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ABSTRACT
Databases are expected to handle large amounts of trans-
actions concurrently. Many databases block when a bulk
transaction needs to be committed. A possible solution is
to use a lazy tree-structured database to provide improved
throughput while executing concurrent OLTP and bulk
transactions. However in this solution all transactions are
applied to the root, which causes root contention. This
occurs mostly when many small transactions are added to
the root after which they have to be pushed down to the
leaves of the tree. In this paper a possible approach is dis-
cussed and implemented to reduce root contention. This
approach consists of splitting the data structure in mul-
tiple smaller data structures, each with their own root,
in order to divide the root contention over the multiple
roots. Micro-benchmarks and the TPC-C benchmark are
then used to compare the performance of the approach to
the original solution where no special approach has been
taken to reduce root contention. The results show that the
solution provides an improved throughput and scalability
compared to the original solution. Depending on the size
of the database, it also provides an improved scalability
compared to ScalaSTM.

Keywords
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1. INTRODUCTION
Contemporary companies must handle a great amount
of transactions concurrently and their data needs to be
available at all times. These concurrent transactions are
needed to allow many users to use the same database at
the same time, while ensuring that no conflicts will occur
between these transactions.

Several solutions have been found to execute transactions
concurrently in case the transactions do not overlap, such
as two-phase locking (2PL) [2] and optimistic concurrency
control [7]. However, the problem persists when trans-
actions do overlap, in particular when data needs to be
updated in bulk. In order to successfully perform bulk
updates, most databases need to obtain a lock on the com-
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Figure 1: A bulk and OLTP transaction are added
to the root of the tree and pushed down.

plete table which completely disables any other concurrent
transaction until the complete bulk update has been per-
formed.

Several techniques to overcome this problem have been
proposed such as the concurrency control mechanism de-
scribed in [10]. In this concurrency control mechanism,
the reader gets the responsibility of executing operations
instead of the writer that usually is responsible for this.
Transactions write suspended computations instead of com-
puted values. These computations are evaluated lazily,
enabling the reader to prioritize evaluation of the oper-
ations [4]. This mechanism uses a tree-structured index
over the data to allow bulk operations to be committed
instantaneously. Whenever a new transaction should be
committed, it is queued at the root of the tree and then
it is pushed down towards the leaves. This process is de-
picted in Figure 1 with a database consisting of four vari-
ables v1, ..., v4 where two transactions are added, called
“Bulk”, which updates all variables, and “OLTP”, which
updates v1 and v3. At the top you can observe that the
transaction “Bulk” and “OLTP” have been added to the
root of the tree. In the middle you can see the next step,
in which the two transactions have been pushed down to
the next level in the tree. In order to perform this action,
the transactions are split into smaller transactions. In the
bottom, the next level of the tree is depicted where the
leaves are situated. The transactions are again split into
smaller transactions. The “OLTP” transaction only up-
dates v1 and v3 and thus it does not occur at the leaves
of v2 and v4. Now both transactions have been pushed

1



down in the tree. When the value of one of the variables
is requested, the suspended computations piled on the leaf
belonging to this variable will be evaluated.

1.1 Problem Statement
Applying large amounts of mainly very small transactions,
to the root of the tree-structured database, can cause a
significantly reduced throughput. This problem is called
root contention, which limits scalability and throughput.

1.2 Research Questions
To find a solution, the following questions have to be ad-
dressed:

1. How can root contention be reduced in lazy tree-
structured databases?

2. To what extent does splitting the tree-structure into
smaller partitions affect the scalability and through-
put?

In this research partitioning is investigated as a method to
reduce root contention. Partitioning can be described as
splitting the data structure into smaller partitions, which
results in multiple smaller trees and thus also multiple
roots. A concurrency control mechanism is needed to en-
sure that all operations are performed atomically. Several
concurrency control mechanisms can be used; this research
uses 2PL. The expectation is that when the data structure
is split, the root contention will be split over the multiple
partitions as well.

Experiments have been carried out to compare the per-
formance of this splitting method to the original solution
proposed by Wevers et al. [10] Scalability and throughput
have been measured to assess the performance. To mea-
sure the performance the TPC-C [9] benchmark has been
altered such that the database will be split in multiple par-
titions and 2PL will be added to this structure to ensure
atomicity.

