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Abstract

This paper present a dead variable analysis algorithm for reducing the state
space of UPPAAL models. By resetting irrelevant variables to their initial value
reductions of UPPAAL models are achieved.
The developed algorithm consists of two parts. In the first part we define an
algorithm to determine the relevance of variables. We also cope with the various
features of UPPAAL like, for instance, function calls and value passing variables
and we present an algorithm to determine the relevance of variables that are
used in a property. In the second part we transform the original timed au-
tomata by introducing resets for irrelevant variables. We improve on extending
transformation algorithms by not resetting irrelevant variables at every location.
Based on the developed algorithm we implemented a tool that performs the
transformation and by executing this tool for three case studies we show that
it indeed achieves reductions.
We conclude with noting that, next to the reductions, the main benefit of our
work is that UPPAAL users do not have to perform the resets manually any
more, making their work easier and less error prone, as these resets can now be
performed automatically.
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CHAPTER 1

Introduction

Model checking has its roots in the 1970’s, when Computer Science was facing
the problem of Concurrent Program Verification [10]. Errors in concurrent pro-
grams were hard to reproduce due to the concurrency in the programs. Model
checking solved this problem because it offered the possibility to exhaustively
search all possible execution paths within a program. A simple definition of
model checking is:

”Given a model M and a formula ϕ, model checking is the problem of verifying
whether or not ϕ is true in M (written M |= ϕ).”

One way to represent a system as a model is by using automata, which have
the advantage that besides the formal definition they can also be represented
graphically. For instance, look at the automaton in figure 1.1, modelling the
behaviour of a simple coffee machine. The automaton represent a coffee machine
that delivers coffee after pressing the button once, but delivers cappuccino after
pressing the button twice.

button

coffee

button

cappuccino

Figure 1.1: Automaton of a simple coffee machine
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Having this model of figure 1.1 we want to know if the corresponding coffee
machine is working properly and that it is, for example, guaranteed that you
will get a cup of cappuccino if you press the button twice and do not end up
with a cup of coffee. This property can be expressed in computational tree logic
(CTL) as: button.button⇒ cappuccino.

The property is satisfied and we could say that the machine is working correctly.
But what if somebody presses the button and an hour later someone else presses
the button. In practice, after the first time the button is pressed a cup of coffee
is produced and the counting starts again, but in theory this does not hold.
What we actually would want is that we can say something about the time that
has progressed after the button is pressed for the first time.

This is exactly what researchers encountered when they wanted to check more
complex systems as for real-time systems the standard automata were not suffi-
cient because a notion of time was required. Therefore, to model the behaviour
of real time systems, Alur and Dill extended standard automata with clocks,
timing constraints and clock resets, resulting in timed automata [2]. Based on
these timed automata various tools were developed, which can be used in the
verification of real-time systems. Two well-known examples are Kronos [13] and
UPPAAL [25]. In this research we will focus on UPPAAL, a tool developed by
Uppsala University, Sweden and Aalborg University, Denmark. We have chosen
for UPPAAL as it is the most-used tool for modelling real timed systems.

Originally UPPAAL was based on timed automata only, but since the newer ver-
sions, it uses a combined approach, also supporting imperative code. This gives
users the possibility to define, for instance, functions and call these functions
from the automata [4]. It has been used in various real-life problems. For in-
stance, an error in an audio/video protocol by Bang & Olufsen has been found
and the corrected protocol has (partially) been proven correct [17]. Another
example is the analysis of the Philips Audio Control Protocol using UPPAAL
[6]. Both case studies are relatively large and in both cases it takes UPPAAL
several minutes to generate an error trace or prove the modelled protocol correct.

Increasing the efficiency of proving such (and other) models would result in faster
verification but it also enables the verification of larger models. Therefore it is
beneficial to reduce the state space. For this there are several possible options
like, for example, reduce the memory consumption, space consumption or the
number of states that are stored. Recent research by Van de Pol and Timmer
[30] shows a method to achieve the reduction in size of the state space. Their
research focusses on an intermediate format of process algebraic specifications,
linear process equations (LPEs). Their algorithm is an excellent candidate to
achieve similar results in the area of timed automata. Therefore we will adapt
their approach to UPPAAL specifications to achieve a similar result.
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1.1 Initial exploration

As mentioned, research by van de Pol and Timmer [30] suggests that it is worth
trying to adapt and apply their method on models defined in UPPAAL. The
following will give an introductory view of possible reductions.

s5

s3

s2

s6

s4

s1

a=i
i : int[0,9]

a<5 a>=5

(a) Original model

s5

s2

s3 s4

s6

s1

a=0 a=0

a=i

a<5 a>=5

i : int[0,9]

(b) Optimised model

Figure 1.2: Basic example showing the possible reductions (data variables)

File States explored States stored
Before 50 50
After 15 15

Table 1.1: Results of the verification

In UPPAAL there are two types of variables which both seem to be suitable
for control flow reconstruction in order to reduce the state space. (Discrete)
data variables are the first type of variables, both global and local. Figure
1.2(a) shows a relatively simple model, which selects a value of zero to nine
and assigns the value to a variable a (see section 2 for a introduction to the
UPPAAL language or section 3 for a formal description). This variable a is
then used in the (guard of the) next edge, but, after that, is not used any more
till it is assigned a random value again. The value of a is only relevant in state
s2, while in the other states it is only a cause of a growth in the number of
states stored. By resetting the value of a in the transition from s2 to s3 or s4,
see figure 1.2(b), a reduction in the state space can be achieved. To test the
reduction we check a simple property A2x ≥ 0 ,which is always true, in order
to compare the number of states explored/stored. Using no space optimisation
we get the results as shown in table 1.1 If we take a look at the second type of
variable, clock variables, the first impression is that there are less possibilities
to reduce the state space. The reason for this is the fact that the clocks are
stored using zones [8]. For a data variable x, which can have values ranging
from 0–9, for every location there can be up to 10 different states just varying
in the value of x. However, a clock variable c will be stored in a state using a
zone 0 ≤ c ≤ 9 and therefore resetting its value does not automatically reduce
the number of states. Even the model of figure 1.3 results in only 4 states, where
you would expect more than 4 states in the generated state space. However this
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is not the case as UPPAAL only generates 4 states, where you would expect
different states for the 4 zones ; c ≥ 0, c ≥ 1, c ≥ 2, resulting in 16 states. The
conclusion is that for clock variables we probably cannot reduce the state space
that much (due to the clock zones), but for data variables there are certainly
some reductions possible.

c=0

c=1

c=2

c<=1

Figure 1.3: Model with a state space of only four states

1.2 Research Questions

After the initial exploration we now define the research question of the project:
‘What can control flow analysis applied to UPPAAL models achieve?’. To an-
swer this question we answer the following sub questions:

• Can the algorithm of [30] be translated to reduce the state space of UP-
PAAL models by resetting local variables?

• Is there a way to reduce the state space by resetting global variables
without constructing the total state space?

• How can the algorithm be extended to include the state invariants of
UPPAAL?

• How can we incorporate the ’different’ features of UPPAAL into the algo-
rithm?

• Is the tool beneficial for end users of UPPAAL, releasing them from opti-
mizing the model for efficient verification.
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CHAPTER 2

Related work

For a good understanding of the following sections a basic knowledge of (timed)
automata is required. We give a complete formal description in section 3, but
for now a short informal description is sufficient. In figure 2.1 a simple on/off
switch is modelled. The circles represent the states/nodes of the automaton and
the arrows between states represent the edges or transitions of the system. The
automaton of figure 2.1 starts in the OFF state (indicated by the double circle)
and can go to the ON state by processing a Push action. Once in the ON state
another Push action moves the automaton back to the OFF state.

OFF ON

Push

Push

Figure 2.1: Automaton representing an on/off switch

A simple extension of the above are the guards. A guard is a boolean expression
that ‘guards’ the transition and needs to evaluate to true for the transition to
be enabled. If a guard evaluates to false the transition is not enabled and
cannot be taken. If we add a boolean variable broken (initially false) to the

automaton of figure 2.1 and a guard !broken to the transition OFF
Push−−−→ ON

we get the automaton of figure 2.2, which does not allow the transition to be
taken if the switch is broken.

OFF ON

!broken Push

Push

Figure 2.2: Automaton representing an on/off switch with a guard

7



A great variety of systems can be modelled with the above automata, but how
do we model for instance a dimmer which can be turned on by pushing the
button once and can be put in dimmed state by pushing the button again in at
most 5 seconds? For this problem (and other problems) a notion of time has
been added to automata to get timed automata [2]. In figure 2.3 the dimmer is
presented as an automaton using a real-valued clock x which can be reset to 0.
If the automaton receives a first Push the clock x is reset to measure the passed
time since the Push. If another Push occurs within 5 seconds the transition to
DIM will be taken, otherwise the dimmer is turned OFF .

OFF ON DIM

Push, x:=0

x > 5, Push

x ≤ 5, Push

Push

Figure 2.3: Automaton representing a dimmer

In section 1 we mentioned UPPAAL, a model checker for real-timed systems,
which can be used to model and verify these timed automata. We also noted
that UPPAAL, like model checkers in general, suffers from the state space ex-
plosion problem. There are various approaches to solve this problem, which we
present in the following sections. We first give an overview in section 2.1 of
various techniques to reduce the size of the generated state space, followed by
a description of some compiler optimisation techniques.

2.1 Reduction techniques

The following sections give an overview of the various reduction techniques that
are available. We conclude with mentioning for each technique if its available
in UPPAAL and automatically enabled.

2.1.1 Symmetry Reduction

Symmetry reduction is one of the techniques to reduce the number of states to
be explored and is available in UPPAAL since UPPAAL 4.0 [19, 4]. It applies
the idea of symmetry reduction of Ip and Dill [21] to UPPAAL and uses the
occurrence of multiple identical processes only differing in the their identity,
also called full symmetry [21]. By defining an equivalence group, based on an
automorphism, large reductions in the verification process can be achieved. To
implement symmetry reduction two problems should be solved, the problem
of detecting the automorphism from the system description and the problem of
deciding the symmetry of two states during verification. Therefore the data type
scalarset was added, which is a sub-range with restricted operations and is a
fully symmetric type, resulting in the behaviour of the program being invariant
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under permutation of the elements of the scalar-set. For scalar-sets of size n
reductions of up to a factor n! can be achieved.

p1

p2

p3

status[pid] = 1

status[pid] = 2

Figure 2.4: Automaton of a process P keeping track of his status

For example consider the process in figure 2.4, which only keeps track of the
current status of the process using an array called status. In the first transition
the process sets his status to 1 using the variable pid as index and in the next
transition the status is set to 2. If we have multiple of these processes, for
instance two, we will get the state space of figure 2.5, which is made of all
possible interleavings of the two processes. A non-dashed edge is a transition
of the first process, while a dashed edge is a transition of the second process.
Notice the complete symmetry of the automaton. Symmetry reduction makes
use of the symmetry by exploring only a part of the total state space, which is
the set of filled nodes in figure 2.5. Observe that all the non-filled nodes have
an corresponding filled node only differing in (the order of) their pid’s. For
example (0, 2) ≡ (2, 0), or in general (i, j) ≡ (j, i).

0, 0

1, 0

2, 0

2, 1

0, 1

0, 21, 1

1, 2

2, 2

Figure 2.5: The composition of two instances of the process of figure 2.4
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2.1.2 Slicing

Another method is that of slicing, an abstraction technique. Abstraction tech-
niques use a part, an abstraction, of the model, in order to verify a property for
the whole model. Because only a part of the model is verified the state space
that needs to be generated is much smaller. However one has to make sure
the abstraction preserves the properties that are verified, otherwise a correct
abstraction does not guarantee the correctness of the whole model. In [22] a
first approach is presented using slicing with timed automata, while in [29] it is
showed how slicing can be used in the current version of UPPAAL, which uses
not solely timed automata any more but is extended with new data types and
user defined functions. Slicing reduces the original model to a set of relevant
components with regards to some slicing criteria. These criteria are based on
the locations and variables of the property to be verified. Figure 2.6 gives an
example of an abstraction slicing produces. We define a property ‘∀2 not dead-
lock’, which guarantees us that the process will never deadlock. If we verify
this property the statement ‘nrOfRuns++’ is irrelevant as it does not affect the
control flow or another variable but serves as a status variable. The slicing al-
gorithm will remove this statement from the specification and the result is that
in the total state space the size of each state vector is smaller.

p1 p2

p3

p4p5

p6

nrOfRuns++

x=0

x ≥ 1

x ≤ 100, x++

. . .

. . .

. . .

Figure 2.6: Example explaining the slicing algorithm

2.1.3 Partial order reduction

A well known method to reduce the state space is partial order reduction. Nor-
mally the next state to be explored is chosen from enabled(s), all transitions
that are enabled/possible in the state s. Partial order reduction tries to use a
set ample(s) ⊆ enabled(s) instead [26]. If one can define a set ample(s) smaller
than enabled(s) the resulting state space will be smaller. The set ample(s) is
generated by looking at the the interleaving of independent edges (transitions).
Two edges α and β are independent if:

• α ∈ enabled(β(s)) and β ∈ enabled(α(s)) - They do not disable each other

• α(β(s)) = β(α(s)) - The order in which they are executed does not matter.
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Because these edges are independent it does not matter in which order they are
traversed and as a consequence it is beneficial to only traverse one possible in-
terleaving of those edges. In the area of timed automata partial order reduction
is a little harder because there the interleaving of, for instance, two clock resets
leads to two different states and does not produce the nice diamond structure
known in partial order reduction. Looking at figure 2.7 one has 2 processes with
one clock each. If, in the combined automata, x is reset first and in the next
transition y one ends up in a state (r3) where x ≥ y holds whereas the other way
around one ends in a state (r5) where x ≤ y holds, whereas, in the case of data
variables states r3 and r5 would be the same. To apply partial order reduction
to timed automata the idea of letting the local clocks proceed independently
of the clocks of other processes is presented [7]. This means that whenever a
synchronised action is performed the local clocks still need to be synchronised
and therefore extra clocks are added to each process. A prototype has been
implemented but this implementation does not show large reductions, mostly
because of the introduction of a large number of extra local clocks [3].

p1

p2

q1

q2

r2

r1

r3

r4

r5

y=0x=0 x=0

y=0

y=0

x=0

Figure 2.7: Interleaving two clock resets

2.1.4 Dead variable analysis

In figure 2.8 a simple automaton is presented. In this automaton a random value
(ranging from 0 to 9) is assigned to x and in the next transition this value x is
added to the value of y. In the next two transitions the variable x is not used
and then the loop starts again and x is assigned a new random value. Because
the value of x is not used in p3 and p4 and there does not exist a path to another
state where x is used, we say that x is not relevant in p3 and p4. The other way
around we can see that x is relevant in p2 as x is used in a outgoing transition
from p2. We can say x is relevant in p3. To reduce the state space we could
reset a variable if it is not relevant. This analysis of relevant variables is called
dead (or live) variable analysis.
Several papers have presented an algorithm for state space reduction based on
dead/live variable analysis. For instance [9] (only sequential processes) and
[32], however both algorithms only check the relevance of a variable locally. If a
variable is used globally at multiple processes it is automatically relevant. For
instance if a variable is passed to another process it is automatically relevant
even if it not used in the other process. This is because, in the case of parallel
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processes, the algorithm first tries to reduce the processes separately, without
looking at the specification of a parallel process, before composing the combi-
nation of all the parallel processes. Also [?] and [30] (for LPEs) present work
on dead variable analysis and even the tutorial on UPPAAL [5] references dead
variable analysis and gives modelling tips how to manually apply the analysis
to reduce the state space. However the analysis is not integrated into UPPAAL
and therefore not automatically performed.

p1 p2

p3p4

i : int[0,9], x=i

y=y+x

Figure 2.8: Trivial example to demonstrate dead variable analysis

2.1.5 Exact (clock) acceleration

Hendriks and Larsen address the problem of unnecessary fragmentation of the
state space, due to different time scales in the real time system [18]. This occurs,
for example, when a systems samples the environment many times each second,
whereas the environment only changes a couple of times each second. In a
automata this can be seen as a cycle which can only be left if a clock reaches
a certain value, however in the meantime the cycle is repeated many times,
resulting in a very large state space because non of these iterations of the cycle
overlap. They propose an algorithm, called exact acceleration, to transform this
cycle such that there is a new cycle which will only be traversed once resulting
in a much smaller state space.

2.1.6 Active clock reduction

One of the reasons of the state space explosion is the large number of clocks. In
[14] two reasons are given for the large number of clocks. The first is the fact
that most of the time specifications are written in a higher level language and
translated to timed automata replacing each time-out with a own clock. Most of
the time, however, these clocks are not used, or active, at the same time and the
number clocks could be reduced. Secondly most of the time a timed automaton
is made of a large number of smaller components, each with its own clocks. It
turns out that some of these clocks can be replaced by one clock, because these
clocks are reset at the same time. Active clock reduction [14] is an algorithm,
implemented in UPPAAL, that makes use of the above to reduce the number
of states and the size of the states in the state space.
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2.1.7 Reduction techniques in UPPAAL

In table 2.1 we indicate for each of the reduction techniques if it is implemented
in UPPAAL and if it’s automatically enabled in UPPAAL. Below the table we
give some remarks on the entries of the table.

Technique In UPPAAL? Automatically enabled?
Symmetry Reduction + +- (1)
Slicing - (2) -
Partial order reduction - (2) -
Dead variable analysis - (3) -
Exact clock acceleration - (2) -
Active clock reduction + +

Table 2.1: Overview of reduction techniques

1. For symmetry reduction you have to annotate an integer range as a scalar
set if it is fully symmetric. If you do this the verification automatically
applies symmetry reduction.

2. For all of these techniques tools/prototypes have been implemented, but
there is not a complete working implementation available in UPPAAL of
these techniques.

3. One of the results of this paper is a tool that can perform dead variable
analysis for UPPAAL models. It is not implemented in UPPAAL but is
available as an preprocessing tool.

2.2 Compiler optimisation techniques

All the methods described in the previous section are all about optimising the
model checking process. However there are other research areas that have op-
timisation techniques. Those techniques may be interesting for our project as
they can prove useful. One interesting area is the area of compiler optimisation.
Almost every compiler nowadays makes use of the Single Static Assignment form
which we present first, followed by various compiler optimisation techniques of
which some may prove useful for our project.

2.2.1 Static Single Assignment form

Static single assignment (SSA) [11] form is not an optimisation itself, however
it is an special representation of the original code that makes it possible that
other algorithms/techniques, that do cause optimisations, can be easily applied.
Basically a program is in SSA form if each variable is a target of exactly one
assignment statement. Using SSA form it is easier to see which variable assign-
ment corresponds to a particular use of a variable. Consider the following piece
of code:

y := 1
y := 2
x := y

13



It is easy to see that the first assignment has no use as the value it assigns will
never be used, but one can imagine this will be harder when the code gets more
complex. Even for this small piece of code it is clear that SSA form makes it
easier to draw conclusions about the use of variables. To translate the piece of
code we assign to every variable an unique (for that variable) index number.
Each use of a variable will get the same index number as the corresponding
definition of that variable. For the example this results in:

y1 := 1
y2 := 2
x1 := y2

With the piece of code in SSA form we can now directly conclude that y1 is never
used (and therefore that the assignment is useless). However the transformation
is not as trivial as it seems, for instance what to do when there are conditional
branches like in the following piece of code:

y := 3;
if (z > 5){

y := y + 3;
}
x := y;

Now it is not clear which indexed version of y needs to be assigned to x. There-
fore a special function, called a φ-function is inserted, which will take care of
this decision for us. This results in the following code in SSA-form:

y1 := 3;
if (z1 > 5){

y2 := y1 + 3;
}
y3 := φ(y1, y2);
x1 := y3;

The exact implementation of the φ-function is not important, however its result
is that the correct assignment is chosen based on which branch/control flow is
taken. One of the difficult steps in transforming to SSA form is to determine
where to exactly place these φ-functions.

