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Abstract

Analysis of an organization's security and the threats it faces is nowadays of-
ten done using attack trees that describe all possible threats facing a system or
organization. A big challenge lies in obtaining these attack trees. Manually con-
structing them is tedious and error-prone work. Therefore, this project focuses
on generating attack trees automatically from a given model that describes a
system or organization. It improves upon previous e�orts by providing an ap-
proach to identify all possible attacks from a given model in a more scalable
manner, compared to the previous approach of constructing an attack graph,
while remaining (security-)domain independent.

This work demonstrates that this new approach, based on partial-order reduc-
tion, can have signi�cant scalability bene�ts compared to the existing generic
approach, although this scalability improvement is related to the amount of
concurrent actions in the organization's model.

In addition, it is shown that the graph transformations modeling paradigm can
be used as a generic input language for describing systems and organizations,
and using graph transformations gives the bene�t of reusing existing e�orts and
implementations. Speci�cally, a partial-order technique called the unfolding
of a graph transformation system is used as the basis of the approach, and
GROOVE, a tool for constructing and analysing graph transformation systems,
is used as the basis of the implementation.

Finally, this work demonstrates that using partial-order reduction to identify
all possible attacks also provides the approach with su�cient information to
determine if attack steps should be executed in sequence or not, or if two attack
steps can both be performed during the same attack or not. This allows the
approach to add SQAND and XOR gates to the constructed attack trees, in
addition to regular AND and OR gates, providing analysis tools with more
analysis opportunities.
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Chapter 1

Introduction

(...) it becomes increasingly clear that the term "security" doesn't
have meaning unless also you know things like "Secure from
whom?" or "Secure for how long?"

Clearly, what we need is a way to model threats against computer
systems. If we can understand all the di�erent ways in which a
system can be attacked, we can likely design countermeasures to
thwart those attacks. And if we can understand who the attackers
are � not to mention their abilities, motivations, and goals � maybe
we can install the proper countermeasures to deal with the real
threats.

Bruce Schneier, credited with the �rst documentation of attack
trees, Dr. Bobb's Journal, December 1999

1.1 Motivation

Organizations face many types of threats to their security. These threats range
from physical threats to malicious insiders and cybercriminals [1]. In order to
protect themselves against this, organizations often appoint security analysts
that are tasked with identifying and implementing the most suitable counter-
measures against these threats. But how can a security analyst identify the
dangerous threats and select the most cost-e�ective countermeasures?

This is currently mostly done on the basis of experience or standardized
solutions, but such an approach hardly guarantees that the best decisions are
made. A security situation is unique for each organization and therefore the
prevention measurements should be tailored to each speci�c organization.

Several recent research projects are focusing their e�ort on providing security
analysts with tools that assist them in obtaining su�cient knowledge about each
unique security situation so that they can base their decisions on accurate, orga-
nization speci�c information about the possible threats and (the e�ectiveness of)
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CHAPTER 1. INTRODUCTION

their countermeasures. Examples of such research projects include TREsPASS
[2], VISPER [3] and SHIELDS [4].

These projects aim to provide such information by developing tools that
can be used to analyze the threats (for example to determine the most critical
and/or most probable attacks) and to analyze the countermeasures for such
threats (for example by determining the most cost e�ective countermeasures, or
which countermeasures prevent the most dangerous attacks).

At the foundation of many of these research projects lies the attack tree for-
malism, a prominent security formalism for threat analysis [5]. Attack trees are
an approach for representing threat scenarios (i.e. attacks) and their possible
countermeasures in a concise and intuitive manner. They allow for a hierarchi-
cal decomposition of complex attacks and countermeasures into simple, easily
understandable and quanti�able actions [6].

Figure 1.1: An example attack tree representing the di�erent possible attacks
to gain access to a bank's gold

Figure 1.1 shows an example of an attack tree that represents the di�erent
possible attacks to gain access to a banks gold. The root describes the attacker's
goal and its children de�ne how to achieve this goal. The root node has two chil-
dren and represents an AND, meaning that both its children should be achieved,
in this case: getting into the bank and opening the vault door. Each node is
then re�ned until only basic actions remain. The remaining nodes represent
ORs, and thus only one basic action is su�cient to achieve each step, for exam-
ple bribing an employee to get the key for the �rst step and using dynamite to
blow the vault door open for the second.

Attack trees are considered useful for qualitative analysis, i.e. manual analysis,
of the di�erent attacks as they often highlight the similarities and di�erences of
attacks in a concise manner, but they are also used for quantitataive analysis by
assigning values, such as probability of success or cost, to all the so-called basic
actions that each attack consists of. This way, the most probable attack can
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CHAPTER 1. INTRODUCTION

be calculated; for example, or how certain attack scenarios can be prevented in
the cheapest manner [7].

Several recent e�orts [5, 6, 8] have focused on developing methods for multi-
parameter analysis, such as assigning the probability of success, cost, probability
of detection and time required to each basic action, and then determining the
most optimal attack scenarios. These e�orts add to the ever increasing set of
analysis methods for (the attacks represented by) an attack tree.

But while many research e�orts are focusing on the analysis of attack trees, the
usefulness of these approaches heavily depends on the quality of the attack trees
used. For instance whether the attack tree contains all attacks, or if they are
on the right level of detail and annotated with the correct information.

Using suitable attack trees that describe and quantify all threat and defense
scenarios for a speci�c organization is therefore of vital importance for successful
analysis results.

Obtaining such an attack tree is, however, di�cult. Attack trees are tradi-
tionally manually constructed by so called Red Teams that consist of security
experts, but this manual development is tedious, error-prone and impractical for
larger organizations [9]. Attack trees for larger organizations will become large
themselves (into the 1000-10.000 basic actions range for example [10]) making
it impractical or even infeasible to develop attack trees manually.

Therefore, a di�erent research direction looks into how such attack trees can
be generated automatically, as automating the construction process also ensures
that the result is exhaustive and succinct. Exhaustive, as it contains all possible
attacks against an organization, and succinct because it will only contain valid,
executable attacks. This work aims to provide a contribution to the research
generating attack trees.

1.2 Problem Context

Recently there have been a number of research e�orts on the topic of generating
attack trees (e.g. [11, 12, 13]). Generally all of these e�orts are based on the
same idea: In order to develop an organization/problem speci�c attack tree,
the approach requires information about the organization/problem in order to
determine the possible attacks that it should describe. This information can be
speci�ed in the form of a dynamic model that describes the organization/prob-
lem.

Generally these previous e�orts can be seen a a two-step process: (1) Iden-
tifying possible attacks and (2) Constructing the attack tree using this result.
The two steps of the process and their input and output are shown in Figure
1.2 are discussed in more detail below:

A The input of the attack tree generation process is a dynamic input model.
A dynamic input model describes a system or organization through two
parts: a static part and a dynamic part. The static part for example
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CHAPTER 1. INTRODUCTION

Dynamic
model

Set of
Attacks

Attack tree

Identify pos-
sible attacks

Set to tree
conversion

A B C

Step 1 Step 2

Figure 1.2: Overview of the generic attack tree generation process which consists
of two steps, each with its own input and output.

describes the layout of an organization. Figure 1.3 shows an example of
the static part of a dynamic model.

The dynamic part speci�es the possible interactions of the elements of
this static description, i.e. the possible actions an attacker can undertake,
when they are applicable and what their e�ect is. An example of this
is that the attacker can relocate to inside the bank by going through the
door, but this door requires a key. The attacker should therefore somehow
obtain the key to open it, or it could break the door.

Figure 1.3: An informal visualisation of the static part of a dynamic input model

Step 1 The �rst process step is to analyse the dynamic input model and identify

all possible attacks. This is done by analysing the possible interactions of
model elements (e.g. exploring at all sets of attacker actions) in order to
identify set of actions that result in a state of the model where the attacker
has achieved his goal. Each such set of actions describes an attack.

As an example, Figure 1.4 shows a state of the model where the attacker
has reached his target. The task of this step is thus to identify the di�erent
sets of actions for the attacker to go from the initial state of the model
(�gure 1.3) to this state.

B The result of the �rst step is a set of attacks. For this simple example
there are �ve di�erent actions that can be perform to reach the �rst step
(getting inside the bank) and four options for the second (opening the
vault) resulting in a total of 20 (5*4) possible attacks.
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CHAPTER 1. INTRODUCTION

Figure 1.4: An informal visualisation of a model state where the attacker has
reached his target: Having access to the gold.

Step 2 The second step in the process is to convert a set of attacks into a sin-

gle tree representation and optionally making this representation more
compact.

C The result of the process is an attack tree that describes all possible attacks
that are contained in the input model. The attack tree depicted earlier
(�gure 1.1) shows all possible attacks that can be identi�ed in the input
model (�gure 1.3).

The �rst step of the process, identifying all possible attacks by analysing the
input model, has received the most attention as it is considered the most chal-
lenging part of the process. On the one hand, this analysis should be exhaustive
and succinct in order to guarantee a valid attack tree, but on the other hand
the analysis should also be able to receive and analyse large input models in a
timely matter in order to be usable in practice.

The second step in general (converting a set of actions into a tree) has also
been studied but there exists a simple solution to perform this step. There are
however many tree representations of the same set of attacks and �nding and
optimal version of the tree can a computational challenge.

Therefore, the �rst step is considered the most vital part of the process, but
previous e�orts have not resolved the challenges of this step in a satisfactory
manner. The following subsections brie�y introduce the previous research e�orts
that have focused on this task and discusses why they are not su�cient.

1.2.1 Identifying attacks by constructing a reachability
graph

The basic approach for identifying all threat scenarios for a given organization
from its model was �rst introduced by Sheyner et al. [9] who demonstrated
that the analysis of a model can be performed by using existing symbolic model
checking algorithms that produce a reachability graph.

A reachability graph nodes describe all states of model and its edges repre-
sent actions and point to the resulting state of performing an action in a certain
state. From this reachability graph, all sequences of actions that result in a
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CHAPTER 1. INTRODUCTION

state of the model where the attacker has reached his goal can be determined
and therefore all possible attacks can be identi�ed in this manner.

But while they demonstrated that the construction of a reachability graph is
su�cient for this task, they noted that the performance of this approach does
not scale well for larger input models. This model analysis produces a pro-
hibitively large set of possible attacks, since, as is usual in model checking
applications, the reachability graph grows exponentially large for the number of
independent model elements [14]. In particular the exploration identi�es many
duplicate attacks that di�er only in the order in which independent attack steps
are attempted [10].

Even though there has been signi�cant progress in the underlying concepts
of this basic approach, such as in the �eld of model checking where fundamental
data structures such as Binary Decision Diagrams have been investigated and
have enabled signi�cant advances in the size of systems that can be analyzed, no
model of practical size has yet been analyzed using this basic approach [15, 10, 9].

Because of the scalability limitation of this basic approach, several research
e�orts have looked into improving the scalability by altering the approach itself,
instead of improving its underlying concepts. The two main solution directions
that have been investigated are discussed in the following subsections.

1.2.2 Optimizing the analysis for a domain-speci�c input
modeling language

An alternative solution direction has focused on optimizing the analysis method
by committing to a domain-speci�c input modeling language and integrating the
concepts of this language into a custom developed model exploration approach.

Such a custom developed exploration approach is often based on dividing
the exploration into a set of independent sub-problems and developing directed
searches to solve these sub-problems. This allows the approach to avoid hav-
ing to explore all sequences of basic actions; instead it only has to explore all
combinations of solutions to sub-problems. It is therefore able to signi�cantly
reduce the exploration required compared to generic, uninformed exploration
procedures like the reachability graph approach.

For example: If the input models are known to consist out of locations and
ways to move between these locations, the exploration approach can de�ne the
movement between locations as a sub-problem and develop a custom directed
search to determine the di�erent ways to move between two given locations.

There are however downsides to optimizing the analysis for a domain-speci�c
input modeling language. First of all, it is di�cult to develop these custom ex-
ploration approaches while still guaranteeing the exhaustive and succinct prop-
erties: For example, it is challenging to guarantee that a custom exploration
will not miss any attack possibilities and it is di�cult to de�ne independent sub
problems as there are often relations between two sub-problems.
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The biggest downside to this alternative solution however is that it sig-
ni�cantly reduces the reusability of the approach, as changing the modeling
language or its concepts will likely invalidate the custom developed exploration
approach by altering the possible sub-problems the analysis can be divided into.
Therefore, a change to the modeling language will often require a redesign of
the analysis method.

This reduced reusability is a problem because the question of how to model
an organization on the right level of detail so that it contains all its security
properties without overhead is still open. There have been several security
frameworks and modeling languages developed recently. One example is the
Portunes security Framework [16] which developed a uni�ed model to capture
the relations between the physical, digital and social security domains and at-
tempts to extract attacks that span all of these combinations, i.e. �nd attacks
even if their attack steps belong to di�erent domains, such as social engineering
a receptionist and breaking a vault door. There are also other recent e�orts,
such as [17, 18] that have used di�erent concepts.

In addition, is it not expected that there will be a single modeling language
that is suitable for all di�erent purposes and security domains but rather that
there will be a number of such domain-speci�c modeling languages for di�er-
ent purposes, which would then require a custom generation approach for each
language.

Therefore, in order to avoid having to redesign and redevelop an analysis
method for each domain-speci�c modeling language (alteration), there exists
a need for a generic yet scalable analysis method that does not commit to a
domain-speci�c modeling language.

1.2.3 Improving scalablity by assuming monotonicity

Another research direction for improving the scalability of the analysis of a
model has focused on using the so called monotonicity assumption, which basi-
cally states that all attacker actions can only contribute to the attackers capa-
bilities (i.e. that actions can only enable and not disable each other), to reduce
the amount of exploration required.

The monotonicity assumption can be used to reduce the exploration required
by declaring that the order of performing actions is not relevant as it has no
in�uence on the result. Therefore the exploration only has to �nd the set of
actions required to achieve the goal instead of exploring all possible sequences
of actions.

Ammann et al. [14] have shown that it is possible to reduce the state-
space explosion encountered during regular exploration in a signi�cant manner,
while Dimkov [16] has demonstrated that the exploration is more scalable as
its computational requirements are bounded polynomially to the number of
elements in the model.

Therefore, this assumption allows for a scalable exploration of the model by
assuming that actions have no negative e�ect on each other (e.g. they cannot

7
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disable each other).

It has been argued that this is assumption is natural for certain security domains,
such as network security. The authors of [14] argue that in the network security
domain, access to digital locations and credentials is in general not lost during an
attack, and exploit possibilities are never invalidated by performing other actions
during the attack. Although there exist counterexamples, they argue that the
bene�t of the increased scalability outweighs these exceptions and therefore
makes monotonicity a reasonable assumption in the network security domain.

If one were to use a similar modeling approach to model the physical security
domain, however, the monotonicity assumption could result in an attacker to
have access to certain locations at once (as moving to di�erent location would
not remove earlier obtained access), meaning the attacker would be able to be in
di�erent physical locations at the same time, which is not a natural assumption
to make.

Therefore, the monotonicity assumption for attacker actions does not hold
in general for di�erent security-domains, as most actions are not by de�nition
only contributing.

The result of upholding the assumption when it does not apply generally re-
sults in an overestimation of the possible attacks. This is because in addition
to �nding all valid sets of attacker actions that result in a successful attack, the
exploration can also �nd sets of attacker actions that turn out to be in con-
�ict with each other when the assumption is not made [16]. But if the input
modeling approach also supports negative application conditions for specifying
the possible model interactions, e.g. describing what prevents an action from
being executable, upholding the monotonicity assumption may also result in
not all attacks being found (as actions will not remove capabilities, which oth-
erwise might make other actions applicable), which is a severe drawback of the
approach.

Therefore, the monotonicity assumption is dangerous to uphold when it does
not apply, as it can undermines both the exhaustive and succinct properties that
an attack tree generation approach should strive to have.

1.2.4 Problem Statement

The analysis of a dynamic model has proven to be a challenge as it su�ers
from scalability issues for larger input models. The number of sequences of
model element inter-actions/attacker actions that need to be explored increases
signi�cantly for each added model element and with it the time needed to �nd
all possible attacks. Standard generic exploration methods that attempt to
explore all possible sequences of actions result in a state-space explosion which,
for larger input models, quickly makes the model analysis infeasible.

The two main alternative research directions investigated to reduce the scal-
ability issue both contain conceptual drawbacks that make them not suitable as
the analysis method of a generic attack tree generation approach.

8
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Therefore, there exists a need for a security-domain independent yet scalable
analysis method for dynamic models in order to identify all attacks.

1.3 Research Goals

The objective of this research project is to develop a generic approach for auto-
matically generating an attack tree from a given dynamic input model. In order
to develop such an approach a generic yet scalable dynamic model analysis
method is required in order to identify all possible attacks the model contains.

Therefore, the main goal of this research is to investigate an analysis method
that has the potential to improve the scalability of a approach while remaining
(security-)domain independent.

1.3.1 Partial-order reduction

One key insight into the scalability problem is that the state-space explodes
because it attempts to explore every possible sequence of actions, even though
the order between many of those actions is irrelevant.

This same observation was made by the approaches using the monotonicity
assumption. These approaches reduce the exploration to only exploring all
possible sets of events (instead of all sequences).

Partial-order reduction, a technique for reducing the size of the state space to
be explored by exploiting the concurrency between events, has the potential
to take the best of both sides by only exploring the sequential orderings of a
set of events when the order is relevant (when events are not concurrent) and
otherwise only exploring the set.

The scalability improvement of this technique depends on the events mod-
eled in the dynamic model; loosely speaking, the more concurrent events are
contained in the model, the better the scalability improvement is when using
partial-order reduction [19].

While the potential of using partial-order reduction to reduce the exploration
required in analysing a model has been discussed in related research e�orts [10],
it has not yet been shown that it can signi�cantly improve the scalability of
analysing a dynamic model for all possible attacks.

The main goal of this work is therefore to evaluate if using partial-order
reduction can improve the scalability of the model analysis.

1.3.2 Graph transformations

As mentioned previously, committing to a security-speci�c modeling language
and/or committing to domain-speci�c concepts signi�cantly reduces the re-
usability of the approach for di�erent/modi�ed input models.
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While the approach should not commit to a security-domain speci�c mod-
eling language, it still requires an input modeling language to de�ne the ex-
ploration upon. The proposed solution is to use a high-level generic modeling
paradigm for this purpose.