Section 2 introduces several concepts and terminology that
are used in this paper. Section 3 describes work that
is related to this research. Then Section 4 explains the
methods of the research. Several techniques which could
be used to reduce root contention are discussed in Sec-
tion 5. Details about the implementation of the micro-
benchmarks and the results, including discussion, are pre-
sented in Section 6. The implementation and results,
including discussion, of the TPC-C benchmarks are dis-
cussed in Section 7. Section 8 discusses the results com-
pared to the expectations and introduces some points of
discussion. Finally, in Section 9 the conclusion is presented
and future work is suggested.

2. BACKGROUND
A concurrency control mechanism is needed to ensure atom-
icity when committing transactions. Atomicity is one of
the four properties which are collectively called ACID (Atom-
icity, Consistency, Isolation, Durability) [5]. Atomicity
states that either the whole transaction should succeed
or fail; the transaction should not partially succeed. Con-
sistency ensures that only valid states of the database will
be committed. Isolation asserts that the concurrent execu-
tion of transactions results in the same state as when the
transactions are performed sequentially. Durability en-
sures that the result of committed transactions will survive
any malfunctions. To show the importance of a concur-
rency control mechanism, an example is provided. Take
a database with two variables v1 and v2. There will be

Figure 2: An outline of the TPC-C benchmark
tables [6]

two transactions, T1 and T2, that want to commit. Both
transactions will update v1 and v2. If no concurrency con-
trol is used it may occur that at v1 the computations are
added in the order T1 followed by T2, and at v2 they are
ordered as T2 followed by T1. If these would be commit-
ted, it might result in incorrect values if, for example, T2

was dependent on the result of T1.

Two-phase locking (2PL) is a concurrency control mecha-
nism that can be used to ensure atomicity when commit-
ting transactions to the split data structure. 2PL operates
according to three rules [2].

1. When a transaction a is received, the scheduler will
check whether a conflicts with an already set trans-
action b. If so, a will be delayed until it can obtain
the lock that it wants. If not, a may obtain the lock
immediately.

2. Once a lock has been obtained by a transaction a, it
may not release this lock at least until the transac-
tion’s operation has been performed.

3. Once a lock has been released for a transaction a, it
may not subsequently obtain any other locks.

“An important and unfortunate property of 2PL sched-
ulers is that they are subject to deadlocks.” [2]

Optimistic Concurrency Control (OCC) [7] is a concur-
rency control mechanism where no locks are used. This
is another concurrency control mechanism that could en-
sure atomicity when committing transactions to the split
database. The main assumption that is made for opti-
mistic concurrency control is that different transactions
often complete without interfering one another. OCC can
be described using four phases:

1. Create a timestamp that indicates the beginning of
the transaction a. This may be needed in the last
phase.

2. Transaction a is performed tentatively.

3. Before transaction a is committed, validation is per-
formed to check whether another transaction b has
modified any data that was used by transaction a.

4. If data has been modified, transaction a will be aborted;
a rollback is executed until the timestamp created in
the first phase. If not, the transaction is committed.
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The TPC-C benchmark [9] is a benchmark for OLTP trans-
actions. This benchmark tries to model a realistic database
system which is centered around an order-entry environ-
ment. It represents this environment for one company. A
company has a number of warehouses where the stock is
stored. Each warehouse has 10 districts, each serving 3000
customers to whom the company can sell items. To serve
their customers, five concurrent transactions are available
for use. These transactions include monitoring stock at
a warehouse, checking an order’s status, recording pay-
ments, delivering orders and entering new orders. The
database consists of nine tables which are depicted in Fig-
ure 2. In this figure one can observe how the tables in
the benchmark depend on each other. Note that the rows
of all tables, except for the table “Item”, depend on the
number of warehouses.

The TPC-C benchmark may be influenced by the system
architecture as cache contention can lead to a significant
degradation of performance for multi-core systems [11].
For example if multiple threads edit the same cache-line,
this can result in lock contention which can lead to reduced
scalability.

3. RELATED WORK
There exists prior work on lazy databases as well as tree-
structured databases and possible concurrency control mech-
anisms.

Wevers et al. describe a concurrency control mechanism
based on lazy evaluation [10]. This concurrency control
mechanism has also been implemented and evaluated with
micro-benchmarks. This paper also describes in its future
work that root contention limits this approach. This re-
search will address and test a possible solution for this.

