
Applying SPMD Verification Techniques to Hardware
Description Languages

Pieter Bos
University of Twente

P.O. Box 217, 7500AE Enschede
The Netherlands

p.h.bos@student.utwente.nl

ABSTRACT
This research aims to find ways of applying existing veri-
fication techniques of multi-threaded programs to the do-
main of hardware description languages (HDL’s), which
can be used to describe electronic logic circuits. The need
for this type of verification is clear: we need to be able
to reason about and verify processors formally. We create
a logic to reason about HDL’s by adapting existing ver-
ification techniques for concurrent programs that enable
us to prove the functional properties of HDL programs, in
particular the verification of shared variables and param-
eterized code blocks.

Keywords
VHDL, formal verification, separation logic, SPMD

1. INTRODUCTION
Hardware description languages are languages that de-
scribe the structure of logic circuits and have been around
since around the 1960’s [2]. An example for which these
languages are used is to specify processors [1]. Proces-
sors exist in many critical applications where failure is
intolerable, for example in integrated circuits in industrial
machinery. Verification of these processors often relies on
simulation of the logic circuits, since formal mathemati-
cal verification using theorem provers quickly becomes too
slow because of state space explosion.

The aim of this research is to create a logic for the veri-
fication of HDL programs. This is done by leveraging ex-
isting verification techniques for single program multiple
data (SPMD) programs, such as those for parallel loops
and general purpose GPU (GPGPU) programs. The lan-
guage that is analyzed in this paper is VHDL, though the
results should be easily adaptable to different HDL’s as
well. Concepts in VHDL will be explored and verification
techniques for SPMD programs are adapted to work for
HDL programs as well. The logic focuses on proving func-
tional properties, but memory safety properties will be
explored as well, insofar as they are applicable to HDL’s.
Applicable here means that memory in HDL’s can be a
functional property, since the memory cells themselves are
defined in the HDL, but can also be implicitly defined.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy oth-
erwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.
25th Twente Student Conference on IT July 1st, 2016, Enschede, The
Netherlands.
Copyright 2016, University of Twente, Faculty of Electrical Engineer-
ing, Mathematics and Computer Science.

1.1 The Research
The research will at first focus on determining the simi-
larities and differences between the SPMD programming
model and HDL programs. The next step is to determine
which of the verification techniques in the SPMD model
carry over to HDL’s and consequentially which parts of
HDL’s can not be reasoned about using these methods.
Hence the research questions are:

1. What are the similarities and differences between the
SPMD programming model and hardware descrip-
tion languages?

2. How can we adapt SPMD verifcation techniques to
reason about HDL programs?

3. Which parts of HDL’s can not be reasoned about
using adapted verification techniques for SPMD pro-
grams?

1.2 Background
In SPMD identical programs run in parallel on different
data, while these programs are allowed to be at different
points at any time. These programs can however have
overlapping data accesses (i.e. read or write to the same
location), in which case the result of one program can de-
pend on the moments that statements are executed in the
other programs. Most verification techniques rely on an-
notating the program in some way to specify data accesses
or behaviour to reason about the code formally.

One verification technique that will be investigated is the
verification of paralellised loops. Blom et al. specified a
way to annotate loop iterations [3] with fractional permis-
sion based separation logic [5]. These annotations allow
for a soundness proof “that loops respecting specific pat-
terns of iteration contracts can be either parallelised or
vectorised”.

Another verification technique is the verification of GPGPU
(General Purpose GPU) programs by Blom et al. [4] This
technique can prove “that a kernel does not have data
races, and that it respects its functional behaviour spec-
ification.” The annotations consists of behavioural speci-
fications and a modified version of fractional permissions
where the allowed values are ‘read-write’ and ‘read-only’.