Dominance Frontiers

In [11] an efficient algorithm is presented to determine the placement of φ func-
tions. The algorithm uses dominance frontiers to calculate the placements. The
algorithm uses 2 relations between control flow nodes, dominates and strictly
dominates. They are defined as follows:

Let X and Y be two nodes of the control flow graph and Entry the starting
point of the control flow graph.

• X dominates Y (X � Y ) if X appears on every path from Entry to Y .

• X strictly dominates Y (X � Y ) if X dominates Y and X 6= Y .
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Based on these definitions of dominance dominance frontiers (DF) of a node, the
point where dominance of a node stops and and another control flow path joins
the current path (this indicates a possible ambiguity about which definition to
use), can be defined as:

DF(X) = {Y |∃P ∈ Pred(Y ))(X � P and X¬ � Y )}

Control Dependency Graph

Also [11] shows us that dominance frontiers can be used to determine control
dependences in the control flow graph. The reverse control flow graph is exactly
the same as the control flow graph but with every edge X → Y being replaced
by an edge X ← Y . The same algorithm to determine the dominance frontiers
can now be used to determine the control dependency’s. Every node is control
dependent on the nodes in its dominance frontier in the reversed control flow
graph.

2.2.2 Dead Code Elimination

The term dead code can have several meanings. Some people define dead code
as unreachable code, whereas other people define it as ineffectual code. In [11]
an algorithm is presented that eliminates ineffectual code using a control de-
pendency graph. The algorithm itself is easy to understand and comes down to
the following:

Initially all statements are marked dead and a statement is marked live if:

• The statement affects program output (I/O, reference parameter assign-
ment or routine call with side effects)

• Assignment statement

– Its outputs already used in a live statement

• Conditional branch and a live statement is control dependent on it.

We could use dead code implementation in our project to eliminate ineffectual
assignments, making sure that any irrelevant variable has a standard value and
the resulting state space is minimal. However we do not eliminate statements at
the moment in our project but only reset irrelevant variables. (See for instance
the future work described in section 8.1)

2.2.3 Code Motion

Simply said code motion is the movement of statements to optimize program
execution. There are several versions of code motion algorithms, for instance
an implementation oriented algorithm for lazy code motion [23], which tries to
minimize the number of computations while suppressing any unnecessary code
motion. Another algorithm is presented by Cytron et al. in [12], who claim
that their algorithm is capable of performing code motion even if abstractions
are used.
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However all the algorithms have the same goal, that is to move statements to a
better, more efficient, location. Consider the following example:

for (i = 0; i < n; i++){
x = y + z;
a[i] = 6 ∗ i+ x ∗ x;

}
For each iteration of the loop the value of x is computed again however the
values of y and z do not change inside the loop, therefore the value of x receives
the same value every time. It would be beneficially to move the computation
of x outside the loop in order to avoid a redundant computation. The same
applies to the computation of x ∗ x. This produces the following:

x = y + z;
t1 = x ∗ x;
for (i = 0; i < n; i++){

a[i] = 6 ∗ i+ t1;
}

The result of applying code motion to (a piece of) code is that (some) redundant
computations are performed less. This results in an increased performance as
the execution time will be reduced, however the state space will not be affected,
making the algorithm not useful for our project.

2.2.4 Constant Propagation

Constant propagation [31] is a global control flow analysis problem and its goal
is to identify values that are always constant and to propagate these values as
far through the program as possible. Expressions with constant operands are
again constant and this fact can, for instance, be used in further computations.
In [31] several uses for compilers are given:

• If you can evaluate an expression at compile time you do not have to
compute it every time during runtime, increasing the performance of a
program.

• Unreachable code can be deleted. This can happen if a conditional branch
is never taken because the value of the condition is constant.

• Since many of the calls to procedures are constant, using constant propa-
gation together with procedure integration can have beneficial results.

Most of the above uses of constant propagation are of no use to our project.
However, the fact that unreachable control branches can be detected could prove
to be useful. It may cause variables to be marked irrelevant whereas they else
would be unnecessarily marked relevant.

2.2.5 Global Value Numbering and redundant computa-
tions

In [27] an optimisation is presented that is based on the SSA form and makes use
of Global Value Numbering to identify redundant computations. The algorithm

16



improves the program because it uses the fact that it is not efficient to perform
the same computation again. A basic example is:

A := C
D := A ∗B
E := C ∗B

The above assignments contain some redundancy as D and E are assigned the
same value. The algorithm will identify this and the second assignment can
be deleted and replaced by an simpler assignment. These kind of transforma-
tions cause an increase in performance because redundant computations are
performed less. However the state space size will be the same as before and
therefore the algorithm is not useful for our project.
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CHAPTER 3

UPPAAL

After briefly introducing UPPAAL in the section we will now take a closer look
at UPPAAL by looking at the syntax and semantics of the UPPAAL language.
UPPAAL is based on the definition of timed automata, which originates from
the work of Alur and Dill [2]. They introduced timed automata as an extension
to finite state automata and they added a notion of time, by introducing clocks,
to the automata. This addition of time includes the possibility to add con-
straints over the clocks to the edges (called guards) and to the locations (called
invariants). In the following sections we will give a description of the syntax
and semantics of these timed automata and the additions made by UPPAAL.
The work of Thrane and Sørensen [29] provides a thorough description of these
syntax and semantics and therefore large parts of the following sections come
directly from the work of Thrane and Sørensen.

3.1 Basic timed automata

We begin with the basic definitions of timed automata, which are mainly based
on the work of Alur and Dill [2]. After the basic definitions we will extend the
definitions with the extensions made by UPPAAL.

Definition 1 (Timed Automaton). A timed automaton is a tuple
〈L, l0,Σ, C,E, I〉 where:
• L is a finite set of locations

• l0 ∈ L is the initial location

• Σ is a finite set of channels

• C is a finite set of clocks

• E ⊆ L×Ψ(C)× Σ× 2C × L is the set of edges

– Ψ(C) is the set of constraints over the set of clocks C (section 3.1.1)

• I : L −→ Ψ(C) assigns each location with a set of invariants

We use l
g,a,r−−−→ l′ to denote 〈l, g, a, r, l′〉 ∈ E where l, l′ ∈ L are locations (source

and target respectively), g ∈ Ψ(C) is the clock constraint guarding the edge,
a is the channel, with a = z! | z?| ε and z ∈ Σ, which in some cases may be
referred to as the action and r ∈ 2C is the set of clocks that are reset.
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3.1.1 Clocks

Clocks are one of the most important features of timed automata as they are
the feature that allow us to model real timed systems using automata. Clocks
are initially zero and are increased synchronously at the same rate. We use C
to denote the set of clocks in an automaton.

Clock valuations

A clock valuation is a total mapping σ : C → R≥0 from the set of clocks to
the non-negative real numbers. For δ ∈ R≥0, σ + δ denotes an updated clock
valuation σ′, such that ∀u ∈ C : σ′(u) = σ(u) + δ. The clock valuation σ0 gives
the initial valuation such that ∀u ∈ C : σ0(u) = 0. Finally, C is used to denote
the set of clock valuations.

Clock resets

Clock resets are used to reset the value of a clock variable to zero, its initial
value. The result of resetting a set of clocks r is defined as σ′ = σ[r 7→ 0], which
means that for every clock c ∈ r ⊆ C the value of c is set to 0, while the value
of the other clocks remains unchanged.

Clock constraints

Constraints on clocks are used as guards on edges and invariants at locations.
A constraint ψ in the set of clock constraints Ψ(C), may be of the following
form:

ψ,ψ1, ψ2 ::= u ∼ n|u− u′ ∼ n|ψ1 ∧ ψ2

for u, u′ ∈ C,∼∈ {<,≤,=,≥, >} and n ∈ N. Satisfiability of a clock constraint
ψ ∈ Ψ(C) by a clock valuation σ is defined inductively on the structure of ψ by

σ |= u ∼ n ⇐⇒ σ(u) ∼ n
σ |= u− u′ ∼ n ⇐⇒ σ(u)− σ(u′) ∼ n
σ |= ψ1 ∧ ψ2 ⇐⇒ σ |= ψ1 and σ |= ψ2

3.1.2 Channels

A notion of channels is used to obtain synchronisation between timed automata
in a network (in parallel). Edges of timed automata are decorated with channels
from the alphabet Σ. We say that a timed automaton is willing to output, if it
is able to take an edge which is decorated with a! where a ∈ Σ. Alternatively,
we say a timed automaton is willing to input if it is able to take an edge which
is decorated with a?, where a ∈ Σ. Two timed automata, of a network P of
timed automata, may synchronize whenever one is willing to output to some
channel and the other is willing to input on the same channel from a global set
of channels ΣP . Channels can also be grouped into an array and to access a
single channel of this array you have to use channel[expr].
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3.1.3 Semantics

The semantics of timed automata are defined as a timed labelled transition sys-
tem (TLTS) where states (or configurations) consist of a location l ∈ L and
a clock valuation σ ∈ C . Transitions are either delay transitions, denoted by
d−→, with d ∈ R≥0, or they are action transitions, denoted by

a−→ , with a ∈ Σ.
A system may either delay in the current location, while the location’s invari-
ant stays satisfied, or follow an outgoing, enabled edge (i.e. an edge where the
current clock valuation satisfies the guard) in the system decorated by channel
a.
Because invariants and guards are defined as sets of predicates over clocks i.e.
Ψ(C), we use the notation σ |= I(L) to mean that σ satisfies I(L).

Definition 2 (Semantics of Timed Automata). The semantics of timed
automata is defined in terms of a TLTS where states are pairs 〈l, σ〉 of locations
and clock valuations and the transitions are defined by the rules.

• 〈l, σ〉 d−→ 〈l, σ + d〉 if (σ + d′) |= I(l) for all d′ ∈ R≥0 where d′ ≤ d

• 〈l, σ〉 a−→ 〈l′, σ′〉 if l
g,a,r−−−→ l′ s.t. σ |= g ∧ σ′ = σ[r 7→ 0] ∧ σ′ |= I(l′)

3.1.4 Parallel composition

We use the term network to denote a model of parallel composed timed au-
tomata. A network of timed automata P is defined over a common set of clocks
and channels and consists of n timed automata Pi = {Li, l0i , C,Σ, Ei, Ii}, where
1 ≤ i ≤ n. A location in P is a location vector l̄ = {l1, . . . , ln} over locations
for each Pi. Updates to the location vector are written l̄[l′i/li] to denote that
automaton Pi moves from location li to l′i. We proceed to define the semantics
of networks of timed automata. We use the invariant function I(l̄) to denote
the conjunction of terms from Ii(li).

Definition 3 (Timed Automata Networks). Let P = 〈Li, l0i , C,Σ, Ei, Ii〉
be a parallel composition of timed automata (P1 ‖ . . . ‖ Pn) and let 〈l̄, σ〉 be an
element in the set of states S = (L1× . . .×Ln)×C where s0 = (l̄0, σ0) denotes
the initial state where l̄0 = (l01, . . . , l

0
n). The semantics is defined in terms of a

timed labelled transition system 〈S, s0,→〉 and the transition relation→⊆ S×S
is defined by:

• 〈l̄, σ〉 d−→ 〈l̄, σ + d〉 if ∀d′ : σ + d′ |= I(l̄) where 0 ≤ d′ ≤ d

• 〈l̄, σ〉 a−→ 〈l̄[l′i/li], σ′〉 if ∃li
g,a,r−−−→ l′i s.t. σ |= g, σ′ = σ[r 7→ 0] and σ′ |=

I(l̄[l′i/li])

• 〈l̄, σ〉 τ−→ 〈l̄[l′i/li, l′j/lj ], s′〉 if there exists li
gi,a!,ri−−−−→ l′i and lj

gj ,a?,rj−−−−−→ l′j s.t.

i 6= j, σ |= (gi ∧ gj) , σ′ = σ[ri ∪ rj 7→ 0] and σ′ |= I(l̄[l′i/li, l
′
j/lj ])

3.2 The Extended Timed Automata Formalism

The notion of extended timed automata introduced here is based on the previous
definitions. The ‘upgrades’ are primarily concerned with the addition of discrete
variables and replacing the previously introduced resets by updates expressed
in a small imperative language. The core motivation behind these extensions, is
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that the formalism, obviously, may now be used to model a richer set of systems
where not only time is of importance but also the value of discrete data.

Variable Valuation

In order to extend the definition of timed automata with discrete variables, we
introduce a notion of variable valuations. A variable valuation is a total mapping
ω : V → Z from a set of variables V to the set of integers. The variable retV al
is a special variable which is solely used for returning values from function calls.
Finally, we use V to denote the set of all variable valuations.

3.2.1 Syntax of the Imperative Language

This section introduces a subset of the imperative language of UPPAAL, which
we will use throughout this thesis. The language presented here is chosen such
that the correctness of our reduction algorithm introduced in later chapters
can be argued not only to hold for this subset, but it could be extended to
the full imperative language of UPPAAL. For instance a for-loop can be easily
transformed into a while-loop with the same semantics. Therefore we will not
introduce both constructs but only show the while-loop.

Functions and statements In order to manipulate discrete variables, we
introduce the possibility of having functions, which may be called, for instance,
in the update part of the edges. We use f to denote a function and F to denote
a set of functions defined in the following syntax (bexpr will be introduced in
the next paragraph).

funcDecl ::= type f(id1, . . . ,idn){stmt seq}
stmt seq ::= ε | single stmt stmt seq
single stmt ::= if(bexpr){stmt seq} else{stmt seq}

| while(bexpr){stmt seq}
| return expr | single act| single asg

Here we make a slight extension to the syntax as explained in the work of Thrane
and Sørensen [29] by adding single asg to single stmt and we add the if-else
statement instead of the if-statement. The first change is because we do not
make a difference between data and clock variables, therefore there is no need
to separate both definitions. Secondly, the expressiveness of if-else-statements is
greater than the expressiveness of if-statements. In addition every if-statement
can be written as if-else-statement like this: if ϕ stmt seq else skip.
In the above syntax type is the type of the function and specifies the type of
the return value, which can be either int or bool, but also records or arrays of
those two. Secondly id is used to denote names of formal parameters i.e. locally
declared discrete variables. As is traditional for imperative languages, the body
of functions or the branching and looping constructs are composed of a, possibly
empty, sequence of statements given by the production stmt seq. The syntax
for function calls is defined as:

funCall ::= f(expr1, . . . ,exprn),where f ∈ F
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Expressions. Let V be a finite set of integer variables. The arithmetic expres-
sion over V , using the set of functions F , is defined in the following grammar
as expr, where m ∈ Z, v ∈ V and ⊗ ∈ {−,+, ∗, /}.

expr ::= m | v | expr ⊗ expr | −expr | funCall

By Expr(V, F ), we denote the set of all possible arithmetic expressions over V
and F .
The set of boolean expressions over discrete variables is defined in the produc-
tion bexp, where expr ∈ Expr(V, F ) and ∼∈ {==,=, <,>,<=, >=}.

bexp ::= true | expr∼expr |bexp && bexp |bexp‖bexp | ¬bexp

The set of all boolean expressions over V and F is denoted by Φ(V, F ) ranged
over by ϕ.
Finally, actions over discrete variables V and functions F are defined by the
production single act , where v ∈ V and expr ∈ Expr(V, F ). The set of all
actions over V and F is denoted by Act(V, F ).

single act ::= funCall | v = expr | skip

Clocks. Let C be a finite set of real valued variables, called clocks. The set
of clock constraints over C is defined in the production clockconst, where
u, u1, u2 ∈ C, c ∈ N and ∼ is defined as before.

clockconst ::= true |u ∼ c |u1 − u2 ∼ c | clockconst&&clockconst

By Ψ(C) we denote the set of all clock constraints over C, ranged over by ψ.
As with discrete variables, we use a production single asg to define clock as-
signments, where Asg(C,F ), denotes the set of all assignments over C.

single asg ::= u = expr | skip

Not all assignments are possible as assignments to clocks are limited to the
regular = assignment operator and only integer expressions are allowed on the
right hand side of such assignments.

Additional restrictions on the syntax by UPPAAL

In addition to the syntax presented in the previous section UPPAAL has some
restrictions on what is allowed and what is not. Clearly from the syntax it
is possible that a single stmt expands to a single act and this single act into
function call. However UPPAAL does not allow recursive calls as each function
call has to be preceded by its accompanying function declaration. This also
ensures that functions A and B cannot enter an infinite loop where they keep
calling each other.
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The other statements of UPPAAL

The syntax of UPPAAL as presented here does not contain the full syntax of UP-
PAAL. Next to the if- and while-statements there are various other statements
that are allowed in UPPAAL but to keep things clear they are not mentioned
here. We give an overview of these options and show that they are captured by
the other statements and therefore, effectively, introduce no other functionality.
During the rest of this thesis we therefore ignore these statements (at least in
the theoretical part, of course they will be implemented).

Do-while The syntax of UPPAAL for a do-while statement is the following:

do {stmt seq} while (ϕ)

If we compare this to the while statement which is ‘while(ϕ){stmt seq}’ one
can see that they are almost similair with the only difference that for a do-
while statement the condition is not evaluated prior to the first execution of the
stmt seq. We can easily rewrite this to a while-statement and then we get the
following:

stmt seq while(ϕ){stmt seq}

For-loop UPPAAL has 2 versions of a for-loop. The first is java/c++ like
and looks like this:

for( exprinit ; ϕ ; exprincr) {stmt seq}

Also this statement can be transformed into a while-statement and the resulting
list of statements is:

exprinit ; while(ϕ){stmt seq ; exprincr}

The other for-loop version can only be used in conjunction with a scalar set and
executes the accompanying stmt seq for each element of the scalar set. One can
see that this can be transformed into a list of stmt seq one for each element of
the scalar set.

Switch/Case Next to the above statements the C++ library of UPPAAL,
UTAP (see chapter 6), also includes the switch/case and default statements,
suggesting that it is possible to use these statements in an UPPAAL model.
However the help file does not mention how to use this statement and manually
trying to use it in a model does not seem to work either at the moment. There-
fore we do not consider this statement, but if it is necessary one can transform
the switch statement using multiple if/else-statements.

3.2.2 Syntax of Extended Timed Automata

Having introduced the imperative syntax used in the notion of the extended
time automata formalism, we proceed to extend the definition of the timed
automata:
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Updates: The notion of resets in the original definition has been replaced by
updates. An update is a sequence of variable actions and clock assignments . As
we will not make a distinction between clock and data variables in our reduction
algorithm we combine both the definitions of variable and clock assignments
(single act and single asg) resulting in the following syntax.
update ::= ε |update update | single act | single asg

Every update part of an edge can contain a clock assignment, a data variable
assignment, a function call or nothing at all (skip). This set of all update actions
over C,V and F is Update(V,C,F).

Guards and invariants We extend the previously defined notion of guards
and invariants with the discrete data and the use of the imperative language.
Both guards and invariants are conjunctions over clock constraints and discrete
boolean expressions denoted ψ and ϕ respectively. In addition, we restrict
the valuation of discrete boolean expressions to be side-effect-free. Effectively
reducing the semantics of guards and invariants to C × V → {true, false}.

Communication and urgency The extended timed automata have two
other extensions. The first is the notion of broadcast, to enable synchroni-
sation between multiple timed automata. The second extension is the ability
to model the fact that time can not delay in a location, by marking locations
committed or urgent. Roughly speaking locations can be marked urgent , time
cannot delay at a location marked urgent. Even more restrictive is a location
marked committed . In this case, if one or more of the locations of a state are
marked commuted, not only time cannot delay, also the next transition should
be from a location marked committed .
In the following definition we use η(Φ(V, F ),Ψ(C)) to denote the set of all
conjunctions over Φ(V, F ) and Ψ(C).

Definition 4 (The Extended Timed Automata). Let P = 〈L, l0, V, C,Σ, F, E, I〉
be a timed automaton extended with discrete variables.

• L is a finite set of locations, ranged over by l

– Each location is either marked urgent or committed or not marked
at all.

