
Smart Semantics for Fault Trees
Jip Spel

University of Twente
P.O. Box 217, 7500AE Enschede

The Netherlands
j.j.spel@student.utwente.nl

ABSTRACT
Systems used e.g. in nuclear power plants and railroad
infrastructures require analysis to know about the risk of
failures and the effect of different maintenance strategies
on this risk. One way to analyse these systems is by build-
ing Dynamic Fault Trees (DFTs) and analysing the corre-
sponding Input/Output Interactive Markov Chains (I/O-
IMCs). Although the I/O IMCs are used for analysis,
there is a major drawback, namely the size of the state
space. For larger systems this state space becomes too
large to do any further calculations. Therefore, analysis
of larger FTs is limited by their size.
During the conversion from DFTs to I/O-IMCs irrelevant
behaviour arises. Therefore, we present smart seman-
tics for fault trees, by applying context-dependent state
space generation. This includes an algorithm which sets
a boolean to determine the type of the context. This
boolean determines whether application of these smart se-
mantics is feasible. Furthermore, we propose a definition
of irrelevant behaviour which arises in the conversion of a
DFT into an I/O-IMC.

Keywords
context-dependent, DFT, DFTCalc, I/O-IMC, irrelevant
behaviour, maintenance, risk analysis, smart semantics,
state space

1. INTRODUCTION
Risk analysis is crucial for safety critical systems like nu-
clear power plants, railroad systems and medical equip-
ment. Failure of these systems can be life threatening,
therefore it is desirable to minimise this failure. Further-
more, e.g. a ticket system or the lottery require risk anal-
ysis, since failure will lead to high costs.

One way to perform risk analysis is Fault Tree Analysis
(FTA). Fault Trees (FTs) provide a way to structurally
analyse the impact of the failure of a component on the
system, in terms of availability and reliability. Further-
more, some FTAs integrate maintenance [11] which pro-
vides a way to incorporate the influence of maintenance
on the failure rates.

Standard FTs are limited in their applicability, since they

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy oth-
erwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.
23th Twente Student Conference on IT June 22th, 2015, Enschede, The
Netherlands.
Copyright 2015, University of Twente, Faculty of Electrical Engineer-
ing, Mathematics and Computer Science.

Car breaks down

W1 W2 W3 W4

W5

E

Figure 1: Example of a DFT

don’t consider the sequence of failure. Therefore, Dy-
namic Fault Trees (DFTs) [8] were introduced. They ex-
tend standard FTs by including additional dynamic gates,
which extend the usability of FTA. In the remainder of this
paper, we will refer to standard FTs as FTs.

Example 1. Figure 1 shows a simplified DFT for a car.
The circles are basic events, they represent elements of the
car. The rectangular shapes are spare gates, they have a
primary input and an input for a spare component. In
this example the four wheels share one spare wheel. This
spare wheel will be used when one of the other wheels fail.
However, when the spare wheel is in use and another wheel
fails, the car breaks down. Furthermore, as modelled by the
OR-gate the car will break down if the engine fails.

One way to analyse DFTs is with continuous-time Markov
chains (CTMCs). CTMCs model every state of the com-
ponents of the DFT. Since a component in a non-maintain-
able DFT is in an inactive, active or failed state, the state
space is exponential to the number of basic events.

Using input/output interactive Markov chains (I/O-IMCs)
instead of CTMCs partly relieves [4] the drawback of the
exponential state space, since it allows intermediate min-
imisation and hiding. Furthermore, this analysis with I/O-
IMCs is fully compositional [4] which allows modular anal-
ysis of the DFT. DFTCalc is a tool for Fault Tree Anal-
ysis (FTA) which uses I/O-IMCs instead of CTMCs [1].
DFTCalc transforms each component of the DFT into an
I/O-IMC with the help of module templates.

Example 2. Figure 2 shows an I/O-IMC for a basic
event in a system. Several transitions may occur in this
I/O-IMC, a? activates the component, λ indicates the fail-
ure rate of a component. Furthermore, the component can
fail when inactive, µ indicates this failure rate.

1

S0

S1 S2 S3

a?
µ

λ f !

Figure 2: Example of an I/O-IMC

Problem Statement.
Even though using I/O-IMCs with intermediate minimi-
sation and hiding instead of CTMC shows a serious state
space reduction [4], the state space still is the bottleneck
in analysing FTs. Therefore, additional state space reduc-
tion is desirable. This research sets out to define smart
semantics for fault trees by applying context-dependent
state space generation, which includes removing unneces-
sary behaviour to reduce the state space. Therefore, we
consider the following question:

How to apply context-dependent state space
generation in the module templates of DFT-
Calc?

To answer this question we analyse the following subques-
tions:

1. Which contexts can be found in the conversion from
a DFT to an I/O-IMC?

2. To what extend does context-depent state space gen-
eration in DFTCalc cause state space reduction in
terms of the size of the state space and the compu-
tation time?

3. How to redesign the module templates of DFTCalc
for the different contexts?

4. How to detect the context for the state space gener-
ation in DFTCalc?

When it is possible to detect different contexts in DFTCalc
and to apply context-dependent state space generation in
the module template, we will implement the application
of these smart semantics in the tool DFTCalc.

Related Work.
In 1981 one of the first handbooks about fault trees was
written by Vesely et al. [18]. It was developed to document
material on fault tree construction and evaluation. Dugan
et al. [8] introduced the additional gates of DFTs to be
able to model sequence dependencies in FTs. In 2002 the
NASA [17] presented a new version of the handbook which
also includes these dynamic gates.