Faleiro et al. [4] describe how lazy transactions can be
used in databases and what the advantages and challenges
are that come with it. They have also shown that some
workloads are less suitable for lazy evaluation. Their ap-
proach differs from our approach as they delay evaluation
whereas in our approach the transactions are split into
smaller parts.

Argo et al. [1] have explored the possibility of a DBMS
in a purely functional language. They assume a binary
tree as a structure for the database. Some drawbacks are
also pointed out, such as abortable transactions and the
use of balanced trees. Their approach also uses a tree-
structure and lazy evaluation to effectively execute trans-
actions concurrently. Their approach also points out that
the tree needs to be balanced whereas in this approach
this is addressed by using tries.

Mu et al. [8] explain a new concurrency control protocol
for distributed transactions which outperforms two-phase
locking and optimistic concurrency control. This is a pro-
tocol that could help solve root contention.

4. METHODS OF RESEARCH
There are several ways in which root contention could be
reduced such as using concurrency control [2, 7, 8] on the
leaves and splitting the overall data structure in smaller
partitions (See Section 5). The splitting of the overall data
structure into smaller partitions will be investigated and
taken as the option to be implemented and experimented
with. This approach has been chosen as using concur-
rency control on the leaves could introduce large amounts
of overhead for the concurrency control mechanism and
thus may not be the best approach. Moreover partition-
ing the database can lead to using concurrency control on

the leaves, if the database is split in partitions consisting
of only one variable.

The implementation will build upon the current imple-
mentation made by Wevers discussed in [10], which has
been made using Scala [3]. The approach of partitioning
the database will be evaluated using micro-benchmarks
and the TPC-C benchmark. The results will consist of
measurements showing the performance of the implemented
solution on throughput and scalability. For implementa-
tion details of the micro-benchmarks and TPC-C bench-
marks, see Section 6.1 and 7.1 respectively.

The effect of the number of partitions, number of par-
titions per transaction and the number of operations per
transaction are investigated using micro-benchmarks. The
TPC-C benchmark is used to investigate the effect of the
number of warehouses on scalability. The TPC-C bench-
mark will also be used to investigate the scalability com-
pared to the original solution, as proposed by Wevers et
al. [10], and ScalaSTM.

Our hypothesis is that the implemented solution will pro-
vide an improved throughput in workloads where many
overlapping small transactions, which are distributed over
different partitions, are committed compared to the per-
formance of the original solution. A similar throughput
to the original solution is expected when the transactions
want to change variables in the same partition. In this
case, all transactions are applied to the same root, thus
root contention will occur resulting in a similar situation
as the original. Note that some overhead of the concur-
rency control mechanism can result in slightly worse re-
sults than the original solution. Worse results may also
occur when very large updates are executed as this can
result in lock contention.

All experiments have been run on a computer with 4 AMD
Opteron(tm) Processors 6376, where each one has 16 cores.
Thus the computer can run 64 threads concurrently, and
it has 516GB RAM. The OpenJDK Runtime Environment
IcedTea 2.6.6 with Java version 1.7 is used on Linux ker-
nel 3.13.0. Every experiment has been run with the flag
-XX:+UseNUMA.

5. TECHNIQUES TO REDUCE ROOT CON-
TENTION

A possible approach to reduce root contention is to use a
concurrency control mechanism such as 2PL or OCC on
the leaves of the tree. To be able to use concurrency con-
trol on the leaves to solve root contention, the suspended
computations should be added to the leaves directly in-
stead of at the root of the tree. This evades the problem
of root contention, although concurrency control is needed
to ensure correct commits of transactions.

Another possible approach to reduce root contention is
to split the tree-structure into multiple partitions. Split-
ting the data structure into smaller partitions will result
in a collection of several smaller trees which each have
their own root. For example the tree of Figure 1 could
be split into two smaller trees. The first tree will con-
tain the variables v1 and v2 and the second tree will con-
tain the variables v3 and v4 (See Figure 3b). The first
transaction which will be committed wants to update v2.
The second transaction wants to update v3. To commit
the first transaction, it will be applied to the root of the
first tree. The second transaction has to be applied to
the root of the second tree. Thus one transaction need
to be pushed down in the first tree and one transaction
in the second tree (See Figure 3b). If the tree was not
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(a) Two transactions are
added to a database that is
not partitioned and pushed
down.

