and
bookmarking. If these operations are supported, a user
can adjust the displayed information to his or her needs
accordingly.

3. RELATED WORK
A lot of research has been done regarding fault trees [12]
and interactive visualizations. However to our knowledge
no research exists that combines these two fields of re-
search directly. We suspect this is due to the fact that a
lot of fault tree experts are comfortable with numbers and

2



likely not many are literate in reading or creating inter-
active visualizations. Likewise, it seems likely that people
who are literate in reading and creating interactive visu-
alizations have a limited understanding of fault trees.

We can however learn from research being done in the
TREsPASS project. Deliverable 4.2.1 [4] presents an ap-
proach to visualize information security risks. A few key
take aways are that they also built a web application, work
with a tool chain instead of one monolithic program, and
used D3.js as a framework. For their user interface they
chose to provide a generic structure in which all tools could
be integrated. The menu is on the left in a collapsible side-
bar, the contextual information is in a pane on the right
and the main content is in the center.

More generic research has also been conducted on how to
display trees. We chose to use the algorithm presented by
E.M. Reingold [10] because it produces tidy trees as the
title indicates.

4. REQUIREMENTS
The goal of the prototype is to test the hypothesis that an
interactive visualization of FTs and FTAs can improve the
understanding of the concept of FTs and the exploration
of the results of the FTA. To do this we want to create a
minimum viable product [2]. The MVP consists of being
able to display an FT and the basic aspects of qualitative
and quantitative FTAs. Furthermore we should support
as many operations as described by Few as makes sense
to display these aspects. This will ensure the prototype
is actually interactive. The prototype should of course be
constructed in such a fashion that it is technically sound
and on par with expectations of users of modern software.
Below the exact list of requirements that followed from the
above stated philosophy.

1. Aspects of FT and FTA

(a) Support gates from SFTs and DFTs

(b) Show MCS, MPS

(c) Show propagation of aspects through tree

(d) Show probability over time (discrete)

(e) Show event details

2. Possible Operations

(a) Show event details on demand

(b) Possibility to highlight events, MCS, and MPS

(c) Aggregating by collapsing/expanding event

(d) Zooming and panning on tree

(e) Filter time to specified range

(f) Show/hide parts of menu

3. Technical

(a) Easily extensible

(b) Clean separation of data and visual

(c) Use modern standards

(d) Design for resolution 1280x800 and higher

(e) Static input (no direct coupling with FTA soft-
ware)

(f) Responsive (adjust to browser window size)

(g) No calculation, only displaying visuals

5. ARCHITECTURE
Based on the requirements and the research goal, we re-
searched what the best approach to building the prototype
was. We divided this task into four separate steps that we
will describe below. The first step was selecting a library
or framework that would help us to create the visual dy-
namically from the data. The second step was obtaining
the data to visualize. The third step was integrating the
created visual in a web page layout. The last step was to
serve this page and the associated data from a back end.

5.1 Visual
For realizing the visual, we sought a library that would
do most of the heavy lifting for us, without compromising
control on what the end result would look like. To find a
fitting library, we first compiled a list of frameworks that
are in existence and discarded all frameworks that did not
fit the requirements. Our main source for frameworks was
the website Datavisualization.ch [14]. Very quickly D3.js
[3] emerged as a clear winner. Its name, Data Driven
Documents, gives a clear indication of what it is. It is
a JavaScript library that provides a facility to bind data
to web page elements. The properties of the element can
then be set based upon the bound data. For example:
if you bind the array of [10, 5] to a rectangle, you could
set the height and width to 10 and 5 respectively. In ad-
dition to realizing the data binding, D3.js also provides
many helper methods to quickly solve standard visualiza-
tion needs. For example it can render the axis of a graph
for you in Scalable Vector Graphics (svg). All one has
to do is provide the right options. Two other important
reasons for choosing for D3.js was that it is backed by a
large community and it is used as a base for many other
visualization tools. This gave the confidence it could do
what we wanted to achieve.