Also research on the formalisation of FTs, extentions to
Markov Chains and the relation between these two have
been done. Hermanns et al. [12] describe Interactive
Markov Chains (IMCs) and explain the necessity. Dugan
et al. [9] introduced a formalisation of DFT’s. Boudali et
al. [3] describe how DFTs can be analysed by using I/O-
IMCs. They also formalise DFTs and show how the ele-
ments of a DFT can be transformed into an I/O-IMC [2].
A technique to integrate maintenance in FTA is presented
by Guck et al. [11], they also introduce smart semantics

(a) OR

k/N

(b) VOTING (c) AND

Figure 3: The gates of a FT

for failure and repair of elements by pattern matching in
the FTs, finding equivalent behaviour of elements and ag-
gregation of similar BEs.

Besides the formalisation research, also research on the
analysis of FTs can be found. Patterson-Hine et al. [15]
developed a modular analysis of dynamic fault trees.
Boudali et al. provide a framework for DFT analysis [4].
Arnold et al. [1] provide a tool, DFTCalc, for analysing
DFTs with I/O-IMCs.

Ruijters et al. [16] provide an overview of the research
done on FTs, DFTs and how to analyse them. Further-
more, Junges’ Master Thesis [13] describes when DFTs are
well-formed.

Organisation of the paper.
The remainder of this paper is organised as follows. Sec-
tion 2 discusses FTs, DFTs and I/O-IMCs and introduces
their formal definition. Furthermore, this section shows
the transformation from a DFT to an I/O-IMC. Section
3 gives the definition of behaviour in I/O-IMCs and de-
scribes the different contexts of behaviour. Furhtermore,
section 3.2 shows how the different context-types arise in a
DFT. In section 4 we state our approach to the problem.
Section 5 contains the results which we obtained during
the research process. We discuss these results in section
6 and we conclude in section 7. Furthermore, we propose
future work in section 8.

2. BACKGROUND
2.1 Fault Trees
FTs consist of basic events (BE), which model the failure
of a physical component of the system, and logical gates.
Figure 3 shows the following gates, which exist in FTs:

• OR The OR gate fails if one of its inputs fails.

• k/N The k/N gate is also known as a VOTING
gate, which fails when k of the N inputs fail. A well
known k/N gate is the 1/N gate, which is an OR
gate.

• AND The AND gate fails if all of its inputs fail.

• INHIBIT The INHIBIT gate will forward the fail-
ure when all of its inputs fail, and the additional
event also occurs. The INHIBIT gate is basically
the same as an AND gate and is therefore not con-
sidered in the rest of this paper.

FTs are directed acyclic graphs (DAGs). FTs disregard
the failure sequence, since they only consider the combi-
nation of failure.

2.2 Dynamic Fault Trees
DFTs extend FTs by having dynamic gates. These gates
enable the possibility to regard the sequence of failure and
the usage of spare elements. When in figure 1 the fifth

2

(a) PAND (b) SPARE (c) FDEP

Figure 4: The dynamic gates of a DFT

wheel breaks down, the car will still work, since this is a
spare wheel. However, FTs can’t model the usage of spare
elements. Figure 4 shows the additional gates of a DFT,
which are listed below.

• PAND The PAND gate will forward failure if all of
its inputs fail in the correct order, which is from left
to right.

• SPARE The SPARE gate allows an additional
component to be added to the system. It consists of
a primary input and zero or spare elements.

• FDEP The functional dependency (FDEP) gate
consists of a trigger event and one or more dependent
events. If the event triggers all dependent events will
fail.

Furthermore, a DFT has, as a FT, BEs. BEs are inactive,
active or failed. When the BE is active, λ denotes its
failure rate. Additionally, BEs can include a parameter α,
the dormancy factor. This dormancy factor is between 0
and 1 and allows the BE to have a different failure rate
when inactive, namely failure rate µ = αλ. There are two
special cases, when α is 0 the BE is a cold spare, in this
case the failure rate when inactive is 0. When α is 1 the
BE is a hot spare, the failure rate is the same as when the
BE is inactive and active.

Definition 4 in [2] formalises the syntax of the elements of
a DFT. Furthermore, definition 5 in [2], as cited below,
formalises the syntax of the DFT.

Definition 1. A dynamic fault tree is a triple
D = (V, preds, l), where

– V is a set of vertices,

– l : V → E is a labeling function, that assigns to each
vertex a DFT component,

– preds: V → V ∗ is a function that assigns to each
vertex a list of inputs.

Furthermore, Junges [13] proposed a definition for well-
formed DFTs. In this paper we assume that all DFTs
which are analysed with context-dependent state space
generation are well-formed.

2.3 Maintenance of FTs
The maintenance of FTs includes inspections, repairs, re-
newals and spare management of the system. The be-
haviour of the BEs is therefore extended with repair possi-
bilities. Furthermore, a repair module is introduced which
listens for the failure of the BE. When a BE fails, this mod-
ule sends out a repair request and subsequently sends the
BE an up signal after a successful repair [11]. Further-
more, maintenance introduces a repair unit which handles
the order of repair of the elements.

2.4 I/O-IMCs
An I/O-IMC consists of states, input actions, output ac-
tions, internal actions and Markovian transitions. An in-
put action (notated with ?) requires synchronisation on an
output action (notated with !). Therefore, input actions
can only be taken when the output action occurs. Internal
actions happen immediately and do not require synchroni-
sation on other I/O-IMCs. Markovian transitions, labelled
with λ and µ, represent system delay.