• l0 is the initial location

• V is a finite set of discrete variables, ranged over by v

• C is a finite set of clocks, ranged over by u

• Σ is the finite set of channels, ranged over by a

• F is a set of function declarations expressed in the above syntax

• E ⊆ L× η(Φ(V, F ),Ψ(C)× Σ×Update(V,C, F )× L is the set of edges

• I : L→ η(Φ(V, F ),Ψ(C)) assigns each location an invariant

3.2.3 Semantics of the imperative language

For a complete description of the semantics of the language of the extended
timed automata we refer you to section 2.3.4 of the work of Thrane and Sørensen
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[29]. We now give only the part that copes with the semantics of the transition
relation:

The transition relation →⊆ S × S is defined by the following rules:

Let 〈l̄, σ, ω〉 be an element in the set of states S = (L1 × . . .× Ln)× C × V.

Delay: 〈l̄, σ, ω〉 d−→ 〈l̄, σ + d, ω〉 if:
• ∀d′ where 0 ≤ d′ ≤ d : (σ + d′, ω) |= I(l̄)

• And ∀d′, l ∈ l̄ : d′ does not result in an edge e being enabled for any l,
which is either urgent or committed.

Action: 〈l̄, σ, ω〉 a−→ 〈l̄[l′i/li], σ′, ω′〉 if:

• there exists an edge li
g,a,r−−−→ l′i where

• (σ, ω) |= g and

• a = ε

• (σ′, ω′) = JupdateK(σ, ω)

• (σ′, ω′) |= I(l̄[l′i/li])

• And li is committed or there is no edge e that is enabled for any lj such
that lj is committed

Although Thrane and Sørensen [29] describe the semantics of committed and
urgent in the delay step they do not describe the semantics of committed in
the action step. Therefore we have added the last item to the semantics of the
action step.

Sync: 〈l̄, σ, ω〉 τ−→ 〈l̄[l′i/li, l′j/lj ], σ′, ω′〉 if:

• there exist edges li
gi,a!,ri−−−−→ l′i and lj

gj ,a?,rj−−−−−→ l′j and a state (σ′′, ω′′) such
that

• (σ, ω) |= gi ∧ gj
• (output) (σ′′, ω′′) = JupdateK(σ, ω) (followed by)

• (input) (σ′, ω′) = JupdateK(σ′′, ω′′).

• (σ′, ω′) |= I(l̄[l′i/li, l
′
j/lj ])

• And li and/or lj are committed or there is no edge e that is enabled for
any lk ∈ barl such that lk is committed

Notice that UPPAAL does not require that the intermediate state satisfies the
guard and the invariant. Formally, (σ′′, ω′′) |= gj ∧ I[l′i/li] does not have to be
satisfied, because the communication is viewed as an atomic step.
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CHAPTER 4

Relevance of variables

After having presented the syntax and semantics of UPPAAL in chapter 3 we
present in this chapter the algorithm to determine the relevance of variables at
locations. A variable is relevant if it influences the control flow of the program
and/or the result of an property check. An irrelevant variable can be assigned
any value without changing the control flow or the outcome of the verifier. We
also give an equivalence relation based on this relevance of variables. While
these two steps resemble in essence [30] there are several differences, such as the
elimination of the function calls from the statements and the extended func-
tionality of UPPAAL. The main complications are how to cope with arrays,
value passing variables and property specifications. The final step, defining the
transformation of the original model, will take place in chapter 5. For a sim-
ple explanation of the main idea look at the example presented in section 1.1.
However, before we define the relevance algorithm we define some auxiliary ter-
minology and a couple of rewriting rules to eliminate complex behaviour such
as function calls.

4.1 Terminology

Recall from section 3.1 that we have l
g,a,r−−−→ l′ to denote 〈l, g, a, r, l′〉 ∈ E. We

will write src(e), guard(e), channel(e), update(e), target(e) to reference to the
components, l, g, a, r, l′ respectively, of an edge. The guards and invariants are
expressed as constraints on both clock and data variables whereas update(e) is
a bit more complicated and can contain both clock and data variables, assign-
ments using both types of variables and function calls. The functions are even
more complicated allowing, for instance, control structures like if and while.
Therefore we first look more closely at the update part of the edges.

4.1.1 Rewriting of the update statements

For a correct use of the relevance algorithm, which we introduce in section 4.2,
we need to be able to reason about the code at statement level and also about
the order of the various statements. However we have the problem that in
UPPAAL there is a distinction between the statements that are allowed inside
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functions (single stat) and the statements that are allowed at the update part
of an edge (single asg or single act), while for a simple, correct algorithm one
would prefer to have both set of statements to be the same. Therefore we extend
the set of statements allowed at the update part of an edge, resulting in both
sets of statements being equal. In this way we do create a larger language, but,
because the language of UPPAAL remains a subset of this language, we will not
encounter any problems processing UPPAAL models.

First we recall the syntax of UPPAAL and then extend this to our extended
language model. In UPPAAL, recall section 3.2.1, we have the following syntax:

funcDecl ::= f(id1, . . . ,idn){stmt seq}
dstmt seq ::= ε | single stmt stmt seq
single stmt ::= if (bexpr) {stmt seq} else {stmt seq}

| while (bexpr) {stmt seq} | return expr | single act| single asg

single act ::= funCall | v = expr | skip
single asg ::= u = expr | skip

By combining single stmt with single act and single asg we get a new language
model with no more distinction between statements inside functions and state-
ments directly on an edge. Until now we have used u and v for respectively
clock variables and data variables, however from this point on we use u and
v to represent both kind of variables, as we shall not make a clear distinction
between both types of variables.

funcDecl ::= f(id1, . . . ,idn){stmt seq}
stmt seq ::= ε | single stmt stmt seq
single stmt ::= if (bexpr) {stmt seq} else {stmt seq} | while (bexpr) {stmt seq}

| return expr | funCall |u = expr | skip

To make it easier to to use above definitions in our algorithms we also eliminate
the use of stmt seq and replace it by a sequential composition of single stmt.

funcDecl ::= f(id1, . . . ,idn){single stmt}
single stmt ::= if (bexpr) {single smt} else{single smt} | while (bexpr) {single smt}

| return expr | funCall |u = expr | skip | single stmt ; single stmt

The update part of an edge then becomes:
update ::= single stmt

The next step in our design is the elimination of function calls by expanding the
statements inside the function definition while keeping the same behaviour of
the model. This can be done because function calls cannot be recursive, making
sure that the number of function calls to unfold is not infinite. By removing
the function calls we eliminate the ‘unexpected’ side-effects of functions. We
also remove function calls and complex expressions as array indices, resulting in
array indices containing either a constant value or a variable value consisting of
just one variable, while the complex structure is concentrated in the assignment
statements.

The only hard part of eliminating function calls is the fact that a function
declaration can have multiple exit points. There are two possible solutions
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to handle multiple exit points. The first is to assume we only have models
with functions that have single exit points. The other solution is to adapt the
algorithms of section 4.2 and/or chapter 5 in order to correctly pass on the
relevance to a function declaration. Because the second option results in much
more complex algorithms for the relevance and the transformation we choose
the first.

How to rewrite a multi-exit function into a single-exit function? For
a better understanding of both concepts and an idea about why multi-exit func-
tions provide more difficulties we show a simple example. If we look at listing 4.1
we see a simple function which has a single return point at the end. Assume we
call the function from an assignment to a relevant variable a, like a = sum(b, c).
Without considering every detail of the relevance algorithm which we present in
section 4.2 first the return value becomes relevant because this return value is
used in the rhs of an assignment to a relevant variable. Secondly, as we process
the last statement the return value becomes not relevant and x and y become
relevant instead.The final step is that are b and c are marked as relevant vari-
ables at the point of the function call, while x and y are marked not relevant.
By this final step we also ensure that local variables do not become relevant
outside their scope.

1 i n t sum( i n t x , i n t y ){
2 r e t u r n x+y ;
3 }

Listing 4.1: Listing of a single-exit function

However, if we take a look at listing 4.2 we see that there are multiple return
points. If we mark the return value relevant for this function and process the
last statement the return value becomes not relevant again and instead y is
marked relevant. At the time we process the other return statement, the return
value is no longer relevant and x does not become relevant, which is not the
result we would want.

To solve this we show in listing 4.3 how we can rewrite this function into a
function with the same behaviour using an auxiliary variable and an else-branch.
Another solution, as mentioned, would be to use a different relevance algorithm,
however that will turn out to be more complex. Because it is possible to rewrite
a multi-exit function into a single-exit function with the same behaviour assume,
for simplicity, we only deal with single-exit functions.

1 i n t h i g h e s t ( i n t x , i n t y ){
2 i f ( x>y ){ r e t u r n x ;}
3 r e t u r n y ;
4 }

Listing 4.2: Listing of a multi-exit function

1 i n t h i g h e s t ( i n t x , i n t y ){
2 i f ( x>y ){ h i g h e s t = x ;}
3 e l s e { h i g h e s t = y ;}
4 r e t u r n h i g h e s t ;
5 }

Listing 4.3: Listing of the multi-exit function rewritten to single-exit
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Simple Timed Automata Before we define how we eliminate the function
calls and the other complex structures we first introduce a special notion of
timed automata that we use throughout the rest of this thesis. We call this a
simple timed automaton and it is an extended timed automaton which complies
to the following characteristics:

• No function calls

• Every condition check (if(v) or while(v)) contains only a single variable.

• Every array index (a[v]) contains only a single variable.

• Every expression is of the form u1 ⊗ u2 with u1 and u2 variables

• All functions are single-exit functions.

In extension to the above differences between a simple timed automaton and an
extended time automaton we also assume:

• Every variables identifier is used uniquely, assuring that there are not a
global and a local variable with the same identifier.

Definition 5 (Rewriting and ‘eliminating’ function calls). We define a function
Λ that transform a statement (single stmt) into a list of statements (single stmt)
thereby creating a simple timed automaton from a timed automaton. This func-
tion Λ is inductively defined by the following rules:

In all of the rules below we define vi to be a fresh variable, a variable that is
not used yet in the rest of the model. Also we use ∼ to represent every boolean
operator (a combination of the previously used ∼ and ⊗)

1. Λ(u = . . .)

(a) Λ(u = CONSTANT) = {u = CONSTANT}
(b) Λ(u = VAR) = {u = VAR}(integer, clock or boolean variable)

(c) Λ(u = f(expr1, . . . , exprn)) = Λ(f(expr1, . . . , exprn))++{u = retVal}
(d) Λ(u = a[expr1][. . .][exprn]) = Λ(v1 = expr1, . . . , vn = exprn) ++{u =

a[v1][. . .][vn]}
(e) Λ(u = expr1 ∼ expr2) = Λ(v1 = expr1, v2 = expr2) ++{u = v1 ∼ v2}
(f) Λ(u = ¬expr) = Λ(v1 = expr) ++{u = ¬v1}

2. Λ(return expr) = Λ(retVal = expr).

3. Λ(skip) = ∅
4. For if and while statements we have:

• Λ(if(ϕ){stmt seq}) = Λ(v1 = ϕ) ++{if(v1){Λ(stmt seq)}}
• Λ(while(ϕ){stmt seq}) = Λ(v1 = ϕ) ++{while(v1){Λ(stmt seq, v1 =
ϕ)}}
• Λ(if(ϕ){stmt seq} else {stmt seq}) = Λ(v1 = ϕ)++{if(v1){Λ(stmt seq)}

else {Λ(stmt seq)}}
5. For a sequence of statements we have:
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• Λ(λ1, . . . , λn) = Λ(λ1, . . . , λn−1) ++Λ(λn)

6. For a function call we have:

• Λ(f(e1, . . . , en)) = Λ(p1 = e1, . . . , pn = en) ++Λ(λ1, . . . , λn)

– if there exists a accompanying function declaration: f(p1, . . . , pn){λ1, . . . λn}

The definition above may seem quite complex and several design decisions may
seem unclear at the moment. Therefore we give some examples and explain the
decisions made.

Handling return expressions (1 and 2) Due to the fact that it is possible
to have function calls in the right hand side of an assignment we have to consider
the side-effects of this function call. Consider the edge of figure 4.1 and the
accompanying function declaration of listing 4.4.

λ1, a = f(x), λ2

Figure 4.1: Example of how to handle function calls in assignments

1 vo i d f ( i n t i ){
2 b = i ∗2 ;
3 r e t u r n b ;
4 }

Listing 4.4: Listing of the function f belonging to figure 4.1

If we parse the update statement of the edge according to the algorithm pre-
sented in definition 5 we get the following rewriting:

1. Λ(λ1, a = f(x), λ2) (input)

2. Λ(λ1) ++Λ(a = f(x)) ++Λ(λ2) (rule 5 applied 2 times)

We leave out the first and last statement for clarity.

3. Λ(f(x)) ++{a = retVal} (rule 1c applied)

4. Λ(i = x) ++Λ((b = i+ 2), (return b)) ++{a = retVal} (rule 6 applied)

5. {i = x}++Λ((b = i+ 2), (return b)) ++{a = retVal} (rule 1b applied)

6. {i = x}++Λ(b = i+ 2) ++Λ(return b) ++{a = retVal}(rule 5 applied)

7. {i = x} ++Λ(v1 = i, v2 = 2) ++{b = v1 + v2} ++Λ(return b) ++{a =
retVal}(rule 1e applied)

8. {i = x} ++Λ(v1 = i)Λ(v2 = 2) ++{b = v1 + v2} ++Λ(return b) ++{a =
retVal}(rule 5 applied)

9. {i = x} ++{v1 = i}{v2 = 2} ++{b = v1 + v2} ++Λ(return b) ++{a =
retVal}(rule 1a and 1b applied)

10. {i = x} ++{v1 = i} ++{v2 = 2} ++{b = v1 + v2} ++Λ(retVal = b) ++{a =
retVal}(rule 2 applied)
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11. {i = x} ++{v1 = i} ++{v2 = 2} ++{b = v1 + v2} ++{retVal = b} ++{a =
retVal}(rule 1b applied)

12. {i = x , v1 = i, v2 = 2, b = v1 + v2, retVal = b, a = retVal}

If we replace f(x) in figure 4.1 with f(f(x)) we show the possibility to have
function calls as parameters (which is supported in UPPAAL). However this
introduces no problems with our algorithms as after step 4, Λ(i = x) then is
replaced by Λ(i = f(x)) which can be parsed again (Note that UPPAAL itself
does not support (recursive) function calls inside function calls, however our
syntax (as mentioned in section 3.2.1) does allow this, which proves useful at
this moment).

Conditional structures In order to eliminate the possibility to have function
calls inside the conditional statement guarding the entrance of the conditional
structure we have chosen to transfer the conditional check to an assignment
and then later we only have to check the value of that variable. However, for
while structures, this introduces another problem, because, if we transfer the
conditional expression outside the while loop, for the second (and following
evaluations) the variable used for the conditional check will not be assigned a
new value again. Therefore, to solve this, we explicitly copy the assignment to
the end of the body.
For example, if we look at listing 4.5 we see a simple while-loop that will print
the numbers 0 to 9. If we move the conditional check outside the while-loop we
get the listing of 4.6, which prints the number 0 infinitely many times. To solve
this we, as explained, copy the assignment to v to the end of the body of the
while-loop, resulting in listing 4.7, that has the same behaviour as the original
listing.

1 i = 0 ;
2 wh i l e ( i < 10){
3 p r i n t i ;
4 i ++;
5 }

Listing 4.5: Original code

1 i = 0 ;
2 v = i < 10 ;
3 wh i l e ( v ){
4 p r i n t i ;
5 i ++;
6 }

Listing 4.6: Rewriting, resulting in incorrect behaviour

1 i = 0 ;
2 v = i < 10 ;
3 wh i l e ( v ){
4 p r i n t i ;
5 i ++;
6 v = i < 10 ;
7 }

Listing 4.7: Correct rewriting
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Initialisation of local parameters of a function (6) Consider the exam-
ple function declaration as found in listing 4.8 which is called in figure 4.2 by
add(x, y). It could be (because of the return statement) that the variables i and
j become relevant at the beginning of the function, however these variables are
not used anywhere but inside the function. Actually the variables x and y that
are passed to the function, as arguments in the function call, should become
relevant. To cope with this we introduce a explicit initialisation assignment of
these parameters. The effect of the function is not altered in this way but our
algorithm now marks x and y relevant at the beginning of the function and the
relevance can be passed on outside the function, as it should be.

c = add(x, y)

Figure 4.2: Example of how to handle function calls in assignments

1 i n t add ( i n t i , i n t j ){
2 r e t u r n i+j ;
3 }

Listing 4.8: Initialisation of local parameters - original code

The parsing of these statements looks as follows:

1. Λ(c = add(x, y)) (input)

2. Λ(add(x, y)) ++Λ(c = retVal) (rule 1c applied)

3. Λ(i = x) ++Λ(j = y) ++Λ(return i+ j) ++Λ(c = retVal) (rule 6 applied)

4. Λ(i = x) ++Λ(j = y) ++Λ(retVal = i+ j) ++Λ(c = retVal) (rule 2 applied)

5. Λ(i = x) ++Λ(j = y) ++Λ(v1 = i, v2 = j, retVal = v1 + v2) ++Λ(c = retVal)
(rule 1e applied)

6. Λ(i = x) ++Λ(j = y) ++Λ(v1 = i) ++Λ(v2 = j)Λ(retVal = v1 + v2) ++Λ(c =
retVal) (rule 5 applied two times)

7. {i = x}++{j = y}++{v1 = i}++{v2 = j}++{retVal = i+j}++{c = retVal}
(rule 1c applied 4 times)

8. {i = x, j = y, v1 = i, v2 = j, retVal = i+ j, c = retVal}

4.1.2 Changed, used and directly used

In order to reason about variables in guards and updates we define a variable
to be changed by a statement λ ∈ Λ(e) if its value after λ can be different from
its current value. A variable is directly used by an edge e if it is part of the
guard of e or it can be directly used at a location if it is part of the invariant
of a location. Also a variable is used if it is part of the update statement of
e. In order to define the above we first introduce vars(expr) to denote which
variables occur in an expression. vars(expr) is defined inductively as:

• vars(constant) = ∅
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• vars(z) = z, where z is an integer, boolean, clock or array variable

• vars(expr1 ∼ expr2) = vars(expr1) ∪ vars(expr2)

• vars(−expr) =vars(expr)

• vars(¬expr) =vars(expr)

• vars(channel[expr]) = vars(expr)

Based on the definition of variables in an expression we define which variables
are used or changed by a statement λ, used(λ) or changed(λ), in table 4.2.

λ ≡ if (ϕ){B1} used(λ) = vars(ϕ) ∪ used(B1)
λ ≡ if (ϕ){B1}else{B2} used(λ) = vars(ϕ) ∪ used(B1) ∪ used(B2)
λ ≡ while(ϕ){B1} used(λ) = vars(ϕ) ∪ used(B1)
λ ≡ y = expr used(λ) = vars(expr)
λ ≡ B1;B2 used(λ) = used(B1) ∪ used(B2)

Table 4.1: The function used

λ ≡ if (ϕ){B1} changed(λ) = changed(B1)
λ ≡ if (ϕ){B1}else{B2} changed(λ) = changed(B1) ∪ changed(B2)
λ ≡ while(ϕ){B1} changed(λ) = changed(B1)
λ ≡ y = expr changed(λ) = {y}
λ ≡ B1;B2 changed(λ) = changed(B1) ∪ changed(B2)

Table 4.2: The function changed

We define a special kind of used, directly used, to indicate that a variable is used
in a guard, synchronization or an invariant.

• On an edge:

– a is directly used in the guard of an edge e if a ∈ used(guard(e)).

– a is directly used in the synchronisation part of an edge if a ∈
vars(channel(e)).

– The set of all directly used variables of an edge e is dir used(e)

• At a location:

– a is directly used at a location l if a ∈ used(I(l)).