By using a high-level modeling language as input, the approach is capable of
receiving models of a large number of di�erent security-domains by expressing
these models using the generic modeling concepts of the language. Even existing
(security-domain) speci�c modeling languages and their models can be used
as input for the approach in this way, by developing a mapping between the
concepts of the speci�c languages to the concepts of the generic language.

We consider the graph transformation modeling paradigm to be a good choice
for such a generic modeling language and therefore want to evaluate it for this
purpose.

Graph transformations are considered as a �exible and generic modeling
formalism. [20]. One of the advantages of using graph-based modeling is that it
combines user friendly, intuitive and visual features with formal semantics and
algorithms that allow analysis [21]. In addition, it has already been shown that
graph transformations can be used as a modeling language for organizations
spanning multiple security domains [16].

There are, however, also additional bene�ts to using graph transformations as
a modeling paradigm.

One bene�t is that there exists a large body of research and existing solutions
based on the formal semantics of this modeling paradigm, and some of these
existing solutions can be reused for the approach developed in this work. One
key example of this is an existing approach for exploring graph-based dynamic
model using a partial-order reduction technique called unfolding.

Other bene�ts are the expressiveness of the paradigm, such as supporting
negative application conditions for specifying attacker actions. In addition it
provides a nice separation of the static and dynamic speci�cation parts of the
model, allowing the models to be easily tweaked to alter its problem speci�ca-
tion. This makes it possible to alter the capabilities of the attacker with minimal
e�ort for example.

Therefore, the second goal of this research e�orts is to investigate if graph
transformations are a suitable modeling language that can be used as the input
language of the generation approach.

1.3.3 Compact attack tree representation

In addition to identifying all possible attacks from a model, the set of attacks
also needs to be extracted and converted into a single attack tree. There are
multiple manners in which this conversion can be performed and di�erent ideas
on what the optimal tree representation looks like.

Therefore, this work also looks into the di�erent possibilities for converting
a set of attacks to a tree representation.
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One interesting feature of the partial-order reduction exploration is that
this also results in knowledge about when the order of performing actions is
relevant and when not or even if two actions can both be performed or not.
This additional information can be included in the attack tree in the form of
sequential and gates and exclusive or gates. This information can then be used
by the analysis tools, for example when calculating timing aspects, to allow for
new analysis options of the same set of attacks.

1.3.4 Research Questions

In order to make the described research goals of this work more concrete, the
following set of Research Questions were developed:

RQ1: Can graph transformation be used as a modeling paradigm to specify
systems and organizations as input models for the attack tree generation
approach?

RQ2: Can partial-order reduction, and speci�cally the unfolding of a graph
transformation model, be used to reduce the state-space explosion problem
that occurs during the automated exploration of a model?

RQ3: How can the set of attacks be converted into an attack tree, what are the
trade-o�s and how can additional information such as sequential AND's
be included in the tree?

1.4 Outline

The remainder of this thesis is structured as follows. Chapter 2 will give an
introduction of the main concepts on which this work builds, including the
graph transformation modeling paradigm, partial-order reduction and attack
trees. Chapter 3 discusses the unfolding of a graph transformation system as
a speci�c partial-order reduction technique to reduce the exploration required
to identify all possible attacks. Chapter 4 then shows how the set of possible
attacks can be extracted from the unfolding and converted into an attack tree.

This is followed up by a two-part evaluation. First Chapter 5 will describe a
case study where this work's attack tree generation approach was applied to an
existing case study and evaluate its quantitative aspect. This is followed up by
the quantitative evaluation in Chapter 6 which will discuss the performance of
the unfolding as an exploration method compared to constructing a reachability
graph.

Chapter 7 will give a more detailed overview of the related work on the
topic of exploring a dynamic model for possible attacks and the construction
of an attack tree based on these attacks. Finally, Chapter 8 will discuss the
contribution of this works proposed approach, given an overview of the main
options for future work and give the �nal remarks of this thesis in the conclusion.
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Chapter 2

Background

�Begin at the beginning", the King said gravely, �and go on till you
come to the end: then stop."

Lewis Carroll, Alice in Wonderland

2.1 Graph Transformation Systems

Graph Transformation Systems (GTS) are considered as a �exible modeling
paradigm that can be used for modeling in a wide array of problem domains
because of their underlying data structure, that of graphs, is capable of capturing
a broad variety of systems [20].

If a system to be modelled can be described as consisting of entities and
relations between those entities, the system is naturally represented by the nodes
(for entities) and edges (for relations) of a graph.

When modeling a building layout for example, the nodes could represent
di�erent rooms and the edges could represent how those rooms are connected.

When explore a dynamic model of a system or organization, the model must
also specify how other con�gurations or states (of the modeled system) can be
reached, for example how relations between entities can be added or altered.
This is where graph transformations can be used. Graph transformations spec-
ify when and how the entities and relations of a graph model can be altered,
removed or created in order to reach di�erent states, i.e. how the graph data-
structure can be transformed.

Using graph transformations it can be speci�ed for example how an actor
might move between two locations, or how the system reacts to certain situa-
tions.

These two notions of a graph as a data structure and graph transformations for
specifying the dynamics of a model form the foundation of a GTS, also referred
to as a Graph Production System.

13
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2.1.1 The concepts

The GTS modeling paradigm started out from a few simple ideas. Because of
application needs and theoretical problems it was later extended with additional
concepts and formalisms that have also increased the complexity of the paradigm

In this section, only the basic concepts used in this work are introduced. For
a more detailed description of these and the other extensions, we refer to the
paper Graph Transformations in a Nutshell [22].

Graph data structure The key concept, the graph data structure, consists
of a set of nodes and a set of (directed) edges between those nodes.

Both nodes and edges can also have labels. Edge labels are descriptions that
indicate the type of relationship that they model, while node labels can be either
an id, type or �ag. The id label of a node simple refers to its unique identi�er,
the type label is used to indicate the type of entity that a node models, and a
�ag can be used to model a Boolean condition, with a node satisfying a certain
condition if it contains the �ag. The �ag is then used as a way to di�erentiate
between two nodes of the same type.

For example, an edge between two nodes could have the label connectedTo
to indicate that two locations (modeled as nodes) are connected to each other.
The node labels then indicate that the two nodes are locations, what their id's
are and a �ag can be used to give a location a certain property.

Figure 2.1: Example of a graph data structure modeling a simple data-center

A simple example of a graph, representing a model in the context of the physical
security domain, can be seen in �gure 2.1. The example graph contains four
nodes: Two representing a Location entity, one the Attacker and the fourth
represents an Asset . Each node is also labeled with an id, for example the
Lobby location.

There are three arrows representing relations between the entities. The at-
tacker is currently residing in the Lobby, the Lobby is connected to the Datacenter
and the Datacenter contains the Server asset.

Finally, the Asset is annotated with a �ag named goal to indicate that this
asset is the target of the attacker.
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Transformation rules The dynamic behavior of a model is speci�ed by a set
of graph transformation rules that specify when and how a transformation can
be applied.

A transformation rule consists of the following:

• A pattern that must be present in the host graph in order for the rule to
be applicable;

• Elements (nodes and edges) to be deleted from the graph;

• Elements (nodes and edges) to be added to the graph;

• Sub-patterns that must be absent in the host graph in order for the rule
to be applicable.

Alternatively, one may think of a rule in terms of application condition and
modi�cations, with the elements of the required pattern, the elements to be
deleted and the sub-patterns that must be absent describing the application
condition, and the modi�cations being described the elements that are deleted
and the elements that are to be added to the graph.

Figure 2.2: Transformation rule example

Figure 2.2 shows a small example of a transformation rule that contains all of
these concepts. The transformation rule describes how an attacker can move
between two locations.

For clarity, the visualization of transformation rules of [20] is used. Here all
elements of a transformation rule are combined into a single graph, using colors
and shapes to distinguish them.

The example transformation rule consists of the following elements:

- The black 'reader' elements, in this case the two locations, the Attacker and
the connectedTo edge, are elements that must be present before the rule can
be applied and are preserved after the transformation. In our example,
this describes that there must be two locations that are connected and
there must be an Attacker.

- The fat dashed red 'embargo' elements, in this case the requires arrow
to the Credential entity, describe a pattern that must be absent in the
graph before the rule is applicable. In the example, this describes that
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the second location should not require a Credential (such as a key) before
it can be accessed.

- The thin dashed blue 'consuming' elements, in this case the at edge from
the Attacker to the Lobby location, describe the elements that are deleted
after applying a rule (and are required to present before applying it). In
the example, this describes that the Attacker should be at the �rst location,
but this relation is removed after applying the rule.

- The green 'creator' elements, in this case the at arrow to the second lo-
cation, describes the elements that will be added in the transformation.
In this example, it describes that after applying the transformation, the
Attacker will reside at the second location.

The overall e�ect of the rule is to search for two connected locations, where
the Attacker resides at the �rst location and the second location does not require
a Credential . If it �nds such a place in the graph, the graph is then transformed
by moving the Attacker to the second location, which is done through deleting
the �rst at relation and creating a second at relation.

Figure 2.3: Transformation rule application example

Figure 2.3 shows the result of applying the transformation rule to the ex-
ample graph (�gure 2.1) introduced earlier. The e�ect is that the Attacker now
resides at the datacenter location.

Finally, it is important to understand that depending on the input graph, a
transformation rule may be applicable to di�erent places in the graph. In ad-
dition, a GTS could contain a set of di�erent transformation rules. Therefore,
using an initial input graph, a set of transformation rules can be used to �nd
di�erent con�gurations or states of the graph.

Type graph One of the many extensions of the modeling paradigm is the use
of a type graph (TG). Without a type graph, graphs can be arbitrary designed,
e.g. there are no constraints on the allowed combinations of nodes, edges and
their labels. When using a type graph, a special graph is designed that describes
all valid graph instances, i.e. all combinations of nodes, edges and labels that
are possible.
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Figure 2.4: Example of a type graph

Using a typed GTS, a graph must be well-typed, indicating that the graph
elements must be mappable to the type graph. It can be statically veri�ed if
the initial graph is well-typed and each graph transformation maintains this
well-typedness.

A simple example of a type graph, for which the earlier examples are well-typed,
can be seen in �gure 2.4. The type graph describes valid combinations of nodes
and edges, or entities and their relations. The example type graph �rst describes
all valid node types, in this case: Location, Attacker, Credential, Asset .

The type graph also describes the valid relations between those types: Lo-
cations can be connectedTo other Locations, an attacker can be located at a
Location and the Location may require a Credential and contain an Asset. Fi-
nally, an asset node may contain a goal �ag, indicating that obtaining it is the
goal of the Attacker.

It is important to also understand the limitations of a type graph. While it
can describe what valid nodes and edges are, it cannot specify if certain graph
elements should be present, or in what number. It is not possible to specify that
there may only be one at arrow in the graph. This property must be preserved
through the transformation rules.

Figure 2.5: Example of a condition rule that speci�es when the attacker has
reached his target

Condition rule (Goal state) In addition to regular transformation rules,
it is also possible to specify a condition rule. A condition rule is a rule that
only speci�es an application condition and not a modi�cation and can be used
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to determine if the graph satis�es a certain condition. It can specify a state of
the graph that is interesting, for example a state where an attacker has reached
his goal. If a graph satis�es the application condition of such a rule, the graph
describes the interesting state.

These type of rules can be used during the (automated) exploration of a
GTS to determine when a successful chain of rule applications has been found
that results in a state that satis�es the speci�ed condition (e.g. a state where
the attacker has reached his goal).

Figure 2.5 illustrates a possible condition rule for the example model. It speci�es
that the Attacker has reached its target, if it is at a Location that contains the
Asset the Attacker is after.

2.2 Automated exploration

Given a system or organization modeled in a GTS, it is then possible to explore
the behavior of this model by applying transformation rules and registering
what states are reached and what other rule applications become available.

In this manner, the GTS can be explored to �nd (routes to) interesting
states, such as goal states.

However, the interleaving of all rule applications results in a large amount
of non-determinism which makes a manual search for possible attack sequences
infeasible. Therefore automated search is necessary to systematically �nd all
rule application sequences and goal states [23].

This section will �rst describe the commonly used method to describe the result
of an exploration, namely a state-space. Following this it will be discussed how
an automated exploration of a GTS can be performed.

2.2.1 State space

The default result of an exploration is a state space. A state space describes
all possible states and which states are (directly) reachable from other states.
From the state space it can be derived what all the possible sequences of rule
applications are.

Let us demonstrate it with an example. The start graph is altered to a model
where the second Location requires a Credential . Then there are two ways to
move to the second Location, one is by faking the Credential , and the second is
by �rst obtaining the Credential and then using it to move.

Exploring these three production rules and the simple start graph result in a
relatively small state-space, see �gure 2.6. The exploration starts from the start
graph, or state s0. Two rules can be applied on this graph, the FakeCredential
rule and the ObtainCredential. Applying these rules results in di�erent states,
s1 and s2 respectively. From the graph state s1, it is then still possible to
apply the ObtainCredential rule, resulting in state s3. Similarly, from s2 both
FakeCredential and UseCredential can be applied, both transformations also
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Figure 2.6: State space resulting from automated exploration for a small input
graph

resulting in s3. The idea behind this is that both transformations move the
attacker to the second location. Whether the actually obtained credential is
used or not, does not matter according to the model.

Figure 2.7: State space resulting from automated exploration for a slightly larger
input graph

While the state space for this simple example is still small and intuitive to
understand, this quickly becomes a di�erent story when larger input models
are explored. If we were to add a third location that requires an additional
credential to the start graph of the this example, state space already increases
signi�cantly, see �gure 2.7. The interesting thing is not the state space itself
but its size, compared to the previous example.

The issue is that state space does not scale well compared to the size of the
input model, as it describes all possible sequences of applying transformations
to the start graph. This is also referred to as the state space-explosion problem
[23]. Therefore, the size of the state space may increase signi�cantly for each
added node to the graph or each added transformation to the GTS.

19



CHAPTER 2. BACKGROUND

The result of this issue is that the exploration of a GTS and the construction
of its state space quickly becomes a infeasible for larger input models, as is
discussed in the following subsection.

2.2.2 Exploration strategies

The automated exploration of a GTS requires a strategy in order to �nd all
sequences of rule applications. Such a strategy could simply be a breath-�rst or
depth-�rst strategy.

In the case of a breath-�rst strategy, �rst all possible transformation rule
applications for the start graph would be explored, developing the start of all
application sequences. In the case of the depth-�rst exploration strategy, the
exploration would �rst �nd a maximum application sequence, before looking
into di�erent sequences.

While one of the two strategies might be the best choice considering the
di�erent memory and computational requirements of the two, the end result of
both strategies is the same complete state-space, and both strategies su�er the
same scalability issue as the state-space itself. Therefore, the construction of
the state space using these traditional strategies quickly becomes infeasible for
larger input models.

There are other possible exploration strategies that attempt to avoid such an
explosion, such as linear, random linear and conditional exploration that allow
simulation without covering all states, but these do not guarantee that all pos-
sible (goal) states are found, as the simulation often only �nds a subset of the
possible (goal) states of the model.

In this case, if the model describes an attacker and a building, the explo-
ration might only �nd a subset of the possible attacks. This is a severe drawback
of these exploration strategies, as the goal of the proposed artifact is to con-
struct an attack tree describing all possible attacks. Therefore, these exploration
strategies are not suitable for identifying all possible attacks. There are other
purposes where only �nding a subset of solutions might be su�cient, for example
to �nd a solution to a game, or to determine if deadlocks are possible.

Therefore, instead of using a default exploration (or simulation) strategy, an
additional exploration strategy is required to reduce the state-space (explosion
problem). We propose to use an alternative state-space representation in the
form of a partial-order reduction state-space.

2.3 Partial-order reduction

2.3.1 Intuition

As mentioned in the previous chapter, a key reason for the state-space explo-
sion during the exploration of a dynamic model is that it attempts to �nd all
sequences of events, or arbitrary interleavings, in which transformation rules
can be applied to a given model.
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Since transformation rule application events do not necessarily depend on
each other and might even be independent of each other and therefore model
concurrent actions, exploring all arbitrary interleavings is not always bene�cial.

This problem of investigating the arbitrary interleavings of current actions
resulting into a state-space explosion is well recognized and studied in literature
and it has been observed that substantial increase in e�ciency could be obtained
if the enumeration of all possible interleavings is avoided. Therefore several
techniques based on partial ordering have been developed to reduce the state-
space explosion [23].

It is however important to note that the amount of reduction of the state-space
explosion that is obtained when using partial order is dependent on the speci�c
model: If the model contains a large number of independent transformation
rules, then partial order reduction can have a big e�ect on the e�ciency. It can
also be the case that all transformation rules depend on each other, in that case
the worst-case complexity is the same as the default exploration.

Let us demonstrate this concept with a simple example. We de�ne four actions:
a1, a2, a3 and a4. Actions a1, a2 and a3 can all be executed directly from the
start and are concurrent, i.e. executing one will not e�ect the others. Action
a4 however depends on a1, a2 and a3 being executed before it can be executed
itself, e.g. it consumes elements created by the other actions.

A regular exploration would explore all valid sequences of events, events, in
this case:

• a1,a2,a3,a4

• a1,a3,a2,a4

• a2,a1,a3,a4

• a2,a3,a1,a4

• a3,a1,a2,a4

• a3,a2,a1,a4

A partial-order reduction exploration would only produce the relations be-
tween these actions. For example:

• a1

• a2

• a3

• (a1 + a2 + a3), a4

Stating that a1, a2 and 3 do not have dependencies, but a4 requires all of
them to be executed.

The larger the set of concurrent actions becomes, the bigger the di�erence
between the size of the full exploration and the partial-order reduction overview.
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2.3.2 Unfolding

The unfolding a GTS is a technique that can be used to obtain a partial ordering
of the transformation rule applications of a given graph transformation system.

The unfolding of a GTS represents a single branching structure that describes
all possible transformation rule applications and their dependencies. This struc-
ture can be used as an alternative (more compact) state-space representation.

As mentioned: The main di�erence of this alternative state-space represen-
tation compared to a regular state-space is that the regular state-space models
all possible sequences of transformation rule applications, while the unfolding
structure only models the dependencies of transformation rule applications on
other transformation rule applications, thereby (potentially) reducing the num-
ber rule application orderings that needs to be explored.

The idea of unfolding a model to achieve partial-order reduction was �rst de-
veloped by McMillan [23] and developed for "plain" Petri nets.