Definition 1 in [4], as cited below, contains the formalism
of I/O-IMCs.

Definition 2. An input/output interactive Markov
chain P is a tuple < S, s0, A,→,→M>, where

– S is a set of states,

– s0 ∈ S is the initial state.

– A is a set of discrete actions (or signals), where A=
(AI , AO, Aint) is partitioned into a set of input ac-
tions AI , output actions AO and internal actions
Aint. We write AV = AI ∪ AO for the set of visible
actions of P. We suffix input actions with a question
mark (e.g. a?), output actions with an exclamation
mark (e.g. a!) and internal actions with a semi-
colon (e.g. a;).

– →⊆ S × A × S is a set of interactive transitions.
We write s

a−→ s’ for (s, a, s’) ∈→. We require that
I/O-IMCs are input-enabled: ∀s ∈ S, a? ∈ AI , ∃s′ ∈
S · s a−→ s′

– →M∈ S×R>0×S is a set of Markovian transitions.

We write s
λ−→

M

s’ for (s, λ, s) ∈→M

We denote the elements of P by SP , S
0
P , AP ,→P ,→M

P and
omit the subscript P whenever clear from the context. The
action signature of an I/O-IMC is the partitioning (AI ,
AO, Aint) of A. We denote the class of all I/O-IMCs by
IOIMC.

2.4.1 Parallel composition
One of the properties of I/O-IMC is that they are compo-
sitional, this means that a set of I/O-IMCs which corre-
spond to elements of a system can be aggregated into one
one I/O-IMC. This aggregation is done in a stepwise and
hierarchical way [1]. Arnold et al. denote parallel com-
position of two I/O-IMCS I1 and I2 with I1||I2. We will
also use this notation. The result Ic of I1||I2 is also an
I/O-IMC and it has as state space the Cartesian product
of the state spaces of I1 and I2. Furthermore the following
two rules are used (as stated in [1]):

• If an action doesn’t require synchronization, then I1
and I2 evolve independently.

• If an action a? on an interactive transition requires
synchronisation, then it can only be taken at the
time when another I/O-IMC performs output on a!.

Example 3. Figure 5 shows the parallel composition of
two I/O-IMCs. Where I/O-IMC I1 shows an activation
of a component after a delay denoted by v, I/O-IMC I2
shows a BE of a DFT, which can be activated with the
activation signal. In the parallel composition of I1 and
I2 the states are denoted by first the corresponding state
in I1 and secondly the state in I2. Furthermore, there is
synchronisation on action a.

3

S0 S1 S2

v a!

(a) I/O-IMC I1

S0

S1 S2 S3

a?
µ

λ f !

a? a?

(b) I/O-IMC I2

0,0

0,2

1,0

1,2

2,2

2,1

2,3

µ

v

v

µ

a!

a!

λ f!

(c) I1||I2

Figure 5: Parallel composition of two I/O-IMCs

2.5 From DFT to I/O-IMC
DFTCalc builds a minimal I/O-IMC to analyse the DFT
[1]. The creation of an I/O-IMC from a DFT involves the
following steps.

1. Each component is transformed into an I/O-IMC,
with the help of module templates.

2. Two I/O-IMCs are parallel composed to one I/O-
IMC, a heuristic determines which IMCs will be com-
posed.

3. The signals that are no longer necessary for compo-
sition are hidden.

4. The resulting I/O-IMC is minimised.

5. When there are still two or more I/O-IMCs left,
move back to step 2.

Step 1 transforms each component in the DFT into an I/O-
IMC. Every I/O-IMC has an initial state (indicated with
an incoming arrow), intermediate states, a failed state (in-
dicated with grey) and an absorbing state (indicated with
an additional circle).

Definition 6 in [2] gives the relationship between a DFT
and I/O-IMC. This definition leads to the following I/O-
IMCs corresponding to gates:

AND Figure 6.a shows how an AND gate with two inputs
can be transformed into an I/O-IMC.

Basic Events Figure 2 shows the I/O-IMC belonging to
a BE with dormancy factor α, such that µ = αλ. When
α is between 0 and 1, the BE is a warm BE. When α is
0, the BE is a cold BE and the transition from state s0 to
state s2 can be removed. When α is 1, the BE is a hot
BE, figure 2 could have been simplified by removing state
s1, since the failure rate would always be λ, independent
of whether the component is active or inactive.

FDEP The functional dependency (FDEP) is modelled
with a firing auxiliary function FA [2]. It can be seen as
an OR port where a firing signal is sent when one of the
dependent functions fails or when any of the trigger events
occur.

OR Figure 6.b shows the I/O-IMC corresponding to an
OR gate with 2 input events, if one of the input events is
triggered, the firing signal is sent.

S0

S1

S2

S3 S4

f1?

f2?

f2?

f1?

f !

(a) AND

S0 S1 S2

f1?

f2?
f !

(b) OR

S0

S1

S2

S3 S4

f1?

f2?

f2?
f !

(c) PAND

S0

S1

S2

S3

S4 S5

f1?

f2? f1?

a! f2?
f !

(d) SPARE

Figure 6: I/O-IMCs for non-maintainable gates in a DFT

PAND The priority AND gate with two inputs corre-
sponds to figure 6.c. When f2? fails first the system will
move to an absorbing state, indicated with X.