The investigated language, VHDL, defines circuits by defin-
ing entities, small pieces of hardware analogous to sub-
routines, and composing them to create complex logic.
Furthermore, VHDL distinguishes between asynchronous
logic by specifying direct (electrical) connections between
points and sequential logic that triggers on changes in vari-
ables. VHDL documentation also often talks about syn-
thesizable versus unsynthesizable code, which means that
it can be compiled to a real target instead of run in a

1

Example 1. VHDL signal assignment

a <= b ;
c <= d ;

Example 2. Permission based separation logic for shared variables

architecture d e f a u l t of ent i s
shared variable v : i n t e g e r ;
begin

−− requires rising edge(clk)⇒ Perm(v, 1)
−− ensures rising edge(clk)⇒ Perm(v, 1)
process (c l k)
begin

i f r i s i n g e d g e (c l k) then
v := v + 1 ;

end i f ;
end process ;

−− requires ¬rising edge(clk)⇒ Perm(v, 1)
−− ensures ¬rising edge(clk)⇒ Perm(v, 1)
process (c l k)
begin

i f not r i s i n g e d g e (c l k) then
v := v + 1 ;

end i f ;
end process ;

end ;

Example 3. Transformed shared variables

architecture d e f a u l t of ent i s
signal v s : i n t e g e r ;
begin

process (c l k)
variable v : i n t e g e r ;
begin

v := v s ;

i f r i s i n g e d g e (c l k) then
v := v + 1 ;

end i f ;

i f r i s i n g e d g e (c l k) then
v s <= v ;

end i f ;
end process ;

process (c l k)
variable v : i n t e g e r ;
begin

v := v s ;

i f not r i s i n g e d g e (c l k) then
v := v + 1 ;

end i f ;

i f not r i s i n g e d g e (c l k) then
v s <= v ;

end i f ;
end process ;

end ;

2

simulator, such as an FPGA or an ASIC design. The syn-
thesizability of VHDL code depends entirely on the chosen
target and available synthesizers.

1.3 Method
The first stage of this research consisted of diving into
VHDL and determining the exact semantics of VHDL code.
In this part of the research the specification for VHDL [7]
was used extensively. Nearly all constructs described in
the document were investigated. A summary of the com-
parison to the SPMD model can be found in section 3.1.
From this comparison several interesting avenues of re-
search were found. One of them is the concept of shared
variables in VHDL and includes logic for them in section
3.2. Another interesting concept is the concept of param-
eterized VHDL, which enables the user to write generic
code. This is described in section 3.3. The paper also
describes future research that might be useful: synthesiz-
ability of VHDL code in section 4.2 and the stability of
circuits generated by signal assignments 4.1.

2. RELATED WORK
The most common approach for the verification of HDL
programs is the non-formal method of creating testbenches.
This involves specfying stimuli to the model or generated
circuit and observing wether the result is the same as the
behaviour that was specified. The stimuli can be prede-
fined or randomized [9].

Another approach involves modelling the circuit imple-
mentation as a state machine, sometimes represented in
alternative forms such as a binary decision diagram [8, 6].
States are then enumerated to check functional behaviour
formally, usually pruning the set of states that are required
to be checked in some way.

3. RESULTS
3.1 Similarities and Differences
VHDL programs consist of a series of entity definitions.
Each entity can define a port with in- and output signals,
which it can use to communicate with other entities. An
architecture implements an entity and consists of signal as-
signments, process statements and instantiations of other
entities (components).

Signal assignments happen continuously, forever and in
parallel. A simple set of assignments such as in Example
1 is similar in behaviour to a parallel program such as:

(while true do a := b done ‖ while true do c := d done)

Processes are blocks of sequential code that react to changes
in signals. Processes can also use variables, which are dif-
ferent from signals in VHDL. In Example 2 the process
blocks react to changes in the clk signal. Executions of
process blocks are governed by simulation cycles. At the
start of each simulation cycle the processes that have been
triggered are executed concurrently. Process blocks may
also assign to signals, but the value read from the signal
stays the same within the simulation cycle. Only after all
processes that executed in the simulation cycle have fin-
ished, the last value assigned to the signal will be written
to it.

Data races do not exist for variables or signals within pro-
cess blocks, since variables are local to a single process,
and signals can only be assigned to from a single process,
unless the type of the signal explicitely defines how to deal

with multiple assignments.