Petri nets [24] are a formal tool/model used for the speci�cation of the
behaviour of concurrent systems. At it's basis, Petri nets describe transitions
that consume and create tokens to model actions.

It was observed by Ribeiro [25] and Baldan et al. [ref] that Petri nets can
be regarded as graph transformation systems that act on a restricted kind of
graphs that only consume and create elements, or similarly, graph transforma-
tion systems are a proper generalisation of classical models of concurrency such
as Petri nets. Their works have proposed a transfer of the unfolding construc-
tion technique from Petri nets to �nite state graph tranformation systems and
they have de�ned it's the functorial semantics [26]

This inital speci�cation of the unfolding concepts for graph transformation sys-
tems was only de�ned for a restricted kind of graphs. The main limitations
being �nite state graph transformation systems without reading edges or nega-
tive application conditions.

The unfolding technique has however attracted considerable attention in the
Petri net domain and has been further analyzed and improved, see [27] for an
extensive survey and [28] for the corresponding book.

The technique has been extended to Petri nets with read arcs [29, 30] and
Petri nets with inhibitor arcs [31]. The technique for nets with read arcs has
and inhibitor arcs have both been transfered to graph transformations [32, 33]

These foundational papers are light on implementation details of the technique,
but more recent e�orts have focused on developing an e�cient implementation
of the unfolding technique for Petri nets with read arcs [34, 19]. This work has
transferred the concepts of this implementation to an implementation for graph
transformation systems.

A framework for the unfolding of in�nite-state graph transformation systems
has also recently been proposed by Baldan et al. [35] which is based developing
an approximate unfolding with arbitrary accuracy.

In addition to using the unfolding of a graph transformation system to study
the concurrent behavior of a modeled system, the unfolding approach has also
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been used for generating test cases for code generators [33]. Here the working
of the code generators are formalised using graph transformation systems and
suitable test cases are systematically derived from it's unfolding.

Using the unfolding This works main research question is to determine if
the unfolding of a graph transformation systems can be used as a more scalable
exploration method to identify all possible attacks in comparison to constructing
a reachability graph.

In order to determine this, this research e�ort focuses on developing an e�-
cient construction approach of the unfolding of a GTS. Formally, the unfolding
of a GTS is based on converting the GTS into a nondeterministic occurence
grammar by recording all possible rule applications as events of this grammar
and the e�ects of each transformation rule as items of the type-graph of this
grammar.

This works unfolding approach is based on the most recent overview of the
work performed on unfolding graph transformation systems and it's semantics
[36]. The unfolding approached in described in a much more detailed (declar-
ative) manner in chapter 3. For a more formal de�nition of the basis of this
approach we refer to Baldan et al. [36].

Once the unfolding of a model has been constructed, a partial-order on the set
of attacker actions for each possible attack can be retrieved from this unfolding
and be used to construct the attack tree.

2.4 GROOVE

This research e�ort uses and extends GROOVE1. Groove is a tool for modeling
and analyzing Graph Transformation systems developed by Arend Rensink et
al. [37] at the University of Twente.

Its main features are a Graphical User Interface for modeling a GTS and a set
of features to explore (the behavior of) the GTS, see �gure 2.8 for a screenshot.
For the modeling part, it provides functionality to specify a type-graph, start-
graphs, transformation rules and condition rules. It provides static veri�cation
of well-typedness for all start graphs and rules.

It also provides broad support for the exploration and analysis of a GTS. This
can be performed both manually, by selecting what possible rule applications
should be applied and seeing its applied result, or automatically, by selecting
the exploration strategy

Through the years the basic functionality has been extended several times,
for example with concepts to increase the expressiveness of the graph trans-
formation modeling paradigm or those that reduce the speci�cation size, such
as element attributes and control blocks (which specify the order of rule ap-
plications). In addition, it has also been extended with numerous alternative
methods for the exploration and analysis of a modeled GTS. It does however

1http://groove.cs.utwente.nl/
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Figure 2.8: Example of GROOVE's GUI for modeling and analyzing GTS

not contain an implementation for an alternative state-space representation that
supports partial-order reduction.

In this project GROOVE is used for developing GTS by using its GUI and
to explore the developed GTS through it's default exploration. The works ap-
proach is developed as an extension of GROOVE that builds on the basic GTS
implementation by adding a new exploration strategy (on the basis of a partial-
order reduction) and functionality to retrieve and convert the results of this
strategy into a attack tree.

2.5 Attack Trees

Bruce Schneier introduced the concept of attack trees based on the idea that
to answer questions about the security of a system or organization, one needs
to understand the threats [38]. By modeling the threats against a system or
organization, one can study and try to understand all the possible attacks and
design countermeasures to thwart those attacks.

The attack tree formalism (formalized in [39]) is a graphical security mod-
eling and analysis approach that aims to model the di�erent ways an attacker
might reach his goal. The formalism focuses on building a tree where the top
node represents the attacker's goal. This root node has children that describe
all possible attacks that might result in this goal. Each of these children is
then recursively re�ned to describe the di�erent sub-attack of an attack. These
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sub-attacks are re�ned until only atomic actions remain as the nodes without
children (i.e. leaf nodes).

Attack trees also indicate the relation between every node and its child
nodes, or an attack and its sub-attacks. A conjunctive relation indicates that
all child nodes should be achieved in order for the parent to be achieved, while
an disjunctive relation means that only a single child needs to be achieved in
order for the parent to be achieved.

Figure 2.9: Example of an attack tree with di�erent attacks and relations.

An example of an attack tree with di�erent relations as visualized by ADTool
[40] can be seen in �gure 2.9.

The example attack tree has its as root node, or as the attacker's goal, to
obtain free lunch. It speci�es that there are two attacks that can result in this
goal, and that achieving only one of these su�ces. The �rst attack, letting
somebody else pay, consists out of three parts or atomic actions: great, eat,
leave. Each of these three needs to be achieved before the attack is achieved (the
basic attack tree formalism can not require that children are achieved in order,
but there are extensions that add such an order). The second attack, leaving
without paying, can be achieved in two manners, disguising oneself through a
hat or leaving directly after a long bathroom break.

Given an attack tree, quantitative analysis can be performed for a better un-
derstanding and prioritization of the di�erent attacks. One method for such a
quantitative analysis attaches a certain value, such as a percentage, that cor-
responds to a certain domain, such as the chance of success, to each leaf node.
The domain then describes how to propagate the values of the child nodes to
a parent node, based on the di�erent relations between parent and child nodes
(conjunctive, disjunctive and countermeasure).

Figure 2.10 shows how such quantitative analysis might work. Each atomic
action (yellow node) is assigned a probability of success. These values, in com-
bination with the relation towards the parent (an AND or OR gate) are then
used to compute the probability of success of the of the parent. This probability
is propagated upwards until the root probability is calculated.

In addition to the basic attack tree formalism introduced so far, there is a
large amount of research on extensions and improvements of this formalism.
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Figure 2.10: Example of quantitative analysis performed on an attack tree

An overview of this can be found in [21]. Two particular interesting examples
of improvements are attack trees that share common subtrees, i.e. di�erent
branches with the same subtree reuse the same de�nition of this subtree, and
trees with additional gates such as a sequantial AND gate (specifying that all
it's children are achieved in order) and an exclusive OR gate (specifying that
only one of the children can be achieved). These two improvements are used in
this thesis to reduce the size of the generated attack tree and to add additional
information to the generated attack tree.
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Chapter 3

Part 1: Constructing the

unfolding

War is the unfolding of miscalculations.

Barbara W. Tuchman

As a quick recap: The main procedure of an attack tree generation approach is to
explore a given input model in order to identify and extract all possible attacks
that should be contained in it's constructed attack tree. A default/general-
purpose exploration of the model attempts to develop a reachability graph
describing all possible states of a model. Constructing a reachability graph,
representing the result of the exploration, is known to su�er from a state-space
explosion, making it computational expensive to construct and extract informa-
tion from it for larger input models.

The main goal of this research is to determine if the unfolding of a model
can be used as an alternative exploration that reduces the state-space explosion
by producing an alternative state-space representation based on exploiting the
inherently concurrent nature of actions represented in the model in order to
reduce it's size, i.e. using partial-order reduction.

In order for the alternative state-space representation to be suitable for the
purpose of exploring a model for all possible attacks, it should (i) be e�cient
to construct, (ii) contain all required information to identify and extract all
possible attacks and (iii) allow for this information to be extracted e�ciently.

To determine if the unfolding of a model ful�lls these requirements, an un-
folding construction is implemented in order to evaluate it for this purpose.

This chapter describes the unfolding construction of a GTS, as is shown in
�gure 3.1, while the following chapter describes how all the possible attacks are
extracted from the constructed unfolding.
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Dynamic
model

GTS
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Set of
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tree
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Unfolding
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Set to tree
conversion

Step 1.1 Step 1.2 Step 2

Figure 3.1: This chapter focuses on the step 1.1, constructing the unfolding of
a GTS

3.1 The unfolding procedure

3.1.1 Preliminaries

As was explained in the background, the two main component of a GTS are its
start graph and the set of transformation rules.

To understand the unfolding procedure, it is important to understand that
the elements of a basic transformation rule (both nodes and elements) can be
divided into three di�erent sets.

Figure 3.2: Break Door transformation rule

Figure 3.2 shows an example of a basic transformation rule which contains
elements of all the three sets:

Black The set of reader elements. Elements of the transformation rule that
must exist before the rule can be applied, but are not altered when apply-
ing a rule.

Blue The set of consuming elements. Elements of the Graph that must exist
before the rule can be applied and are deleted during the application.

Green The set of creator elements. Elements that are created after the rule is
applied.

3.1.2 Unfolding exploration

Regular state-space exploration During the regular exploration of a GTS,
the transformation rules are applied to the startgraph to study their e�ects.
Applying a rule may however make other rules inapplicable if they are not cur-
rent rules, for example because the applied rule removes certain graph elements
the other rule requires. Therefore, when exploring all possible rule applications
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of a certain state of the Graph, it is not possible to simply apply all of them one
after another, as the non-concurrent rules have an e�ect on each other. There-
fore, after exploring and recording the e�ects of applying one of the possible
rule applications, the original state of the graph must be restored in order to
explore the other possible transformation rules, and restoring the state of the
graph can become a costly e�ort, both computational and memory wise.

The Gleuing operation The basic step of unfolding a GTS is to glue all
possible transformation rules to the graph in order to study their e�ect, instead
of applying the rules. The di�erence between gluing a transformation rule to a
graph instead to applying it boils down to two points:

1. When gluing a transformation rule to a graph, the set of consuming ele-
ments is not removed from the Graph, but the creator elements are added
to the graph.

2. All elements of the created set are annotated with the match of the trans-
formation rule that created them. The e�ect of this is that when two
transformation rules create a similar element, such as the same edge be-
tween two nodes, both elements are created and unique based on the
annotation of the rule that created them.

It is important to observe that because of these di�erences, the gluing operation
of all possible transformation rules becomes concurrent, i.e. the order in which
the transformation rules are glued to the graph does not have an e�ect on
the outcome. Therefore, in contrast to regular application where the state of
the graph needs to be restored after each single application, the gluing of all
transformation rules can be done without restoring the state of the graph.

The gluing operation is used in the Unfolding construction in order to explore
the e�ects of a certain transformation rule application, i.e. to determine what
other rule applications are made possible by the transformation rule application.

Exploration procedure The unfolding is constructed in iterations using a
breath-�rst principle. Using the start graph as the input of the �rst iteration,
each iteration determines all possible rule application for its input graph and
then glues all these rule applications to the graph in a random order. After
performing all glue operations, the resulting graph is then given as the input
of the following iteration (which will try to use the e�ects of the previous glue
operations to �nd new rule application possibilities).

During each iteration, the procedure will also �nd rule application possi-
bilities that have already been applied in previous iterations, as the reader and
consuming set of these rules have not been removed. However, gluing these rules
a second time does not have an e�ect on the graph, as the produced elements
are the same elements as the ones produces by the previous gluing of the same
rule application, as they have the same rule application as annotation.
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Attacker Outside Inside Key
at connectedTo requires

(a) Initial graph
(b) Obtain
Key rule

(c) Break Door rule (d) Use Key rule

Figure 3.3: The example GTS setup

The exploration procedure is halted after an iteration does not �nd new rule
application possibilities. In this case, all rule application possibilities have been
found.

Unfolding state-space In order to get an actual state-space representation
and obtain all dependencies between rule applications, all gluing operations are
recorded, including references to all elements of the graph involved with the rule
application, i.e. the set of reader elements, the set of consuming elements and
the set of creator elements.

At its basis, the unfolding construction comes down to recording all possible
transformation rule applications for a certain startgraph. Then, using all of
these recordings, the dependencies between rule applications can be determined
by comparing the sets of elements of di�erent rules. For example by detecting
that a certain rule application has an element in its reading set that another
rule application has in its creator set, it is found that the �rst rule application
depends on the second.

3.1.3 Running Example

Let us clarify this basic procedure of the unfolding construction by constructing
the unfolding of a simple example.

Setup The example GTS used as the running example is shown in �gure 3.3.
The start graph of this GTS is shown in �gure 3.3a and describes an Attacker
who resides at the Outside location. This location is connected to the Inside
location, a location that requires a key to move to it.

In addition to this graph there are three simple transformation rules, these
are Break door (�gure 3.3c) which simply moves the attacker from outside to
inside without using the key, Obtain key (�gure 3.3b) which provides the attacker
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with the key and Use Key (�gure 3.3d) which makes the attacker use the key to
move to the inside.

Attacker Outside Inside Key
at connectedTo requires

at

(a) Visualisastion of a rule application match for the Break Door transformation rule.

Attacker Outside Inside Key
at connectedTo requires

at[Break Door]

(b) The result of gluing the rule match to the graph. Only elements of the creator set
are added and annotated with the transformation rule.

Attacker Outside Inside Key

Break Door

at connectedTo requires

at[Break Door]

HostGraph

Rule recordings

(c) The result of recording the gluing of the rule match where the recorded rule appli-
cation references to graph elements that are in its reader, consuming and creator set
(references depicted by dotted black, dashed blue and green lines respectively)

Figure 3.4: The process of a basic unfolding step

First iteration The �rst iteration receives the start graph as its input graph.
The iteration starts with determining all possible rule applications for this input
graph. For this input graph there are two rule application matches: Break Door
and Obtain Key. The next step is to glue all rule applications in a random order
to the graph, as is demonstrated for the Break Door transformation rule in �gure
3.4.

Figure 3.4a visualizes the match found for the Break Door rule. All black ele-
ments are in its reader set, the blue arrow in its consuming set and the green
arrow in its creator set.
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Figure 3.4b then shows the result of gluing this transformation rule match
to the graph. The element in the creator set of the match are added to the
graph and annotated with the match of the transformation rule application (in
this case a match of Break Door).

All gluing operations are recorded (externally from the graph) to form the
basis of the alternative state-space representation generated by the unfolding.
The recording of the transformation rule gluing is shown in �gure 3.4c. It shows
that the recording of rules is stored separately from the graph, but it references
to graph elements that are in reader, consuming and creator sets.

Attacker Outside Inside Key

Break door Obtain key

at connectedTo requires

obtains[Obtain Key]

at[Break Door]

HostGraph

Rule recordings

Figure 3.5: Unfolding after the �rst iteration

Using the resulting graph, the other transformation rule match (Obtain key) can
be glued (and recorded) in a similar manner to obtain the result of the �rst
iteration of the unfolding, which is depicted in �gure 3.5.

The result of gluing this transformation rule is slightly di�erent as the trans-
formation rule does not have any elements in its consuming set, the recording
therefore only references to its reader and creator elements.

Second iteration After the �rst iteration as completed, the unfolding con-
struction will use its result as the input for the second iteration. One again the
�rst step is to �nd all the matches of all transformation rules. If there are no
new matches found then the exploration is terminated, otherwise it continues.
In this case one new transformation rule match is found, namely a match for
the Use Key transformation rule.

The unfolding construction then proceeds to glue this new match the graph
and records this process, the result of which can be seen in �gure 3.6. One
thing to observe is that the Use Key transformation rule creates a similar el-
ement as the Break Door rule, namely an arrow between the attacker and the
location Inside. Because each of the created arrows are annotated with their
transformation rule match, both arrows are unique and added to the graph.

As mentioned previously, no elements are actually deleted from the graph.
Therefore the process of �nding matches for all transformation rules will also
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Attacker Outside Inside Key

Break door Obtain key

UseKey

at connectedTo requires

obtains[Obtain Key]

at[Break Door]

at[Use Key]

HostGraph

Rule recordings

Figure 3.6: Unfolding after the second iteration

�nd matches that have already been glued to the graph, such as the matches for
Break Door and Use Key. However, gluing these elements a second time (and
recording this process) has no result on the graph, as this operation produces
the same elements and recordings as the �rst time. I.e. the created elements
are in both cases annotated with the same transformation rule match and are
therefore not unique.

3.1.4 The interpretation of unfoldings

By recording the transformation rule gluing during the unfolding it is then
possible to infer relations between rule applications. For example, there is a
dependency between the Obtain key and Use Key transformation rule matches.
The Obtain key rule creates an element that is in the reading set of the Use Key
set, i.e. it must exist before the Use Key rule can be performed. In other words:
the Obtain key rule must be applied before the Use Key rule can be applied.

Larger Example The previous example demonstrated the basic concepts of
the unfolding construction. The example was purposefully kept small so as be
easy to understand and visualize. On this small scale some of the e�ects of
the unfolding are lost, such as when there are multiple matches of the same
transformation rule in the graph. Therefore a slightly larger example GTS is
unfolded in order to comment on these additional e�ects that are noticeable on
a larger scale.

The setup of the larger example GTS has the graph depicted in �gure 3.7 as
its startgraph but the same transformation rules as the previous example. The
di�erence with the previous example is that this startgraph has three locations,

33



CHAPTER 3. PART 1: CONSTRUCTING THE UNFOLDING

Attacker Outside Inside Datacenter

Key KeyCard

at connectedTo connectedTo

requires requires

Figure 3.7: A slightly larger startgraph

two of which require a credential.
The complete unfolding of this larger example is shown in �gure 3.8. While

this �gure may be a bit daunting to grasp, it is useful to understand it as it
shows the e�ects that previous gluing operations/iterations have on following
iterations. (To reduce the complexity of the �gure, all context lines between
transformation rules and elements of the initial graph have been removed, just
as all element annotations have been removed). To highlight the relationships
between the recorded production rules, �gure 3.9 shows an alternative visualisa-
tion of the same unfolding, focusing only on the elements in the reader, consumer
and creator set of each recorded rule application during the unfolding.