SPARE The I/O-IMC for a spare gate with 1 primary
and 1 spare component corresponds to figure 6.d. When
the input fails an activation signal is sent, which activates
a spare component. When two subsystems have the same
spare component a they need to communicate when they
use a. When the first subsystem uses a the second subsys-
tem receives the input action, a?, hence it knows that the
spare component is no longer available.

VOTING The OR gate can also be seen as an 1/2 vot-
ing gate, when k of the n inputs fail, the failure will be
propagated.

3. DIFFERENT CONTEXTS
To apply context-dependent state space generation, it is
necessary to determine in which contexts a different state
space generation is necessary. In the conversion of a DFT
into an I/O-IMC a context distinction can be made be-
tween:

• Type 1: elements of the DFT which are known to be
activated directly when the system starts and can’t
get to an inactive state.

• Type 2: elements of the DFT which will be inactive
for some time, or which might become inactive.

The structure of the DFT shows the context of a compo-
nent is, based on definitions 4, 5 and 6.

When it is known from the structure of the DFT that
the component is of context type 1, irrelevant behaviour
arises. This irrelevant behaviour consists of two parts.
First of all the activation transition will be superfluous,
since it is known that the component will be activated
right at the start of the system. Secondly, the transition
which models failure while the component is inactive is
unnecessary, since the component is activated directly at
the start. The following definitions will formalise these
statements. Hereby, we will use the definitions of a DFT
and an I/O-IMC as stated in section 2.

3.1 Definitions
First of all, we consider behaviour in an I/O-IMC as all the
possible transitions. So it is the union of the interactive
and Markovian transitions.

Definition 3. In an I/O-IMC behaviour is a transi-

tion si
x−→ sj ∈→ ∪ →M where x ∈ A ∪ R>0. All the

behaviour in an I/O-IMC forms → ∪ →M

4

To apply context-dependent state space generation, it is
necessary to know what behaviour is irrelevant in an I/O-
IMC.

Definition 4. Behaviour b1 = si
x−→ sj in I/O-IMC M

is irrelevant when

– b1 will occur directly when the I/O-IMC starts or

– ∃ behaviour b2 = si
x−→ sk where b2 will occur before

b1 or

– b1 will never occur.

This previous definition only states when behaviour is ir-
relevant. However, we need a formalism for irrelevant be-
haviour in the conversion of a DFT to an I/O-IMC. Since
we distinct two types of DFTs namely, non-maintainable
and maintainable, we also need two definitions namely,
definitions 5 and 6.

Definition 5. Behaviour b1 = si
x−→ sj in I/O-IMC M

is irrelevant when in the corresponding non-maintainable
DFT D = (V, preds, l)

– b1 corresponds to the activation part of v ∈ V and,

– l(v) has no spare parents in D or p is a spare parent
of l(v) → l(v) is primary input in preds(p).

or when,

– ∃ behaviour b2 = si
x−→ sk and,

– b2 corresponds to the activation part of v ∈ V and,

– l(v) has no spare parents in D or p is a spare parent
of l(v) → l(v) is primary input in preds(p).

or when,

– ∀ behaviour b2 = sh
x−→ si b2 is irrelevant.

Definition 6 differs from definition 5 by handling the chil-
dren of spare elements differently. After a failed spare
is repaired, it should change from active to inactive, so
even though the primary spare was activated directly at
the start of the system, it might eventually get into an
inactive state.

Definition 6. Behaviour b1 = si
x−→ sj in I/O-IMC M

is irrelevant when in the corresponding maintainable DFT
D = (V, preds, l)

– b1 corresponds to the activation part of v ∈ V and,

– l(v) has no spare parents in D.

or when,

– ∃ behaviour b2 = si
x−→ sk and,

– b2 corresponds to the activation part of v ∈ V and,

– l(v) has no spare parents in D.

or when,

– ∀ behaviour b2 = sh
x−→ si b2 is irrelevant.

Example 4. Figure 7 shows the I/O-IMC correspond-
ing to node A. Since node A is a basic event and the gate
is an OR gate connected to the top event, it is known that
A will always be active. The corresponding I/O-IMC also
shows the activation transition and a probability of failure
while inactive.These two parts of behaviour are irrelevant.

A B

T

(a) A DFT

S0

S1 S2 S3

a?
µ

λ f !

(b) standard semantics
for A

S1 S2 S3
λ f !

(c) smart semantics for A

Figure 7: An example of irrelevant behaviour

Example 5. Figure 8 shows the I/O-IMC correspond-
ing to the DFT in the figure. Since there are no spare
elements in this DFT, and the AND gate is connected to
the top level event, it is known that the AND gate is acti-
vated directly at the start of the system. Furthermore, A
and B are children of the AND gate, so they will also be
activated directly at the start of the system. So, this whole
DFT is of the first context-type. When we parallel com-
pose the I/O-IMCs of the elements of the DFT, we will get
figure 8.a. Since the whole system will be activated directly
at the start the following transitions will never occur:

s0
µb−→ s1, s0

µa−−→ s2, s1
µa−−→ s12, s2

µb−→ s12, s4
µb−→ s3,

s5
µa−−→ s6, s7

µb−→ s12 and s9
µa−−→ s12.

Furthermore, the input activation signals can be removed,
which are:

s0
a?−→ s4, s0

b?−→ s5, s1
a?−→ s3, s2

b?−→ s6, s4
b?−→ s8,

s6
a?−→ s8, s7

b?−→ s10 and s9
a?−→ s11.