5.2 Obtaining data
In order to visualize an FT and FTA results, we need an
FT and some FTA results. For the SFTs we choose to use
example trees from the Open-PSA initiative [8]. SCRAM
[9] was used to calculate the FTA results for these trees.
For the DFTs we used examples as provided by the web
version of the tool DFTCalc [5] and also used DFTCalc
[1] to calculate the FTA results for these trees.

5.3 Layout
For the layout, the framework Foundation for Apps [7] by
ZURB Foundation was chosen. It is described by ZURB
Foundation as ”the first front-end framework created for
developing fully responsive web apps.”. This is exactly
what we were looking for. We mainly use it to give us a
solid base for setting up the layout and making sure it is
responsive and works across devices. We planned on using
it for communicating with our back end as well, but the
prototype never reached that stage.

5.4 Back end
To serve the page and the necessary data to generate the
visual we planned on using Ruby on Rails. It is a proven
and solid foundation [11] for creating the back end of web-
sites. Sadly, this step was never realized due to lack of
time.

6. PROTOTYPE
In this section we give a detailed overview of the design of
the prototype.

6.1 User Interface Layout

3



Figure 2. User Interface Layout of the prototype

Figure 3. Representation of the Gates

For the layout we follow the general approach taken by
many applications today: a title bar at the top, a menu
on the left, the main content in the middle and extra in-
formation on the right. This can be seen in figure 2. The
title bar contains the name of the currently displayed FT.
The menu on the left consists of an accordion that gives
access to all the features of the FT and FTA: list of ba-
sic events, list of MCS, and a list of the MPS. The main
content area contains a zoom-able and drag-able FT and
a time frame for filtering the time. The details of these
elements are explained in the sections below.

6.2 Gates
The gates are represented as a shaped line at the bottom
of each node as shown in figure 3. The idea is to minimize
the amount of ink needed to convey the information and
reduce the visual clutter by not using the standard gate
symbols as described in the background section.

6.3 Event details on demand
In the right side bar, the details of an event are shown
on demand (See figure 4). This means that when a user
clicks on an event in the tree or in the menu sidebar, the
node is highlighted everywhere and the right side bar is
updated to reflect the currently highlighted event. If the
right side bar is closed due to the browser size, it is au-
tomatically opened. This feature is an implementation of
the details on demand operation as described by Stephen
Few as discussed in the background section.

6.4 Probability over time
One of the requirements was to show the probability over
time of events. This was realized by making every node a
graph with on the x-axis time and on the y-axis probability
(see figure 5). The axis scale from 0 to the maximum value
present in the tree. The idea is that by displaying each

Figure 4. Event details on demand in the right
sidebar

4



Figure 5. Displaying probability over time

Figure 6. MCS highlighted in FT

event node as a graph one can easily see the behavior over
time whilst at the same time compare it to other events.
This also allows one to clearly see how events relate and
probabilities propagate through the FT. It is form of small
multiples.

If one wants to access the exact values of the probability at
a certain time, they can use the details on demand feature.

6.5 MCS and MPS
MCS and MPS are displayed by highlighting the relevant
BEs that together respectively cause or prevent the top
level event failure (see figure 6). For MCS the failure prop-
agation is shown by highlighting all failed nodes when the
BEs in the MCS fail. This is an implementation of the
highlighting operation as described by Stephen Few.

6.6 Expand/collapse part of FT
Parts of the FT can be collapsed by using the switch at
the bottom of the details on demand pane (see figure 7).
This allows the user to filter out irrelevant parts of the tree

Figure 7. Partly collapsed FT

Figure 8. Filtering time displayed in FT events

not under study. A user gets a visual clue that a collapsed
node is not expanded, due to the fact that all collapsed
events have gates. These are represented by a line at the
bottom, whereas BEs do not have this line. Thus if a line
is present at the bottom of a node, it has hidden children.