(b) Two transactions are
added to a partitioned
database and pushed down.

Figure 3: Difference between adding and pushing
down two transactions to a database that is not
partitioned, and to a partitioned database.

split, two transactions would have to be pushed down in
the original tree structure (See Figure 3a). Thus by split-
ting the data structure in smaller partitions, which results
in having multiple roots, root contention was reduced in
this case. A concurrency control mechanism is needed to
correctly commit transactions. An example will be given
to show the importance of using a concurrency control
mechanism. Take a database consisting of four variables,
v1, ..., v4, which is split into two smaller partitions. The
first partition contains v1 and v2, the second partitions
contains v3 and v4. Now take the transactions T1, which
will update v1, ..., v3, and T2, which will read v2. If no
locks are used, it is possible that v2 is read before it has
been updated, thus resulting in a different result compared
to when transactions are executed sequentially. However,
transactions should uphold the properties ACID. The iso-
lation property ensures that any concurrent execution of
transactions results in the same state compared to when
the transactions are executed sequentially.

Several concurrency control mechanisms can be used such
as 2PL and OCC. Bulk transactions executed concurrently
with OLTP transactions likely result in many conflicts.
Therefore it is concluded that OCC may not be the best
option as this concurrency control mechanism’s main as-
sumption is that the transactions often complete without
conflicts. Thus 2PL has been chosen to be implemented.

6. MICRO-BENCHMARKS
6.1 Implementation
For the micro-benchmark the following variables need to
be defined: number of threads, time to run and the work-
load. The workload depends on four other variables

1. Number of partitions: This number defines in how
many partitions the database should be divided.

2. Number of elements per partition: This number de-
fines how large the partitions are in terms of number
of elements. An element represents a variable in the
database.

3. Number of partitions per transaction: This number
defines how many partitions a transaction will, at
most, update.

4. Number of operations per transaction: This number
defines how large a transaction is in number of op-
erations.

The effect of the number of partitions, number of parti-
tions per transaction and the number of operations per
transaction are investigated using micro-benchmarks. To
investigate this, these factors will be changed while the
other factors stay constant. In order to determine the ef-
fect of the factors, the amount of operations performed is
compared.

In the beginning of the micro-benchmark a new database
is instantiated as well as a reentrant lock for each partition
of the database. Then, based on the number of partitions
per transactions, partitions which should be updated are
randomly chosen. For each transaction per partition that
should be updated, an update function is made. An up-
date function stores the changes between the old and new
data. This update function will store the update func-
tion that needs to be applied for each transaction. The
elements which should be updated in each partition are
chosen at random. Each specific variable will be updated
such that the new value equals the old value plus one.
When everything that should be updated has been chosen
at random, all partitions that need to be updated will be
locked. Note that it is important that the locking will al-
ways happen in the same order otherwise a deadlock may
occur. To avoid this problem, the array containing par-
titions which need to be updated will always be ordered
before any locks are used. Then for each transaction, the
updated partitions will be locked and the update function
will be applied. The database is then updated with this
result. Now all locks which were acquired will be released.
At last, for each update function the warehouse which was
updated will be forced to evaluate. Immediate evaluation
is preferred to avoid memory constraints and it does not
reduce concurrency compared to delayed evaluation [10].

The constant factors have been chosen based on the de-
scription of the TPC-C benchmark. In Table 1 the con-
stant factors are shown. The first variable is the number of
partitions per transaction. Note that this does not mean
that it will update only five variables in a partition, as a
transaction may consist of multiple operations. The parti-
tions to be updated will be chosen at random and therefore
it could occur that one partition may be updated multiple
times, therefore this number defines how many partitions
a transaction will change at most. The second variable
is the number of operations per transaction. The chosen
value, 10, has been chosen as this is the average number
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Table 1: Constant factors in micro-benchmarks

Name Value
Number of partitions per transaction 5
Number of operations per transaction 10
Number of elements per partition 100.000
Number of partitions 150

of different items in a new order in the TPC-C bench-
mark. This seemed like a representative value as enter-
ing a new order is the most frequent type of transaction
in the benchmark. The third variable is the number of
elements per partition, 100.000, which corresponds to the
number of items for which a warehouse maintains the stock
in the TPC-C benchmark. The last value, the number of
partitions, is based on what would seem a good split to
maximize concurrency. Two options seemed reasonable:
splitting at the warehouses or splitting at the districts of
warehouses. Splitting at the warehouses results in one
level less in which the variables have to be pushed down
whereas splitting at districts results in two levels less in
which the variables have to be pushed down. Moreover
splitting at districts results in more roots to commit to
which could lead to better division of the workload over
the different roots. Therefore it has been chosen to split at
the districts of warehouses. Each warehouse in the TPC-C
benchmark must have ten sales districts. Assuming there
would be 15 warehouses, this results in 150 partitions.