This removal leads to figure 8.c. When λa equals λb this
I/O-IMC will be further optimised into 8.d

3.2 Different types in DFT
These definitions together with the two types lead to five
different situations:

1. non-maintainable component with no spare parents;

2. non-maintainable component which is the primary
input of the spare parent;

3. non-maintainable component with spare parents;

4. maintainable component with no spare parents;

5. maintainable component with spare parents.

Numbers 1, 2 and 4 are of context-type 1, number 3 and
5 are of context-type 2. Since a maintainable component
which is the primary inputs of a spare may become inac-
tive, all inputs for a maintainable spare will be of type 2.
Figure 9 shows the I/O-IMCs corresponding to BEs of the
different situations.

4. APPROACH
This section discusses the steps we took to analyse the
problem and to achieve the goal of reducing the state space
by applying smart semantics.

5

S0

S1

S2

S3

S4

S5

S6

S7

S8

S9

S10

S11

S12 S13

µb

µa

a?

µb

a?

b?

µa

b?

λa

b?

a?

λb

b?

λa

λb

a?

λb

λa

µb

µa

λa

λb

µa

µb

f !

(a) Standard semantics for an DFT consisting of an
AND gate with two BEs

A B

T

(b) DFT with an AND gate

S0

S1

S2

S3 S4

λa

λb

λb

λa

f !

(c) Smart semantics for an DFT consisting of an
AND gate with 2 BEs

S0 S1 S3 S4
λa + λb λa f !

(d) Optimalisation when λa equals λb

Figure 8: An example of irrelevant behaviour in the con-
version of an AND gate

In section 3 we answer the first subquestion by giving the
definition behaviour and determining the different con-
texts in which state spaceare generated. To determine
different contexts in DFTCalc we analysed several case
studies in which we transformed DFTs into I/O-IMCs.
Section 4.1 contains these case studies. Furthermore, we
studied the source code of DFTCalc, to understand the
module templates which are used in the conversion of a
DFT to an I/O-IMC.

After the determination of the different contexts, we anal-
ysed the effect of applying context-dependent state space
generation. We did this by comparing the final and maxi-
mal state space and computation time of I/O-IMCs of dif-
ferent DFTs with and without the smart semantics. We
used these results to determine that the smart semantics
contribute significant to the state space reduction.

Since the state space reduction through smart semantics is
satisfactory, we implemented the smart semantics in DFT-
Calc. Furthermore, we constructed an algorithm to detect
when we are in a different context. This algorithm checks

S1 S2 S3
λ f !

(a) I/O-IMC for BE in
situation 1 and 2

S0

S1 S2 S3

a?
µ

λ f !

(b) I/O-IMC for BE in
situation 3

S0 S1 S2
λ fail!

up?

(c) I/O-IMC for BE in
situation 4

S0 S1 S2

S3 S4 S5

µ

λ

fail!

fail!

up?

up?

a
ct
?

a
ct
?

a
ct
?

d
ea

ct?

d
ea

ct?

d
ea

ct?

(d) I/O-IMC for BE in
situation 5

Figure 9: The I/O-IMCs corresponding to different types
of BEs.

Top level

E3 E5 E6 E4 E2 E1 E7

Figure 10: DFT for the sensor filter

whether or not a component has spare parents, which de-
pends the context in which the state space needs to be
generated.

4.1 Case studies
To analyse the effect of the removal of the irrelevant be-
haviour we chose five case studies:

• the cardiac assist system (CAS) [6];

• the cascaded PAND system (CPS) [6, 5];

• the fault-tolerant parallel processor(FTPP) [10];

• the multiprocessor computing system (MCS) [14];

• the sensor filter (SF) [7].

CAS, CPS and FTPP are further specified in [2], in [1] a
further specification of MCS can be found. The SF is an
adaptation of [7]. We chose these five case studies since,
the CAS, FTPP and MCS all contain one or more spare

6

gates, hence, smart semantics is not applicable for all ele-
ments of the DFT. The CPS and SF however, contain no
spare gates, therefore all basic events are active.

All of the case studies were held on a virtual machine with
2 processors and a base memory of 2048 MB.

Cardiac assist system (CAS)
The CAS consists of three independent modules, namely
the CPU, the motors and the pumps. If one of these mod-
ules fails, the system will fail.

Cascaded PAND system (CPS)
The CPS consists of three identical independent modules.
These modules consist of four elements and will only fail
when all of the elements fail. The sequence in which these
modules fail does matter, a PAND gate models this be-
haviour. All the BEs in the CPS are warm.

Fault-tolerant parallel processors (FTPP)
The FTPP-n consists of four logical groups of n processors.
Each group has a shared cold spare. A network component
physically connects one processor of each group. When
this network component fails all connected elements will
be unavailable. In this paper the FTPP-4 is reffered to as
FTPP.

Multiprocessor computing system (MCS)
The MCS consists of two computing modules which are
connected via a bus. Furthermore, they are powered by a
power supply and they share a memory module. A com-
puting module consists of a processor, a memory, a hard
drive and a spare hard drive. The MCS will fail when the
bus fails or when a computing module fails. A computing
module will fail when the power supply fails, when both of
its hard drives fail or when its memory fails and the spare
memory module is already in use or already failed.