– The set of all directly used variables of l is dir used(l)

A problem with the linear process equations of [30] was that, by linearising
the original processes into one linear form, the original control flow was lost.
This control flow needed to be reconstructed first, therefore they included def-
initions of source and destination functions as well as a definition called rules
to determine if a parameter is a control flow parameter or a data parameter.
In UPPAAL the control flow can be directly derived from the process specifi-
cations. Note that [30] also mentions the existence of control flow information
in the state parameters of the original specification. For the moment we as-
sume the location variables are the only variables controlling the control flow of
the program, they are similar to the Control Flow Parameters (CFPs) of [30],
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whereas the other variables are the Data Variables (DPs), which can be divided
into local and global variables.

Definition 6 (Local & Global variables). We have a network P of timed
automata Pi. Let a ∈ VP ∪ CP be a variable, which is a local variable of Pi
if all edges that change or use a are part of the set of edges EPi

. A variable
that is not a local variable of one of the timed automata in P is a global variable.

• a is local in Pi if a ∈ used(Pi) ∨ a ∈ changed(Pi) ∧ ∀j · i 6= j =⇒ a /∈
used(Pj) ∧ a /∈ changed(Pj)

• a is global in P if ∀Pi ∈ P · a /∈ local(Pi)

From this point we use the set A for referring to all variables, data or clock,
global or local.
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4.2 Relevance algorithm

The next step is the relevance algorithm itself. This algorithm will identify if a
variable is relevant at a given location or not. If a variable is not relevant at a
particular point it can be reset to its initial valuation. We first present a basic
version of the algorithm and

Definition 7 (Relevance). For a network P of simple timed automata Pi,
1 ≤ i ≤ n, with n the number of automata, variables a, b ∈ A and a location
l ∈ LPi

. We use (a, l) ∈ R (or R(a, l)) to denote that the value of a is relevant
at location l. Formally R is the smallest relation such that:

1. If a is directly used in some e ∈ EP , a ∈ dir used(e) and l = src(e) then
RP (a, l)

2. If a is directly used at some location l, a ∈ dir used(l) then RP (a, l)

3. If a is used in a property then: ∀l ∈ LP ·RP (a, l)

4. If RP (b, l′), ∃e ∈ EP such that src(e) = l and target(e) = l′, such that
a ∈ processSeq(Λ(update(e)), {b}) then RP (a, l)

5. If RP (b, l′), ∃e ∈ EP such that src(e) = l, l ∈ LPi
, l′ ∈ LPj

and i 6= j,
such that a ∈ processSeq(Λ(update(e)), {b}) then RP (a, l)

Explanation of the algorithm For a better understanding we briefly de-
scribe each of the five clauses:

1. A variable is directly used on an edge if it is either used in a guard or
in the synchronisation part of an edge. If that is the case this variable
directly influences the control flow of the program and needs to be marked
relevant at the source of the edge.

2. The same holds for a variable that is used in an invariant of a location.
Because an invariant needs to be true at a location the values of the
variables used in that invariant are also important making it necessary for
the variables to be marked relevant.

3. A variable that is used in a property is automatically marked relevant at
all locations of P . Because a change in the value of such a variable could
cause a change in the truth value of the property therefore the values of
these variables are relevant. (see section 4.3.3 for an improvement on this)

4. This clause takes care that if a variable is relevant at the target location of
an edge that than every variable that is used in the rhs of an assignment
to this relevant variable is also marked relevant. If there is no assignment
then the relevant variable itself also becomes relevant at the source location
as its value is already important at that point. Finally we mark variables
relevant that are used in conditional statements (for instance the condition
of an if-statement).

5. The last clause takes care of the same as the 4th clause but not for variables
that are relevant at the target location of the edge but instead for all global
variables that are relevant at any point in a parallel automaton. Because of
all the possible interleaving between automata the value of those relevant,
global, variables are also relevant here.
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Algorithm 1 processSeq(stmt seq statements, variable relevant)

1: if (statements.isEmpty()) then
2: return relevant
3: else
4: relevant = processStat(statements.tail() , relevant)
5: return processSeq(statements.withoutTail() , relevant)
6: end if

Algorithm 2 processStat(single stmt stat , set〈variables〉 relevant)

1: if (stat ≡ u = expr) then
2: if (u ∈ relevant) then
3: removeVar(u, relevant)
4: for all var ∈ used(expr) do
5: insertVar(var, relevant)
6: end for
7: end if
8: else if (stat ≡ if(ϕ) B1 else B2) then
9: for all var ∈ vars(ϕ) do

10: insertVar(var, relevant)
11: end for
12: relevant = relevant ∪ processSeq(B1), relevant)
13: relevant = relevant ∪ processSeq(B2), relevant)
14: else if (stat ≡ while(ϕ) B) then
15: while (relevant 6= temp) do
16: temp = relevant
17: for all var ∈ vars(condition) do
18: insertVar(var, relevant)
19: end for
20: relevant = relevant ∪ processSeq(B, relevant)
21: end while
22: end if
23: return relevant

Algorithm 3 insertVar(variable var, set〈variables〉 relevant)

1: relevant.insert(var)

The use of insertVar and removeVar At the moment the methods in-
sertVar and removeVar (algorithms 3 and 4) simply insert the variables of the
first parameter into the set mentioned as second parameter. However in section
4.3.1 we need to cope with inserting array variables into the relevant set. The
insertion of array variables is more complex due to variable indices and possible
function calls. Therefore we need a more advanced method at that point and
as a precaution we already define (a basic version of) this method here to keep
the original algorithm as much intact as possible.
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Algorithm 4 removeVar(variable var, set〈variables〉 relevant)

1: relevant.remove(var)

Why do we need a While-loop in line 14? The necessity of the while-loop
can be explained by the following UPPAAL code fragment:

1 . . .
2 wh i l e ( . . . ) do
3 a=b ;
4 b=c ;
5 end wh i l e
6 . . .
7 }

Listing 4.9: Example demonstrating the need of the while-loop

We now assume a is relevant at line 6 of this piece of code. If we now run the
algorithm we see (without the while-loop of line 14 of the algorithm) that b is
added by the algorithm to the set of relevant variables. However it is possible
that the body of the while loop of line 2-5 is executed twice and then c can
also become relevant. Therefore we have to determine the (smallest) fix-point
of the set of relevant variables for this UPPAAL while-loop and therefore the
while-loop of line 14 is required.

The above definitions allow us to declare a variable relevant (at a particular lo-
cation) according to a specification of (a network of) timed automata. In section
5 we define a transformation that transforms a network of timed automata into
another network of timed automata. We will show that these two networks of
timed automata are bisimilar. To prove this bisimilarity we need to take a look
at the corresponding state spaces of these networks. A state space is defined as
a timed labelled transition system (TLTS) and therefore we take the definition
of relevance at a location in a timed automata to a definition of relevance in a
state of a TLTS. But first we recall some basic definition on a state and intro-
duce an auxiliary function to easily cope with the valuation of both clock and
data variables.

Definition 8 (State). Given a network P of simple timed automata and a cor-
responding instantiation of it in the form of a timed labelled transition system
T = 〈S, s0,→〉 a state s = 〈l̄, σ, ω〉 ∈ S of this TLTS is defined as:

• l̄ is the vector (l1, . . . , ln) ∈ (L1× . . .×Ln) of locations with each location
location li being the current location of process Pi with 1 <= i <= n.

• σ : C → R≥0 is a clock valuation from the set of clock valuations C .

• ω : V → Z is a variable valuation from the set of variable valuations V .

• Because our algorithm does not distinguish between a clock variable and
a discrete variable we have introduced the set A, which is a combination
of C and V . The valuation of this set A is given by:

val(a) =

{
σ(a) if a ∈ C,
ω(a) if a ∈ V.
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Based on the previous definition of relevance for timed automata we introduce
a definition of relevance for timed labelled transition systems.

Definition 9 (Relevance in states). Given a network P of simple timed au-
tomata with a relevance relation RP and a corresponding timed labelled tran-
sition system TP = 〈SP , s0P ,→P 〉. The relevance of a variable a ∈ A, given a
state s = 〈l̄, σ, ω〉 ∈ SP , denoted Relevant(a, s), is defined by:

Relevant(a, s) =
∨

i∈{1..n}

RP (a, li)

We claim that the value of a variable that is not relevant, in a state, does not
matter. Therefore, given a TLTS T = 〈S, s0,→〉 we introduce a relation ∼= on
states, given by:

s ∼= s′ ⇔ l̄s = l̄s′∧∀a ∈ A : (Relevant(a, s)⇒ vals(a) = vals′(a)), where s, s′ ∈ S

We will prove that it is a strong bisimulation by introducing a couple of lemma’s
which we use to prove the theorem that the relation ∼= is a strong bisimulation.
We adopt the definition of strong timed bisimulation as also defined in [24].

Strong timed bisimulation Two states s0 and s′0 are strong timed bisimilar
(s ∼ s′) if the following holds:

• ∀s1 : if s0
a−→ s1 then ∃s′1 : s′0

a−→ s′1 and s1 ∼ s′1
• ∀s2 : if s1

a−→ s0 then ∃s′0 : s′1
a−→ s′0 and s1 ∼ s′1

• ∀s1 : if s0
δ−→ s1 then ∃s′1 : s′0

δ−→ s′1 and s1 ∼ s′1
• ∀s2 : if s1

δ−→ s0 then ∃s′0 : s′1
δ−→ s′0 and s1 ∼ s′1

Before we can define these lemma’s we first need some declarations that we are
going to use in these lemma’s and we present these declarations first:

• Below we assume we have a network P of simple timed automata, variables
a, b ∈ A, locations l, l′ ∈ LP and a relevance relation RP .

• From this network P a timed labelled transition system (TLTS) T can be
derived. This T is denoted by 〈S, s0,→〉.

• States s, s′ ∈ S are defined as s = 〈l̄, σ, ω〉 and s′ = 〈l̄′, σ′, ω′〉 with val-
uation functions val(a) and val′(a) respectively. s0, s

′
0, s1, s

′
1 and s′′ are

defined analogue.

Lemma 10. Let s and s′ be two states such that s ∼= s′, and Relevant(a, s′)
for some a. Then it follows that Relevant(a, s).

Proof. Assume that s ∼= s′ and Relevant(a, s′). By definition of Relevant , we
have R(a, l′i). By the definition of ∼= we have li = l′i. Since R(a, l′i) this imme-
diately implies R(a, li) and we get R(a, s)
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Lemma 11. The relation ∼= is an equivalence relation.

Proof. Reflexivity is trivial. For symmetry, we assume s ∼= s′. For all a, if
Relevant(a, s′), then by Lemma 10 also Relevant(a, s). Therefore, by definition
of ∼= and the assumption that s ∼= s′, we obtain val(a) = val ′(a). Secondly,
because of s ∼= s′ we have l̄ = l̄′. Combining these two we get s′ ∼= s.

For transitivity, assume s ∼= s′ and s′ ∼= s′′. If Relevant(a, s), then by definition
val(a) = val ′(a). Using symmetry and Lemma 10 it follows that Relevant(a, s′),
and hence val ′(a) = val ′′(a) and val(a) = val ′′(a). Also we have l̄ = l̄′ and
l̄′ = l̄′′ and thus l̄ = l̄′′. Therefore, s ∼= s′′

The next step is to show that if an edge e is enabled given some state s, then it
is also enabled given a state s′ such that s ∼= s′.

Lemma 12. Let s and s′ be states such that s ∼= s′. Let e ∈ EP , be an edge.
Then guard(e)(s) ⇐⇒ guard(e)(s′).

Proof. We need to show that for all z ∈ vars(guard(e)) it holds that val(a) =
val′(a). Assume that guard(e)(s) holds. Let an arbitrary a ∈ vars(guard(e))
be given and l = src(e). Since a is directly used in e it follows from Definition
7 that R(a, l). This means, by Definition 9 that Relevance(a, s). Using the
definition of ∼= we obtain val(a) = val ′(a). Since a was chosen arbitrary, this
holds for all a ∈ vars(guard(e)), so guard(e)(s′) also holds.

Lemma 13. Let s and s′ be states such that s ∼= s′. Let e ∈ EP , be an edge.
Then channel(e)(s) = a implies channel(e)(s′) = a.

Proof. This proof is identical to the proof of Lemma 12 only substituting guard(e)
by channel(e).

Now that we have shown that enabledness of edges is conserved in the equiva-
lence relation and that the ability to synchronise is conserved, the next step is to
show that the equivalence relation also holds for successors of a state, therefore
we have the following lemma. However before we present the next lemma we
first introduce a notation to represent taking an edge.

Representation of taking an edge In order to represent that from a given
state s we take an edge e we use the following notation: s.take(e). The semantics
of take corresponds with the semantics of the action transition of section 3.2.3.
Because both guards and invariants are side-effect free s.take(e) can be replaced
by Jupdate(e)K(s)

Lemma 14. Let s and s′ be states such that s ∼= s′. Let e ∈ EP , be an edge.
Then guard(e)(s) implies s.take(e) ∼= s′.take(e).

Proof. By definition of ∼=, it has to be shown that for all variables a such that
Relevant(a, s.take(e)) it holds that vals.take(e)(a) = vals′.take(e)(a).

We prove by induction on single stat that this is indeed the case. We distin-
guish the four different cases of single stat: an assignment, an if-else statement,
a while statement or a sequential statement. For each kind of statement we
have to proof that for all variables a such that Relevant(a, s.take(single stat))
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it holds that vals.take(single stat)(a) = vals′.take(single stat)(a).

• Single stat ≡ c = expr

– If c ≡ a the value of a changes and to have vals.take(e)(a) = vals′.take(e)(a)
we have to prove that ∀b ∈ vars(expr) · val(b) = val ′(b). Because of
line 4 of algorithm 2 we get Relevant(b, s). Combined with s ∼= s′

and the definition of ∼= we get vals(b) = vals′(b).

– If c 6= a the value of a does not change and because of s ∼= s′ we have
val(a) = val ′(a) and we get vals.take(e)(a) = vals′.take(e)(a)

• Single stat ≡ if(ϕ)B1 else B2. We use the induction hypothesis that the
lemma holds for a single stmt to proof that the lemma holds for both B1

and B2. We only have to proof that the result of the condition check is
the same for s and s′. If we have an arbitrary b ∈ vars(ϕ) we have to show
that vals(b) = vals′(b) in order for JϕK(s) = JϕK(s′) to hold. Because of
algorithm 2 lines 17/18 we have R(b, s) and combined with s ∼= s′ and the
definition of ∼= we have vals(b) = vals′(b).

• Single stat ≡ while(ϕ)B1. Since the body (B1) of this while-statement
can be executed 0 to infinite times we use another induction this time on
the number of iterations of the while-loop of the algorithm. We show that
it holds for 0 iterations, consequently assume it holds for n iterations and
we finally show that it also holds for n+ 1 iterations:

– If the body of the while-statement is executed 0 times we know that
the only part that is executed is the check of the condition and no
other statements are executed. Because this condition check can have
no side effects we know that if we have a state s = 〈l̄, σ, ω〉 that for
the state s.take(single stat) = 〈l̄′, σ′, ω′〉 it holds that σ′ = σ and
ω′ = ω.
Secondly because in lines 12-17 of algorithm 2 we know that the
relevant set at the end of this while-statement is a subset of the
relevant set at the beginning of this while-statement.
Concluding we know that for every variable a such that
Relevant(a, s.take(single stat)) that also Relevant(a, s) holds and we
know that vals(a) = vals.take(single stat)(a) completing this part of the
proof.

– Using the second induction hypothesis we know that the lemma holds
for n iterations of the while-statement. We show that it holds for
n+ 1 statements. Using the set union of line 16 of algorithm and the
first induction hypothesis, that the lemma holds for a single stat (the
statements of the body can be written as a single stat), we know that
if s.taken(body (this is the second induction hypothesis) holds that
also s.taken(body.take(body)) (which is s.taken+1(body)) holds.

– The last part that is missing is whether we know that the relevant
variables are in the R’s in the proof above. However we know that
every relevant variable should be in R because of the condition in
line 15 of algorithm 2. We know that it is not possible that a rel-
evant variable is not in R otherwise the algorithm would not have
terminated.

40



• Single stat ≡ B1;B2. Using the induction hypothesis for B1 we know
that, given s ∼= s′, that s.take(B1) ∼= s′.take(B1) holds. Using the in-
duction hypothesis again for B2 we also know that s.take(B1).take(B2) ∼=
s′.take(B1).take(B2) holds. Finally we substitute take(B1).take(B2) by
take(single stat)(a) and the proof is complete.

The last thing to show is that the equivalence relation preserves the validity of
the invariant constraints of the target location. So if a target location does not
violate an invariant its equivalent also does not violate an invariant. This is
expressed in the following lemma.

Lemma 15. Let s and s′ be states such that s ∼= s′, then s |= I ⇐⇒ s′ |= I.

Proof. Because of s ∼= s′ we have l̄ = l̄′, therefore we have to show that ∀l ∈ l̄
it holds that s |= I(l) ⇐⇒ s′ |= I(l).
To show this we have to proof ∀a ∈ vars(I(l)) that val(a) = val′(a). By definition
7 we know R(a, l) and thus by definition 9 we have Relevant(a, s). Therefore
we get, because of s ∼= s′, that val(a) = val′(a)

Using the lemmas above we can easily prove the following theorem.

Theorem 16. The relation ∼= is a strong timed bisimulation.

Proof. Let s0 and s′0 be states such that s0 ∼= s′0. Also assume that s0 −→ s1.
Because ∼= is symmetric (Lemma 11), we only need to prove that there exists a
transition s′0 −→ s′1 such that s1 ∼= s′1. By the operational semantics there is an
edge e such that guard(e)(s0) holds and s1 = s0.take(e). By Lemma 12 we know
that guard(e)(s′0) holds. Using Lemma 13 we also know that channel(e)(s0) =
channel(e)(s′0) so synchronisation, if necessary, takes place with the same other
process. Therefore, s′0 −→ s′0.take(e). By Lemma 14 s0.take(e) ∼= s′0.take(e) and
we know that s′0.take(e) is a valid state because s0.take(e) |= I and by Lemma
15 we know that s0.take(e) |= I ⇐⇒ s′0.take(e) |= I.

The second part of the strong timed bisimulation requires that if s0
δ−→ s1 that

also s′0
δ−→ s′1 and that s1 ∼= s′1 holds. The only thing that can hold back a delay

step is an invariant but if a clock variable c is used in the invariant of one of the
locations of l̄0 (l̄0 = l̄′0 we know by clause 2 of algorithm 7 that Relevant(c, s0)
and Relevant(c, s′0) both hold ensuring that vals0(c) = vals′0(c). So we know that
if s0 can do the delay step, s′0 can also do the delay step. We also know that
the semantics of urgent/committed are not violated because the set of enabled
edges of both s and s′ are the same. This is because for every edge e we have
guard(e)(s) = guard(e)(s′). Finally the values of (at least) the relevant variables
are the same because both have the same value before the delay step and get
both increased by the same delay δ ∈ R≥0 resulting in s1 ∼= s′1.

4.3 Improvements and extensions

4.3.1 Arrays

For normal variables the theory presented before is sufficient and no problems
arise, but if we look at extending the theory, to include array variables, a couple
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of problems arises. For arrays with constants as indices things are relatively
normal and the same theory as for normal variables applies. However for arrays
with non-constant indices everything gets more complicated. The second prob-
lem arises when one of the index-expressions contains a function call, however
this is not possible for simple timed automata as we remove any function calls
from array indices in the function Λ, see definition 5.
Therefore we update the functions insertVar and removeVar, which serve as a
replacement for respectively insertVar and removeVar from algorithm 2. Both
methods return a set of relevant variables.