6.7 Filtering time
The control in figure 8 is used to select the time under
study. The top level events probability data points are
plotted in a graph with axes. In this graph a shaded bar
is drawn to represent the current range of time being dis-
played. The bar can be moved, resized at both ends or
reselected by dragging.

6.8 Responsive
The layout is designed to be responsive. This means that
when the screen becomes smaller, the sidebars are hidden
automatically and can be pulled over the main content
area when required. This is achieved by clicking on the
arrows in the upper left and right corners. The right side
bar is hidden by default on screens smaller than a 1200
pixels and the left side bar is hidden on screens smaller
than a 1000 pixels. See figure 10 and 9.

7. VALIDATION
To validate or reject or hypothesis that an interactive visu-
alization of FTs and FTAs can help in the understanding
of the concept of FTs and the exploration of the results of
the FTA we have done a small user test.

5



Figure 9. Small screen - sidebars expanded

Figure 10. Small screen - sidebars collapsed

7.1 Method
We asked five different users to use our prototype and tell
use what they were thinking whilst taking notes ourselves.
The five users consisted of a FT expert, one familiar with
FTs, a user experience professional and two users unfa-
miliar with FTs and user experience. They were each
explained the goal of the project and, if necessary, the
fundamentals of FTs. We then asked them to play with
our prototype. First we would make observations about
what they did or did not do. After this phase we told them
about the parts they had not discovered and asked them
for recommendations on making things clearer.

7.2 Results
This resulted in list of findings that can be used to give
an indication of whether we should validate or reject the
hypothesis. The findings, in no particular order, were as
follows:

1. gray used for data points in small multiples too light
(fixed)

2. hover on data point in time frame should give a clear
indication of at which time a user is by letting this
come back in the visual of the small multiples

3. make a distinction between SFT and DFT analy-
ses: SFTs have minimal cut sets, whereas DFTs have
minimal cut sequences

4. use standard symbols for gates instead of chosen gate
lines (4x)

5. information overload for non-experts

6. use a color scheme to select complementing colors
(fixed)

7. create association between the same elements by use
of highlighting and colors (fixed)

8. repeat graph from tree node in event details pane to
create association between components

9. enable whole node to be click-able (fixed)

10. scroll and zoom on the tree are useful (3x)

11. be list in menu should be click-able to ensure same
behavior everywhere (fixed)

12. hide children visible toggle in leafs (fixed)

13. children visible toggle should also be present at the
node itself

14. visually indicate that the menu accordion is expand-
able and collapsible

15. headings in the details on demand pane are clear

16. data points in tree node can go through the name

17. expand details on demand side bar if clicked on BE
and it is not visible at that moment (fixed)

18. not directly clear after side bars disappear on resize
how to get them back

19. in the details pane mention the unit associated with
time

20. time frame not working as expected: it is clear what
it does, but can not find the handles to get it to work

6



21. highlight current node (fixed)

22. exiting links transition to the wrong coordinates (fixed)

23. quickly grasped the concept of small multiples to dis-
play probability over time (3x)

24. quickly understood MCS and MPS

25. liked the responsive design (4x)

26. provide a legend for gate types (3x)

7.3 Discussion
These findings shows that user testing revealed a lot of mi-
nor usability problems, many of which have already been
fixed. They also show that the gate type indicator was
not understood and that a mistake was made in the cor-
rect naming of MCS on a DFT. However, the general lay-
out with a menu on the left, content in the middle and a
detail pane on the right proved intuitive. The associated
responsive design as useful. And, in general users quickly
grasped the concept of FTs and could use the visual to
find answers to questions about the FTA results.

8. CONCLUSION
The small user test of the created prototype suggests that
there is potential for a web based interactive visualization
of FTs and the result of FTAs. We draw this conclusion,
because in general the test users quickly grasped the con-
cept of FTs and were able to explore the FTA results. The
small multiple was perceived as useful. The gate type in-
dicator was not understood by any users and should thus
be changed. Furthermore the user testing was really useful
in finding strengths and weaknesses of the prototype.