Interpretation The main di�erence with the earlier example is that there
are now three locations. Therefore the unfolding does not only explore the ways
to get from location Outside to location Inside, but also how to get to location
Datacenter. As there are two transformation rules that have the e�ect of moving
the attacker from a certain location to another (connected) location, this gives
a total of four di�erent sequences of applying all transformation rules to get
from location one to location three. All four of these sequences are shown in
the unfolding.

The interesting thing to observe is that, because of the annotation of created
elements, there are two 'at' arrows created between the attacker and the second
location (Inside). Therefore, each of the two transformation rules that can be
used to move between two locations then has two matches (one for each at arrow)
in the graph to move to the third location. The intuition behind this is that it
can depend on either of the ways to get to the second location. Because each of
these matches creates a unique 'at' arrow is created, as each created element is
annotated with the speci�c match of the transformation rule, this results in a
total of four 'at' arrows between the Attacker and the third location, with each
of these arrows having a unique dependency order on how they are created.

Each of these four 'at' arrows to the Datacenter has a unique causal history.
The example history of the at-4 edge for example is shown in �gure 3.10a. This
causal history of an element describes all the elements and production rules
applications that were involved in creating this element.

From this causal history it can be determined what production rule appli-
cation this element depends on to be created and in what (partial-) order these
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Attacker Outside Inside Datacenter

Key KeyCard

at connectedTo connectedTo

requires requires

at-1

at-2

at-3
at-4

at-5
at-6

obt-1 obt-2

Obtain key (2)

UseKey (2) Break door (3)UseKey (3)

Break door (2) Obtain key (2) UseKey (1)

Break door (1) Obtain key (1)
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obt-2obt-1
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Figure 3.8: Complete unfolding of the larger startgraph. To reduce the com-
plexity, all context lines to elements of the initial graph have been ommited and
the annotations replaced by numbers.

rule applications need to be applied. In the case of the at-4 element, the set of
production rule applications is {Break Door-1, Obtain key-2, Use key-3}, and
the partial-order dictates that Use key-3 can only be applied after the other
two have been applied, but the order in which the other two are applied is not
relevant.

We refer to this information about each element as the elements con�gura-
tion. The con�guration of the at-4 element is shown in �gure 3.10b.

3.2 Filtering con�icts

A key ingredient of the unfolding construction is the gluing operation. The
fact that the gluing operation does not remove any elements from the graph
makes the exploration of the GTS very e�cient as it does not have to restore
the state of the graph whenever there are multiple rule application possibilities
for a certain graph state, which is in contrast to when rules are actually applied
during the exploration.
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Figure 3.9: Alternative visualisation of the unfolding to highlight relations be-
tween rule applications

But while the gluing operation makes the exploration very e�cient, using
it is in many ways similar to making the monotonicity assumption during the
exploration, where it is assumed that attacker capabilities cannot be 'lost' dur-
ing the exploration. As argued in the introduction of this work however, this
assumption is not a natural decision for every security-domain.

In the case of graph transformation, the fact that the gluing operation does
not remove any elements from the graph makes it possible for combinations of
graph items to appear in the graph that are not concurrent and therefore should
not be able to exist at the same time, for example because one items creation
depends on another item being consumed.

The result of the graph containing sets of items that are not concurrent is
that it is then also possible to �nd matches for transformation rules that cannot
really exist, as the items that make up the match cannot exist at the same time.

This means that the exploration, in addition to all the regular and pos-
sible attacks, might also �nd attacks that are not really possible, causing an
overestimation of the possible attacks, a known side e�ect of the monotonicity
assumption.

In order to avoid making the monotonicity assumption, the unfolding construc-
tion de�nes that only matches of which all graph elements do not depend on
each other (i.e. can exist at the same time) should be explored in the unfolding,
i.e. should be glued to the graph. Other matches should be ignored by not
gluing them to the graph and thereby halting their exploration.
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A O
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A I
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A KC
obt-2

A D
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Use Key-3
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(a) Causal history at-4

at-4

Use key-3

Obtain key-2 Break door-1

(b) Con�guration at-4

Figure 3.10: Example of the causal history and con�guration of the at-4 graph
element

The unfolding construction procedure therefore requires a �lter to be imple-
mented to determine if a match is valid or not, i.e. determine if its elements
depend on each other or not.

3.2.1 Running Example

Attacker L1

L2

L3

Key

L4
at

ct

ct

ct

ct

ct

contains

requires

Figure 3.11: Startgraph of the example GTS that will produce invalid matches
during its Unfolding

In order to give a better intuition into the issue of how elements that depend
on each other can exist at the same time, and how these are �ltered out later
on, we will �rst introduce an example Graph Transformation System for which
such elements appear during its unfolding.
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The Setup The startgraph of this example GTS is depicted in �gure 3.11.
This input graph contains four locations, numbered L1 through L4. The attacker
starts at location L1 and his goal is to move to location L4, which requires a
key that can be found in location L2. Together with three transformation rules
(Move, Obtain and Use Key), this is the setup the example GTS.

The main di�erence of this GTS compared to previous examples is that the key
must be obtained from the model itself, not from 'an external' source. Therefore,
intuitively, the attacker needs to move to L2 to obtain the key and then use this
key to proceed to L4.

Attacker L1

L2

L3

Key

L4
at

ct

ct

ct

ct

ct

contains

requires

at

at

obtained

Move(1) Move(2)

Obtain

HostGraph

Rule recordings

Figure 3.12: Unfolding of the example graph (�gure 3.11) after the second
iteration.

Unfolding construction The �rst two iterations of the unfolding work as
expected. In the �rst iteration, the attacker can move to both location L2 and
L3 with the Move transformation rule, but not to L4 as this requires the key to
be obtained. In the second iteration, the attacker can obtain the key from L2.

This is all expected behavior and the resulting Unfolding at the end of the
second iteration is shown in �gure 3.12.

Third iteration It is however during the third iteration that the unwanted be-
havior occurs. At the start of the iteration, the unfolding construction searches
for all possible matches of all transformation rules and will �nd 3 new matches
in this iteration. These three new matches are shown in �gure 3.13.

Of these three found matches however, only the third (�gure 3.13d) is a valid
matches. The other two are invalid matches, as there exists a combination of
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Figure 3.13: The three rule matches found during the third iteration of the
Unfolding construction, of which the �rst two are invalid.

elements in both of these matches that depend on each other. In order to obtain
the key, the attacker has to move to location L2 and this move means that the
attacker is no longer at location L1. Or in other words: the Move transformation
rule for moving from L1 to L2 requires that the 'at' arrow towards L1 is removed.

Therefore, the 'obtained' arrow, which is part of all three matches (as an
element of its reader set) depends on the 'at' arrow between the attacker and
L1 being deleted. This 'obtained' arrow element thus is in con�ict with the 'at'
arrow to L1 still existing or even being used to move to L3. Only the third
match is valid, as the 'obtained' arrow is not in con�ict with the 'at' arrow to
L2.

We refer to these con�icts as con�icts between the con�gurations (the set
of rule applications they depend upon) of graph elements. The con�icts can
also be seen in the unfolding visualisation 3.14 of when these three matches are
glued to the graph.

As explained previously, the reason that these matches are found is because the
gluing operation does not remove any elements. This fact, in combination with
how the system is modeled, results in the attacker being modeled as though
being in multiple locations at the same time.
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Figure 3.14: Unfolding visualisation of the example graph (�gure 3.11) after
gluing all three matches of the Use Key rule, containing two con�icts.

If these invalid matches are also glued to the graph, this would result in
more attacks being found then are actually possible and thus resulting in the
expected overestimation of attacks being found in the exploration. Therefore,
we want to �lter out these �rst two matches as invalid matches and not glue
them to the startgraph.

3.2.2 Filtering

The task of the �lter is to determine if a transformation rule match is reachable,
i.e. if the elements of the match are concurrent and it is therefore possible to
reproduce this match by applying the transformation rules it depends on instead
of gluing them. If this is the case, the match describes an action that is possible
according to the model, such as the attacker using the key to move from L2 to
L4.

In order to understand how this can be determined, it is important to �rst
understand that a certain graph element can only exists if the transformation
rules that it depends upon have been applied to the startgraph. The 'obtained'
arrow in our example GTS depends upon the Move to L2 and the Obtain trans-
formation rule being applied to the graph for example. Therefore, in order to
obtain all elements of a match, the rule applications in the con�guration of each
element have to be applied to the startgraph in the speci�ed partial-order.

If there is an order in which all these rule applications can be applied to the
startgraph that is in accordance with the partial-order of all con�gurations, the
match is reproducible by rule application and therefore a reachable and valid
match.

Therefore, the �lter has to determine for each match if there exists an order
to apply all its rule application dependencies to the startgraph.
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Con�ict types In order to understand the di�culty in determining if there
exists such an order, it is important to �rst understand the di�erent type of
con�icts that can prevent such an order from existing.

All elements of the graph have a con�guration that describes a sets of depen-
dencies, i.e. rule applications that together created this element. Each of these
transformation rule recordings has an e�ect, such as elements being consumed,
read or created. Con�icts between two elements occur because there have trans-
formation rule recordings with con�icting e�ects, e.g. they both have a rule
recording that consumes the same element.

If the con�guration of two elements does not interact with the same graph
element, i.e. if the e�ects of all transformation rule recordings of the di�erent
sets do not mention the same graph element, such as attempting to consume the
same graph element, there cannot be a con�ict therefore there is a simple order
in which all of these dependencies can be applied to the start graph, simply
by adding each set independently. This is because the di�erent sets have an
internal order and applying the sets has no in�uence on the other set, as their
e�ect does not focus on a shared graph element.

Therefore, there can only exist a con�ict between the con�guration of dif-
ferent elements if they interact with a common element.

N1 N2
edge1

Rule (1) Rule (2)

(a) Double read interaction

N1 N2
edge1

Rule (1) Rule (2)

(b) Symmetric con�ict

N1 N2
edge1

Rule (1) Rule (2)

(c) Asymmetric con�ict

Figure 3.15: The three types of interaction with a shared element two con�gu-
rations can have

If two sets of con�gurations read a common element, such as shown in �gure
3.15a there is no con�ict as the con�gurations can still be applied in either order.

If two sets of con�gurations however both consume a common element, as
shown in �gure 3.15b, the two con�gurations are in con�ict, as there simply
exists no order to apply both of these con�gurations that has no con�ict.

Finally, if two sets of con�gurations interact with a common element, but
the �rst consumes it while the second reads the element as shown in �gure 3.15c,
there might be a con�ict. This depends on whether there exists an additional
con�ict of such a type that, when composed with the �rst one, results in an
asymmetric con�ict.

A set of asymmetric con�icts can be composed into a symmetrical con�ict,
see 3.16. It is this fact, that a set asymmetric con�icts can be composed into
a symmetrical con�ict, that makes it hard to determine if the con�gurations of
the elements of a match have an order or if a composed con�ict exists.
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N3 N4
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Figure 3.16: Example of two asymmetric con�icts being composed to a sym-
metric con�ict

The algorithm A conceptually simple method to determine if there exists an
order is to simply identify such an order before adding a match tot he graph.
The issue lies in �nding such an order in an e�cient manner however, as the
�lter will have to be applied to each possible rule match.

Baldan et al. [19] have proposed an approach for e�ciently identifying if
there exists a possible order for events of Petri nets with read arcs. As such so
called contextual Petri nets are similar to graph transformations systems their
approach can be translated to this domain.

At the basis of this approach lies the idea that each rule application match
can have a set of possible explicit histories based on whether or not the elements
consumed in the history of a match have been read by other rules before they
were consumed or not.

The approach is based on annotating all elements of the host graph during
the unfolding with all the possible reading and creating histories of that element,
which can be done in an iterative manner, and then using this to identify new
possible histories for matches of transformation rules and adding these new
histories to graph elements.

The approach then works as follows. When the approach identi�es a possible
history for a match of a rule, the match is added to the graph and the history
of this match is stored in the elements the rule application reads and creates
as respectively reading and creation histories of the match. Following iterations
can use the histories stored in the graph elements to identify new histories of
other matches, which are once again stored in graph elements to identify even
more new histories.

In this fashion, all possible histories of a each match are iteratively con-
structed during the unfolding. This results in a low complex approach to identify
whether each match has a valid history.

The reason for storing all histories explicitly is that this makes it possible to
determine if two histories, i.e. the history of two elements of a match, contains
con�ict or not. Even composed symmetric con�icts can be identi�ed in this
manner

This works approach has implemented Baldan et al. proposed lazy algo-
rithm for identifying possible histories. The speci�c details of the approach,
including its proof, require are more formal introduction which can be found in
the referenced work.
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Figure 3.17: Unfolding of the example graph (�gure 3.11) after the third iter-
ation, including the �ltering of invalid matches, shown as red (not-glued) rule
recordings.

The result In order to demonstrate the result of applying the proposed �lter
algorithm to all matches found in the unfolding construction, and then only
gluing the valid matches to the graph and discarding the other matches, the
unfolding of the example GTS was extended with a third iteration. The resulting
unfolding is shown in �gure 3.17.

The two matches found to be invalid are recorded in the unfolding as invalid
matches (so that it is remembered that they are invalid when they are found in
the following iterations), but they are not glued to the graph and therefore not
explored.

Only the 'Use(3)' transformation rule match is valid and therefore glued to
the graph, resulting in only one attack route to L4 being found, as was expected.

3.3 Limitations

The previous sections describe the foundation of the unfolding construction ap-
proach. This approach does however not (yet) support all graph transformation
features. This section gives an overview of the the current limitations of the de-
scribed approach to highlight when the approach can be used and gives insights
into how these limitations can be resolved in future work.
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3.3.1 Consuming and creating nodes

The current unfolding implementation only supports transformation rules with
nodes as reading elements, not nodes that get created or consumed. This feature
is currently only implemented for edges. Support for the creation and removal
of nodes in the transformation rules was not implemented due to a combination
of time limitations and the fact that the case study model did not require this
feature. This is however purely a implementation issue: The theory behind the
approach, as discussed in the previous sections, works for both the edges and
nodes of a graph in a similar manner.

3.3.2 Negative application conditions

The most important feature that is currently not yet supported is the possibility
of expressing negative application conditions. Supporting this feature (greatly)
increases the speci�cation possibilities of the Graph Transformation paradigm
and it is therefore an important feature.

The general unfolding construction introduced so far is however not capable
of handling this class of transformation rules that contain negative application
conditions. Because of the gluing operation, the entire exploration approach is
based on not removing any elements from the graph during its exploration. The
result of this is that when a GTS that contains rules with negative application
conditions is explored using the gluing operation, not all matches of all rules are
always found during the exploration, as there might exist elements in the graph
that prevent this speci�c class of rules from having an applicable match in the
graph.

Not �nding all valid rule application matches is a severe drawback in the case
of �nding attacks, as the approach aims to satisfy the exhaustive and succinct
property.

On the other hand, the gluing operation is a cornerstone of the unfolding con-
struction approach. Altering its working by removing elements from graph in
order to �nd matches for this type of transformation rule would undermine the
entire exploration approach.

Baldan et al. [33] have encountered the same drawback when they used the
unfolding constructing approach to generate test cases for code generators. They
have therefore proposed an extension to the unfolding construction approach so
that it support transformation rules with negative application conditions while
keeping the e�cient exploration approach. Their proposed extension to the
unfolding construction is discussed in this subsection.

3.3.2.1 Unfolding construction extension

In order to understand the extension, it is important to realize that this new
class of transformation rules, those that contain negative application conditions,
introduce an additional set of elements when compared to the three previously
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introduced (Reader, Consuming and Creator sets), namely the set of inhibitor
elements.

The goal of the extension is to have all recordings of transformation rules
refer to graph elements that prevent them from being applicable, similar to how
the recordings already refer to the elements that they consume.

But as mentioned before, during the exploration of a GTS using the gluing
operation, not a single element will ever be removed from the graph. Therefore,
depending on the speci�c transformation rules, there is a chance that not all
matches of the transformation rules with negative application conditions will be
found.

In order guarantee that all matches of all transformation rules are found
during the unfolding, while still keeping the e�cient exploration of the gluing
operation and thus not removing any elements from the graph, the extension
proposes the following two steps:

1. Of all transformation rules with a negative application condition, the el-
ements of the rule that describe this inhibitor of its applicability are re-
moved for the exploration.

In this way, during the exploration with the gluing operation, all matches
of this modi�ed transformation rule are found and recorded. (All matches
of this modi�ed transformation rule include all matches of the unmodi�ed
rule.)

2. The second step comes after the entire unfolding has been constructed
with the regular approach and modi�ed rules. In this unfolding, every
recording of the modi�ed transformation rules is considered and, for any
falsifying element, a negative application condition reference to this edge
is added to the rule recordings inhibitor elements set (just as the other
three types of elements are already added to their respective set in the
rule recording).

This second step then produces the �nal unfolding. From this �nal unfold-
ing, it can then be determined if all matches of the modi�ed transformation
rules are still valid matches and what their additional dependencies are, such as
transformation rules that remove their falsifying edges.

3.3.2.2 Running example

Let us demonstrate this extension with an example.

The setup: The setup is a simple start graph (see �gure 3.18) with just
three locations and an attacker that is at location L1. The example GTS has
two transformation rules, a (special) 'Move' transformation rule that speci�es
that an attacker can only move to a location if this does not require a key, and
a 'Break Lock' transformation rule that can remove the need for a Key.
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Attacker L1

L2

L3

Key

at

ct

ct

requires

Figure 3.18: Startgraph of the example GTS that contains a rule with a negative
application condition

The Unfolding Construction The �rst step of the extended unfolding con-
struction is to obtain a modi�ed version of each transformation rule that con-
tains negative application conditions, namely a version of this rule where all
such inhibitor elements have been removed.

Attacker L1
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Key

at

ct

ct
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at

at

Move(1) Move(2) Break Lock

HostGraph

Rule recordings

Figure 3.19: Regular unfolding of the example GTS's startgraph (�gure 3.18)

Using these modi�ed versions of the transformation rules, the unfolding con-
struction then continues as regular, �nding all matches for all transformation
rules in each iteration, and gluing all valid matches to the graph.