Algorithm 5 insertVar(variable var, set〈variable〉 relevant)

1: if var.type == ARRAY then
2: for (index1 to indexn of var) do
3: if (indexi != CONSTANT) then
4: for all var ∈ vars(indexi) do
5: relevant = insertVar(var, relevant)
6: end for
7: for (∀j ∈ rangei) do
8: tempVar = var, with the ith index replaced by j
9: relevant = insertVar(tempVar, relevant)

10: end for
11: end if
12: return relevant
13: end for
14: end if
15: relevant.insert(var)
16: return relevant

Algorithm 6 removeVar(variable var, set〈variable〉 relevant)

1: bool isConstant = true
2: if var.type == ARRAY then
3: for (index1 to indexn of var) do
4: if (indexi != CONSTANT) then
5: isConstant = false
6: for all var ∈ vars(indexi) do
7: insertVar(var, relevant)
8: end for
9: end if

10: end for
11: end if
12: if isConstant then
13: relevant.remove(var)
14: end if
15: return relevant

The correct handling of array variables One thing to notice is that the
used method is a great over-approximation, however we do not have any other
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option without looking at the values of variables. Using these two methods we
can ensure that no variable that should be relevant is not marked relevant. First,
for the insertVar method, we check each index (from left to right) if it contains
a constant value or a variable. In the case of a constant ‘nothing’ happens and
the variable is inserted. In the case of a variable we ‘simply’ call the insertVar
method again for all possible values of this variable. Because we do this for all
values we can guarantee that the correct one(s) is/are included.
Secondly, for the removeVar method, we are dealing with the opposite case.
We do not want to remove any relevant variable of which we are not sure it is
not relevant. Therefore, if one or more of the indices contain a variable, we do
not remove any variable from the set of relevant variables, as we can not tell
which one we need to delete. Using both methods we can be certain that every
relevant variable is marked relevant.

Example of inserting an array variable As an example we show how the
algorithm behaves if we have determined that a[b][1] is relevant. Assume the
array is declared as int a[3][3] and that relevant is empty at the beginning of
the example.
In the first iteration of the first for-loop (line 2) the condition of line 3 evalu-
ates to true and in line 4/5/6 the method is recursively called for the variable
b resulting in b being added to the set relevant. In lines 7-10 consequently the
following (recursive) method calls are executed:

• insertVar(a[0][1], relevant)

• insertVar(a[1][1], relevant)

• insertVar(a[2][1], relevant)

For each of these methods the for-loop of line 2 consists of two iterations. In each
iteration the condition of line 3 evaluates to false and when line 15 is reached
the variable used in the method call is inserted into the set relevant. At the end
the set relevant consists of the following variables: {b,a[0][1],a[1][1],a[2][1]}

4.3.2 Value passing variables

One of the greatest issues when marking variables relevant is that in UPPAAL
global variables immediately become relevant at (almost) every location. The
cause of this is the problem that you can not predict the interleaving of the pro-
cesses. Therefore a global variable that seems to be not relevant in one process
can become relevant because it is relevant at another process. There is however
one specific category of variables that is worth taking another look at and this
kind of global variables we call value passing variables. Because UPPAAL does
not support direct value passing during synchronisation, value passing has to
be achieved through the use of global variables. One of the UPPAAL tutorials
[5] also mentions these value passing variables as a modelling pattern. Instead
of value passing variables they mention these variables as shared variables and
they describe it as:
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‘The general idea is that a sender and a receiver synchronise over shared binary
channels and exchange data via shared variables. Since UPPAAL evaluates
the assignment of the sending synchronisation first, the sender can assign a

value to the shared variable which the receiver can then access directly’

If a global variable is only used as a value passing variable to pass on values
between two processes and nowhere else then its value is only relevant during
the execution of the update statements of both edges. As a consequence the
value of the value passing variable is not relevant outside the synchronisation
and therefore we should reset its value in order to achieve a minimal state space.
We first define which global variables we consider to be part of the set of value
passing variables.

Definition 17 (Value passing variable). The set of value passing variables
is a subset of the set of global variables. A global variable a is a value passing
variable if it is used only in update statements and:

∀e ∈ E s.t. a ∈ used(update(e))·

∃z ∈ Σ · (z? = channel(e) ∧ ∀e′ ∈ E · z! = channel(e′)⇒ v ∈ changed(e′))

in combination with:

∀e ∈ E s.t. v ∈ changed(update(e))·

∃z ∈ Σ · (z! = channel(e) ∧ ∀e′ ∈ E · z? = channel(e′)⇒ v ∈ used(e′))

The following problem that arises is how do we incorporate the above definition
into our relevance algorithm in such a way that value passing variables are not
unnecessary marked relevant, that they (eventually) get reset by the transfor-
mation algorithm of chapter 5 and finally that the relevance is correctly passed
from the sending side to the receiving side of the value passing variable.

P1 P2

P3P4

Q1 Q2

Q3Q4

z?, b = vb ≤ 5

a = 15

z!, v = a

Figure 4.3: Example used to demonstrate the idea of value passing variables

Figure 4.3 shows a example of two processes that use a value passing variable
s to transfer the value of local variable a (of process Q) to local variable b (of
process P). For variable b there are no problems, because it gets marked relevant
at P4 because of the guard on the incoming edge, consequently also at P3, but
not at P2, because of the assignment on the transition P2 → P3.
For variable v it is a bit more complicated. Using the original algorithm, without
the notion of value passing variables, v would be marked relevant at state P2

because of the use in the right hand side of an assignment to a relevant variable.
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Consequently, due to its global nature, v would also be marked relevant at
states P1, P4, P3 and the states Q1, Q3 and Q4. However, because v is a value
passing variable it is always the case that the value of v is changed before that
it is used, so the value of v is never relevant at any location but only right
in between the execution of the sending and receiving edge. Using the current
approach of marking variables relevant at locations does not suffice any more and
therefore we add a set containing pairs of variables and channels. By marking a
variable relevant at a channel we avoid marking value passing variables relevant
at locations even though they are never relevant at those locations.
Finally, because of the relevance of v in channel z, a will be marked relevant
at Q2 because it is used in the right hand side of an assignment to a relevant
variable.

Updated algorithm The original definition (def. 7) needs a couple of adap-
tations, but algorithms 1 and 2 do not need any adaptations at all. Basically
we only have to divide the relevance set into a relevance (at location) set and a
relevant-at-channel set resulting in the following definition.

Definition 18 (Relevance including value passing variables). For a net-
work P of simple timed automata Pi, 1 ≤ i ≤ n, with n the number of automata,
variables a, b ∈ A, a location l ∈ LPi

and a channel z ∈ ΣP . We use (a, l) ∈ R
(or R(a, l)) to denote that the value of a is relevant at location l and we use
(a, z) ∈ RelVP (or RelVP(a, z)) to denote that the value of a is relevant at the
receiving side of channel z. Formally R and RelVP are the smallest relations
such that:

1. If a is directly used in some e ∈ EP , a ∈ dir used(e) and l = src(e) then
RP (a, l)

2. If a is directly used at some location l, a ∈ dir used(l) then RP (a, l)

3. If a is used in a property then: ∀l ∈ LP ·RP (a, l)

4. If RP (b, l′), ∃e ∈ EP such that src(e) = l and target(e) = l′, such that
a ∈ processSeq(Λ(update(e)), {b}) then:

• RelVPP (a, channel(e)), if a is a value passing variable

• RP (a, l), otherwise

5. If RP (b, l′), ∃e ∈ EP such that src(e) = l, l ∈ LPi
, l′ ∈ LPj

and i 6= j,
such that a ∈ processSeq(Λ(update(e)), {b}) then:

• RelVPP (a, channel(e)), if a is a value passing variable

• RP (a, l), otherwise

6. If RelVPP (b, z), ∃e ∈ EP such that src(e) = l and channel(e) = z!,
l ∈ LPi , such that a ∈ processSeq(Λ(update(e)), {b}) then:

• RelVPP (a, channel(e)), if a is a value passing variable

• RP (a, l), otherwise

Correctness of the updated algorithm. Basically there are only some
slight differences between this algorithm and the original algorithm of definition
7 and all these differences rely on the assumption that the value of value passing
variables is only relevant during synchronisation and not in any other location.
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The definition of value passing variables (definition 17) ensures this because
a value passing variable is only used on receiving edges whereas every value
passing variable is always changed on the corresponding sending edge.
The main difference is that a value passing variable is not marked relevant,
in clauses 4 and 5 of the definition, at the source of the edge, causing that
the variable becomes relevant at (almost) every other location due to its global
nature. But instead the new definition only marks the variable relevant at the
channel z. Secondly the variables that are marked relevant should be considered
as relevant variables on the receiving edge of the channel z and that is what
clause 6 of the definition ensures.
Now that we have shown how we cope with synchronisations in UPPAAL we
will proof theorem 16 for the third type of transition, as described in section
3.2.3, the sync transition.

Theorem 19. The relation ∼= is a strong timed bisimulation

Proof. For the action transition and the delay transition this is already proven
by theorem 16. Now we prove it for the synchronisation transition.
Let s0, s

′
0, s1, s

′
1 be states such that s0 ∼= s′0. Assume that from s0 we can take

edges e0 : li
v!−→ l′i and e1 : lj

v?−→ l′j resulting in a synchronising transition
to s′0. Because ∼= is symmetric we only need to prove that from s′1 we can
take the same edges e0 and e1 resulting in a transition to s′1 such that ′s0 ∼=
s′1. By the operation semantics guard(e0)(s0) and guard(e1)(s0) both hold and
s1 = s0.take(e0).take(e1). By Lemma 12 we know that both guard(e0)(s′0)
and guard(e1)(s′0) hold. Using Lemma 13 we also know that channel(e0)(s0) =
channel(e0)(s′0) and channel(e1)(s0) = channel(e1)(s′0), so the synchronising
transition can also take place in s′0. By repeatedly applying Lemma 14 we first
get s0.take(e0) ∼= s′0.take(e0) and consequently s0.take(e0).take(e1) ∼=
s′0.take(e0).take(e1). Finally Lemma 15 gives us that s0.take(e0).take(e1) |=
I ⇐⇒ s′0.take(e0).take(e1) |= I.

4.3.3 Variable relevance in properties

One of the reasons for a variable to become relevant at some locations is that
the variable is being used in a property (see clause 3 in definition 7). There
are two possible solutions which both deal with the problem which variables to
mark relevant because of a property.

1. Every referenced variable in a property is automatically relevant in all
locations. For a local variable at all locations of its process. For a global
variable at all locations of all processes.

2. Try to mark (some) variables only relevant for certain locations.

The first solution is the one that we presented originally in definition 7 and is
very basic and most of the time an over-approximation because it marks every
variable, that is used in the property, relevant at every location. The extension
we are going to look at aims at improving the approximation by reducing the
set of locations for which a variable is marked relevant.
The table below gives some examples about properties and their ideal result
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Property Ideal result
x > 4 x always relevant
P1.x > 4 x always relevant in P1

P.l1 ⇒ P.x > 4 x relevant at P.l1
¬P.l1 ∨ P.x > 4 x relevant at P.l1
P.l1 ∧ P.x > 4 x relevant at P.l1

Table 4.3: Examples of properties

In the table above the first and second row are clear as the value of x is always
relevant in every state. However why can we say that x is only relevant at P.l1
in the other 3 possibilities?
The idea we are going to use is based on the truth values of the property
(sub)expression(s). If you take a look at table 4.4 you will see the truth table
for several logical formulae.

N M N ∨M N ∧M N ⇒M
true true true true true
true false true false false
false true true false true
false false false false true

Table 4.4: Truth table for OR, AND and IMPLIES

The advantage we have in UPPAAL is that properties can contain location vari-
ables, variables telling at which location a specific process is. For instance the
property P.l1 ⇒ P.x > 4 ensures that if process P is in location l1 the (local)
variable (of P ) x needs to be greater then 4. This also means that if process
P is in any other location then l1 the value of x is not (directly) important. In
order to better reason about this subject we first give another truth table. This
time with the same logical formulae but for each formulae we leave the value of
one of the operands unfixed and then look if the resulting value can be given.

N M N ∨M N ∧M N ⇒M
true * true * *
false * * false true
* true true * true
* false * false *

Table 4.5: Truth table for OR, AND and IMPLIES with one truth value known

Looking at this, adapted, truth table we can see that for each logical formula we
are (sometimes) able to determine the resulting value regardless of knowing the
values of all the operands. In order to reason more easily we assume the logical
formula of the property is transformed into a parse tree, which has as nodes
the operands of the sub-properties and as leafs either an expression containing

47



variables (data or clock) or a location variable.
Of these two types of leafs the location variables are the only one of which
we can say something, namely: If process P is at location l then the location
variable l is true, while all other location variables of process P are false. As
in the original algorithm we would mark all variables, that occur in a property,
relevant for all locations. Using the knowledge presented here we can ‘predict’
for (some) locations the truth value of a (sub)property, resulting in a variable
being not relevant for the truth value of a property for some locations.
Below we present our algorithm (algorithm 7) that, using a depth first search
on the (binary) parse tree of the property, determines for each (sub)property
if we can say (using the current knowledge) if this sub-property is always true
or always false. For an OR-sub-property we can say it is always false if all its
children (including sub-properties) are false and that it is always true if only
one of his children is true. For an AND-sub-property it is exactly the opposite
as this sub-property is always true if all its children are true and it is always
false if only one of its children is false.

Algorithm 7 markNodes(Property prop)

if (prop ≡ N ∨M) then
prop.trueLocs = N.trueLocs ∪ M.trueLocs
prop.falseLocs = N.falseLocs ∩ M.falseLocs

else if (prop ≡ N ∧M) then
prop.trueLocs = N.trueLocs ∩ M.trueLocs
prop.falseLocs = N.falseLocs ∪ M.falseLocs

else if (prop ≡ ¬N) then
prop.trueLocs = N.falseLocs
prop.falseLocs = N.trueLocs

else if (prop ≡ l) then
prop.trueLocs = {l}
prop.falseLocs = LPi − {l}, with LPi such that l ∈ LPi

else
prop.trueLocs = {}
prop.falseLocs = {}

end if

Now that we know, using algorithm 7, which sub-properties are always false or
always true for certain locations we run another depth first search (algorithm 8)
that looks at which variables are used in a sub-property and marks them relevant
for all locations except the locations for which we know that the sub-property is
always false or always true. Both algorithms are called from algorithm 9 which
gives us a set R containing pairs of a location and a variable. The third clause
of definition which serves as input for definition 7, instead of the third clause of
that definition. The third clause now becomes:

3. If there exists a prop ∈ properties such that a ∈ propertyRelevance(prop)
then R(a, l)
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Algorithm 8 getRelevantFromProperty(Property prop)

if (prop ≡ N ∨M or prop ≡ N ∧M ) then
N.trueLocs = N.trueLocs ∪ prop.trueLocs
M.trueLocs = M.trueLocs ∪ prop.trueLocs
N.falseLocs = N.falseLocs ∪ prop.falseLocs
M.falseLocs = M.falseLocs ∪ prop.falseLocs
R = getRelevantFromProperty(N) ∪ getRelevantFromProperty(M)

else if (prop ≡ ¬N) then
N.trueLocs = N.trueLocs = ∪ prop.trueLocs
N.falseLocs = N.falseLocs = ∪ prop.falseLocs
R =getRelevantFromProperty(N)

else if (prop ≡ l) then
Nothing has to be done

else
for (each l ∈ L) do

if (l /∈ prop.trueLocs ∪ prop.falseLocs) then
for (each a ∈vars(prop)) do

Add (a, l) to R
end for

end if
end for
return R

end if

Algorithm 9 propertyRelevance(Property prop)

markNodes(prop)
return getRelevantFromProperty(prop)

Correctness of algorithm including property relevance Instead of mark-
ing all the used variables at all location we now mark the used variables relevant
at a subset of the locations. In order to reason about if this extension of the
algorithm is correct we first need to define what we consider to be correct.
What we want is that the outcome of the property check is always the same and
that every variable that is not marked relevant by the above algorithm can be
assigned any value without influencing the truth value of the property.

∀prop ∈ properties · prop(s) == prop(s′)

In the above equation s′ is equal to s, but for each variable of s that is not
relevant we can assign any (random) value and we should not alter the outcome
of the property.
We can say this is true because every variable is marked relevant in algorithm
8 for every location unless we are certain that the sub-property it belongs to is
always true or always false in a specific location due to the known truth value
of the location variables occurring in that sub-property. So by construction of
algorithms 7, 8 and 9 we know it is correct.
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4.4 Complete relevance algorithm

After the various adoptions to the original relevance algorithm we give an
overview of the resulting algorithm:

Definition 20 (Final relevance definition). For a network P of simple timed
automata Pi, 1 ≤ i ≤ n, with n the number of automata, variables a, b ∈ A,
a location l ∈ LPi and a channel z ∈ ΣP . We use (a, l) ∈ R (or R(a, l)) to
denote that the value of a is relevant at location l and we use (a, z) ∈ RelVP
(or RelVP(a, z)) to denote that the value of a is relevant at the receiving side
of channel z. Formally R and RelVP are the smallest relations such that:

1. If a is directly used in some e ∈ EP , a ∈ dir used(e) and l = src(e) then
RP (a, l)

2. If a is directly used at some location l, a ∈ dir used(l) then RP (a, l)

3. If there exists a prop ∈ properties such that a ∈ propertyRelevance(prop)
then R(a, l)

4. If RP (b, l′), ∃e ∈ EP such that src(e) = l and target(e) = l′, such that
a ∈ processSeq(Λ(update(e)), {b}) then:

• RelVPP (a, channel(e)), if a is a value passing variable

• RP (a, l), otherwise

5. If RP (b, l′), ∃e ∈ EP such that src(e) = l, l ∈ LPi
, l′ ∈ LPj

and i 6= j,
such that a ∈ processSeq(Λ(update(e)), {b}) then:

• RelVPP (a, channel(e)), if a is a value passing variable

• RP (a, l), otherwise

6. If RelVPP (b, z), ∃e ∈ EP such that src(e) = l and channel(e) = z!,
l ∈ LPi

, such that a ∈ processSeq(Λ(update(e)), {b}) then:

• RelVPP (a, channel(e)), if a is a value passing variable

• RP (a, l), otherwise

Algorithm 10 processSeq(stmt seq statements, variable relevant)

1: if (statements.isEmpty()) then
2: return relevant
3: else
4: relevant = processStat(statements.tail() , relevant)
5: return processSeq(statements.withoutTail() , relevant)
6: end if
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Algorithm 11 processStat(single stmt stat , set〈variables〉 relevant)

1: if (stat ≡ u = expr) then
2: if (u ∈ relevant) then
3: removeVar(u, relevant)
4: for all var ∈ used(expr) do
5: insertVar(var, relevant)
6: end for
7: end if
8: else if (stat ≡ if(ϕ) B1 else B2) then
9: for all var ∈ vars(ϕ) do

10: insertVar(var, relevant)
11: end for
12: relevant = relevant ∪ processSeq(B1), relevant)
13: relevant = relevant ∪ processSeq(B2), relevant)
14: else if (stat ≡ while(ϕ) B) then
15: while (relevant 6= temp) do
16: temp = relevant
17: for all var ∈ vars(condition) do
18: insertVar(var, relevant)
19: end for
20: relevant = relevant ∪ processSeq(B, relevant)
21: end while
22: end if
23: return relevant
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Algorithm 12 insertVar(variable var, set〈variable〉 relevant)

1: if var.type == ARRAY then
2: for (index1 to indexn of var) do
3: if (indexi != CONSTANT) then
4: for all var ∈ vars(indexi) do
5: relevant = insertVar(var, relevant)
6: end for
7: for (∀j ∈ rangei) do
8: tempVar = var, with the ith index replaced by j
9: relevant = insertVar(tempVar, relevant)

10: end for
11: end if
12: return relevant
13: end for
14: end if
15: relevant.insert(var)
16: return relevant

Algorithm 13 removeVar(variable var, set〈variable〉 relevant)

1: bool isConstant = true
2: if var.type == ARRAY then
3: for (index1 to indexn of var) do
4: if (indexi != CONSTANT) then
5: isConstant = false
6: for all var ∈ vars(indexi) do
7: insertVar(var, relevant)
8: end for
9: end if

10: end for
11: end if
12: if isConstant then
13: relevant.remove(var)
14: end if
15: return relevant

Algorithm 14 propertyRelevance(Property prop)

markNodes(prop)
return getRelevantFromProperty(prop)
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Algorithm 15 markNodes(Property prop)

if (prop ≡ N ∨M) then
prop.trueLocs = N.trueLocs ∪ M.trueLocs
prop.falseLocs = N.falseLocs ∩ M.falseLocs

else if (prop ≡ N ∧M) then
prop.trueLocs = N.trueLocs ∩ M.trueLocs
prop.falseLocs = N.falseLocs ∪ M.falseLocs

else if (prop ≡ ¬N) then
prop.trueLocs = N.falseLocs
prop.falseLocs = N.trueLocs

else if (prop ≡ l) then
prop.trueLocs = {l}
prop.falseLocs = LPi

− {l}, with LPi
such that l ∈ LPi

else
prop.trueLocs = {}
prop.falseLocs = {}

end if

Algorithm 16 getRelevantFromProperty(Property prop)

if (prop ≡ N ∨M or prop ≡ N ∧M ) then
N.trueLocs = N.trueLocs ∪ prop.trueLocs
M.trueLocs = M.trueLocs ∪ prop.trueLocs
N.falseLocs = N.falseLocs ∪ prop.falseLocs
M.falseLocs = M.falseLocs ∪ prop.falseLocs
R = getRelevantFromProperty(N) ∪ getRelevantFromProperty(M)

else if (prop ≡ ¬N) then
N.trueLocs = N.trueLocs = ∪ prop.trueLocs
N.falseLocs = N.falseLocs = ∪ prop.falseLocs
R =getRelevantFromProperty(N)

else if (prop ≡ l) then
Nothing has to be done

else
for (each l ∈ L) do

if (l /∈ prop.trueLocs ∪ prop.falseLocs) then
for (each a ∈vars(prop)) do

Add (a, l) to R
end for

end if
end for
return R

end if
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CHAPTER 5

Transformation

Since we are now able to identify some irrelevant variables at a certain loca-
tion we can use this information in the next step. This next step is about
transforming the network of timed automata into another network of timed au-
tomata which has a, possibly, smaller number of states in the state space. We
show that the transformed network is bisimilar to the original network and has
at most the same number of states in the state space, but possibly a smaller
number.
The definition of the transformation algorithm is divided into four stages. First
we apply the same transformation as presented by Van de Pol and Timmer [30]
by introducing a reset for every combination of (target) location and variable
for which it holds that the variable is irrelevant at that location. And we prove
that this transformation preserves bisimilarity and that it has the same or a
smaller number of states. The second step is reducing the number of introduced
resets through smart placement of the resets. However this step introduces,
possibly, some extra states due to assignments to non-relevant variables that
have been reset. In the third step we ‘neutralise’ these unnecessary assignments
by undoing these assignments. The final step of the transformation takes care
of resetting value passing variables at the end of a synchronisation and is based
on section 4.3.2.