9. FUTURE WORK
Future research could expand upon the created visualiza-
tion to display more aspects of FTs and FTAs. It would
also be interesting to see the effect of directly coupling
a visualization tool with FTA tools. We expect that if
one can easily alter the FT and request more FTA results
on demand, that would allow for better understanding of
the concept of FTs and easier exploration of FTA results.
The end goal being a seamless experience. In order to
make this chaining of tools achievable, work also has to be
done into further developing a universal data exchange for-
mat for FTs and FTAs. The only accurately documented
standard at the time of writing is the Open-PSA Model
Exchange Format, which lacks support for DFTs. The
widely used Galileo format only specifies FTs and is not
uniformly implemented.

References
[1] Florian Arnold et al. DFTCalc: a tool for efficient

fault tree analysis (extended version). info:eu-repo/semantics/report
TR-CTIT-13-13. Enschede, the Netherlands: Uni-
versity of Twente, Centre for Telematics and Infor-
mation Technology (CTIT), June 2013. url: http:
//doc.utwente.nl/86711/ (visited on 01/13/2016).

[2] Steve Blank. Minimum Viable Product | SyncDev.
Jan. 2016. url: http://www.syncdev.com/minimum-
viable-product/ (visited on 01/13/2016).

[3] Mike Bostock. D3.js - Data-Driven Documents. Jan.
2016. url: http://d3js.org/ (visited on 01/13/2016).

[4] Lizzle Coles-Kamp et al. Initial report on visualisa-
tions of information security risks. Mar. 2015.

[5] DFTCalc - Web-Tool. Jan. 2016. url: http://fmt.
ewi.utwente.nl/puptol/dftcalc/ (visited on 01/13/2016).

[6] Stephen Few. Now You See It: Simple Visualization
Techniques for Quantitative Analysis. English. 1st
edition. Oakland, Calif: Analytics Press, Apr. 2009.
isbn: 9780970601988.

[7] ZURB Foundation. Foundation for Apps. Jan. 2016.
url: http://foundation.zurb.com/apps.html

(visited on 01/13/2016).

[8] Open PSA Initiative. url: http://www.open-psa.
org/joomla1.5/index.php (visited on 01/13/2016).

[9] Olzhas Rakhimov. rakhimov/scram. Jan. 2016. url:
https://github.com/rakhimov/scram (visited on
01/13/2016).

[10] Edward M. Reingold and J.S. Tilford. “Tidier Draw-
ings of Trees”. In: IEEE Transactions on Software
Engineering SE-7.2 (Mar. 1981), pp. 223–228. issn:
0098-5589. doi: 10.1109/TSE.1981.234519.

[11] Sam Ruby, Dave Thomas, and David Heinemeier
Hansson. Agile Web Development with Rails 4. En-
glish. 1 edition. Pragmatic Bookshelf, Oct. 2013. isbn:
9781937785567.

[12] E. J. J. Ruijters and M. I. A. Stoelinga. “Fault Tree
Analysis: A survey of the state-of-the-art in mod-
eling, analysis and tools”. In: (2014). url: http :

//eprints.eemcs.utwente.nl/25404/ (visited on
03/30/2015).

[13] Michael Stamatelatos et al. Fault Tree Handbook with
Aerospace Applications. 1.1. NASA, Aug. 2002.

[14] Interactive Things. Datavisualization - Selected Tools.
Mar. 2015. url: http://selection.datavisualization.
ch/ (visited on 03/31/2015).

[15] Edward R. Tufte. The Visual Display of Quantitative
Information. English. 2nd edition. Cheshire, Conn:
Graphics Pr, Jan. 2001. isbn: 9780961392147.

[16] Colin Ware. Information Visualization, Third Edi-
tion: Perception for Design. English. 3 edition. Waltham,
MA: Morgan Kaufmann, June 2012. isbn: 9780123814647.

7