The result of the regular unfolding can be seen in �gure 3.19. The unfolding
has found two applications for the modi�ed move version, including one to move
the Attacker to location L2, as the modi�ed Move rule is not bothered by the
existence of the 'requires' arrow of L2 (unlike the original transformation rule).
In addition, the Break Lock transformation rule has one match where it removes
the 'requires' arrow from the graph.

The second step of the extended unfolding construction obtains the unfolding
constructed by the regular exploration and modi�es it by adding negative appli-
cation condition references to all modi�ed rule recordings for all falsifying edges
of that rule application. The resulting and �nal unfolding can be seen in �gure
3.20.

From this unfolding, it can be seen that the rule recording for 'Move(1)'
now has a dependency in the form of the 'Break Lock' transformation rule.
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Figure 3.20: Final unfolding of the example GTS's startgraph (�gure 3.18, after
the inhibitor elements have been added to the rule recordings.)

Only when this second transformation rule has been applied can the Move(1)
transformation rule be applied.

3.3.2.3 Discussion

The proposed extension is however not yet implemented because it introduces
non-determinism to the unfolding which increases it's complexity. The reason
for this is that there might be multiple elements in the graph that would prevent
a recorded rule from being applicable. Simply adding this information to the
unfolding would remove the single branching structure property.

While they have demonstrated that this extension can be used, Baldan et al.
are not clear on how this foundational property of the unfolding can be uphold-
ed. Therefore, it is left to future work to determine how this extension can
be added to the unfolding construction to add support for negative application
conditions.

3.3.3 Cycles reduce performance

A GTS can be modeled in such a way that it contains a cycle, i.e. a set of
transformation rules that, after applying all of them, returns the graph to the
same state as before they were applied.

Another limitation of the current Unfolding Construction approach is that
it does not realize if it is exploring a cycle and it will therefore keep exploring
this cycle inde�nitely.

Therefore, if the unfolding construction �nds such a cycle, the construction
approach is in principle in�nite and would continue to increase in size for an
arbitrarily long time.

3.3.3.1 Running Example

We introduce a small example GTS that contains such a loop to show how the
unfolding construction will handle this cycle.
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Attacker Outside Inside
at connectedTo

connectedTo

Figure 3.21: Startgraph of the example GTS that contains a cycle.

The setup is a simple startgraph (see �gure 3.21) that contains two loca-
tions. The main di�erence with previous examples is that the two locations are
connected in both ways, meaning that the attacker can go back and forth.

The regular unfolding construction exploration will �nd it can move to the
second location in the �rst iteration and then move back to the �rst location
in the second iteration. Because it then creates a new 'at' arrow to the �rst
location, the third iteration will �nd an additional match to move to the second
location, also adding a second 'at' arrow to the second location, which in turn
can be used to move back again to the �rst.

Attacker Outside Inside
at connectedTo

connectedTo

at
at

at

HostGraph

Rule recordings

Move(1)

Move(2)

Move(3)

Figure 3.22: Unfolding of the example GTS's startgraph (�gure 3.18) after the
third iteration, showing how a loop can be explored inde�nitely.

The unfolding after iteration three that can be seen in �gure 3.22 demonstrates
this point. Because the gluing operation keeps adding annotated elements to the
graph, new matches get created which keeps the exploration going inde�nitely.

3.3.3.2 Solutions

Depth restriction Baldan et al. have proposed a simple solution to this issue
of in�nite exploration in the form of a depth restriction. A depth restriction is
based on halting the exploration after a certain amount of iterations have been
concluded and thereby guaranteeing that the approach �nishes.

The downside of this approach is that it introduces a signi�cant performance
burden when an input model contains a cycle. Until the depth restriction is
reached, the approach will keep exploring the cycle and the new histories it
produces. While these additions to the unfolding can easily be ignored after it's
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constructed, the exploration will perform unnecessary exploration which will
decrease its performance.

In addition: choosing a sensible depth restriction is also non-trivial. On the
one hand you want to guarantee that even the longest possible attacks are found,
but choosing a large depth restriction will likely produce a lot of unnecessary
exploration of the cycle(s).

Cycle detection A more elegant solution would be to detect cycles during
the exploration. This detection could be done for each new match found during
the exploration and then determining if applying this match would return the
state of the graph to one already explored. If this is the case, the exploration is
halted by not gluing this transformation rule to the graph.

Attacker Outside Inside
at connectedTo

connectedTo

at

HostGraph

Rule recordings

Move(1)

Move(2)

Figure 3.23: Example of halting the unfolding after a cycle has been detected.

Figure 3.23 shows how such a detection might work. The unfolding con-
struction �nds that the second Move rule applications returns the graph to a
previously visited state and decides to halt the exploration.

There are however a few di�culties in detecting a cycle. While the cycle in
the example is easy to detect, it can be much harder to detect cycles in larger
GTSs. These cycles are not only conceptually di�cult to �nd, they are also
computationally di�cult to compute.

In addition to these di�culties there is another issue. If the extended un-
folding construction approach that supports negative application conditions is
used, it is even more di�cult to detect if the unfolding is really exploring a cycle,
as exploration using the unmodi�ed transformation rules might not result in a
cycle.

Hybrid solution We believe the preferred solution would be a hybrid of these
two solutions. On the one hand, the cycle detection prevents unnecessary ex-
ploration of the GTS, which requires computation resources and produces un-
interesting rule recordings for the unfolding, but it hard to detect all cycles and
it does not guarantee a completion in combination with negative application
conditions.
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On the other hand, while the depth restriction guarantees a completion of the
unfolding, only using a depth restriction will result in computational resources
being used to investigate cycles and produce uninteresting rule recordings.

Therefore, a hybrid solution could be based on detecting simple cycles, in
order to minimize the computational resources used for the exploration of cycles,
but at the same time guarantee a completion of the unfolding construction.

Discussion Currently the depth restriction solution is implemented to guar-
antee that the unfolding construction �nishes.

This can easily be extended with methods that identify 'simple' cycles, which
will already reduce the unnecessary exploration, but a method to identify all
possible cycles is more complex and is left for future work.
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Figure 4.1: This chapter discusses step 1.2 and step 2, extracting the attacks
from the Unfolding and converting them into an attack tree.

Given the procedure to construct the unfoldidng of a GTS as was described
in the previous chapter, there are still two steps to obtain the corresponding
attack tree as shown in �gure 4.1. This chapter discusses how these two tasks
can be performed.

4.1 Extracting attacks from the Unfolding

Given a completed unfolding that represents the exploration of a GTS, the next
step is to identify all possible attacks and extract them from the unfolding. This
section will demonstrate how this is done.

Identifying attacks The �rst challenge is to identify all the attacks in the
unfolding. This can be done using a (goal) condition rule. Such a condition rule
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de�nes when the attacker has achieved his goal and therefore each match of the
rule in the graph represents a possible attack that can be found in the model.

Therefore, the �rst step is to �nd all matches of a goal condition rule in the
resulting graph at the end of the unfolding. In order to extract these attacks
from the unfolding, each match of the condition rule is also recorded in the
unfolding, so that the unique set of dependencies of the goal rule match (which
represent the steps of the attack) can be determined.

Attacker Datacenter
at

Figure 4.2: A simple goal condition rule that is used to �nd attacks in the
unfolding.

This procedure is demonstrated using the example unfolding constructed in
the larger example subsection of previous chapter, see �gure section 3.1.4. The
�rst step is to add a goal condition rule to the GTS, in this case the simple
condition rule shown in �gure 4.2 su�ces. This condition rule states that the
attackers goal is to reach the data-center.

The next step is to �nd all matches of this goal condition rule (that repre-
sent the attacks found in the exploration) and to record these matches in the
unfolding.

The result of this step is shown in �gure 4.3. The example unfolding of
the previous chapter is extended with four recordings, one for each of the four
matches of the goal condition rule found in the host-graph of the unfolding.

Extracting attacks After identifying all attacks by recording all matches of
the goal condition rule, the actual attacks can be extracted from the unfolding by
�nding the (unique) set of dependencies of each goal match. Each dependency
of the recorded match represents an attack step of the attack, with the set of
attack steps (i.e. all dependencies) representing the attack itself.

The resulting set of dependencies of each attack can be extracted from the
unfolding in what we refer to as a dependency structure.

This extracting procedure performed on the unfolding of �gure 4.3 results
in the four dependency structures shown in �gure 4.4, where the arrows denote
the dependencies between rule recordings of the unfolding.

For example, the dependency structure of the �rst attack, shown in �gure
4.4a simply describes that the goal match requires the action Break Door (2) to
be performed, while that action depends on Break Door (1) being performed.

The second example, shown in �gure 4.4b is a bit less straightforward. The
goal here depends on the Use Key (2) rule application. This rule application
has however to dependencies, both Obtain Key (2) and Break Door (1).

In a similar manner, the dependencies of the other two attacks can be inter-
preted.

All of this dependency information between rule applications can be retrieved
from the unfolding by looking at the causal history of a graph element, as was
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Figure 4.3: Unfolding including all matches of the goal condition rule.

shown in section 3.1.4.

4.2 Converting a set of attacks into a tree

Given a set of attacks, the next step is to convert them into a single (attack)tree
representation.

In principle there is an attack tree equivalent for each dependency structure
obtained from the unfolding, depending on the attack tree formalism variant
that is chosen.

Traditional Attack Tree formalism The default attack tree formalism only
supports two type of gates: AND gates, of which all children must be true, and
OR gates, of which at least one child must be tree. The main interesting point
is that the ordering of the children of an AND gate has no semantic meaning.

Figure 4.5 shows the traditional attack tree equivalent of the attack described
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Figure 4.4: All four dependency structures, each representing an attack, that
can be extracted from the example unfolding.

by dependency structure #2. This attack consists of three steps: Break door 1,
Obtain key 2 and Use key 2. All three attack steps must be completed before
the attack is completed, which is demonstrated by the �gure.

However, while the dependency structure gave additional information about
the order in which these attack steps must be performed, such as 'Obtain key'
before 'Use Key', this is lost in this traditional attack tree because of the se-
mantics of the AND gate. An attack tree where Use key 2 would be the �rst
node of the AND gate is considered to be equivalent to the one shown above.

Even though in this case, the order between Obtain key 2 and Use key 2
is speci�ed in the order of the leaf nodes, this information cannot be used, as
it is not always possible to specify order in this way, as can be seen by the
relation between Break Door 1 and Obtain key 2. There is no order between
those nodes, the only requirement is that both need to happen before Use Key
2 can be performed.

Extended Attack Tree formalism with SQAND There are however ex-
tensions to the default attack tree formalism (for example Improved attack trees
[41]) that supports a so called sequential AND gate (SQAND) which speci�es
that the order of the children has a semantic value and thus can be used to
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Figure 4.5: Traditional attack tree formalism equivalent of dependency structure
# 2

specify the order in which actions should be performed.

Figure 4.6: Attack tree formalism extended with SQAND equivalent of depen-
dency structure # 2

Figure 4.6 shows the attack tree with SQAND gates equivalent to the at-
tack described by dependency structure #2. The attack tree speci�es that both
Obtain key 2 and Break door 1 need to happen before Use key 2 can be per-
formed, but does not specify an order in which the �rst two actions have to be
performed.

Single tree composition Given an AT for each individual attack (indepen-
dently of the formalism used), it is easy to construct a single attack tree for all
attacks, simply by de�ning it as an OR composition of all attacks.

En example of such a single attack tree, for all four attacks and their ex-
tended AT equivalent, can be seen in �gure 4.7. The attacker goal node, modeled
as an OR gate, is achieved if any of these attacks succeeds.

4.3 Towards a compact tree representation

The simplest method for constructing a tree representation of a set of attacks, as
shown in the previous section, is to construct the attack tree for each individual
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Figure 4.7: All attacks combined into a single attack tree using an OR gate

attack and develop a composite attack tree that represents all of these attacks
separately as options to reach the goal.

However, the downside of this method is that it often results in large attack
trees that are hard to analyse for both humans and analysis tools. Therefore,
the preferred method is to determine if a more compact attack tree, i.e. a more
compact description of all possible attacks, can be constructed. This section
discusses how a more compact attack tree representation can be obtained.

4.3.1 Intuition

An important point to understand is that while each attack consists of a unique
set of attack steps, the attack steps themselves are not unique for each attack, in
fact, many attack steps are often part of multiple attacks. In the default attack
tree conversion method, each attack step is speci�ed in the tree once for each
attack it occurs in, resulting in multiple speci�cations of the same attack step
in the complete tree. A compact tree representation attempts to exploit this
feature of shared attack steps by reusing its de�nition in the representation of
multiple attacks. This reduces the amount of (duplicate) attack steps speci�ed
in the tree and thereby reduces the size of the resulting attack tree.

The �rst two attacks described in �gure 4.4 are a good example of two attacks
that share an attack step. Both attacks are based on �rst using the breaking
door attack step to get to the Inside location, but then use a di�erent method
to reach the Datacenter location. In the default attack tree representation of
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this set of attacks, shown in �gure 4.7, it can be seen that each attack has its
own sub-tree, and each sub-tree de�nes the break door attack step once.

Figure 4.8: Example of how to attacks can be merged into a mare compact
representation

The two sub-trees representing these two attacks can be combined into a
single sub-tree that de�nes the initial break door attack step only once. An
example of such a combined representation can be seen in �gure 4.8. This tree
representation still uses the SQAND gate to specify that the break door step
needs to be performed �rst, but combines this with an OR gate to specify that
there are di�erent ways to continue the attack.

In order to understand why the de�nition of an attack step can be reused for
multiple attacks, it is important to realize that attack steps are essentially state-
less, meaning that the e�ect of an individual attack step is always the same (and
is not in�uenced by the other steps of the attack).

The de�nition of an attack step in an attack tree only represents its e�ect,
e.g. using a key to open a door, which is independent of the other actions of the
attack. Therefore if another attack contains the same attack step, its e�ect is
also independent of the other attack steps, and thus the two de�nitions of the
attack step in an attack tree are equivalent and the �rst de�nition can be reused
for the second attack. This reuse also has no in�uence of the attack itself, as
attacks are represented as sets of stateless steps each with its own e�ect. As
long as the combined e�ect of all individual steps remains the same, the attack
remains the same.
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4.3.2 Obtaining the general attack step of each rule record-
ing

An interesting e�ect of the unfolding construction is that it records many very
speci�c attack steps, namely it records each application possibility of each pro-
duction rule for each unique history of that application possibility. This is done
in order to obtain a single branching structure of the behavior of a GTS.

However, for the purpose of an attack tree, these attack steps are often too
speci�c. As mentioned before attack steps are stateless, and thus the history of
an attack step has no in�uence on its e�ect. This results in the fact that the
constructed unfolding often contains multiple recordings of the same general
attack step, i.e. multiple attack steps that have the same e�ect, because each
recording is annotated with its unique history.

As also mentioned previously, in the compact representation of a set of at-
tacks, the goal is to reuse the de�nition of general attack steps that are shared
between attacks. However, these multiple recordings of the same general attack
step make it di�cult to determine if two attacks share general attack steps, i.e.
if two attacks have attack steps with the same e�ect. Therefore, in order to
merge attacks extracted from the unfolding, the recorded speci�c attack steps
�rst need to be converted to their general attack step equivalent, i.e. the attack
step without its history attached to it.

The recorded production rule applications in the unfolding are currently anno-
tated with all the elements of their match in the graph. Because each of these
elements is in turn annotated with the recording of the production rule that
created it, this annotation is represents its unique history.

It is proposed to convert these recordings into their general attack step equiv-
alent by removing the history aspect from the annotation. This is done by re-
placing the existing annotation with an annotation that describes the unanno-
tated elements of its match, instead of the annotated elements. This annotation
will result in the fact that attack steps with the same e�ect, i.e. production rule
recordings of the same rule with a the same unannotated match, get the same
annotation and are therefore easily recognizable as equivalent attack steps, while
other recordings of the same production rule, i.e. those with other matches, still
get di�erent annotations.

A good example of this issue of multiple recordings of the same general attack
step can be seen in attack 1 and 3 from �gure 4.4. Both use the same general
attack step to go from the Inside Location to the Datacenter, namely the break
door rule recording. However, because each attack has a di�erent history of
getting inside, there are two di�erent recordings of the break door production
rule, namely Break door (2) and Break door (3). These two production rule
recordings operate on a similar match, only the annotation of one of the elements
of both their matches is di�erent (as can be seen in the unfolding in �gure 4.3),
and they therefore represent the same e�ect.

In order to convert these two rule recordings into their general attack step
equivalent, the annotation of the recording is altered to an annotation that
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does not include the annotations of the elements of the match, only the general
elements. In the case of the two break door rule recordings, both are annotated
with the following: [Attacker, Inside, Datacenter, KeyCard, Attacker-at-Inside,
Inside-ConnectedTo-Datacenter, Datacenter-requires-KeyCard].

In the same manner all other recordings are converted and annotated the
general items of their match, resulting in all recordings that represent the same
general attack step get the same recording, making it easy to compare them.

Goal [A,D]

Break door [A,I,D,KC]

Break door [A,O,I,K]

(a) Annotated dependency structure #1

Goal [A,D]

Use key [A,I,D,KC]

Obtain key [A,KC] Break door [A,O,I,K]

(b) Annotated dependency structure #2

Goal [A,D]

Break door [A,I,D,KC]

Use key [A,O,I,K]

Obtain key [A,K]

(c) Annotated dependency structure #3

Goal [A,D]

Use key [A,I,D,KC]

Obtain key [A,KC] Use key [A,O,I,K]

Obtain key [A,K]

(d) Annotated dependency structure #4

Figure 4.9: All four annotated dependency structures that each represent a set
of general attack steps

The result of annotating all rule applications of the unfolding in this manner re-
sults in the four attacks shown in �gure 4.9. For convenience, all rule recordings
are only annotated with the �rst character of all node elements involved in the
match, which is su�cient to distinguish between all matches of this example.
From the examples, it is now much easier to determine what attack steps are
shared between the di�erent attacks. If their string representation is the same,
they represent the same general attack step and thus the same e�ect.

4.3.3 Proposed merging startegy for SQAND support

The following subsection discusses a proposed merging approach for attacks that
is based on maintaining support for the SQAND gate and therefore keeping
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the dependency information of attack steps in tact during the merging. In
order to maintain this information, the mering approach focuses on merging the
dependency structures themselves into a combined dependency structure that
maintains all partial-order information between attack steps.