5.1 The basic transformation

Analogue to the definitions in [30] we define a transformation based on the non-
relevancy of variables. Before we give this definition we first present an auxiliary
definition concerning the initial valuation of variables.

Definition 21 (Initial valuation of variables). Given a variable a ∈ A we
use inita to denote the initial valuation of the variable a. If no initial value is
supplied than inita = 0.

Definition 22 (Transformation). Given a network P of simple timed au-
tomata we have a transformed network P ′ of timed automata with each timed
automaton P ′i ∈ P ′ only differing from their original counterpart Pi ∈ P in
their edge-function: P ′i = {Li, l0i , Vi, Ci,Σ, Fi, E′i, Ii}. The difference of E′i in
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comparison with Ei is that the update statements (update ′(e)) are changed ac-
cording to the following definition

1. ext update(e) = {a = inita | ∃i ∈ {1 . . . n} · e ∈ Ei ∧ a ∈ local(Pi) ∧
¬R(a, target(e)}

2. update ′(e) = update(e); ext update(e)

Note that update ′(e) only deviates from update(e) for variables that are irrele-
vant after taking e as we make clear using the following lemma.

We use P@s and P ′@s to refer to a state s derived from the set of states of the
underlying TLTS of a network P or its transform P ′.

Lemma 23. For every Pi ∈ P, e ∈ EPi
and every state s, given that guard(e)(s) =

true it holds that s.take(e) ∼= s.take(e′).

Proof. To show that s.take(e) ∼= s.take(e′) we need to show that for all variables
a such that Relevant(a, s.take(e)) we have vals.take(e)(a) = vals.take(e′)(a).

• If a is a local variable of the timed automaton Pi we have, by definition 9,
R(a, (target(e)). Because of R(a, (target(e)) the condition ¬R(a, target(e)
evaluates to false and the set ext update is empty for the variable a and
vals.take(e)(a) = vals.take(e′)(a)

• If a is a global variable the condition a ∈ local(Pi) evaluates to false
and the set ext update is empty for the variable a and vals.take(e)(a) =
vals.take(e′)(a)

Based on this lemma we show that P@s and P ′@s′ are bisimilar, by first proving
an even stronger statement.

Theorem 24. Let ' be defined by:

P@s ' P ′@s′ ⇐⇒ s ∼= s′

then ' is a strong bisimulation. The relation ∼= is used as it was defined for P

Proof. Let s0 and s′0 be states such that P@s0 ' P ′@s′0, so s0 ∼= s′0. We

assume that P@s0
x−→ P@s1 and we have to prove that there exists a transition

P ′@s′0
x−→ P ′@s′1.

By theorem 16 there exists a state s′′1 such that P@s′0
x−→ P@s′′1 and s1 ∼= s′′1 .

Secondly, by the operational semantics of UPPAAL, we have an edge e with
guard(e)(s′0) = true, channel(e)(s′0) = x and s′0.take(e) = s′′1 .

By definition 22 we have P ′@s′0
x−→ P ′@s′0.take(e′)

By lemma 23 s′0.take(e) ∼= s′0.take(e′).
Now by transitivity and reflexivity of ∼= (Lemma 11), we get s1 ∼= s′′1 =
s′0.take(e) ∼= s′0take(e′), hence P@s1 ' P ′@s′0take(e′). By symmetry of ∼= this
completes the proof.

55



Corollary 25. Let P be a network of simple timed automata, P ′ its transform,
and s a state. Then, P@s is strongly bisimilar to P ′@s.

We now show that our choice of update ′(e) ensures that the state space of P ′ is
at most as large as the state space of P . We first prove the invariant that if a
variable is not relevant for a state that the value of the variable is equal to its
initial value.

Proposition 26. For the network P of timed automata invariably
(¬Relevant(a, s) ∧ ¬isGlobal(a))⇒ vals(a) = inita

Proof. This proof is trivial, because this is exactly what is done in definition
22.

Using this invariant we can now prove the following lemma, providing a func-
tional strong bisimulation relating the states of P@init and P ′@init

Lemma 27. Let h be a function over states, given for any s by

ha(s) =

{
vals(a) if Relevant(a, s) ∨ isGlobal(a),
inita otherwise.

then h is a strong bisimulation relating the states of P@init and P ′@init

Proof. Let s0 and s′0 be states such that h(s0) = s′0. Also assume that P@s0
x−→

P@s1. We show that there exists a transition P ′@s′0
x−→ P ′@s′1 such that h(s1) =

s′1 (the proof of the opposite direction is completely symmetric).
By definition of h it follows that s0 ∼= s′0, so by Lemma 23 and Theorem 24

there is a s′′1 such that P ′@s′0
x−→ P ′@s′′1 and s1 ∼= s′′1 .

• Assuming that for an arbitrary variable a it holds that Relevant(a, s1) ∨
isGlobal(a), this implies that vals1(a) = vals′′1 (a), so by definition of h we
obtain ha(v1) = vals1(a) = vals′′1 (a).

• Assuming that ¬Relevant(a, s1) and ¬isGlobal(a), we have by Lemma
10 and symmetry ¬Relevant(a, s′′1), so by Proposition 26 it follows that
vals′′1 (a) = inita, so by definition of h we obtain ha(s1) = inita = vals′′1 (a).
In conclusion, for all a in all cases we have ha(s1) = vals′′1 (a), so ha(s1) =
s′′1 .

Because this relation between P and P ′ is a function, and the image of every
function is at most as large as its domain, the following corollary is immediate.

Corollary 28. The number of reachable states in P ′ is at most as large as the
number of reachable states in P .

Note that in theory the number of states is infinite due to the delay steps
which can take every value in R≥0, however we assume the use of clock zones
in UPPAAL as described (for instance) in [1] making the number of reachable
states finite.
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5.2 Minimising the number of resets

With the results of the previous sections we can indeed reduce the number
of states in the state space, however it also introduces a reset assignment on
every edge for each variable that is not relevant at the destination of the edge.
One can imagine that the number of reset assignments can become quite large
and as a result these numerous resets can make the model a lot harder to
read after the transformation. Therefore it is better to only reset variables at
points where they are not already equal to the initial value. For instance, if a
variable is not relevant in two consecutive locations it is of no use to introduce
two resets instead of only one at the first incoming edge. Therefore, our first
adaptation is to only reset irrelevant variables at the beginning of a path of
locations where that variable is not relevant. Essentially this means that the
definition remains almost the same, making only a slight adaptation in the
definition of ext update(e), by requiring that the variable, that is going to be
reset, is relevant at the source of the edge. By minimising the number of resets
we improve on the work of [30]. In [16] Garavel and Serwe present an algorithm
that also tries to minimise the resets but they require an additional pass of the
automata.

Definition 29 (First attempt of an improved transformation). Given
a network P of timed automata we have a transformed network P ′ of timed
automata with each timed automaton P ′i ∈ P ′ only differing from their original
counterpart Pi ∈ P in their edge-function: P ′i = {Li, l0i , Vi, Ci,Σ, Fi, E′i, Ii}.
The difference of E′i is that update ′(e) is changed, resulting in the following

1. ext update(e) = {a = inita | e ∈ Ei ∧ a ∈ local(Pi) ∧ R(a, src(e)) ∧
¬R(a, target(e)}

2. update ′(e) = update(e); ext update(e)

In order to prove that this reduction in the number of resets does not increase
again the number of states we have to show that the invariant introduced in
Proposition 26 still holds. However this is not the case and to show this we give
a counterexample. For instance, in figure 5.1 (initx = 0), the algorithm inserts
a reset after the use of x in x < 5. However the dead assignment x = 3 causes
that x can have both the values 0 and 3 at locations l3, l4 and l0, creating an
unnecessary larger state space (in comparison with the original algorithm). The
conclusion is that this first attempt failed and that we have to look for another
solution which we consider in the next section.

l0 l1

l3 l2l4

x = 0

x < 5x = 3

Figure 5.1: Example showing minimal number of resets is not sufficient
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5.3 Improved transformation

The problem we are facing is that the invariant of Proposition 26 no longer holds
and that we have a minimal amount of resets but also a possible increase in the
number of states, sometimes even more than the state space of the original net-
work of timed automata. As shown in the example of Figure 5.1 assignments
to variables that are already not relevant can cause problems. There are two
possible solutions to this problem:

1. Completely remove the assignments to non-relevant variables.

2. Introduce extra resets on each edge where non-relevant variables are changed.

The problem with the first option is that a variable can be irrelevant at both
source and destination but still the assignment to that variable can be relevant,
Figure 5.2 shows this. Consider the case that variable a is relevant at l2. As a
consequence b will be marked relevant after processing the statement a = test[b])
and again marked not relevant after processing the statement b = c+ 2. Now b
is not relevant at both the source and destination of the edge, but we can not
completely remove the assignment because the assignment has influence on the
behaviour of the program. Therefore we choose the second option and introduce
additional resets to cope with the assignments to non relevant variables.
We could achieve the first option by applying substitution of the variable b in the
second statement or combine both options by a more detailed analysis but we
decided not to do this. A negative consequence of this is that we would end up
with a more complex model that differs more from the original model, therefore
making it harder for the developers to compare both models. While, if we only
introduce resets (as shown in Figure 5.3), the original model is left untouched
and only additional assignments are introduced. This makes it easier for the
developers to understand what is going on, while achieving the same decreased
state space.

l1 l2
b = c+ 2 , a = test[b])

Figure 5.2: Assignments to non-relevant variables can be relevant

l1 l2
b = c+ 2 , a = test[b]); b := 0

Figure 5.3: Assignments to non-relevant variables can be relevant

Definition 30 (Improved Transformation). Given a network P of simple
timed automata we have a transformed network P ′ of simple timed automata
with each timed automaton P ′i ∈ P ′ only differing from their original coun-
terpart Pi ∈ P in their edge-function: P ′i = {Li, l0i , Vi, Ci,Σ, Fi, E′i, Ii}. The
difference of E′i is that update ′(e) is changed resulting in the following:
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1. ext update(e) = {a = inita | e ∈ Ei ∧ a ∈ local(Pi) ∧ ¬R(a, target(e)) ∧
(R(a, src(e)) ∨ a ∈ changed(e))}

2. update ′(e) = update(e); ext update(e)

Lemma 31. Let P be a network of simple timed automata, P ′ its transform
according to Definition 22 and P ′′ the transform of P according to Definition
5.3 then the number of reachable states of P ′ and P ′′ is the same.

Proof. To show that this improved transformation has the same reduced state
space as the first transformation, Definition 22, it is sufficient to prove that the
invariant of Proposition 26 ((¬Relevant(a, s)∧¬isGlobal(a))⇒ vals(a) = inita)
is true for all reachable states.

For the initial state of the corresponding timed labelled transition system vals(a) =
inita trivially holds. We now assume it holds for an arbitrary state s and we
show that it holds for all states s′ which can be reached from s by taking an
edge e. We distinguish the following possibilities:

• If Relevant(a, s′) or isGlobal(a) the invariant is always true.

• If ¬Relevant(a, s′) ∧ ¬isGlobal(a) we have two possibilities: a can be rel-
evant or not at state s:

– Relevant(a, s) - For this case the condition of the definition of ext update(e)
always holds and therefore by definition the invariant holds.

– ¬Relevant(a, s) - For this case we again get two possibilities: a is
changed or not on edge e.

∗ a ∈ changed(e) - Also for this case the condition of the defini-
tion of ext update(e) always holds and therefore by definition the
invariant holds.

∗ a /∈ changed(e) - If the value of a is not changed we have
vals(a) = vals′(a) and because of the assumption that the in-
variant holds for state s we have vals′(a) = inita

5.4 Resetting value passing variables

After we have defined the set of special global variables, value passing vari-
ables, in section 4.3.2 we now extend the transformation process with a final
transformation in order to gain benefit from these value passing variables.

Definition 32 (Final transformation including resets of value passing
variables). Given a network P of simple timed automata we have a transformed
network P ′ of simple timed automata with each timed automaton P ′i ∈ P ′

only differing from their original counterpart Pi ∈ P in their edge-function:
P ′i = {Li, l0i , Vi, Ci,Σ, Fi, E′i, Ii}. The difference of E′i is that update ′(e) is
changed resulting in the following:

1. ext update(e) = {a = inita | e ∈ Ei ∧ a ∈ local(Pi) ∧ ¬R(a, target(e)) ∧
(R(a, src(e)) ∨ a ∈ changed(e))}
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2. vp update(e) = {a = inita | a ∈ VPvars ∧ a ∈ used(e)}
3. update ′(e) = update(e); ext update(e); vp update(e)

Notice that ext update and shared update do not overlap, because a ∈ local(Pi)
and a ∈ sharedVars are never true at the same time, as global variables are the
only ones that can be shared variables.
Therefore proposition 26 still holds because for every local variable the propo-
sition is invariably true. In order to reason about this final transformation we
claim another proposition which ensures that every shared variable always has
its initial value (only during the processing of an edge it can have other values).

Proposition 33. For every state s ∈ S of the network P of timed automata
invariably (a ∈ sharedVars ⇒ vals(a) = inita

Proof. We assume a ∈ sharedVars, otherwise the invariant is trivially true.
Initially val = inita. By definition 4.3.2 we know that the only edges on which
a is changed are sending edges. Also that on each corresponding receiving edge
a ∈ used(e) and that there are no other edges for which this holds.We also
know from the semantics of UPPAAL that the update part of the sending edge
is always executed before the update part of the receiving edge. Definition 32
ensures that after each use of a shared variable a the value of a is reset to its
initial value and we can conclude that after each change of the value of a it also
is reset before the new state is calculated ensuring val = inita.

The above shows us, for the final version of the transformation, that the propo-
sition still holds ensuring that each relevant variable has its original value and
each irrelevant variable has its initial value. The last part is to give an updated
version of lemma 27 to show that a similar functional bisimulation also holds
for the final version of the transformation.

Lemma 34. Let h be a function over states, given for any s by

ha(s) =

{
vals(a) if Relevant(a, s) ∨ (isGlobal(a) ∧ ¬isSharedVariable(a)),
inita otherwise.

then h is a strong bisimulation relating the states of P@init and P ′@init

Proof. Let s0 and s′0 be states such that h(s0) = s′0. Also assume that P@s0
x−→

P@s1. We show that there exists a transition P ′@s′0
x−→ P ′@s′1 such that h(s1) =

s′1 (the proof of the opposite direction is completely symmetric).
By definition of h it follows that s0 ∼= s′0, so by Lemma 23 and Theorem 24

there is a s′′1 such that P ′@s′0
x−→ P ′@s′′1 and s1 ∼= s′′1 .

• Assuming that for an arbitrary variable a it holds that Relevant(a, s1),
this implies that vals1(a) = vals′′1 (a), so by definition of h we obtain
ha(s1) = vals1(a) = vals′′1 (a).

• Assuming that isGlobal(a) ∧ a /∈ Sharedvars the proof is analogue to the
proof above.

• Assuming that isGlobal(a) ∧ a ∈ sharedVars, we have by proposition 33
val = inita.

60



• Assuming that ¬Relevant(a, s1) and ¬isGlobal(a), we have by Lemma
10 and symmetry ¬Relevant(a, s′′1), so by Proposition 26 it follows that
vals′′1 (a) = inita, so by definition of h we obtain ha(s1) = inita = vals′′1 (a).
In conclusion, for all a in all cases we have ha(s1) = vals′′1 (a), so ha(s1) =
s′′1 .
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CHAPTER 6

Implementation

After we have looked, in the previous chapters, at the theory of UPPAAL, our
relevance algorithm and the accompanying transformation algorithm we now
take a more practical look by looking at the implementation part of this thesis.
Before we start with implementing the algorithms from the previous sections
we first take a closer look at the practical side of the tool UPPAAL and the
accompanying C++ library UTAP.

6.1 Theory versus Practice

One of the things with theory versus practice is that in the theory everything
can look perfect and complete but when you try to implement something, you
always will encounter differences between the theory and the practice making
things a lot worse. In this research we have the same problems, first because
of all the ‘extra’ features of UPPAAL, secondly because the language is even
richer then the language of the theory, making it harder to cope with all the
different possibilities. Finally we have to deal with how everything is working
in UPPAAL and in the library UTAP. Because we are not free to choose how
everything is organised inside the library we sometimes have to cope with some
restrictions. Before proceeding with the actual implementation we first present
an overview of all the ‘special’ features of the tool UPPAAL and the library
UTAP.

6.1.1 Templates & Process instantiation

A network of timed automata of the theory is represented in UPPAAL as a
system of processes. In UPPAAL you define an automaton in a template by
drawing the graphical structure of the automaton and along that declare the
accompanying imperative code. By instantiating this template you get a pro-
cess. There are however some more options to create a process from a template
which we present below.