Sensor Filter (SF)
The SF consists of AND and PAND gates, which are con-
nected to the top level through an OR gate. Furthermore,
all BEs have a dormancy factor of 0. Figure 10 shows a
DFT for SF.

5. RESULTS
Section 3 answers the first subquestion by stating that
there are two different context-types for which context-
dependent state space generation is necessary, namely the
first type, in which the component of the DFT is directly
activated at the start of the system, and the second type
in which the component of the DFT might be inactive for
some time at the start of the system. This section shows
the other results of this research by stating an algorithm
to detect different context, giving the steps of the imple-
mentation of context-dependent state space generation in
DFTCalc, and providing the final results on the state space
reduction.

5.1 Algorithm
To apply context-dependent state space generation, we
constructed an algorithm to determine which context-type
we are considering. This algorithm is based on definitions
5 and 6. It consists of two parts, a begin and a recursive
part. The first part sets all elements of the DFT to not ini-
tialised, and starts the initialisation by calling initialise()
on the top level node.

The initialisation is the recursive part of the algorithm.
Two versions of this initialisation exist, the first one, pro-
cedure 2, only considers non-maintainable DFTs with the
following gates: AND, OR, PAND, POR, SPARE and
FDEP. The second one, procedure 3 is applicable for main-

Procedure 1 Begin detection context-type

1: for all elements of DFT do
2: component.initialised ← false
3: end for
4: begin ← DFT.getTopNode()
5: begin.initialise()

tainable DFTs.

Procedure 2 considers non-maintainable DFTs. When a
component is not initialised, it is known that it has no
spare parents, since this algorithm works recursively. We
hereby assume that the DFTs are well defined, as stated in
definition 4.9 of [13] When the component type is spare, it
will initialise all its spare children to not active at the start.
Furhtermore, when a component itself is not activated at
the start of the system, it will set all of its children to not
activated as well.

Procedure 2 initialise() for a non-maintainable DFT

1: if not component.initialised then
2: component.active ← true
3: component.initialised ← true
4: end if
5: if component.type is SPARE then
6: for all sparechildren of component do
7: child.active ← false
8: child.initialised ← true
9: end for
10: end if
11: if not component.active then
12: for all children of component do
13: child.active ← false
14: child.initialised ← true
15: end for
16: end if
17: for all children of component do
18: child.initialise();
19: end for

Procedure 3 considers maintainable DFTs. The only dif-
ference between this procedure and procedure 2 is that
when a component type is SPARE it will initialise all its
children to not activated directly at the start of the system.
Since a primary input of a SPARE gate in a maintainable
DFT can become inactive.

Procedure 3 initialise() for a maintainable DFT

1: if not component.initialised then
2: component.active ← true
3: component.initialised ← true
4: end if
5: if component.type is SPARE or not component.active

then
6: for all children of component do
7: child.active ← false
8: child.initialised ← true
9: end for
10: end if
11: for all children of component do
12: child.initialise();
13: end for

7

Table 3: Computation time for toolchain with MRMC

Average time Reduction
smart

Model original semantics

CAS 0m38.98s 0m36.90s 5.33%
MCS 0m39.69s 0m37.35s 5.89%
FTPP 2m36.45s 2m19.25s 10.99%

CPS 0m28.61s 0m26.14s 8.64%
SF 0m24.07s 0m23.35s 2.99%

5.2 Implementation
For the implementation of context-dependent state space
generation in DFTCalc we implemented the algorithm to
determine the context-type of the component of the DFT.
Furthermore, we added special module templates for the
first context-type.

5.2.1 Algorithm in DFTCalc
We implemented the algorithm with the initialisation as
in procedure 2 in DFTCalc for non-maintainable DFTs.
However, with a slight adaptation to this initialisation
part, as stated in initialisation procedure 3 it can be ex-
tended to work for maintainable DFTs as well.

5.2.2 Additional module templates
DFTCalc uses module templates to transform each com-
ponent of a DFT into an I/O-IMC. These templates also
state the case in which a component is activated, and the
transition for failure while inactive. With the application
of context-dependent state space generation these two sit-
uations are unnecessary , therefore, we added module tem-
plates for the first context-type.

5.3 Case Studies
We implemented the application of smart semantics for all
basic gates as described in 2. The results of the case stud-
ies can be found in table 1. Furthermore, we calculated
the percentage of final state space reduction and maximal
state space reduction for the case studies. These results
can be found in table 2. Additionally, table 3 contains the
computation time of the entire toolchain.

The probability of failure for all five case studies with and
without the smart semantics is the same, furthermore, no
errors occur during compilation of DFTCalc and compu-
tation of the DFTs.

6. DISCUSSION
6.1 Results
All of the five case studies have a reduction in the final
state space and the final number of transitions. However,
the reduction differs for every case study. All of the case
studies have different characteristics, e.g., spare elements
or cold BEs. When a DFT doesn’t contain spare elements
less reduction in the state space is possible, since the tool
combines all activation signals.

Furthermore, the transformation of a cold BE to an I/O-
IMC uses a different module template then the transfor-
mation of a warm BE to an I/O-IMC. In this module
the failure while inactive is left out. Therefore, the cor-
responding I/O-IMC is smaller, and the reduction, which
can be achieved with smart semantics, decreases compared
to the reduction which can be achieved for a warm BE.
However, it needs to be taken into account that application
of context-dependent state space generation may influence

A B

T

(a) DFT with an AND gate

S0 S1 S2 S3

0.006 0.003 f!