6.2 Results
The micro-benchmarks will be run in 8 concurrent threads
and each run will be given 2 minutes. Outliers have not
been discarded. The effect of the following three factors
on throughput is investigated: number of operations per
transaction, number of partitions per transaction and el-
ements per partition. In each graph you can observe one
line representing the situation when no partitioning is used
and one line representing the situation with partitioning.

In Figure 4a the effect of the number of operations per
transaction on throughput is shown. When transactions
consist of a large amount of operations, the throughput in-
creases drastically when using partitioning with 2PL com-
pared to using no partitioning. Note that this is because
many operations are performed on the same variable. Over-
all partitioning provides an improved throughput. There-
fore we conclude that partitioning with 2PL provides im-
proved throughput if a transaction consists of 8 or more
operations.

Figure 4b shows the effect of the number of partitions per
transaction. Partitioning with 2PL provides an improved
throughput throughout all amount of partitions per trans-
action. When no partitioning was used, data could only
be collected up until 212 transactions as afterwards the
stack was not large enough. The decrease in through-
put when using 214 or more partitions per transaction is
caused by lock contention. When using 214 partitions per
transaction, and 10 operations per transaction, it results
in 163.840 operations that need to be performed. Since the
database has a total of 150.000 elements, lock contention
is guaranteed to occur. When using more partitions per
transaction, lock contention will only increase resulting in
less throughput.

The effect of the partition size on the throughput is shown
in Figure 4c. Partitioning with 2PL provides improved
throughput when the partitions are smaller and it starts
to act similar to no partitioning when the partitions be-
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(a) The effect of the number of operations per transaction
on throughput, where each operation is an update.
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(b) The effect of the number of partitions per transaction
on throughput, where each operation is an update.
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(c) The effect of partition size on throughput, where each
operation is an update.

Figure 4: Results of the micro-benchmarks
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come larger. An important note with this experiment is
that for partitioning the standard 150 partitions were used
whereas the base case has only one partition. As a re-
sult the database used without partitioning is 150 times
smaller than the database used with partitioning. This
may influence the results as smaller databases are more
prone to conflicts. Thus using no partitioning results in a
higher probability of conflicts in the whole database. One
can roughly guess the throughput, with no partitioning,
based on the database size. This can be done by tak-
ing a number of variables in the partitioning with 2PL,
for example 16. The database for this case consists of
150 partitions with each 16 elements thus the database
has 2400 elements. You can then look up this number on
the x-axis, this is roughly around 211, and read the corre-
sponding value belonging to no partitioning. In this case
no partitioning has a throughput of around 4.5M whereas
partitioning has a throughput of around 11M. This in-
dicates that partitioning a database in smaller partitions
provides improved throughput as stated earlier.

6.3 Discussion
Transactions with 16 or more operations per transaction
had an improved throughput when partitioning was used
with 2PL. This is because, due to the partitioning, the
transactions need to be pushed down less levels. When
the transaction consists of more operations, the chance in-
creases that more variables need to be updated. Therefore
the transaction likely needs to be pushed down to more
leaves. The throughput increases when more operations
are done per transaction, because the advantage of having
to push down less levels increases when this has to be done
for more variables.

Partitioning with 2PL provided overall improved through-
put for different number of partitions per transaction. This
is due to the fact that when using partitions, the transac-
tions need to be pushed down less levels. The amount of
levels stays the same throughout the benchmark, thus the
overall improved throughput is also constant.

The throughput was improved when using smaller parti-
tions and more operations per transaction. This is as ex-
pected as the transactions need to be pushed down fewer
levels in the tree-structure. Thus one can conclude that
there is an overall improved throughput.