Dependency structures can be merged by identifying their shared dependency
chains, i.e. chains of attack steps that depend on each other, instead of iden-
tifying the individual shared attack steps. These identi�ed dependency chains
need to start from the top of each dependency structure in order to guarantee
the chain is not a dependency of other attack steps (which is required to reduce
the complexity of the merging).

Once the shared dependency chains are identi�ed, the dependency structures
can be merged based on this chain, meaning that the resulting combined de-
pendency structure only de�nes the shared chain once. As the combined depen-
dency structure can have di�erent dependencies itself in the individual attacks,
the resulting dependency structure shows each of these sets of dependencies as
a possible dependency set of the shared chain.

The combined dependency structure can therefore be seen as a compact rep-
resentation of a set of individual dependency structures and has an equivalent
attack tree which represents the compact tree representation of the set of at-
tacks.

Using the conversion of all attack steps to their generic variant, it is easy to �nd
these shared dependency chains of two attacks. Attack 1 and 3 from �gure 4.9
share a simple dependency chain, namely that the Goal[A,D] step depends on
Break door[A,I,D,KC] attack step.

This shared dependency chain has however di�erent sets of dependencies in
the speci�c attacks, these di�erent sets of dependencies can be seen as di�erent
'routes' to reach the dependency chain of attack steps.

Goal [A,D]

Break door [A,I,D,KC]

-OR-

Break door [A,O,I,K] Use key [A,O,I,K]

Obtain key [A,K]

Figure 4.10: Example of merging two dependency structures (show in �gure
4.9a and 4.9c) using their shared dependency chain.

These two example dependency structures can be merged using the identi�ed
shared dependency chain and an example of this can be seen in �gure 4.10. Here
the dependency chain is denoted using bold text. The di�erent dependencies
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of the shared dependency chain are simply depicted as di�erent sets of depen-
dencies of the chain by using an OR, meaning they describe di�erent routes to
satisfy the requirements of the dependency chain of attack steps.

While this simple example, the shared dependency chain only had one direct
dependency in each attack, it can also have multiple direct dependencies, as is
the case with the second and fourth attack shown in �gure 4.9. In this case, the
dependency chain can have multiple sets of direct dependencies.

Goal [A,D]

-OR-

Break door [A,I,D,KC] Use key [A,I,D,KC]

-OR-

Break door [A,O,I,K] Use key [A,O,I,K]

Obtain key [A,K]

-OR-

Obtain key [A,KC] Use key [A,O,I,K]

Obtain key [A,K]

Obtain key [A,KC] Break door [A,O,I,K]

Figure 4.11: Merged dependency structure composing all four attacks

The dependency structure of all four attacks can be seen in �gure 4.11. From
this �gure it can be seen that the second and fourth attack share a dependency
chain, namely goal[A,D] depends on Use key[A,I,D,KC], and this dependency
chain has two di�erent sets of direct dependencies.

In addition, the �gure demonstrates that the �rst and third attack do not
have a common dependency chain with the second and third attack, they only
share the same top step of reaching the goal.

The compact dependency structure of all individual attacks can then be con-
verted into its attack tree equivalent, which is shown in �gure 4.12.

Limitations The proposed merging strategy does not guarantee the optimal
compact representation of a set of attacks, in-fact in most cases it will result in
the most compact representation possible. The reason for proposing this speci�c
strategy however is because it has a low computational complexity (bounded
linear to the amount of attacks) and we argue that it produces human readable
trees.

4.3.4 Other improvements/optimizations

In addition to merging similar attacks, there are three additional options to
improve the resulting attack tree.

The �rst type of improvement is to detect shared attack steps in the sets
of direct dependencies of a shared dependency chain. The shared dependency
chain of attack two and four, as shown in �gure 4.11, has two sets of direct
dependencies with both these sets containing the 'Obtain key[A,KC]' attack
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Figure 4.12: Attack tree corresponding to merged dependency structure

step. Therefore, such a shared direct dependency can be de�ned only once in
the resulting attack tree.

In addition, the information contained in the unfolding also provides us with the
information two determine if two set of dependencies of a shared dependency
chain are mutually exclusive or not, e.g. if both sets of dependencies can be
applied to the same graph. If two sets are mutually exclusive, these two sets
can be modeled by an XOR gate in the attack tree, meaning that only one of
the options of the gate can be true, or only one of the sets of dependencies can
be applied at the same time. Using such XOR gates in the attack tree can result
in reduced computational complexity in the analysis of the attack tree.

Finally, using a di�erent attack tree formalism, it is possible to detect shared
sub-trees in the resulting attack tree and transform the tree into a DAG struc-
ture where such shared sub-trees are only de�ned once. An example of a shared
sub-tree can be seen in �gure 4.12. Both the left and the right side of the tree
contain a SQAND gate with obtain key and use key as its children. Larger trees
are likely to have larger shared sub-trees de�ned multiple times in the tree. By
de�ning such a sub-tree only once, the analysis methods only have to perform
the calculations for the sub-tree once.
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Figure 4.13: Optimized Attack tree of �gure 4.12 with XOR, common direct
dependencies detection and shared sub-tree support.

All these tree options to improve the tree are optional steps that will require
additional computation to perform them. But all three have the potential to
result in a reduced size/reduced computational complexity of the generated tree
and therefore improve the (automated) analysis of this tree.

An example of all these three type of improvements to the attack tree shown
in �gure �gure 4.12 can be seen in �gure 4.13. On the right of this �gure, the
shared sub-tree is separately shown to indicate that it can be placed on two
anchors in the main tree (shown on the left).
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Chapter 5

Evaluation

Assumption is the mother of all screw-ups

Mr. Eugene Lewis Fordsworthe

The previous chapters have introduced the components of a complete attack
tree generation approach. The goal of this chapter is to evaluate the individual
components and and the complete approach in order to provide answers to this
project's research questions.

The evaluation is divided into two main parts, a quantitative evaluation and
a qualitative evaluation. The quantitative evaluation focuses on evaluating the
scalability of the proposed approach to identify all attacks from a model. The
qualitative evaluation focuses on several aspects, including graph transforma-
tions as input language, the usability of the output trees and the genericity of
the complete approach.

This chapter starts with an overview of the implementation of this project's
automated attack tree generation approach that is used for the evaluation.

5.1 Implementation details

The goal of this section is to give an high level overview of the implementa-
tion and the decisions made during the implementation process. The actual
implementation can be found on the projects GitHub repository1.

5.1.1 Implemented process overview

The implemented process follows the same steps as described in Chapter 3 & 4.
The approach takes a GTS as input model. This model is unfolded iteratively
until either it has been completely unfolded or a depth threshold has been
achieved.

1https://github.com/utwente-fmt/GROOVE-Unfolding
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From the unfolding a set of attacks can be retrieved. Each attack is described
through a dependency structure (that represents the partial-order of the attack
actions).

These attacks are then combined into a single dependency structure. After
this there are a number of optional steps to make this combined dependency
structure more compact in the form of merging similar attacks and identifying
shared sub trees.

The combined dependency structure is then converted into an attack tree with
AND, OR and optionally SQAND and XOR gates. This attack tree can than
be converted into any data standard required by tools.

More speci�c implementation details are given in the following subsections.

5.1.2 Extending GROOVE

The decision was made to implement the proposed approach as an extension
of GROOVE, an existing open-source Java tool for constructing and analysing
graph transformation systems. Extending GROOVE o�ered several advantages
over developing a new standalone approach.

• GROOVE o�ers a GUI for specifying a GTS, and therefore allows for a
natural way to construct the input models of the approach.

• Several of parts of the GROOVE implementation can be reused/extended
in the implementation, such as �nding all matches of rule in a graph or
applying a rule transformation to the graph.

• By developing this works approach as a separate module, this o�ers users
an additional exploration method for analysing their GTS, in addition
to allowing the users the freedom to use other existing and implemented
exploration options of Groove.

• GROOVE is open-source and well-maintained.

• Finally, GROOVE supports inter-operation with other tools. It supports
the importing and exporting of GTSs by supporting a common data stan-
dard for exchanging a GTS.

Developing a GROOVE module The setup of Groove's implementation is
very modular. The di�erent functionalities of the tools have been divided into
individual packages that each have a clear own purpose and clear dependencies
on other packages.

At the core of the tool lies a package that describes what a Graph is and a
package that describes GTS data-model that builds on this graph package.

Based on these foundations, there are a large number of packages for explor-
ing a GTS. One of these is used for �nding matches of a speci�c production rule
in a speci�c graph and another package can be used to transform a GTS, i.e. it
describes how a rule is applied to a graph and produces the resulting graph.
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There are many more packages in the tools implementation, most of them de-
scribing other exploration strategies and the GUI of the tool, but these are not
directly interesting for the implementation.

Our approach could base itself on and reuse most of these aforementioned
packages. E.g. it can load a GTS model which was speci�ed using the tool's
GUI and then use an exploration package to �nd all matches.

Therefore the implementation is mostly based on correctly using the existing
functionality of the tool and sometimes slightly modifying some functionality
by extending it, for example by describing how a 'glue' transformation works
compared to a 'apply' transformation.

5.1.3 Overview of the implementation details

5.1.3.1 Unfolding construction

The unfolding construction implementation starts with loading the input GTS,
explicitly the start graph and the set of transformation rules.

Iterative unfolding construction The unfolding is then constructed in an
iterative manner, with the start graph representing the unfolding for the �rst
iteration. At the beginning of each iteration, all matches of all transformation
rules in the unfolding/host graph are identi�ed (this is performed by the existing
GROOVE implementation for �nding matches of a rule in a graph).

For each match of each transformation rule, each unique history is then
identi�ed. Earlier explored histories of a match, both valid and invalid, are
removed from this set.

Each remaining history is then added to the unfolding. If this is the �rst
history for the match, the match is glued to the host graph of the unfolding.
After this optional step, this newly identi�ed history is added to the elements
read and created by its corresponding rule application as respectively reading
and creation histories of those elements. This step makes it possible to identify
new histories in the next iteration.

After adding all newly identi�ed histories of all matches of all rules to the
unfolding, the iteration is �nished.

If no new histories were discovered during an iteration or if the depth re-
striction of the unfolding is reached, the construction is halted. Otherwise a
new iteration is started with the updated unfolding as its input.

Identifying possible histories of a match The main challenge of the it-
eration lies in identifying all possible histories of a match. This is performed
by looking at all possible histories of all elements of a match (which have been
added in previous iterations).

Every possible combination of histories of elements of a match is explored. If
a combination of histories is concurrent, this combination of histories represents
a possible history of the corresponding match.
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Determining if histories are concurrent A combination of histories is
concurrent if there are no pairwise con�icts between the histories. Because
these histories represent explicit sets of applied rule applications, it is possible
to detect all symmetric con�icts in a pairwise manner, even if the con�ict is
composed out of asymmetric con�icts.

Therefore, all histories are pairwise inspected for con�icts. A con�ict occurs
if one history prevents another history from being applied, or if one element's
history consumes the other element.

Optimisations In addition to the required functionality that guarantees that
all and only all valid attacks are found, the implementation has several optimi-
sations. These optimisations are mostly based on storing previous calculations
to prevent them from having to be calculated twice. One good example of this
is that each history of each element maintains sets of with what other histories
of other elements this history is either concurrent or in con�ict with.

5.1.3.2 Tree conversion

Once the unfolding has been constructed, the next step is to identify all the
possible attacks it contains. This is done by �nding all matches of the goal
condition that speci�es when the attacker has reached his goal. Each match of
this goal condition with a valid history represents a possible attack.

These attacks are then extracted from the unfolding. After this, the general
attack step version of all attack steps is identi�ed, and the dependency struc-
ture of each attack is merged into a shared dependency structure describing all
possible dependencies of all matches of the goal condition.

This shared dependency structure is then converted into an actual tree for-
mat. From this tree format, the attack tree can be exported in di�erent formats.
For now the commonly used ADTree schema2 is used as the default output data
format.

5.2 Quantitative Evaluation: Scalability compar-

ison

5.2.1 Preliminaries

Let us start with �rst de�ning the goal of this evaluation part and the process
of performing the evaluation.

The evaluation part focuses on the �rst step of the attack tree generation
process: identifying all possible attacks from a given input model, as is shown
in �gure 5.1. The reason for not evaluating the second step is that it's computa-
tional complex step (reducing the size of the attack tree) is optional. As shown
in Chapter 4, a basic tree representation can easily be obtained. Therefore, the

2http://satoss.uni.lu/members/piotr/adtool/manual.pdf
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second step does not contain a mandatory bottleneck step, in contrast to the
�rst step.

Dynamic
model

Set of
Attacks

Attacktree

Identify pos-
sible attacks

Set to tree
conversion

A B C

1 2

Figure 5.1: The evaluation will focus on the �rst step of the global attack tree
generation process: identifying all possible attacks from a given dynamic model.

Speci�cally, the goal is to evaluate the scalability of this project's proposed
approach to perform this task (constructing the unfolding of the input model)
and compare this approach to the scalability of the default approach to per-
form this task (constructing a reachability graph) in order to determine if the
approach gives rise to an improvement.

With the scalability of the approach it is meant how well the approach
performs for an increase in size of the input model, e.g. how much additional
computational time is required for larger input models. The scalability of the
approaches is measured by applying them for di�erently sized input models and
comparing the time required for each input model.

The comparison of the scalability of the di�erent approaches is then per-
formed by determining the scalability of the individual approaches using the
same input models and having them perform the same task on these models. In
this manner the scalability of both approaches can be fairly compared.

Because the unfolding-based approach should theoretically have an improved
scalability especially for models containing a high number of concurrent actions,
the scalability of the approaches is compared on two types of input models with
di�erent degrees of concurrent actions.

Let us �rst brie�y de�ne the steps of the two approaches that are evaluated
and compared, as these steps will be measured separately in order to highlight
where scalability issues arise.

5.2.1.1 Approach 1: Identifying all attacks by constructing the reach-
ability graph of the input model

The �rst approach can be divided into two steps, as shown in �gure 5.2. The
�rst step is to construct the reachability graph of the input model. The second
step is to extract all possible attacks from this reachability graph.
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Graph Transfor-
mation System

Reachability
graph

Set of
Attacks

Construction
reachability graph

Extracting
possible attacks

Step 1.1 Step 1.2

Figure 5.2: Overview of the process of the baseline approach. A reachability
graph is constructed for the given model and from this graph the attacks are
extracted.

Graph Transfor-
mation System

GTS
Unfolding

Set of
Attacks

Construction
Unfolding

Extracting
possible attacks

Step 1.1 Step 1.2

Figure 5.3: Overview of the process of the proposed approach. An unfolding of
the given model is constructed and from this unfolding the attacks are extracted.

5.2.1.2 Approach 2: Identifying all attacks by constructing the un-
folding of the input model

The second approach can also be divided into two steps, as shown in �gure 5.3.
The �rst step is to construct the unfolding of the input model and the second
step is to extract all possible attacks from this unfolding.

5.2.1.3 Implementation of approach 1

In order to make compare both approaches in a fair manner, the existing reach-
ability graph approach was also implemented as an extension of GROOVE so it
can operate on exactly the same input models and reuse GROOVEs function-
ality to construct a reachability graph.

The following listing gives the implementation of this approach in pseudo-
code. Basically, the approach receives a GTS as input and then requests
GROOVE to construct a reachability graph for this GTS. Then it performs
a standard breath-�rst search through the resulting reachability graph to iden-
tify all sequences of events that result in a goal state. In this manner, all attacks
in the model are identi�ed.

1 Input = GTS describing the dynamic model.

2 Output = Set of Attacks , each consisting of basic actions

3
4 // Step 1: Construct the Reachability graph;

5 RG = GROOVE.ConstructReachabilityGraph(GTS);

6
7 // Step 2: Perform BF Search through all states

8 // and identify all sequences to goal sates.

9 BreathFirstSearch(RG, RG.getStartState ().toList ());

10
11 BreathFirstSearch(RG, List <State > visited){

12 Set <State > adjacent = RG.getAdjacent(visited.last());
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13
14 for(State state : adjecent){

15 if (visited.contains(node)) {

16 continue;

17 } else if(state.isGoalState ()){

18 visited.add(node);

19 OUT visisted;

20 visited.removeLast ();

21 continue;

22 } else {

23 visited.add(node);

24 BreathFirstSearch(RG , visited)

25 visited.removeLast ();

26 }

27 }

28 }

5.2.2 Measurements

5.2.2.1 Experimental setup

The measurements ran on a PC with an Intel i7-4800MQ CPU with 8GB of
RAM. For each measurement an initial trial run was executed to allow the
JIT compiler to run. The measurement itself was done on the second run.
Although there is variety between runs on the same model, there was clear trend
in the performance for larger models and therefore a single run measurement
was deemed su�cient.

5.2.2.2 Model 1: Digital domain

The digital domain model is designed to have a low degree of concurrency be-
tween the actions. The intuition of the model is describing a digital layout of a
building/organization and describing how an attacker can move between these
digital locations.

The set of rules is made up by rules on how to move between digital locations
based on if there is a policy or not and on how to obtain credentials to bypass
policies. For this dynamic speci�cation of the model, six di�erent versions have
been designed with di�erently sized static parts.

The speci�c version and transformation rules are omitted here for brevity,
but they are all well-typed for the type graph shown in �gure 5.4 and can be
found in the project's public repository.

Some brief stats about the model versions:

• Version 1a: Elements: 8 nodes & 10 edges, Attacks: 10

• Version 1b: Elements: 18 nodes & 26 edges, Attacks: 56

• Version 1c: Elements: 21 nodes & 32 edges, Attacks: 68

• Version 1d: Elements: 23 nodes & 36 edges, Attacks: 92
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Figure 5.4: Type graph of the digital domain model

• Version 1e: Elements: 32 nodes & 52 edges, Attacks: 202

• Version 1f: Elements: 40 nodes & 69 edges, Attacks: 1084

The performance of both approaches for all versions of the digital domain
input model can be seen in table 5.1. The measurements are in milliseconds
and describe the time required for the approach to respectively perform the
�rst, second and complete step for each version of the model (Model version e
and f were only measured for the unfolding approach, as the reachability graph
approach took to much time).