Finally, instantiations of other entities can be treated as
though the architecture definition of the entitity was within
the architecture where the component was instantiated.
This means that a VHDL program can eventually be re-
duced to a collection of process blocks and signal assign-
ments.

3.2 Shared Variables
Shared variables are variables that are defined for an ar-
chitecture instead of a process in an architecture. All pro-
cesses in the architecture can assign to and read from the
shared variable. Behaviour is undefined when two pro-
cesses access the same shared variable in the same sim-
ulation cycle, much like programs in the SPMD model.
Furthermore, shared variabels are usually not synthesiz-
able.

Permission based separation logic can be used to reason
about shared variables, where each process in the archi-
tecture requires some permission on the shared variable,
as in Example 2. In this example both processes react
on changes to a signal called clk. The first process writes
to a shared variable on a rising edge of the clock, and
hence only needs a write permission on the rising edge
of the clock, so the specification is rising edge(clk) ⇒
Perm(v, 1). The other process only writes to the shared
variable on the falling edge, so the specification becomes
¬rising edge(clk) ⇒ Perm(v, 1). The separating con-
junction of the two processes requires a full write per-
mission on the shared variable. When the separating con-
junction of the preconditions of all the processes in an
architecture holds, we can transform the architecture to
a synthesizable and functionally-equivalent architecture.
This can be done by doing the following transformations:

1. Remove the shared variable from the architecture;

2. Add process-local variables with the same name to
each of the processes in the architecture;

3. Add a uniquely-named signal to the architecture to
communicate updated values of the emulated shared
variable across simulation cycles;

4. For each process assign the signal value to the local
variable before all other statements;

5. For each process assign the local variable to the sig-
nal after all other statements whenever it holds a
write permission.

A converted example of Example 2 can be found in Exam-
ple 3. This approach works because the permission based
separation logic proves that every simulation cycle either
(i) there are only processes that read from the shared vari-
able or (ii) there is one process that reads and/or writes to
the shared variable. We use a signal to communicate the
updated value of the signal to the next simulation cycle.
In the first case, we can simply use the value communi-
cated by the signal, because the value does not change in
the current simulation cycle. In the second case, we can
use a local variable instead of the shared variable, because
there is just one process that can read from and write to
the shared variable. The value from the local variable is
then written to the signal to communicate the value to the
next simulation cycle.

3

Example 4. Component that rotates a bit string a given amount

entity r o t a t e i s
generic (

N: i n t e g e r
) ;
port (

i : in s t d l o g i c v e c t o r (N−1 downto 0) ;
s h i f t : in i n t e g e r range 0 to N−1;
o : out s t d l o g i c v e c t o r (N−1 downto 0)

) ;
end r o t a t e ;

architecture r o t a t e a r c h of r o t a t e i s
begin

output : for x in 0 to N−1 generate
−− requires Perm(o(x), 1) ∗∗ Perm(i((x + shift) mod N), 1/2)
−− ensures Perm(o(x), 1) ∗∗ Perm(i((x + shift) mod N), 1/2)
o (x) <= i ((x + s h i f t) mod N) ;

end generate ;
end r o t a t e a r c h ;

Example 5. Component that adds two numbers of arbitrary size

entity adder i s
generic (

N: i n t e g e r
) ;
port (

x : in s t d l o g i c v e c t o r (N−1 downto 0) ;
y : in s t d l o g i c v e c t o r (N−1 downto 0) ;
o : out s t d l o g i c v e c t o r (N downto 0)

) ;
end adder ;

architecture adder of adder i s
signal car ry : s t d l o g i c v e c t o r (N−1 downto 0) ;
begin

adders : for i in 0 to N−1 generate
−− requires Perm(x(i), 1/2) ∗∗ Perm(y(i), 1/2) ∗∗ Perm(carry(i), 1)
−− ensures Perm(x(i), 1/2) ∗∗ Perm(y(i), 1/2) ∗∗ Perm(carry(i), 1/2)
−− ensures i > 0⇒ Perm(carry(i− 1), 1/2)
−− ensures i = N − 1⇒ Perm(carry(i), 1/2)