It is important to note that, in the micro-benchmarks,
forcing warehouses per update function may result in forc-
ing one warehouses multiple times if this warehouses has
been updated multiple times. This could be addressed by
storing all updated keys in an array and to force all the
unique keys.

7. TPC-C
7.1 Implementation
Now the implementation for the TPC-C benchmark will be
discussed which is based on the implementation of Wevers
et al. [10]. In their implementation the database consists
of two maps. The first contains all warehouses and the sec-
ond contains all items. In this implementation the choice
has been made to use an array containing all warehouses.
Another array has been made which contains a reentrant
lock, one for each warehouse. Padding has been added
to the array containing the warehouses in order to avoid
cache-line contention [11]. The padding has been added
by making the array 16 times as big and every ith element
of the non-padded array was placed on the 16 ∗ ith entry
of the padded array. This padding changes depending on

which system architecture is used. Therefore the specific
padding used in this case may need to change depending
on the system architecture to avoid cache contention.

Note that the results have been corrected for the time
spent on garbage collection. This has been done by mea-
suring the time spent on garbage collection, which is used
to calculate the ratio spent on garbage collection. The
amount of transactions that could be performed is then
calculated by dividing the amount of transactions per-
formed by the ratio spent performing transactions. This
ratio is calculated by 1 − r, with r is the ratio spent on
garbage collection.

The TPC-C benchmark is meant to be measured in tpm-C,
the number of orders fully processed per minute. However
multiple runs of one second were used instead to reduce
the runtime of the experiments.

The TPC-C benchmark has been measured using 20, 21,
..., 28 threads. For each measurement nine runs have been
made, where the two worst and two best results have been
discarded, then the average has been calculated which is
taken as the final result of a run. The two best and worst
results are discarded to avoid influence of outliers. A run
is influenced by the following five other factors: introduc-
tion time, running time, number of threads, number of
warehouses and the defined workload.

The introduction time defines a warm-up time in which
no measurements are collected and which is used to try
and avoid any side-effects. The running time defines how
long the test will run. The number of warehouses deter-
mines how many warehouses there are in the database and
thus how large the database is. The workload defines how
each transaction of the TPC-C benchmark will be han-
dled. While a workload is running, it will choose which
method to execute taking into account that some meth-
ods are executed more frequently. Monitoring stock level,
checking an order’s status and delivering an order all have
a chance of 4%, recording payments has a chance of 43%
and entering a new order has a chance of 45% to be exe-
cuted.

The methods that have been made are similar to those of
Wevers et al. [10]. Therefore a rough outline is given and
the changes that have been made are discussed in more
detail.

When entering a new order, first all order lines and the to-
tal amount of the order are computed optimistically. Then
an update function for stocks per warehouse has been
made. This update function needs to be applied to the
stocks of the warehouses. Then another update function
is made in order to insert the order into the warehouse and
update the stock. It is important that the update func-
tions have been merged, otherwise the warehouses need to
be locked longer in order to apply all updates. The up-
date functions are then merged so that only one update
function needs to be applied to the database. The last
update function, which inserts an order, is merged with
the update function which updates the stock mentioned
earlier. Locks will be needed when committing the trans-
actions to the database, this is the same as applying the
update function to the database. For each variable that is
updated by the update function, a lock on the correspond-
ing warehouse is acquired and the update function is then
applied to the warehouse. When all warehouses have been
updated, all locks are released. At last all newly added
suspended computations are evaluated. The suspended
computations include the new order, the related customer
and the stock of the ordered items.
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Recording a payment starts by retrieving the customer’s
id using a snapshot of the database. Update functions are
then made which contain information such as an update
of the year-to-date of the warehouse and district as well as
financial information of the customer. For each variable
that is updated by the update function, a lock is acquired
on the corresponding warehouse. The update function is
then applied to the warehouse and the lock is released.
The suspended computations that have been added to the
district and customer will then be forced to evaluate.

Checking an order’s status is a read-only operation. Reads
can be quite expensive as they can trigger a large number
of suspended computations. Therefore reads should be
performed on a snapshot when no locks are active. Thus
first a snapshot of the corresponding warehouse is made
after which all other information is derived from this snap-
shot. Only one warehouse is needed to check an order’s
status, therefore no locks are needed to obtain this snap-
shot. However if multiple warehouses are required in a
read-only operation, it is important to note that locks are
needed to obtain this information. Otherwise it is possi-
ble that you take a snapshot of the first warehouse, then
a transaction updates the first and second warehouse, af-
ter which you take a snapshot of the second warehouse.
In this case the combined snapshots represent a situation
that has never occurred in the database.