Multiple process instantiations from a template Instead of instantiating
a single process from a template it is also possible to instantiate multiple pro-
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cesses from the same template. Each of these processes has the same graphical
structure, the same function declarations and the same set of variables (these
variables are still local and there are different versions of the variable for each
process). The only problem is that in the end we want to introduce the resets
without messing up the .xml file with a complete different structure. Therefore
we have chosen to analysis templates instead of the processes, as the templates
are the structures that are defined in the tool. In the case of multiple instan-
tiations of one template we mark this template in order to indicate that some
kind of resets are not possible for this template.
For example, if we have a system of multiple processes which are all instantiated
from a single template it would, during the analysis, look like we are dealing
with one process. A global variable will be treated in the same way as a local
variable as there is only one process. However in the case of one process we can
also reset non-relevant global variables, however in this example, because of the
multiple template instantiations it is not possible and therefore we have to check,
when resetting global variables, if we are dealing with a multiply-instantiated
template.

Global & local variables In section 4.1.2 we defined which variables we
consider global variables and which variables we consider to be local variables.
In UPPAAL this distinction can be derived directly from the specification of
the models. This because each template has its own section to declare variables
and those variables are local variables of that template. Besides that there is
a separate place to declare variables which can be accessed by every template
and those variables are the global variables.

Template parameters A template definition can have parameters, which
have the same syntax as C++, being that a call-by-reference parameter should
have an ampersand in front and call-by-value parameters are not prefixed with
an ampersand. The only difference with the semantics of C++ is that array
variables that are parameters should be prefixed with an ampersand to be passed
by reference. Also it is required for both clock and channel parameters to be
call-by-reference, therefore they should always be prefixed with an ampersand.

In the case of a call-by-reference parameter the local parameter should be sub-
stituted by the global variable whenever the local parameter is used. We do
not explicitly make this substitution but we keep track of every parameter/vari-
able combination. Whenever we encounter a local parameter we look up the
corresponding global variable.

6.1.2 Select statement

Until now an edge consists of three elements: guards, channels and updates. In
UPPAAL there is another type of edge which is called selections. Selections are
the first of the elements that are executed when an edge is taken and gives us
the possibility to, non-deterministically, bind a value from a given range to a
identifier. The scope of this identifier is limited to the edge it belongs to and
therefore it can only be used in the other three elements of that edge. Because
an identifier from a selection can only be used and not changed we can treat
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this identifier as being a constant value with the consequence that the impact
on our algorithm is limited.

6.2 Implementation of our tool

In the coming sections we describe how we implemented our relevance algorithm
including the transformations that are made. We describe the whole process
of the prototype tool from input to processing and finally how we write the
result back in such a way that UPPAAL can cope with the result. Note that
the whole process acts independently of UPPAAL itself (but uses the UTAP
library), which made it a bit less complex as it was not necessary to (completely)
understand and explore the implementation of UPPAAL itself.

6.2.1 Input

The input of our tool is the same as the input UPPAAL uses, namely an .xml
file for the specification of the model and a .q file for a specification of the
queries of the requirement properties of the model. There are files with other
file-extensions and formats (of earlier versions of UPPAAL) that can be opened
in UPPAAL but in this thesis we only take a look at the file format that is used
in the current version of UPPAAL.

The .xml model file The models that are modelled in UPPAAL are saved
as .xml files according to the Document Type Definition (DTD) of UPPAAL,
which can be found at http://www.it.uu.se/research/group/darts/uppaal/flat-
1 1.dtd. To access the relevant information of the models defined in the .xml
files we could write our own parser for the .xml files. However the developers of
UPPAAL provide also a C++ library, Uppaal Timed Automata Parser Library
(UTAP). Using the UTAP library we can transform a model, specified in a .xml
file, into a TimedAutomataSystem. Using this TimedAutomataSystem we
can, in section 6.2.2, easily access all the relevant parts of the model specification
without having to write an own parser.

The .q requirements file The .q file, containing the requirements of the
model that needs to be verified, is a textual file containing for each query both
the query itself and (possibly) an accompanying description. Both are written to
the file exactly the same as specified in the verifier part of UPPAAL. However we
are only interested in the first part and using UTAP::PropertyBuilder and
ParseProperty we get a list of properties with for each property the property
expressed as an UTAP::expression t. This list of expressions will serve as
an input to algorithms 7 and 8 for declaring variables relevant due to use in
properties, as expressed in section 4.3.3.

6.2.2 Analysing

Having a parsed version of both the specifications, the model and the require-
ments, we can apply our algorithms of sections 4 and 5. These algorithms can be
divided into several subtasks which we describe separately. The whole process
of analysing the models can be divided into the following tasks:
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• Determining the type of variable: global, local, shared, parameter or tem-
plate.

• Determining the relevant variables:

– Due to use in guards, channels or invariants (clause 1 and 2 of defi-
nition 7)

– Due to use in a property (clause 3 of definition 7)

– Due to transitions, possibly containing assignments (clause 4, 5 and
6 of definition 7)

• Transforming the model, applying the resets

In the following sections we describe each of the subtasks above:

Determining the type of variable

In the theory of section 4 we have divided the set of variables into three disjoint
sets, being local, global or value passing variables. The practice adds one type
of variable which is a parameter variable, a variable that is declared globally
but transferred to a local process instantiation by using it as a parameter in the
template instantiation.

Global variables We define a set〈symbol t〉 globals in which we store the
global variables obtained from the TimedAutomataSystem which has a decla-
ration t object with a field variables. Also, if a template is instantiated by
multiple processes, we add the variables of that template to globals. Using the
method isGlobal we can check whether a variable is a global variable.

Value passing variables A subset of the global variables are the value pass-
ing variables. For each global variable we check if it is a value passing variable
in the method initShared(). This is done in two steps: We first iterate over
all edges and if the edge is an receiving edge we iterate again over all edges
for each used variable on this edge. In this new iteration we check that each
used variable if on all corresponding sending edges (sending edges with the same
channel as the receiving edge) the variable is changed. If that is the case then
we have a possible value passing variable and we store the value passing variable
in combination with the channel id.
The second step is that we check if the value passing variable is not used on any
other edge. To check this we again iterate over all edges and if a variable is used
on a non-receiving edge it is removed from the set of value passing variables. If
the variable is used on an receiving edge we check if the corresponding channel
corresponds with any of the stored channels for that variable. (A variable can
be a value passing variable for multiple channels)

Local variables We do not explicitly define which variable is a local variable,
because if we need to know if a variable is a local variable we just check if a
variable is not a value passing, global or parameter variable, resulting in knowing
if it is a local variable.
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Parameter variables A template can have local parameters which are in-
stantiated when a process is instantiated from this template. Every time we
encounter this local parameter the variable is substituted with its actually use.
To keep track of these mappings we use a set〈pair〈symbol t, expression t〉〉 to
determine for each parameter variable (expression t) with which local parame-
ters of which processes it corresponds.

Determining the relevant variables

The next step is implementing the relevance algorithm as specified in section 4.
The purpose of this algorithm is to mark variables relevant for specific locations.
We specified a struct in order to represent these relevant ‘combinations’. This
struct, relevant, has three fields:

• var - The variable that is relevant given as an expression t

• state - The location for which the variable is relevant, given as a symbol t

• process - The corresponding template of the automation, given as a inte-
ger (index in the set of templates of the TimedAutomataSystem)

We could have excluded the process integer from the struct definition and deter-
mine it based on the location, because a location uniquely belongs to a template.
However, by explicitly storing the template integer we save ourselves from un-
necessary iterating over all templates every time we need to look up the process
of a location.
The choice to store relevant variables as a expression t was necessary in order
to store array variables without making it too complex. Normally a variable
is represented by UTAP as a symbol t, however, if we call getSymbol() on an
expression that contains an array variable we only get the identifier part of the
array variable but not the array indices. We solved this by ‘manually’ parsing
expressions and retrieve the variables ourselves and store them as expression t
objects instead of symbol t objects.

Relevancy of variables in guards, invariants or channels According to
clause 1 and 2 of algorithm 7 a variable is relevant at the source of an edge if it
used in the guard or channel expressions of that edge and it is also relevant at
a location if it is used in the invariant expression of that location. By iterating
over all edges of all templates we can get both the guard and the channel ex-
pressions from respectively the fields edge t.guard and edge t.sync. Secondly
by iterating over all states of all templates we get the invariant expressions by
accessing the field state t.invariant.
The next step is to retrieve all the variables from these guard, channel or in-
variant expressions. The UTAP library gives us an
expression t.collectPossibleReads() method only this method is not suf-
ficient for our needs because of the already mentioned complexity with array
variables, therefore we defined an own getReads(expression t) method. This
getReads() parses an expression t object and gives a set of (sub)expressions
containing all the variables, array variables and function calls. And by recur-
sively calling this getReads() method for indices of array variables and channel
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expressions we also get the variables and function calls that are used as indices
for both types.
While iterating over these resulting set of expressions we make for each variable
or array variable a relevant item and call for this relevant item the method
insertRelevant(), which inserts it correctly into the set of relevant items.

Relevance of variables in properties Clause 3 of the relevance algorithm is
about marking variables relevant that are used in one of the properties specified
in the .q file. Instead of marking all variables, that are used in property, relevant
at all locations we improved on this by the algorithms of section 4.3.3. As input
for these algorithms we have the set of property expressions from section 6.2.1.
The implementation is divided into three parts, which we each present in the
following paragraphs. These three parts are the algorithms 7 and 8 and the
transformation of each of the property expressions into a parse tree that can be
traversed by the two algorithms.
The first part is to construct the parse tree of a property. To construct the tree
we first declare a Node object, which has the following properties:

• children - a set〈Node〉 containing the children of the Node

• expr - expression representing the sub tree of which this Node is the root

• trueLocs - a set〈symbol t〉 of locations at which expr is always true

• falseLocs - a set〈symbol t〉 of locations at which expr is always false

• type - an integer telling if this Node is a leaf or not, a location or not,
negated or not

By parsing the property expression in parsePropertyExpr we build up a tree
of Node’s with subtrees representing sub-properties of a LEADSTO, OR, AND
or negated property and leafs being either an expression containing variables or
a location symbol.
Secondly we implement algorithm 7 in the method markNode(), which walks
over the tree of Node’s and is almost a direct copy of the algorithm described
differing only in the addition of the LEADSTO property. This is a property
(R) specifying that whenever a property P holds eventually a property Q holds.
However we can not say anything about R being always true or always false
as the truth value of Q is not based solely on the ‘current’ location but on all
eventually possible locations.
Finally algorithm 8 is implemented in the method parsePropertyNode() in-
serting all used variables into the set of relevant items for all locations minus
the set of locations which are either false or true. Also, while traversing the
tree, the sets trueLocs and falseLocs are copied to the corresponding set of it’s
children, because whenever a property is always true or always false the value
of each sub-property is also not important.

Iterative relevance Having described the implementation of clause 1,2 and
3 of definition 7 we proceed with describing the implementation of the three
remaining clauses, which mainly consist of the implementation of algorithm 7.
Clauses 4,5 and 6 all deal with marking variables relevant at the source of an
edge based on the relevance of some variable at the target of an edge. We do
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not check this for each relevant variable separately but we build a set of relevant
variables (via the method getRel()) that is given to algorithm 10 (the method
processEdge())which in turn gives the set of relevant variables at the source of
the edge which we then insert into the set of relevant items.

The method getRel(set〈relevant〉* setRel, symbol t src, int proc))
This method gives us the set of relevant variables that are used as input for
the method processEdge(). All three clauses 4,5 and 6 give us a condition for
which to include a variable into the input set. We iterate (ix) over all relevant
items (of the whole network) and include those variables that meet one of the
following three conditions.

• Clause 4 - If a variable is relevant at the target of the edge it should be
included. This is done by checking if the state of the relevant item equals
the target of the edge and that both processes are equal:

!(ix→state.getName().compare(src.getName()))) && proc == ix→process

• Clause 5 - If a variable is relevant at some other process (global variables)
than the variable should be included. This is done by checking if the
variable of the relevant item is a global variable and that the process not
equals the process of the edge:

isGlobal(ix-〉var.getSymbol()) && proc == ix→process

• Clause 6 - If the edge is a sending side and the variable is (at the receiving
side) marked relevant for the channel of the edge is should be included.
This is done by not iterating over all relevant items but over the set of
all relevant value passing variables for a specific channel. If the edge is a
sending edge and the channel of the edge corresponds to the channel of
the relevant value passing variable then this variable is included:

if(!six→second.toString().compare(eix→sync[0].toString()))

It is possible that the iterator points to a parameter variable. If that is the case
we perform the same checks but before inserting the variable into the resulting
set we first transform the parameter variable to its local identity

The method processEdge(expression t expr, set〈expression t〉* rel, int
proc) Based on set of variables determined by getRel() (parameter rel) this
method returns a set of variables that are relevant before processing the (part
of an) edge expr. There are four different kind of expressions possible: a comma
expression (multiple expressions separated by a comma), an assignment, a func-
tion call or an inline-if construction.
A comma expression is always a combination of two expression separated
by a comma. For instance, if you enter, in UPPAAL, a comma expression
of three expressions, you will get a comma expression which has a first part
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that is the first expression and a second part that is a comma expression of
the second and third expression. However, for our implementation it does not
matter of which expressions the comma expression consists. For both parts of
the comma expression we recursively call the method processEdge(), first we
call processEdge for the second part (because algorithm ?? also works from the
end of an edge to the beginning of an edge). Secondly we call processEdge for
the first part but this time we pass the resulting relevant set of the first recursive
call as parameter.
If the expression is an assignment expression we first check if the value on the
left hand side is relevant at the source of the edge. If the expression is relevant
we mark all variables on the right hand side relevant. Secondly, regardless of if
the left hand side is relevant, we process each function call on the right hand
side, however if the left hand side is relevant we also mark the return value of
the statements relevant and so we pass on the relevance to the inside of the
function. It may seem not logical to process a function call if the left hand side
is not relevant but even if the return value is not relevant there can be other
assignments to relevant variables inside the function making changes to the set
of relevant variables. How we cope with processing functions can be read further
on.
Function calls not in the right hand side of an assignment but separately on
an edge are treated in the same way as a function call in the right hand side
of an assignment of which the left hand side is not relevant. Also for the exact
processing of the function look at the next paragraph.
The last possibility is that there is an inline-if construction on the edge, which
looks as follows: condition ? expr1 : expr2. We evaluate such an expression also
from the end to the beginning, meaning we first evaluate both expressions (true
and false) and combine those sets. If one of the expressions makes any changes
to the set of relevant variables we also evaluate the conditional expression at
the beginning.

Functions The statements of an function are not directly accessible in a sim-
ilar way as a statement directly on an edge. They have to be accessed by an visi-
tor. We implemented a class MyVisitor that implements the UTAP::StatementVisitor.
For every possible statement, like if, while or return statement there is a method
that needs to be implemented. Almost all of the implemented methods are triv-
ial, but for the return statement we had to know if the return value is relevant
or not in order to correctly pass on the relevance inside the function. Therefore
we have a special flag in the reducer class that keeps track if, in the case of a
function call, the return value is relevant or not.
One thing to consider is the fact that our algorithm works from the target of
an edge to the source of an edge. For the body of the function (which is a
block-statement) this means that we first have to evaluate the last statement of
the body/block and that we end with the first statement of the block.
After we have processed the first statement of the body of a function we check
if any of the parameters of the function is marked relevant and if so we replace
the parameter by the corresponding argument of the function call.

Inserting a relevant item into the set of relevant items Every time
a call is made to insertRelevant() (for relevant items) or insertRelExpr() (for
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expressions, used in the function visitor) we can not directly insert the item
or expression into the set of relevant variables. Of the several cases that are
possible only the case that we are handling a normal variable does not require
extra attention and can be directly inserted into the set of relevant variables.
However if we are dealing with either a parameter variable, a dot expression or
an array variable we have to do a bit of processing first.
In the case that we want to insert a local parameter we can not insert this
local parameter but we have to insert the corresponding parameter variable as
mentioned in section 6.2.2. Therefore for every variable that is inserted we first
look if that variable is a local parameter or not and if so we replace it by the
corresponding variable and call the method recursively for the updated variable.
Therefore if in another process the same variable (with possibly a different local
parameter name) is used we know that we are dealing with a relevant variable.
The second check we do is to check if the variable is a dot-variable. A dot-
variable is a variable that is made of two parts connected by a dot. The second
part is the actual variable, while the first part can either be an process identifier
or a struct identifier.
Thirdly we check if a variable is an array variable. If we are dealing with an
array variable we insert the variables according to algorithm ??.
Finally, before inserting the variable, we check if the variable should be inserted
into the set of relevant variables (at a location) or into the set of value passing
variables (at a channel).

6.2.3 Output

At some point the resets have to be inserted in the model and the model needs
to be written to a .xml such that it can be opened and viewed in UPPAAL. A
solution for this would be to update the edge t.assign field of the edges of the
TimedAutomateSystem by adding an assignment x = initx for each variable
that needs to be reset. Consecutively we would write the TimedAutomataSys-
tem to a .xml file. The UTAP library does not directly support this and next
to that we only need to introduce some resets. Therefore we decided to scan
the original (input) .xml file ourselves and look for the correct locations in the
.xml file to insert the resets.

The scanning process consists of two scans of the .xml file. The first scan is
to determine the x and y coordinates of the graphical elements of the model in
order to place the resets graphically in a logical place which makes the resulting
model readable. The second scan looks for edges and for each edge checks if a
variable should be reset on this edge and if this is the case then it adds the reset
at the end of the update part of the edge.

6.3 Validation

In order to be sure that our tool works as it should be we have tested it on
the demo models that are supplied alongside the UPPAAL distribution and of
course also on the case studies that we present in the next chapter. The UP-
PAAL demo models can be found in every UPPAAL distribution and are the
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following:

• 2doors.xml

• bridge.xml

• fischer.xml

• interrupt.xml

• train-gate.xml

All five models are processed and transformed correctly resulting in models that
produce the same results from the supplied properties from the corresponding
.q files, unfortunately no reductions were achieved for these models.
However there are some other constructs possible in UPPAAL such that our
tool does not function 100% correctly for all possible constructs of UPPAAL.
We now give a short overview of (some of) the remaining problems:

• It is possible in UPPAAL to specify on an edge (in the update statement)
an inline-if statement (ϕ?B1 : B2), that executes B1 if ϕ is true and
otherwiseB2 is executed. A normal inline-if is processed correctly, however
an inline-if can also be used in the right hand side of an assignment and
that construction is not processed correctly at the moment

• We need to check for present resets before resetting variables. For example,
if the original model already resets an irrelevant variable y to zero by y = 0
our tool still adds another reset, which is not necessary.

• At this moment we are not able to determine the initial value of variables
other than normal variables (not for arrays/constructs and such variables).
It has to be found out if these initial values can be retrieved through the
library UTAP, otherwise an extra own parser for the declarations has to
be made.

• The last found problem is that our tool cannot cope with array declara-
tions that contain ‘difficult’ expressions. For instance if we need to mark
an array variable relevant that is declared as intA[N + 1]. We are able to
retrieve the value of N through UTAP, but we are not able to calculate
the value of N + 1 in order to insert all variables A[0] . . . A[N ].

• The relevance of function calls and consequently the return statements
is not completely perfect. If inside an function a second function call is
made, which is possible, than the return value of the second function call
is relevant or irrelevant based on the return value of the first function call
and not based on the relevance of the second function call.

To conclude we show that our implementation performs according to the theory
by recalling the example of section 5.2:
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Figure 6.1: Example showing minimal number of resets is not sufficient

Our tool outputs (next to the transformed .xml model) the following:

Relevant: L1 - x - 1

B: In template 1 at edge L0 --> L3, variable - x - was reset to 0

A: In template 1 at edge L1 --> L2, variable - x - was reset to 0
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CHAPTER 7

Case studies

The work presented in the previous sections, theory and implementation, may
seem quite nice but the most important thing at the end is if the presented
work is performing as expected. In order to show that our algorithm does what
we claim it does we present three case studies, showing that reductions are
achieved. An even more important part of these results is that we make it
easier for modellers to specify their models by reducing the overhead of making
sure the state space is minimal.
For each of the three case studies we start by providing some background infor-
mation about the case study and presenting the UPPAAL models we are going
to use, followed by the actual results.