(b) I/O-IMC of the DFT created by applying
context-dependent state space generation

S0 S1 S2 S3 S4

a; 0.006 0.003 f!

a; a; a; a;

(c) I/O-IMC of the DFT created with the old
implemenation of DFTCalc

Figure 11: The result in the implementation

the probability of failure for warm BEs, since their proba-
bility of failure while inactive isn’t 0 and doesn’t equal the
probability of failure while active. Future research should
analyse this problem and propose a suitable solution.

Furthermore, DFTCalc already uses some smart seman-
tics by merging all the activation actions which happen
directly when the system starts. Example 6 explains this
and shows the reduction in the I/O-IMC for a DFT con-
sisting of an AND gate with two BEs.

Example 6. Figure 11 shows a DFT consisting of an
AND gate with two cold BEs, with a probability of failure
of 0.003. Furthermore, the figure contains two I/O-IMCs,
namely one while applying context-dependent state space
generation and one while using the old implementation of
DFTCalc. In the old implementation transitions are al-
ready merged, e.g. the activation of the three elements of
the DFT happen at once. Furthermore, there is no case
distinction in which of the two BEs fail. So the probability
of failure in state S1 is 0.006, one of the two will fail. In
the I/O-IMC created with context-dependent state space
generation all activation transitions are removed. This
safes one state and five transitions.

The maximal state space during the composition of the
different I/O-IMCs decreased in all of the case studies.
Even though smart semantics was not applicable for all
the I/O-IMCs of the elements of the DFT, the reduction
is significant since the composed and minimised I/O-IMCs
are smaller than the I/O-IMCs without context-dependent
state space generation.

6.2 Algorithm
To determine whether a component e of a DFT is active,
we constructed an algorithm, which consists of two parts,
namely, procedure 1 and procedure 2. Procedure 1 imple-
ments the start of the algorithm, all elements get the state
of not initialised. Afterwards we start with the initialisa-
tion, by initialising the top node of the DFT. The second
part of the algorithm checks whether a component is ac-
tive or not. When the component is not initialised, it is
known that all of the DFT above the component is active.
Therefore, the component will be initialised with an active

8

Table 1: State space of the case studies

Model Tool States Transitions Max States Max transitions P(fail)

CAS Original 16 36 84 304 0.0460314
t=1000 Smart semantics 14 34 49 133 0.0460314
MCS Original 18 37 6438 32202 0.9989628
t=1 Smart semantics 12 31 220 803 0.9989628
FTPP Original 72 312 45823 230596 0.0192186
t=1000 Smart semantics 66 306 7020 32200 0.0192186

CPS Original 39 71 918 3140 0.0013567
t=2 Smart semantics 38 70 134 291 0.0013567
SF Original 15 36 383 1500 0.941014
t=10 Smart semantics 14 35 64 138 0.941014

Table 2: State space reduction of the case studies

Model Original # Smart # Statespace Original max Smart max Maximal state
of states of states reduction # of states # of states space reduction

CAS 16 14 12.50 % 84 49 72.92 %
MCS 18 12 33.33 % 6438 220 96.58 %
FTPP 72 66 8.33 % 45823 7020 84.68 %

CPS 39 38 2.56 % 918 134 85.40 %
SF 15 14 6.67 % 383 64 83.29 %

state. When the component is a spare type, smart seman-
tics can’t be applied on its spare children. Therefore, all
its children are initialised with being inactive. When the
component itself is inactive, e.g. since it is a spare child,
all of its children must be inactive as well. This part of
the algorithm works recursively since it calls itself on all
the children of the current component.

To apply this algorithm on a DFT with maintenance, a
slight change in procedure 2 is made. In a standard DFT
the primary input of a spare is activated, and when it
breaks down it will stay in a failed state. However, in
a DFT with maintenance, a primary input can, after a
repair, become inactive. Therefore, smart semantics aren’t
applicable for all children of the spare. This leads to a new
algorithm, namely the combination of procedure 1 and 3
in which smart semantics are not applicable for all of the
children.

7. CONCLUSION
We first of all defined the different contexts to apply con-
text-dependent state space generation in the module tem-
plates of DFTCalc. Secondly, we defined an algorithm
to detect the context-type, and we generated new module
templates.

7.1 Different contexts
First of all we defined two contexts in which different state
space generation is desirable. The first context-type is the
one in which activation of the component starts directly
when the system starts. The second context type contains
the elements which might be inactive for some time at the
start of the system. To determine the context of a compo-
nent, we defined behaviour, irrelevant behaviour and the
relationship between irrelevant behaviour in an I/O-IMC
and the corresponding DFT.

7.2 Module templates
We designed the module templates for the first context-
type by taking the original module templates in DFTCalc,
which are used for the second context type. In these mod-
ule templates we deleted the activation part of the tem-

plate and set the initial status to active.

7.3 Determination of context-type
To determine the context-type we implemented the algo-
rithm as stated in 5.1. When the context-type of the com-
ponent is the first, it is known that the component will
start as being active. Therefore, the new module template
will be applied in the conversion from DFT to I/O-IMC.

7.4 Reduction
We determined the state space reduction by applying con-
text-dependent state space generation. For all of the five
case studies there is a reduction in terms of the size of
the state space, this reduction differs between 8.33 % and
33.33 %. Furthermore, the reduction of the maximal state
space during composition and minimisation differs between
72.92% and 96.58%. Additionally, we calculated the re-
duction in computation time, which differs between 2.99%
and 10.99%. These reductions in terms of the size of the
state space and the computation time of the tool chain are
significant.