The method used for delivering an order starts by taking a
snapshot of the database. For each warehouse the districts
need to be updated with information such as determining
the new order lines and updating the customer’s order with
the delivery information. When these new changes have
resulted in a list of updated districts, the commit phase
is started. First a lock is acquired on the warehouse of
the districts. Then the districts of the warehouse are up-
dated with the list of districts. At last the lock is released.
The suspended computations, that have been added to the
database, will then be forced to evaluate.

Monitoring the stock level is, just as checking an order’s
status, a read-only operation. This read operation also
has only one corresponding warehouse, thus no locks are
needed. Therefore first a snapshot is taken of the ware-
house of which the stock level needs to be overseen. The
read operations are then performed on this snapshot.

Note that all operations, which are not read-only, use locks
in their commit phase. Although another operation may
commit between the commit phase and the forcing of the
evaluation of the current operation, it is certain that the
suspended computations have been committed and there-
fore will be forced to evaluate.

7.2 Results
The TPC-C benchmark will be run in various numbers of
concurrent threads and each run will be given 1 second.
The effect of the following factors on scalability is inves-
tigated: number of warehouses and number of items in a
warehouse.

The effect of the number of warehouses on the scalability
has been measured using the TPC-C benchmark. The re-
sults are depicted in Figure 5a. One can observe that the
scalability improves when the database consists of more
warehouses. Comparing the scalability of 2PL partition-
ing (see Figure 5a), with the original solution (see Figure
5b) shows that the scalability significantly increases when
using 32 or more threads with 2PL partitioning. The orig-
inal solution seems to scale only up to 16 threads. Fig-
ure 5c shows the same measurements using ScalaSTM.

1 2 4 8 16 32 64 128 256
0

0.2M

0.4M

0.6M

0.8M

1.0M

Number of threads

T
ra

n
sa

c
ti

o
n
s

p
e
r

se
c
o
n
d

1 warehouse 5 warehouses

10 warehouses 20 warehouses

40 warehouses 100 warehouses

(a) The effect of the number of warehouses on scalability
using the lazy TPC-C benchmark with partitioning.
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(b) The effect of the number of warehouses on scalability
using the lazy TPC-C benchmark without partitioning.
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(c) The effect of the number of warehouses on scala-
bility using the TPC-C benchmark implemented with
ScalaSTM.

Figure 5: Result of the TPC-C benchmarks
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Partitioning with 2PL provides an improved scalability
if the database has 20 or more warehouses compared to
ScalaSTM.

7.3 Discussion
Note that when using one warehouse, the scalability is
worse compared to the original solution. This is because
when forcing evaluation, the most recent version is taken
from the database which can lead to forcing the evalua-
tion of other computations that have been added as well.
When there is one warehouse, this warehouse will always
be forced to evaluate. As a result, more communication
between processors is needed thus it leads to a reduced
throughput.

Note the drop in performance after 64 threads in Figure
5a. This is due to the fact that the experiments have been
run on a computer with 64 cores and it will have to start
context-switching when more than 64 threads are used.

Figure 5a shows that when using more warehouses, the
scalability improves. This is due to the fact that the
number of committed transactions stays the same, which
are then divided over more partitions. This results in
the root contention being divided over more partitions
as well. Moreover, lock contention will reduce when the
same amount of transactions are divided over more ware-
houses. Thus, this shows that using more partitions results
in higher scalability.

8. DISCUSSION
Our hypothesis was that reducing root contention would
improve scalability. Our experiments show that scalabil-
ity improves when using more warehouses. This is as ex-
pected, since using more warehouses result in more par-
titions over which the transactions are divided thus root
contention is reduced. The other expected result was that
the solution would provide improved throughput. Our ex-
periments show that throughput was improved when using
more partitions and more operations per transaction. This
is as expected as the transactions need to be pushed down
fewer levels in the tree-structure.

One should however take into account that random data
was used for the micro-benchmarks and TPC-C bench-
marks. It has not been tested how this solution performs
when using skewed random data, a situation that is not
very rare in databases.