−− L1: if (i > 0) recv Perm(carry(i− 1), 1/2) from L2,1
f i r s t b i t : i f (i = 0) generate

adder : f u l l a d d e r e n t port map(
c => ’ 0 ’ ,
x => x (i) ,
y => y (i) ,
b0 => o (i) ,
b1 => car ry (i)) ;

end generate ;

o t h e r b i t : i f (i > 0) generate
adder : f u l l a d d e r e n t port map(

c => car ry (i − 1) ,
x => x (i) ,
y => y (i) ,
b0 => o (i) ,
b1 => car ry (i)) ;

end generate ;
−− L2: if (i < N − 1) send Perm(carry(i), 1/2) to L1,1

end generate ;

o (N) <= carry (N−1);
end adder ;

4

Example 6. Definition of a resolved type

type b i t i s (’ 0 ’ , ’ 1 ’) ;
type b i t v e c t o r i s array (natura l range <>) of b i t ;

function r e s o l v e d (s : b i t v e c t o r) return b i t ;
variable r e s u l t : b i t := ’ 0 ’ ;

begin
for i in s ’ range loop

r e s u l t := r e s u l t or s (i) ;
end loop ;

return r e s u l t ;
end r e s o l v e d ;

subtype o r b i t i s r e s o l v e d b i t ;

Example 7. Specified signal assignments with multiple assignments to a signal

architecture d e f a u l t of ent i s
−− ghost int x0

−− ghost int x1

−− requires Perm(x0, 1) ∗∗ Perm(x1, 1)
−− ensures Perm(x0, 1) ∗∗ Perm(x1, 1) ∗∗ x == resolved(x0, x1)
begin

−− requires Perm(x0, 1)
−− ensures Perm(x0, 1)
x <= a ; −− set x0 := a

−− requires Perm(x1, 1)
−− ensures Perm(x1, 1)
x <= b ; −− set x1 := a

end ent ;

5

Figure 1. Flip flop with two NAND gates

3.3 Parameterized VHDL
Another feature of VHDL that was investigated is the sup-
port for parameterized entities. Parameterized entities in
VHDL are indicated by a generic block in the entity. This
block contains the definitions for the parameters that are
given to each instantiation of the entity. The architec-
ture can then use these parameters to alter behaviour in
the entity and generate different numbers of components.
The supported constructs for this are for and if and are
indicated by a generate keyword. Example 4 and Example
5 include these constructs.

These generate constructs could be annotated with per-
mission based separation logic as though each signal as-
signment is a regular assignment, reasoning about the for
generate loop as though it is a paralellizable loop. This
is a technique that is used for the verification of SPMD
programs as well [3]. When the separating conjunction
of the permissions holds, we can conclude that there are
no cyclic dependencies between the signals and the signals
will be stable eventually, as there must be an equivalent
sequential ordering of the signal assignments.

In Example 4 the convergence of all the signals is quite ob-
vious, as there are no dependencies between the iterations
of the loop. However, there are dependencies between the
iterations in Example 5. These dependencies are specified
by the send and receive statement. Interestingly it also
matters in VHDL whether the dependencies are forward
or backward loop-carried, as they hint at the time it takes
for signals to stabilize. Example 5 is a ripple carry adder,
where each full adder needs to wait for all bits of lower
significance to determine the carry. This is modeled by
the backward loop-carried dependence, as the signal value
will only stabilize after the result of the previous iteration
is stabilized. If the statements in the loop body can be or-
dered such that there are only forward loop-carried depen-
dencies, the values of the signals do not need to propagate
(ripple) through the iterations.

However, regular permission based separation logic is too
strict to verify all stable series of signal assignments. For
example, signals are allowed to have multiple values as-
signed to them for some types that define a resolution
function. A resolution function is a function in VHDL
that takes an array of a type and returns a result of the
type. [7, pp.27]. Example 6 is an example of such a re-
solved type. In this example the type or bit is a subtype of
bit and a signal of this type will take the disjunction of all
the values supplied to it. These kind of VHDL programs
can be reasoned about in the same way described above
using ghost variables. One way to do this is to declare

a separate ghost variable for each assignment to a signal
that has multiple assignments, asserting that the actual
signal value is the result of the resolution function over
all the ghost variables. A simple example of this method
can be found in Example 7. Note that here, as with pa-
rameterized VHDL, the signal assignments are reasoned
about as concurrent programs. Instead of requiring write
permission on the signal for each of the assignments, the
write permission is required for the ghost variable.