8. FUTURE WORK
This paper proposes an algorithm for application of con-
text-dependent state space generation in DFTCalc. How-
ever, this algorithm is only implemented for basic DFTs.
In future work this algorithm could also be applied to the
maintainable DFTs. Therefore, it will also be necessary to
design module templates for the additional gates in main-
tainable DFTs, which are of context type 1.

Secondly, this paper doesn’t consider the influence on the
probability of failure of the context-dependent state space
generation for the warm BEs. Future research should find
out whether or not it is desirable to remove the activation
part and the transition for failure while inactive.

9. REFERENCES
[1] F. Arnold, A. Belinfante, F. Van der Berg, D. Guck,

and M. Stoelinga. Dftcalc: a tool for efficient fault
tree analysis (extended version). Technical Report
TR-CTIT-13-13, Centre for Telematics and

9

Information Technology, University of Twente,
Enschede, June 2013.

[2] H. Boudali, P. Crouzen, and M. Stoelinga. A
compositional semantics for dynamic fault trees in
terms of interactive markov chains. In K. Namjoshi,
T. Yoneda, T. Higashino, and Y. Okamura, editors,
Automated Technology for Verification and Analysis,
volume 4762 of Lecture Notes in Computer Science,
pages 441–456. Springer Berlin Heidelberg, 2007.

[3] H. Boudali, P. Crouzen, and M. Stoelinga. Dynamic
fault tree analysis using input/output interactive
markov chains. In Dependable Systems and
Networks, 2007. DSN ’07. 37th Annual IEEE/IFIP
International Conference on, pages 708–717, June
2007.

[4] H. Boudali, P. Crouzen, and M. Stoelinga. A
rigorous, compositional, and extensible framework
for dynamic fault tree analysis. IEEE Transactions
on Dependable and Secure Computing, 7(2):128–143,
2010.

[5] H. Boudali and J. Dugan. A discrete-time bayesian
network reliability modeling and analysis
framework. Reliability Engineering and System
Safety, 87(3):337 – 349, 2005.

[6] H. Boudali and J. Dugan. A new bayesian network
approach to solve dynamic fault trees. In Reliability
and Maintainability Symposium, 2005. Proceedings.
Annual, pages 451–456, Jan 2005.

[7] M. Bozzano, A. Cimatti, J. Katoen, V. Nguyen,
T. Noll, and M. Roveri. Safety, dependability and
performance analysis of extended aadl models. The
Computer Journal, page bxq024, 2010.

[8] J. Dugan, S. Bavuso, and M. Boyd. Fault trees and
sequence dependencies. In Reliability and
Maintainability Symposium, 1990. Proceedings.,
Annual, pages 286–293, Jan 1990.

[9] J. Dugan, S. Bavuso, and M. Boyd. Dynamic
fault-tree models for fault-tolerant computer
systems. Reliability, IEEE Transactions on,
41(3):363–377, Sep 1992.

[10] J. Dugan, S. Bavuso, and M. Boyd. Dynamic
fault-tree models for fault-tolerant computer
systems. Reliability, IEEE Transactions on,
41(3):363–377, Sep 1992.

[11] D. Guck, J. Katoen, M. Stoelinga, T. Luiten, and
J. Romijn. Smart railroad maintenance engineering
with stochastic model checking. In J. Pombo,
editor, Proceedings of the Second International
Conference on Railway Technology: Research,
Development and Maintenance, Railways 2014,
Ajaccio, Corsica, France, volume 104 of Civil-Comp
Proceedings, page 299, Stirlingshire, UK, April 2014.
Civil-Comp Press.

[12] H. Hermanns and J. Katoen. The how and why of
interactive markov chains. In F. de Boer,
M. Bonsangue, S. Hallerstede, and M. Leuschel,
editors, Formal Methods for Components and
Objects, volume 6286 of Lecture Notes in Computer
Science, pages 311–337. Springer Berlin Heidelberg,
2010.

[13] S. Junges. Simplifying dynamic fault trees by graph
rewriting. master thesis at rwth aachen university.
2015.

[14] S. Montani, L. Portinale, A. Bobbio, and
D. Codetta-Raiteri. Automatically translating
dynamic fault trees into dynamic bayesian networks
by means of a software tool. In Availability,
Reliability and Security, 2006. ARES 2006. The
First International Conference on, pages 6 pp.–,
April 2006.

[15] F. Patterson-Hine and J. Dugan. Modular
techniques for dynamic fault tree-analysis. In
Reliability and Maintainability Symposium, 1992.
Proceedings., Annual, pages 363–369, Jan 1992.

[16] E. Ruijters and M. Stoelinga. Fault tree analysis: A
survey of the state-of-the-art in modeling, analysis
and tools. Computer Science Review, 15Ű16(0):29 –
62, 2015.

[17] W. Vesely, M. Stamatelatos, J. Dugan, J. Fragola,
JosephMinarick III, and J. Railsback. Fault Tree
Handbook with Aerospace Applications. NASA Office
of Safety and Mission Assurance NASA
Headquarters Washington, DC 20546, August 2002.

[18] W. E. Vesely, F. F. Goldberg, N. H. Roberts, and
D. F. Haasl. Fault Tree Handbook. Systems and
Reliability Research Office of Nuclear Regulatory
Research U.S. Nuclear Regulatory Commission
Washington, D.C. 20555, January 1981.

10