Digital domain model Attack identi�cation
Step 1.1 (ms) Step 1.2 (ms) Step 1 complete (ms)

1a Reachability Graph 173 4 177
1b Reachability Graph 1123 1888 3011
1c Reachability Graph 2014 17220 19324
1d Reachability Graph 3428 263666 267094

1a Unfolding 130 6 136
1b Unfolding 207 27 234
1c Unfolding 282 41 323
1d Unfolding 320 74 394

1e Unfolding 1270 163 1433
1f Unfolding 3141 205 3346

Table 5.1: Performance of both approaches on all version of the digital domain
input model

5.2.2.3 Model 2: Multi-domain

The multi-domain model is designed as a model with a high degree of con-
currency. It is basically an extension of the digital domain with the physical
domain and adds a set of rules for relocating in the physical world (which are
independent of rules for the digital world) and a single rule that connects the
two domains.
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Once again six versions of this model have been de�ned for increasing sizes,
the speci�c rules and versions are omitted from the report and the corresponding
type graph is shown in �gure 5.5.

Figure 5.5: Type graph of the multi-domain model

Some brief statistics about the model versions:

• Version 2a: Elements: 9 nodes & 10 edges, Attacks: 3

• Version 2b: Elements: 12 nodes & 13 edges, Attacks: 6

• Version 2c: Elements: 15 nodes & 19 edges, Attacks: 14

• Version 2d: Elements: 23 nodes & 33 edges, Attacks: 20

• Version 2e: Elements: 30 nodes & 48 edges, Attacks: 108

• Version 2f: Elements: 43 nodes & 71 edges, Attacks: 370

The performance of both approaches for all versions of the multi-domain
input model can be seen in table 5.2. Model version e and f were once again
only measured for the unfolding approach, as the reachability graph approach
took to much time.

5.2.3 Discussion

5.2.3.1 Model 1: Digital domain

From the performance measurement of both approaches for all four version of
the digital model, as shown in table 5.1, a few things can be observed.

Both approaches perform in the same time range (100-200 ms) for the mini-
mal version of the model. For each larger version of the model, both approaches
require an increased amount of time to perform the exploration.

However, the increase in time required for each increase in model size is
much larger for the reachability graph approach then for the unfolding approach,
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Multi-Domain model Attack identi�cation
Step 1.1 (ms) Step 1.2 (ms) Step 1 complete (ms)

2a Reachability Graph 175 3 178
2b Reachability Graph 723 16 739
2c Reachability Graph 2957 7102 10059
2d Reachability Graph 3327 42937 46264

2a Unfolding 103 4 107
2b Unfolding 176 6 182
2c Unfolding 190 8 198
2d Unfolding 185 16 201

2e Unfolding 1024 87 1111
2f Unfolding 18309 120 18429

Table 5.2: Performance of both approaches on all version of the multi-domain
input model

demonstrating that (as expected) the latter is more scalable then the existing
approach.

The result is that for a model roughly 3 times as large (version 1 compared
to version 4), the reachability graph requires 1500x more time, compared to 2.9x
more time for the unfolding approach.

5.2.3.2 Model 2: Multi-domain

Similar results can be seen for the second model in table 5.2. For the minimal
version of this model, both approaches start in the same performance range
(100-200ms) and both require additional time as the model version grows, but
the performance of the reachability graph approach decreases a lot more rapidly
then the unfolding approach.

In this case, for a model version roughly twice the size (but with a lot more
concurrent actions), the reachability graph requires 260x more time, while the
unfolding approach requires roughly 1.9 times more time to explore the fourth
version of the model.

For the larger version of the model, versions e and f, there is however a
signi�cant increase in the time required to identify all possible attacks.

5.2.3.3 Models compared

A comparison of the performances of the approaches for the di�erent models is
more di�cult, as the models have di�erent properties, such as the amount of
concurrency and amount of attacks they contain.

It can however be seen that the performance of the reachability graph ap-
proach follows a similar trend for both models. The time required to identify all
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possible attacks increases rapidly for larger input models, in both cases much
more then this project's approach.

We noted before however that a model with a large degree of concurrency
is expected to bene�t more from partial-order reduction, but during the evalu-
ation of the approach for the largest two versions of both models, the opposite
e�ect appears to be seen. I.e. the approach for the Digital Domain appears
to perform better then for the multi-domain, even though that model contains
more concurrent actions.

Closer inspection reveals the reason for this. For the multi-domain model,
there are on average much more histories for each rule application that need to
be explored. This causes a drop in performance, as the current implementation
makes exploring histories expensive operations.

Therefore, it appears that having a lot of concurrent actions results in a lot
of possible histories that has an impact on the performance (but not nearly as
much as without using partial-order reduction).

The digital domain seems to be a good �t in between the two extremes.
By having a medium amount of concurrent actions, it can enjoy the bene�t of
the partial-order reduction, but is not burdened by a large amount of possible
histories.

We believe however that the performance of the implementation for explor-
ing possible histories can be signi�cantly improved, as was also mentioned in
Chapter 3, so that the approach performs better for models with a large degree
of concurrent actions.

5.3 Qualitative Evaluation: Cloud Case Study

The goal of this section is to evaluate several individual aspects of the approach
and the entire process itself.

Speci�cally, this section evaluates:

1. How a practical, existing, security-domain speci�c problem can be mod-
eled using graph transformation.

2. How the output of the attack tree generation procedure, an attack tree,
can then be analysed.

3. Evaluate how generic the approach is by introducing a change scenario to
the input modeling language.

This evaluation part is performed by applying the implemented approach to
an existing case study and observe the interesting parts.

5.3.1 The Cloud Case Study

The cloud case study focuses on a data center facility that contains a �le of
which the content is of a sensitive nature. This �le is located within a virtual
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machine which runs on a (physical) server that is located in a server-room of
the data-center, and there is an attacker interested in accessing this �le.

The version of the case study used in this chapter is a simpli�ed variant of
a case study obtained from the TREsPASS research project. The case study
provides a description of an organization in the form of a model and requests
the generation of attack trees for this organization.

Figure 5.6: Simpli�ed TREsPASS model of the Cloud Case Study

An informal visualisation of the cloud case can be seen in �gure 5.6.

Because the TREsPASS research project focuses on security covering mul-
tiple domains, a domain speci�c modeling language for modeling the security
aspects of the physical, digital and social security domains has been developed
within this project. Therefore, the case study description/model has also been
developed in this so-called 'socio-technical modeling language'.

Even though the attack tree generation approach proposed in this work is
independent of speci�c modeling concepts (and therefore of the modeling lan-
guage itself), it is bene�cial to understand how the security aspects of a system
or organization might be modeled and analyzed using graph transformation.
Therefore, the modeling language developed in the TREsPASS project and used
in the case study is used as an example of how a system or organization might
be modeled in practice. This section demonstrates how this model can also be
modeled using graph transformations and how this model can then be analyzed
to extract all attacks and convert them to an attack tree.

For this reason, the socio-technical modeling language itself is also intro-
duced in this section.
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5.3.1.1 Socio-technical modeling language

The modeling language is based on a number of domain speci�c concepts that
are used to describe the security properties of a system or organization in an
abstracted manner.

The language contains concepts for three di�erent domains in the form of
Physical, Digital and Social security. As the language is still in development,
the concepts introduced are subject to change.

Static description: Organization layout At the core of the modeling lan-
guage lie �ve concepts:

1. Location/Physical

2. Location/Digital

3. Asset/Item

4. Asset/Data

5. Attacker (unique)

In addition to these concepts, there is a set of rules speci�ed on these concepts
to complete the core of the proposed model.

• An Asset/Data is always contained by a Location/Digital.

• An Asset/Item is always contained by a Location/Physical.

• An Asset/Item can contain a Location/Digital (e.g. a server containing a
VM).

• Locations of the same type can be connected to each other.

• The Attacker is assigned both a Physical as well as a Digital starting
location.

Example - The earlier shown visualisation of the cloud case (�gure 5.6) can
also be described using this set of concepts. Table 5.3 classi�es all entities en
relations of the previous visualisation as one of these concepts.

To prevent any confusion, we see a 'Server' as simply being a physical ob-
ject. The virtual machine VM1, which is the piece of software that runs on
this server, is modeled separately as a digital location that is contained by this
physical object. While in the real world these concepts are more intertwined
(the server may run its own OS for example) we use abstract versions of them to
obtain a simpli�ed model. This is also why Laptop and Laptop OS are modeled
as separate concepts, as each have di�erent properties for the generation part.
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Concept Name Contains Connects

Asset/Data FileX
Location/Digital VM1 FileX Gateway
Asset/Item Server1 VM1
Location/Digital Gateway VM1, Laptop,

Internet
Location/Physical Datacenter Server1, Gateway Door

Location/Digital Laptop OS
Asset/Item Laptop OS Laptop OS Gateway, Internet
Location/Physical Door Datacenter, Outside
Location/Digital Internet Gateway, Laptop OS

Location/Physical Outside
Door, Internet,

Laptop
Door

Actor Attacker Physical: Outside,
Digital: Internet

Table 5.3: Concepts of the simpli�ed TREsPASS model

Static description: Organizational policies The basic concepts are used
to describe the layout of an organisation and show how these objects relate to
each other to form the basis of a model.

In addition to the layout of a model, the policies used within the organization
that prevent assets from being stolen/accessed are also relevant and therefore
included in the model. Examples of policies range from a door that requires a
key to a gateway that only allows connections with a limited set of IP addresses.

Policies are speci�ed using the following concepts

1. Policy

2. Credential/Digital

3. Credential/Physical

4. Role

All locations in the model can have a policy that speci�es a requirement
to access that location. A policy speci�es its requirement in the form of a
credential. A credential can be either a digital credential such as a password,
or a physical credential such as a key.

Finally, the model speci�es where these credentials may be obtained. This
is done introducing the concept of roles in an organization that may have di�er-
ent credentials (e.g. cleaning crew has di�erent credentials than the owner) in
addition to locations that may contain credentials (such as a room containing a
key).

78



CHAPTER 5. EVALUATION

Based on these new concepts, we can then specify what roles an organization
has, what credentials each role has and �nally what credentials are required for
each policy within the model.

In table 5.4 the case study example is extended with these additional con-
cepts to demonstrate how they can be combined.

Table 5.4: (extended example) Concepts of the simpli�ed TREsPASS model

Concept Name Has credential Policy

Asset/Data FileX
Location/Digital VM1 Valid IP Requires

password VM
Asset/Item Server1
Location/Digital Gateway Requires Valid IP
Location/Physical Datacenter
Location/Digital Laptop OS Valid IP
Asset/Item Laptop OS Requires password

Laptop OS
Location/Physical Door Requires Key
Location/Digital Internet
Location/Physical Outside

Actor Attacker

Credential/Physical Key
Credential/Digital Password VM
Credential/Digital Password

Laptop OS
Credential/Digital Valid IP

Role Cleaner Key
Role Maintenance Key, Password VM
Role Boss Key, Password

Laptop OS,
Password VM

Dynamic description: Attacker actions In addition to a set of concepts
to de�ne the static description of an organization, the Socio-Technical modeling
language also has a set prede�ned attacker actions.

These actions are purposefully very generic. Domain-speci�c attacks are left
out for later re�nement. Therefore the attacker has capabilities such as 'Obtain
Credential from Role' or 'Use Credential to access Location'. In the TREsPASS
project, a separate attack pattern library (APL) is developed that contains so-
called attack patterns with domain-speci�c attacks. After generating the attack
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tree, the APL is used to re�ne the generated tree with domain-speci�c attacks,
such as the possibilities to either bribe, threaten or steal to obtain a certain
credential from a role.

Below, the set of possible attacker actions is speci�ed in an informal manner.

The attacker can:

- Move to a Location/Physical that is connected to the Location/Physical the
attacker currently resides. If the second Location/Physical requires a policy,
the required credentials must be supplied or the policy must be bypassed
somehow.

- Gain access to a Location/Digital that is connected to the Location/Digital
it currently has access to. If the second Location/Digital requires a policy,
the required credentials must be supplied or the policy must be bypassed
somehow.

- Access an Asset/Item if it is contained by the Location/Physical the attacker
currently resides.

- Gain access to a Location/Digital if it has access to the Asset/Item that
contains this Location/Digital.

- Access an Asset/Data if it is contained by a Location/Digital the attacker
currently has access to.

- Obtain a Credential from a Location the attacker has access to (Digital) or
currently resides in (Physical).

- Obtain a Credential from a Role.

5.3.2 Modeling the cloud case as a GTS

This section will demonstrate how the cloud case can be modeled as a graph
transformation system that can be used as input for this project's attack tree
generation approach.

In order to de�ne the cloud case as a model, �rst the socio-techinical mod-
eling language is modeled in a GTS.

5.3.2.1 De�ning the static part: Layout and Policies

The static part of the socio-technical modeling langauge can be de�ned as a
type graph of a graph transformation system, as given in �gure 5.7.

At the core of this type graph lays the Attacker. The attacker has access to a
physical location and a (set of) digital locations. The layout of the organization
can be described by digital and physical locations that are connected to each
other, item assets contained by physical locations, data assets contained by
digital locations and digital locations contained by item assets.
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Figure 5.7: Type graph representing the entities of the socio-technical modeling
language

Both types of locations can, however, also have a policy. A policy has a set
of required credentials. These credentials are connected to the di�erent roles of
an organization, but the attacker can obtain each credential.

Finally, locations can also contain credentials.

5.3.2.2 De�ning the dynamic part of the model: Attacker actions

The set of attacker actions of the model, or the dynamic part of the model,
is de�ned by a set of eleven transformation rules shown in �gure 5.8. The
�rst three rules specify the di�erent ways the attacker can gain access to new
digital locations; namely simply move if the targeted location does not have a
policy, or either bypass the policy or use the required credentials if the targeted
location has a policy. The fourth and �fth rule, �gures 5.8d and 5.8d, specify
how the attacker can obtain credentials, either from any de�ned role that has
these credentials or from a location that contains them.

The following �ve transformation rules (�gure 5.8f, 5.8g, 5.8h 5.8i and 5.8j)
specify the same actions but then for the physical world. There is one big
di�erence to observe and that is that in the physical world, the attacker can
only be at one location at the same time. Therefore the physical rules all
remove the 'at' arrows, in contrast to the digital rules.

Finally, the last transformation rule (�gure 5.8k) speci�es how the attacker
can use his access to a physical location to gain access to a digital location.

One interesting thing to observe is that both the 1st and 6th rule (�gure 5.8a
and 5.8f) specify NACs, even though this work does not fully support NACs.
This does not mean that all usages of NACs are prohibited. As long as the
element described in the NAC, in this case the existence of the 'has' edge to
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(a) Digital move (b) Digital bypass credential

(c) Digital use credential
(d) Digital obtain credential

(e) Digital obtain credential contained by
location

(f) Physical move

(g) Physical bypass policy (h) Physical use credential

(i) Physical obtain credential
(j) Physcial obtain credential contained
by location

(k) Reach Digital location through Phys-
ical access

Figure 5.8: The transformation rules representing the attacker actions
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a policy, cannot be added or removed in the model, there is no e�ect on the
attack identi�cation procedure by this type of NAC usage.

5.3.2.3 De�ning the speci�c example

Finally, the speci�c cloud case example can then be modeled as an instance of
the type graph, representing the graph of a speci�c GTS.

Figure A.1 (see the Appendix) shows the graph modelling the speci�c cloud
case example de�ned earlier. This graph, in combination with the set of trans-
formation rules, forms the GTS that is then given as input to the attack tree
generation approach.

5.3.3 Analysing the resulting tree

The goal of this section is to demonstrate how the trees generated by our ap-
proach can then be used for analysis by existing tools.

5.3.3.1 Generating the attack tree

The attack tree generation approach can be given the cloud case GTS, de�ned in
the previous subsection, as its input model and will construct the corresponding
attack tree. It can identify 40 di�erent possible attacks for this given input
model.

Due to size limitations of this report, the entire tree is not speci�ed. However,
to give an indication of how the resulting tree looks like, an attack tree for a
subset of nine of the 40 possible attacks is given in �gure A.2 in the appendix.

As mentioned previously, the constructed tree can be exported to di�erent
data formats, with the default being ADTree schema. ADTree schema is the
data format of ADTool, a tool for visualising and analysing attack trees. The
visualisation of the attack tree in the appendix is generated using ADTool.

5.3.3.2 Qualitative and Quantitative analysis

Qualitative analysis can be done by loading the model directly into ADTool and
manually analysing the tree. ADTool has features to zoom-in on interesting
parts and hide other parts of the tree to assist in this process.

Assigning values to basic actions. The quantitative analysis requires that
all basic actions/leafs are annotated with values. There are multiple manners
in which this can be done.

• Use ADTool to assisgn values to all leafs by hand. ADTool can then also
be used to perform simple calcualtions on the tree.

• The TREsPASS project an APL (Attack Pattern Library) can be used for
re�ning/annotating generated trees with domain-speci�c info, including
values for basic actions.
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• A third option is to assign values to actions in the GTS, so that the gener-
ated tree already contains the values. This may also have some additional
bene�ts, such as being able to halt the exploration if the probability of a
certain attack happening becomes too small.

Quantitative analysis The goal of this section is to show how the generated
attack tree can then be used by a quantitative analysis tool. For this example
the ATCalc tool [42] is chosen as this tool supports attack trees with SQAND
gates. The values for the basic actions (in this case probability of success and
its relation to time) were manually added to the attack tree in ADTool.

After annotating the attack tree in ADTool, it was exported and converted
to ATCalc input using the Attack Tree Transformation (ATT)3 project which
facilitates the transformation of attack trees to di�erent formats using model
transformations.

The resulting ATCalc input is shown in the appendix, see listing A.1. From
this input it can be seen how the di�erence between sequential ANDs and regular
ANDs is encoded.

In addition to the attack tree, ATCalc requires users to specify the question
they are interested in. For this example, the increase in probability of the
attacker reaching his goal.

The online ATCalc interface4 then generates a plot that shows this increase
in probability over time, which is shown in �gure 5.9.

The speci�c values that are annotated to the tree and the speci�c values of
resulting plot is not the point of interest. The main point is to demonstrate that
the attack trees generated by this project's approach can directly be annotated
and analysed by existing tools.

5.3.4 Evaluating genericity by introducing a change sce-
nario

Now let us image that an organization decides to implement a countermeasure in
the form of an alarm in their organisation. When the company detects a bypass
of a policy (and for now let us assume that they always detect this action), the
alarm will be triggered and all policies will no longer accept any credentials.

The organization now wants an updated attack tree that takes into account
this countermeasure in determining what the possible attacks are. Therefore,
this countermeasure should be put into the model of the organization. The
existing socio-technical modeling language, however, does not support the spec-
i�cation of such a countermeasure and therefore needs to be extended.