In this research, testing was limited to 2PL, and split-
ting the data structure at warehouse level. Using smaller
trees, splitting below warehouse level, can result in a bet-
ter performance as using smaller trees likely results in less
contention. Using smaller trees would result in more par-
titions over which the root contention is divided thus root
contention would be reduced, assuming that not all trans-
actions need to commit at the same partition. Therefore
one would expect better throughput when using more par-
titions. This is supported by the experiments which show
that the throughput improves when partitions are smaller.
However one should take into account that when updating
more partitions, the overhead of 2PL becomes greater.

9. CONCLUSIONS AND FUTURE WORK
A mechanism to solve root contention for lazy tree-structured
databases has been presented as well as how an imple-
mentation can be made. This mechanism splits the data
structure in multiple partitions in order to divide the root
contention over the multiple partitions. The experiments
show that splitting the data structure, using 2PL as a con-

currency control mechanism to ensure atomicity, provides
improved scalability compared to the original solution as
well as ScalaSTM. This scalability improves when using a
more partitions.

9.1 Future Work
Micro-benchmarks have been run using 2PL as a concur-
rency control mechanism. However another mechanism,
which has not been considered, may provide improved scal-
ability and throughput.

Also, in the micro-benchmarks only updates have been
used. It would be interesting to also investigate the effect
of read transactions.

Another option that could be investigated, depends on the
division of the workload. In these micro-benchmarks all
data was chosen at random, however databases may have
certain values which are often used. It would therefore be
interesting to investigate the consequences committing a
large number of the transactions of a specific value, district
or warehouse. This may represent a situation that is more
realistic for some databases.

Another solution for solving root contention could be to
combine several small transactions into one larger trans-
action. When combining multiple transactions into one
transaction, only one transaction needs to be pushed down
from the root. This option did not seem favourable as a
moment needs to be found when transactions are com-
bined. One option is to wait until x transactions have
been committed and then combining them. However a
possible scenario would be that x − 1 transactions have
been committed and it could take a long time until the
last transaction has been committed. Another possibil-
ity is to use a timer and to combine all transactions that
fall within this time zone. It would be interesting to see
if combining transactions is favourable and how this can
best be achieved.
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[3] École Polytechnique Fédérale de Lausanne. The
Scala Programming Language. Retrieved from
http://www.scala-lang.org/, n.d. Accessed:
20-06-2016.

[4] J. M. Faleiro, A. Thomson, and D. J. Abadi. Lazy
evaluation of transactions in database systems. In
Proceedings of the 2014 ACM SIGMOD
International Conference on Management of Data,
SIGMOD ’14, pages 15–26, New York, NY, USA,
2014. ACM.

[5] T. Haerder and A. Reuter. Principles of
transaction-oriented database recovery. ACM
Comput. Surv., 15(4):287–317, Dec. 1983.

[6] HammerDB. Introduction to Transactional (TPC-C)
Testing for all Databases. Retrieved from
http://www.hammerdb.com/hammerdb_

transactionintro.pdf, n.d. Accessed: 14-06-2016.

[7] H.-T. Kung and J. T. Robinson. On optimistic
methods for concurrency control. ACM Transactions
on Database Systems (TODS), 6(2):213–226, 1981.

8



[8] S. Mu, Y. Cui, Y. Zhang, W. Lloyd, and J. Li.
Extracting more concurrency from distributed
transactions. In 11th USENIX Symposium on
Operating Systems Design and Implementation
(OSDI 14), pages 479–494, Broomfield, CO, Oct.
2014. USENIX Association.

[9] F. Raab, W. Kohler, and A. Shah. Overview of the
TPC-C Benchmark The Order-Entry Benchmark.
Retrieved from
http://www.tpc.org/tpcc/detail.asp, n.d.
Accessed: 15-06-2016.

[10] L. Wevers, M. Huisman, and M. van Keulen. Lazy

Evaluation for Concurrent OLTP and Bulk
Transactions. 2016. To appear in proceedings of the
18th International Database Engineering &
Applications Symposium.

[11] Q. Zhao, D. Koh, S. Raza, D. Bruening, W.-F.
Wong, and S. Amarasinghe. Dynamic cache
contention detection in multi-threaded applications.
In Proceedings of the 7th ACM SIGPLAN/SIGOPS
International Conference on Virtual Execution
Environments, VEE ’11, pages 27–38, New York,
NY, USA, 2011. ACM.

9