4. EXTENSIONS
4.1 Stability of Circuits
The previous section showed that permission based sepa-
ration logic can prove that a series of signal assignments
results in a circuit that eventually stabilizes. However,
there exist circuits that are stable under certain condi-
tions, but can not be proved in this way. An example
would be a memory cell consisting of two NAND gates, as
shown in figure 4.1. A NAND flip flop is stable whenever
the signal of the two output are the inverse of the other
output, or exactly one of set and reset are high.

The challenge here is to prove in which cases the circuit is
stable, perhaps specifying the condition as a precondition
to the circuit.

4.2 Synthesizability
VHDL contains statements that are not synthesizable by
all commercial synthesizers. An example of this is the
shared variable declaration discussed earlier, which can be
compiled down to a regular signal in some cases. Future re-
search could investigate the possibility of translating other
unsynthesizable constructs, such as the wait statement.
The wait statement can be used in processes in two ways:
by (i) waiting on a change in signal or a condition on a
signal, and by (ii) waiting a specified real amount of time.
Some usages of this statement might very well be trans-
latable to a piece of VHDL that is synthesizable.

5. CONCLUSIONS
This paper has presented several ways of applying SPMD
verification techniques to hardware description languages.
VHDL is similar to SPMD programs in processes, but
also has asynchronous parts which can be described in the
SPMD model. Permission based separation logic can be
used to specify the access of shared variables between pro-
cesses, and VHDL that contains shared variables can be
translated to VHDL without shared variables if the proof
holds. Permission based separation logic was also used
to create a logic to specify signals assignments in asyn-
chronous VHDL in parameterized code. Specified code
always generates a stable circuit, because there is a se-
quential equivalent to the signal assignments. Data de-
pendencies between signals can also be modeled to some
extent, although this logic cannot specify all series of sig-
nal assignments that are stable. Further research might
look into how to prove in which cases a circuit is stable
by extending the logic presented. Other unsythesizable
constructs might prove to be translatable as well, next
to shared variables. All in all the verification of VHDL
programs proves to be quite similar to the verification of
SPMD programs, though a lot of work remains to be done.

6

6. REFERENCES
[1] Opencores projects.

http://opencores.org/projects, 2016. Accessed:
2016-05-15.

[2] M. R. Barbacci. A comparison of register transfer
languages for describing computers and digital
systems. IEEE Transactions on Computers,
(2):137–150, 1975.

[3] S. Blom, S. Darabi, and M. Huisman. Verification of
loop parallelisations. In Fundamental Approaches to
Software Engineering, pages 202–217. Springer, 2015.

[4] S. Blom, M. Huisman, and M. Mihelčić. Specification
and verification of gpgpu programs. Science of
Computer Programming, 95:376–388, 2014.

[5] R. Bornat, C. Calcagno, P. O’Hearn, and
M. Parkinson. Permission accounting in separation

logic. In ACM SIGPLAN Notices, volume 40, pages
259–270. ACM, 2005.

[6] J. R. Burch, E. M. Clarke, K. L. McMillan, and D. L.
Dill. Sequential circuit verification using symbolic
model checking. In Design Automation Conference,
1990. Proceedings., 27th ACM/IEEE, pages 46–51.
IEEE, 1990.

[7] IEEE. IEEE Standard VHDL Language Reference
Manual, 2000.

[8] T. Kam and P. Subrahmanyam. Comparing layouts
with hdl models: a formal verification technique.
Computer-Aided Design of Integrated Circuits and
Systems, IEEE Transactions on, 14(4):503–509, 1995.

[9] C. Spear. SystemVerilog for verification: a guide to
learning the testbench language features. Springer
Science & Business Media, 2008.

7

http://opencores.org/projects