As a sidenote: If an attack tree generation approach commits itself to the
socio-technical modeling language and optimizes its exploration for this input
model, the exploration will also have to be rede�ned for this alteration of the
modeling language. This countermeasure is also a good example of an event that

3https://github.com/djhuistra/UnifyingAttackTrees
4http://fmt.ewi.utwente.nl/puptol/atcalc/
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Figure 5.9: ATCalc output graph showing the probability over time of the
attacker reaching his goal. Unreliability (on the y-axis) in this case means
Probability of succes.
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does not fall under the monotonicity assumption. Previous events triggering the
alarm will a�ect future events.

To determine if this project's proposed approach is generic enough to support
this kind of extension, the earlier de�ned GTS for the cloud case study is up-
dated with this countermeasure.

Updated GTS To include this change scenario, the input model is updated
both in the static part and the dynamic part. The static part describes the alarm
and the policies it is connected to, while the dynamic part describes when the
alarm is triggered and what its e�ect is on future attacker actions. The updated
and additional transformation rules after implementing this change scenario are
shown in �gure 5.10.

The updated digital use credential rule checks if the alarm is not yet trig-
gered. Only when this is the case will it accept the credentials. The updated
bypass policy rule describes that when a policy is bypassed, the alarm should
be triggered. An additional digital bypass policy rule describes that once the
alarm is triggered, the attacker can still attempt to bypass the policy to gain
access to additional digital locations.

From this set of transformation rules, the type graph and graph of the up-
dated cloud case model can be inferred and are therefore omitted here.

(a) Updated digital use credential

(b) Updated digital bypass policy

(c) Second digital bypass policy

Figure 5.10: The updated set of transformation rules for the alarm change
scenario
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Attack tree generation for the Updated GTS The updated GTS can
then be used as a new input model (using di�erent concepts) of the attack tree
generation approach. By specifying the change scenario using standard graph
transformation concepts, the approach for identifying all possible attacks does
not need to be altered to support this updated GTS.

There is however a di�erence in the resulting attack tree in the form of a
reduction in the number of possible attacks found in the exploration because
of this change scenario. This, of course, is the expected result of adding the
countermeasure

5.3.5 Discussion

In this section, the complete approach was evaluated by applying it to an existing
case study.

The �rst task was to model the case study (and the socio-technical modeling
language it is speci�ed in) as a graph transformation system. The language was
modeled by developing a type graph to specify the static part of the models and
a set of transformation rules to specify the dynamic part. A speci�c start graph
then speci�es the cloud case example, a textual program in the language.

With this step, it was shown that the graph transformation modeling paradigm
is expressive enough to specify socio-technical models. The main observation
was that supporting negative application condition would increase the expres-
siveness.

The second step was to apply the approach to this input model and study the
result. It was manually checked if the resulting attack described all expected
attacks and no others in order to con�rm the exhaustive and succinct properties.

In addition, it was also demonstrated how the resulting attack tree can then
be used for analysis. There are multiple options for qualitative analysis, just as
there are multiple tools for this. The decision was made to manually annotate
the tree in ADTool and then transform the tree into ATCalc input and asks this
tool to calculate the expected probability of success of the entire tree over time.

Using (the concepts of) the ATT project, it is expected that the resulting
attack tree can be transformed into the input format of most analysis methods.
The main challenge in this part lies with annotating the trees with su�cient
information for each analysis to operate on.

The third part was to demonstrate that the approach is generic, by introducing a
change scenario to the cloud case that cannot be expressed in the socio-technical
modeling language. It was demonstrated that our approach is capable of sup-
porting this change without alteration. This property should be maintained in
general. As long as something can be speci�ed in a GTS, it can be used as the
input for this works proposed approach.

Limitations of the evaluation There are however several limitations to the
result of this evaluation. The main limitation is that the author was the only
tester. We believe it would be bene�cial to have the approach evaluated by
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domain experts, for example to determine if graph transformations are truly a
suitable modeling approach and if the generated attack trees are truly suitable
for analysis. This step was however omitted due to time limitations.

Another limitation is that the approach has not been evaluated in compar-
ison to TreeMaker, another tool developed within the TREsPASS project to
generate attack trees that commits to the socio-technical modeling language.
The reason for this is that we could not decide on a fair comparison between
the two approaches. While both approaches should identify the same set of at-
tacks in the input model, TreeMaker also uses its knowledge about the concepts
in the input language to construct the attack tree. The resulting attack trees
are therefore very di�erent from the trees our generic approach is capable of
producing. This makes the results di�cult to compare.
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Related Work

The purpose of this chapter is to give an overview of the related work performed
on the subject of analyzing models to identify all potential attacks. This issue
has not only been investigated for attack trees as the target model: There are
a number of e�orts that produce the results in di�erent formats, such as an
attack graphs or attack routes. In addition in this chapter we will comment on
the di�erences between these e�orts and the approach described in this thesis.

The initial research on analyzing a dynamic model to identify potential attacks
was performed in 2002 by Sheyner et al. [9], who focused on the automated
generation of an attack graph, similar to a reachability graph, for the network
security domain. They demonstrated how existing symbolic model checking
algorithms can be used to generate this attack graph, but also commented on
the state-space explosion that occurred for larger input models.

Several e�orts within the network security domain have attempted to im-
prove upon this work. Both Ammann et al. [14] and Ou et al. [10] have proposed
a polynomial bounded algorithm to construct the attack graph, but they rely
on the assumption of monotonicity of attacker actions and on the absence of
negation to obtain this drop in complexity.

Hong et al. [43] have proposed a method that uses logic reduction tech-
niques to directly construct an attack tree based on a given network system,
but this e�ort basically rewrites the representation of the input into an attack
tree instead of identifying possible attacks, and therefore does not perform any
dynamic exploration using attacker actions.

More recently there have been a number of approaches for domains other than
network security.

Dimkov et al. [16] have developed an analysis method to identify attack sce-
narios for their security framework that combines three security domains (physi-
cal security, digital security and security awareness). Their analysis method uses
the work by Ammann et al. in order to analyze the model with a polynomial
bounded algorithm and then improves upon this by removing the overestimated
attacks using modeling language speci�c concepts to identify these attacks.
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Ivanova et al. [12] have developed a custom analysis method for their so-
called socio-technical modeling language that uses its knowledge about the con-
cepts speci�ed in the input language to perform directed searches, but they have
not commented on the performance of their method.

Vigo et al. [13] have proposed a static analysis approach based on the idea
of using a process algebraic speci�cation as the input model that is translated
into sets of logical formulae to automatically infer an attack tree. While they
avoid resorting to a speci�cation language tailored to a speci�c domain, so that
the approach can be used to model a great many scenarios, the authors have
con�rmed in private communication that their approach can lead to an overesti-
mation of the potential attacks, as their idea of discovering secret channels as a
way to represent obtaining credentials is similar to the monotonicity assumption
as these channels cannot be lost.

Pinchinat et al. [11] have proposed an approach in which an expert can partic-
ipate in the tree construction process by specifying so-called high-level actions
that are used to merge similar attacks. Their approach is based on constructing
an attack graph through using model-checking techniques. The input of their
approach is a (visual) building speci�cation which is generated into a model-
ing formalism. Their work is implemented as a tool built on top of Eclipse
[44]. While they do not comment on the performance of their approach, they
acknowledge the scalability problems in generating attacks but mention that
users can directly tune the input to scope the generation.
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Conclusion

It's more fun to arrive a conclusion than to justify it.

Malcolm Forbes

This �nal chapter �rst discusses this work's contributions. This is followed
by the general conclusion of this work and an overview of the ideas for future
work.

7.1 Discussion

The goal of this discussion section is to discuss the proposed attack tree gener-
ation approach in its entirety and speci�c parts of the approach individually to
highlights its strengths and weaknesses.

Part 1: Identifying all possible attack from an input model This
work's main contribution was to demonstrate that partial-order reduction can be
used to improve the scalability of the attack tree generation approach described
in previous e�orts without limiting the genericity of the approach to speci�c
(security-)domains.

An existing technique for partial-order reduction that unfolds a graph trans-
formation system was used to implement this step of the process and evaluated
to show that this results in an improved scalability.

The current implementation does, however, have some limitations. Mainly
it does not support the creation or removal of nodes and negative applications
conditions by the transformation rules. In addition to this is the fact that the
approach does not detect cycles behavior in the input models and when input
models contain such cycles, this reduces the performance of the approach.

We believe however that all of these limitations can removed and gave point-
ers as to how this might be achieved. In the meantime however, the unfolding
approach simply o�ers an alternative exploration method that provides a po-
tential increase in scalability (depending on the degree of concurrent actions)
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for a subset of the possible input models. For models not in this subset, the
reachability graph approach based constructing a reachability graph can still
be used to identify all possible attacks (with the exception of in�nite behavior
models).

A �nal word about the improved scalability of the unfolding approach. While
we have demonstrated that constructing the unfolding has (the potential to)
signi�cantly increase the scalability compared to constructing a reachability
graph, there are still many optimizations left by which the performance may be
increased. The authors of [19] mention a number of possible optimizations to
improve the e�ciency of the �ltering of invalid matches as they acknowledge that
this step will be the main bottleneck of the unfolding construction approach.

Part 2: Convert a set of attacks into a tree representation This work
has also shown how a set of attacks can be converted into a tree representation.
The main contribution of this step was to show how sequential information,
obtained from the unfolding of the input model, can be put into the tree to
provide additional analysis opportunities. In principle it is very easy to generate
a basic tree representation of the attacks that simply lists all attacks as separate
options to obtain the goal.

In addition to this, this work has also shown how to reduce the size of the
tree. This step reduces the computational resources required to analyze an
attack tree. While the proposed method to reduce the size of the tree does not
guarantee any optimal representation or even a small representation, its main
contribution is to demonstrate how the sequential information can be maintained
during the optimization of the tree in a low-cost computational manner in order
not to burden the performance of the entire process.

This tree optimization method can however be replaced by a number of
di�erent existing options to optimize the attack tree representation. It often de-
pends on the goal of the user what the best option is in this case, e.g. depending
what analysis tool he/she wants to use to analyze the tree.

Cloud Case study During the evaluation of the approach by applying it to
the cloud case study, it was found that this case study, which focuses on com-
bining multiple security domains into a single input model, is a good showcase
for this work's proposed approach, as the input models have a high degree of
concurrent actions (because actions are for di�erent security domains). There-
fore, the proposed approach can make optimal use of this concurrency to reduce
the exploration required and improve the performance of the approach.

In addition, it was demonstrated that the graph transformation modeling
paradigm has su�cient expressiveness to model an existing, security-domain
speci�c modeling language.

Finally, it was demonstrated that the approach is generic by introducing a
change scenario to the input models and showing that the approach did not
need to be altered to support this change.
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7.2 Conclusion

The main contribution of this work has been to demonstrate that partial- order
reduction can be used to improve the scalability of the task of identifying all
possible attacks from a given input model describing an organization. The
scalability improvement is shown in comparison to the existing approach to
perform this task based on constructing a reachability graph/state-space of all
model states.

In contrast to other approaches to improve the scalability of this task, namely
optimizing the model analysis for a domain-speci�c modeling language or reduc-
ing the exploration required by assuming monotonicity on the attacker steps,
this work's approach, viz. building the unfolding of a graph transformation sys-
tem, is (security-)domain independent and can therefore be reused for di�erent
domains, even outside of the security domains.

In addition, this work has demonstrated that the graph transformation mod-
eling paradigm has su�cient expressiveness to describe (the security aspects)
of an organization. This has been evaluated by using it to express an existing
domain-speci�c modeling language and an existing case study and it is therefore
deemed suitable as a generic input modeling language of a generic attack tree
generation approach.

Using graph transformations as a modeling paradigm also allowed the large
body of research on this subject and existing (partial) implementations to be
reused. In particular the unfolding constructing for graph transformation sys-
tems was used to implement the partial-order reduction exploration of the input
model and GROOVE was used as an implementation supporting traditional
graph transformation features, such as de�ning a model though a GUI and
identifying possible matches of transformation rules in a graph.

While this work's implemented approach currently only supports a limited
set of the graph transformations modeling paradigm's features, with the main
missing feature being support for NACs, it is expected that support for these
features can be added in the future.

In addition, the performance of the approach is signi�cantly reduced when
the input model contains cycles. This can be improved by implementing cycle
detection in the approach.

The third contribution of this work was to demonstrate that partial-order
reduction approach can be used to provide additional information to the attack
tree conversion approach to include sequential and exclusive relations about
combinations of attack steps.

Finally, this work describes and implemented a complete approach for gen-
erating attack trees that can be used by analysis tools. Only the quantitative
evaluation of the trees requires an additional, often domain-speci�c step of an-
notating all basic actions with values, but suggestions for this step have also
been given, including a way to specify this information into the input model.
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7.3 Future work

This section gives an overview of the main opportunities to continue this work.
It is divided into two categories: Extending the functionality of the approach
and security-domain improvements.

Extending the generic functionality The main contribution to the func-
tionality of the approach would be to extend the unfolding approach for all
possible input models, i.e. adding support for models that remove and create
nodes, models using negative application conditions and models who have cyclic
behavior. Adding support for models that remove and create nodes is purely an
implementation issue. Support for the other types of models can be based on
research on the topic of Petri nets.

In addition to adding support for these type of input models, the performance
of the approach can still be optimized in a number of ways, mainly on the
�ltering of invalid matches found during the unfolding which is considered to be
the main bottleneck of the approach according to Baldan et al. [19].

Finally, the approach could be extended with di�erent options for optimizing
the attack trees. For some purposes, such as a subset of the possible analysis
tools, sequential and gates and exclusive or gates are not used or supported,
and therefore alternative optimization options should be used to reduce the size
of the tree. One option would be to convert a tree into a disjunctive normal
form, for example.

Adding security-domain functionality In addition to extending the generic
functionality, there are also opportunities to make the approach more useful and
user-friendly for the security domain.

One clear example of this is that the approach currently generates hard-
to-read basic action descriptions. This could be improved by provide domain-
speci�c hooks; e.g. by allowing users to specify what the basic action labels
should be. This could be implemented by allowing users to specify a template
for each transformation rule, and then use the Id's of nodes of the match of the
transformation rule to generate each instance of the template. For example, a
'Digital move' transformation rule could specify 'Digital move from $par0.id$ to
$par1.id$' as its template, an instance of this for a speci�c match of the trans-
formation rule could then be 'Digital move from Inside to Datacenter', which
is a lot more readable then the currently generated 'Digital move[n0;n2;n5]' for
example.

Another example is to provide functionality to automatically generate the
value annotations of basic actions, such probability of success or average time
to completion, so that the generated trees can directly be analyzed by analy-
sis tools. One option for implementing this would be to include the required
information in the input model, e.g. assigning values to rule transformations.

Finally, it should be studied further (through user studies) if graph transfor-
mations are a good modeling language to specify organization in practice. I.e. if

94



CHAPTER 7. CONCLUSION

this modeling paradigm is both intuitive and user friendly as well as expressive
enough to specify all required concepts.
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Appendix A

Cloud Case Study

Listing A.1: Attack tree shown in �gure A.2 converted to ATCalc input

1
2 toplevel "goal[n0;n2;n3]";

3
4 "goal[n0;n2;n3]" or "SQAND -0" ;

5 "SQAND -0" seqand "XOR -1" "DMBP[n0;n5;n2;n9]" ;

6 "XOR -1" or "DMBP[n0;n1;n5;n6]" "SQAND -1" "SQAND -2" "SQAND -4" ;

7 "SQAND -1" seqand "OR" "DMBP[n0;n4;n5;n6]" ;

8 "OR" or "DM[n0;n1;n4]" "PDR[n0;n12;n18;n4]" ;

9 "SQAND -2" seqand "XOR -2" "DMWC[n0;n7;n1;n5;n6]" ;

10 "XOR -2" or "DOCR[n8;n7;n0]" "SQAND -5" ;

11 "SQAND -5" seqand "OR" "DOCC[n0;n4;n7]" ;

12 "SQAND -4" seqand "XOR -3" "DMWC[n0;n7;n4;n5;n6]" ;

13 "XOR -3" or "AND -1" "AND -2" ;

14 "AND -1" and "DOCR[n8;n7;n0]" "DM[n0;n1;n4]" ;

15 "AND -2" and "SQAND -5" "DM[n0;n1;n4]" ;

16
17 "DMBP[n0;n1;n5;n6]" lambda =0.002 dorm=0 prob =0.15;

18 "DM[n0;n1;n4]" lambda =1.0 dorm=0 prob =1;

19 "PDR[n0;n12;n18;n4]" lambda =0.01 dorm=0 prob =0.5;

20 "DMBP[n0;n4;n5;n6]" lambda =0.0025 dorm=0 prob =0.2;

21 "DOCR[n8;n7;n0]" lambda =0.001 dorm=0 prob =0.4;

22 "DM[n0;n1;n4]" lambda =1.0 dorm=0 prob =1;

23 "PDR[n0;n12;n18;n4]" lambda =0.01 dorm=0 prob =0.5;

24 "DOCC[n0;n4;n7]" lambda =0.1 dorm=0 prob =0.9;

25 "DMWC[n0;n7;n1;n5;n6]" lambda =0.1 dorm=0 prob =1;

26 "DOCR[n8;n7;n0]" lambda =0.001 dorm=0 prob =0.4;

27 "DM[n0;n1;n4]" lambda =1.0 dorm=0 prob =1;

28 "DM[n0;n1;n4]" lambda =1.0 dorm=0 prob =1;

29 "PDR[n0;n12;n18;n4]" lambda =0.01 dorm=0 prob =0.5;

30 "DOCC[n0;n4;n7]" lambda =0.1 dorm=0 prob =0.9;

31 "DM[n0;n1;n4]" lambda =1.0 dorm=0 prob =1;

32 "DMWC[n0;n7;n4;n5;n6]" lambda =0.1 dorm=0 prob =1;

33 "DMBP[n0;n5;n2;n9]" lambda =0.001 dorm=0 prob =0.35;
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Figure A.1: Start graph of the speci�c cloud case example
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Figure A.2: Generated attack tree for a subset of 9 of the 40 identi�ed attacks.
Abbreviation of attacker actions used: DM = Digital move, DMBP = Digital
move bypass policy, DMWC = digital move with credentials, DOCR = digital
obtain credential from role, DOCC = Digital obtain credential from location,
PDR = Physical digital relocate.
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