7.1 Case 1: Handshake Register

In [30] Van de Pol and Timmer use a model of a handshake register of Hesselink
[20] to evaluate their reduction algorithm for linear process equations. We have
remodelled their models and our algorithm, as expected, can achieve similar
reductions.

We first transform the Writer and Reader process (algorithms 17 and 18) to
UPPAAL models (see figures 7.1 and 7.2). There are various aspects we have
modelled slightly different than in the original models:

• We use the data set D to represent the get(x) command.

• UPPAAL does not have the option to use bits as variables and booleans
are also not an option as they can not be used in an array of channels.
Therefore we model the bits as integers ranging from 0 to 1 and make use
of modulo 2 to flip a bit.
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Algorithm 17 The Writer

1: 0. get(x); a := ¬B;
2: 1.Y.a.(¬C.a) := x;
3: 2.C.a := ¬C.a;
4: 3.A := a; goto 0

Figure 7.1: UPPAAL model of the Writer process

Figure 7.2: UPPAAL model of the Reader process

The final step of the remodelling is the linear process equation of the Registers,
algorithm 19. The resulting model can be found in figure 7.3. This model is
a bit larger than the Reader and Writer models, but can not be split into two
distinct models. One could think this is possible looking at the linear process
equation which looks like to have two different parts for both Read and Write.
However the conditions in line 2 and 3 require that both models are combined
into one model. Consequently this leads to a larger model because all interleav-
ings should be captured in the model.

Algorithm 18 The Reader

1: 0.b := A;
2: 1.B := b;
3: 2.c := C.b;
4: 3.y := Y.b.c; put(y); goto 0
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Algorithm 19 The Registers

Y (i : Bool, j : Bool, r : {1, 2 , 3}, w : {1, 2, 3}, v : D, vw : D, vr : D)

r = 1 ⇒ beginRead(i, j) · Y (i, j, 2, w, v, vw, vr) (1)

+ r = 2 ∧ w = 1⇒ τ · Y (i, j, 3, w, v, vw, v) (2)

+
∑
x : D r = 2 ∧ w 6= 1⇒ τ · Y (i, j, 3, w, v, vw, x) (3)

+ r = 3 ⇒ endRead(i, j, vr) · Y (i, j, 1, w, v, vw, vr) (4)

+
∑
x : D w = 1 ⇒ beginWrite(i, j, x) · Y (i, j, r, 2, v, x, vr) (5)

+ w = 2 ⇒ τ · Y (i, j, r, 3, vw, vw, vr) (6)

+ w = 3 ⇒ endWrite(i, j) · Y (i, j, r, 1, vw, vw, vr) (7)

Figure 7.3: UPPAAL model of the Register process

7.1.1 Results

In order to calculate the total size of the state space we need to take care of two
things:

• In the original linear process equation there are no properties supplied.
However in UPPAAL we need a property that can be verified in order to
run the verifier and get the total size of the state space.

• UPPAAL does not communicate with the environment. The get(x) (in-
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put) method of the Writer is replaced by a random select, but we have no
direct replacement for the put(x) method of the Reader.

To solve both problems we check the following property: A� Reader.check imply
y >= 0. This will mark the variable y relevant at location Reader.check and
also cause the verifier to explore the total state space, making sure we get the
size of the total state space. The relevant marking of the variable y is necessary
because otherwise the whole process of reading/writing to the register would
not be relevant and the only relevant variables would be the variables used in
the indices of the synchronisation channels. If we run our tool on the UPPAAL
models of the handshake register we get the following resets:

In template 1 at edge _id0 --> _id4, variable - a - was reset to 0

In template 1 at edge _id3 --> _id2, variable - x - was reset to 0

In template 2 at edge S33 --> S13, variable - vr - was reset to 0

In template 2 at edge S32 --> S12, variable - vr - was reset to 0

In template 2 at edge S13 --> S11, variable - vw - was reset to 0

In template 2 at edge S11 --> S12, variable - v - was reset to 0

In template 2 at edge S33 --> S31, variable - vw - was reset to 0

In template 2 at edge S31 --> S32, variable - v - was reset to 0

In template 2 at edge S23 --> S21, variable - vw - was reset to 0

In template 2 at edge S21 --> S22, variable - v - was reset to 0

In template 2 at edge S31 --> S11, variable - vr - was reset to 0

In template 3 at edge _id15 --> _id14, variable - b - was reset to 0

In template 3 at edge _id15 --> _id14, variable - c - was reset to 0

In template 3 at edge check --> _id18, variable - y - was reset to 0

The next step is to verify both models against the same property and the results
can be found in Table 7.1. The number of visited states and stored states are
the same and therefore we only give one value, which we compare to the number
of states after transformation:

| D | States before States after Percentage
2 526080 42624 8,102%
3 13655472 323232 0,170%
4 Out of Memory 1377280
5 Out of Memory 4286880
6 Out of Memory 10935552

Table 7.1: Results of the handshake register case

Table 7.1 shows that a large reduction is achieved with a reduction that, manu-
ally, was not directly visible. Note that for 4,5 of 6 values of D this can not be
generated without our reduction. This result is comparable with the result from
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[30] and shows that the algorithm from their work can indeed also be applied
to UPPAAL models.

7.2 Case 2: Root contention protocol

The second case study is a remodelled version of the ‘Root Contention Protocol’
case study performed by Simons and Stoelinga [28]. They used UPPAAL for
the mechanical verification of the IEEE 1394 root contention protocol, which is
an industrial leader election protocol with timing parameters playing an essen-
tial role. By using UPPAAL in combination with step wise abstraction Simons
and Stoelinga investigate the timing constraints on the parameters, which are
necessary and sufficient for correct protocol operation.

Simons and Stoelinga needed to model their version at a time UPPAAL did
not support discrete variables but only supported clock variables. The original
model consists of Node processes of which one needs to be selected as the leader
and of Wire processes to one-directional connect two Nodes. Each Wire of the
original process is a buffer with two places for messages, but because discrete
variables were not available at that time each of the three possible messages is
hard-coded into the model as can be seen in figure 7.4. By making use of data
variables we can easily make the model clearer. In figure 7.5 the updated model
can be seen. The actual behaviour of the ‘Root Contention Protocol’ can be
found in the Node process (see figures 7.6 and 7.7). In this process very little
changes have taken place between the version of Simons and Stoelinga and our
version. We only needed to make sure that the Node process could communicate
with the new UPPAAL model of the Wires. The templates are put together
into the following system:

// Place template instantiations here.

Wire01 = Wire(0);

Wire10 = Wire(1);

Node0 = Node(0);

Node1 = Node(1);

// List one or more processes to be composed into a system.

system Wire01,Wire10,Node0,Node1;
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Figure 7.4: The old Wire model

Figure 7.5: The new Wire model
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Figure 7.6: The old Node model

Figure 7.7: The new Node model

7.2.1 Results

Having modelled the UPPAAL models, as described in the previous section we
now run our tool resulting in an transformed UPPAAL model with the following
resets:

In template 1 at edge filled_both --> filled_one, variable - m2 - was reset to 0

In template 1 at edge filled_one --> empty, variable - m1 - was reset to 0

In template 1 at edge filled_one --> empty, variable - x - was reset to 0

In template 1 at edge filled_one --> empty, variable - y - was reset to 0

In template 2 at edge rec_idle_slow --> snt_req, variable - x - was reset to 0

In template 2 at edge rec_idle_fast --> snt_req, variable - x - was reset to 0

In template 2 at edge rec_req_fast --> almost_root, variable - x - was reset to 0

In template 2 at edge rec_req_slow --> almost_root, variable - x - was reset to 0
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In order to measure the size of the total state space we check the following
property:

A� not deadlock

By running the UPPAAL verifier on both the original and the transformed
UPPAAL model we get the following numbers of the state space:

States explored States stored
Before 233 225
After 110 76

Table 7.2: Root contention protocol reduction property 1

It is clear that our tool achieves a reduction in the size of the state space. The
second property that we evaluate checks if the state filled both is ever reached,
ensuring that at some point both buffer places are filled.

E♦ Wire01.filled both

States explored States stored
Before 48 41
After 48 41

Table 7.3: Root contention protocol reduction property 2

These results show that the verifier does not have to visit the total state space
to evaluate this property, however it also shows that our tool does not cause in
increase in the number of states of the state space that have to be searched.
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7.3 Case 3: Shortest Tree Protocol for Wireless
Sensor Networks

While the previous two case studies did not incorporate the use of functions and
function calls the work of Everse on a Shortest Tree Protocol (STP) for Wireless
Sensor Networks (WSNs) [15] is just the opposite, containing only one node with
two self-edges. Most of the functionality is ‘moved’ to the imperative code mak-
ing the models an ideal candidate to show that our algorithm work on functions.

In his work Everse tries to answer the question whether formal verification is
suitable for supporting the design of wireless sensor networks. To answer this
question he looked at a routing protocol that attempts to build a Shortest Path
Tree in a distributed way. To answer the question he modelled the protocol
in three model checkers, UPPAAL, SPIN and PRISM and used these model
checkers to check various properties. We take a look at one of these UPPAAL
models and try to see if our reduction algorithm can find reductions for this
model.
For our case study we take a look at the UPPAAL protocol V1 as described
in the work of Everse. We present the UPPAAL model itself (Figure 7.8 along
with the global (Listing 7.1) and local (Listing 7.2) declarations. For a exact
description of the models we suggest to take a look at the descriptions in [15].

Figure 7.8: UPPAAL model of the shortest tree protocol

1 /∗∗∗∗
2 Sho r t e s t Path Tree p r o t o c o l f o r W i r e l e s s Senso r Networks
3 Author : W.M. Eve r s e
4

5 Simple model :
6 − A l l models can hea r each o th e r w i th l i n k q u a l i t y o f 100%
7 − Nodes ope r a t e s y n ch r onou s l y
8 ∗∗∗∗/
9 // Number o f nodes , i n c l u d i n g gateway ( s ) G

10 const i n t N = 4 ;
11

12 // Maximum number o f message rounds
13 const i n t MAXM = 10 ;
14

15 // Big number to r e p r e s e n t ‘ i n f i n i t e ’ d i s t a n c e
16 const i n t MAX DIST = 10000 ;
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17

18 // De f i n e type Node id , paramete r o f Node temp la t e
19 t y p ed e f i n t [ 0 , N−1] Node id ;
20

21 // S yn c h r o n i s a t i o n channe l to model message s end i ng / r e c e i v i n g
22 b roadca s t chan send ;
23

24 // Model a message as a s t r u c t
25 // msg . s i d = sende r i d and msg . d i s t = d i s t a n c e
26 meta s t r u c t {
27 Node id s i d ;
28 i n t d i s t ;
29 } msg ;
30

31 // Determine whether the g i v en node i s a gateway node
32 boo l i sGateway ( Node id node ) {
33 r e t u r n node ==0;
34 }

Listing 7.1: Global declarations of Figure 7.8

1 // Node c l o c k
2 c l o c k x ;
3

4 // Loca l round number
5 i n t M;
6

7 //Dis t−to−G per node (D[ y ] = d i s t−to−G from y , p e r c e i v e d by t h i s node )
8 i n t D[ Node id ] = {MAX DIST , MAX DIST , MAX DIST , MAX DIST} ;
9

10 // Msg coun t e r s pe r node (R [ y ] = #messages r e c e i v e d from node y )
11 i n t R [ Node i ] ;
12

13 // The s e l e c t e d pa r en t
14 meta Node id pa r en t ;
15

16 // Funct i on to de t e rm ine the minimum d i s t a n c e
17 i n t getMinimum (){ a r r a y }
18 meta i n t m inva l = MAX DIST ; // To ho ld the min . found so f a r
19 meta i n t t r y ; // To ho ld the nex t v a l u e
20 i f ( i sGateway ( i ) ) r e t u r n 0 ; // Minimum d i s t−to−G of G i s 0
21 i f ( M==0) r e t u r n MAX DIST ; // F i r s t round r e t u r n MAX DIST
22 f o r ( j : Node id ){
23 i f ( R [ j ] > 0 && j != i && D[ j ] < MAX DIST ){
24 t r y = M/R[ j ] + D[ j ] ;
25 i f ( (M % R[ j ] ) >= (R[ j ] / 2) ) t r y++; // Round to n e a r e s t I n t
26 i f ( t r y <= minva l ){
27 minva l = t r y ;
28 pa r en t = j ;
29 }
30 }
31 }
32 r e t u r n minva l ; // Return the min . found
33 }
34

35 // Funct i on execu ted on message r e c e p t i o n
36 vo i d r e c e i v e (){
37 R[msg . s i d ]++; // I n c r e a s e msg coun t e r o f s ende r
38 D[msg . S i d ] = msg . d i s t ; // Update Dis t−to−G of s ende r

Listing 7.2: Localdeclarations of Figure 7.8
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As one can see in both listings UPPAAL model of Everse uses a lot of the ‘ex-
tended’ and/or imperative features of UPPAAL such as arrays, structs, function
calls, for loops and if loops. This makes it an ideal case study to conclude that
our tool can handle all these kind of features.

7.3.1 Results

The results of the third case study are a little bit complicated and it looks like
no reductions can be achieved. However the cause of this is the meta keyword
(line 26 of listing 7.8) of UPPAAL, which is described in the UPPAAL help-file
as:

Integers, booleans, and arrays and records over integers and booleans can be
marked as meta variables by prefixing the type with the keyword meta. Meta
variables are stored in the state vector, but are semantically not considered part
of the state. I.e. two states that only differ in meta variables are considered to
be equal.

Since our tool marks the struct msg as a value passing variable there should
be some reductions possible. Therefore we remove the meta keyword in front
of the declaration of msg. This way we hope to show that our algorithm can
also detect it, helping developers as they do not have to mark these variables
meta manually any more. In Figure 7.4 one finds an overview of the size of the
total state space for different number of nodes for the original model and the
model with the meta keyword removed. We used the trivial property ‘A�true’
to generate the total state space.

| Nodes | With meta Without meta
4 201 385
6 1233 3107
8 8601 26265
10 67233 240607
12 564201. 2335685

Table 7.4: Model of everse: total state space size

When we executed our tool it looked like we achieved some reduction because
for the case of 4 nodes we got 268 states, which is larger than expected, and for
the case of 6 nodes and more we get, strangely, smaller state space than with
the meta keyword. The reason for this turned out to be that our tool does not
work correctly for broadcast channels, therefore these numbers were not correct.

We examined the model more closely and it turned out that the channel used
in the model is not a normal channel but a broadcast channel. A broadcast
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channel is an one-to-many channel in which the sender synchronises with all
corresponding receivers that are enabled. If no receiving edge is enabled then
the sending edge is still enabled (many can be zero). The complications of a
broadcast are that the receiving sides are executed in an arbitrary order pre-
venting us to introduce resets at the end of a receiving side.

We can conclude that our tool, at the moment, does not reduce the state space
for this case. However our tool does detect that the struct msg is a value passing
variable. Future changes in our tool could include that we do not reset value
passing variables but instead mark these variables as a meta variable resulting
in a reduced state space (see figure 7.4).
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CHAPTER 8

Conclusions

In this chapter we present the conclusions of our project. We first answer each
of the sub-questions followed by the the answer to the research question itself.
We conclude with some suggestions for further research.

Can the algorithm of [30] be translated to reduce the UPPAAL models by reset-
ting local variables?

Sections 4 and 5 show that the algorithm can be translated without too many
problems and by executing the same case study (section 7) as Van de Pol and
Timmer used we show that our UPPAAL version of the algorithm can achieve
similar results. Secondly our version also preserves the strong bisimulation of
the original algorithm as proven in chapter 4. However due to the more complex
nature of the UPPAAL language it was more than a simple translation as will
be clear from the other subquestions.

Is there a way to reduce the state space by resetting global variables without con-
structing the total state space?

Due to the parallel nature of UPPAAL it is not possible, for us, to reset global
variables because of all the possible interleavings between multiple processes.
Because if a global variable is relevant at a process it is not possible to predict
at which location all the other processes are. That is why a variable can seem
irrelevant at one process but be relevant at one of the processes causing simply
said that a global variable is relevant at (almost) all locations of all processes.
However we have been able to identify a special kind of global variables, the
value passing variables, that are solely used during synchronisation. We define
these variables and incorporate them into our algorithm in section 4.3.2, conse-
quently defining how to reset these variables in section 5.4. Finally, in the last
case study, we suggest how to extend the definition of value passing variables
to broadcast channels by marking these variables as meta variables

How can the algorithm be extended to include the state invariants of UPPAAL?

It turned out that the state invariants could easily be incorporated into the

85



original algorithm, translated from [30] to handle UPPAAL models. See clause
2 of definition 20. This clause shows that variables used in an invariant can be
marked relevant in a way similar to variables used in a guard.

How can we incorporate the different features of UPPAAL into the algorithm?

This part of the research proved to be the most difficult as the language used in
UPPAAL has been extended over the years by various constructs and features
which we needed to incorporate into our design. We summarise how we handled
these various structures:

• The function calls and the corresponding functions with their side effects
were unfolded and thus eliminated by Definition 5 transforming a network
of timed automata into a network of simple timed automata.

• Section 4.3.1 explains how we handle array variables,with non constant
indices, in such a way that our algorithm also correctly marks these vari-
ables relevant.

• Instead of marking all variables used in a property relevant we improved
this part of the algorithm in section 4.3.3 by ‘predicting’ the result of the
evaluation of (sub)properties for certain locations.

• In chapter 6 we describe how we deal with the various features of the tool
UPPAAL, like structs, templates and template parameters.

Is the tool beneficial for end users of UPPAAL, releasing them from optimizing
the model for efficient verification?

The tool is definitely beneficial for users of UPPAAL because it offers the users
an option to automatically insert resets at the correct places. This way the users
have to worry less about achieving a minimal state space as the tool already
takes care of it. The buffer used in case study 2 about the root contention proto-
col demonstrates this. One could suggest that a developer also could manually
reset buffer places after getting the value stored in the buffer. However, using
our tool, the developers no longer need to do this manually, which is always
error prone, and can concentrate on different things.

What can control flow analysis applied to UPPAAL models achieve?

We have shown that our tool can handle the complicated language of UPPAAL
models and can achieve reductions in various cases. It also turned out, during
our research that most of the models used in various papers do not benefit from
our tool. The main reason for this that, until now, developers, most of the time,
applied the described resets manually. This manual resetting of variables by
developers leads to the main benefit of our research being that we have shown
that our algorithm and tool can simplify the modelling process for developers.
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8.1 Future work

Although the algorithm looks finished there are some more things that can be
considered to improve the algorithm such as the combination with other known
techniques or some small improvements. We now describe these suggestions for
future research.

Expression substitution In section we presented two possible solutions to
the problem of assignments to irrelevant variables. One of the options was to
remove these assignments completely, however this was not possible because a
variable can be irrelevant at both source and target of an edge but this does
not mean that a variable is than automatically irrelevant at the point of the
assignment. Therefore we chose for the second option to introduce extra resets
for these assignments making sure irrelevant variables always (at a location)
have its initial value.

However if we take a look again at Figure 5.2 it seems that it is beneficial to
substitute the right hand side of the assignment to b at further uses of b and
consequently removing the assignment to b resulting in the edge as shown in
Figure 8.1.

l1 l2
a = test[c+ 2])

Figure 8.1: Substitution of assignments to irrelevant variables.

Combination with constant propagation In section 2.2.4 we we gave a
short view on the compiler optimisation theory called constant propagation. It
could be that by using constant propagation on UPPAAL models it turns out
that for certain models certain branching conditions are either constantly true
or false. Therefore some branches could prove to be unreachable making the
use of the variables inside this branch irrelevant. The same technique technique
can be used in combination with array indices. If we can ‘predict’ the value of
an array index we will, when marking an array variable relevant, not have to
mark the array variable relevant for all possible options of the range of an index.
Both options can lead to a smaller set of relevant variables and possibly more
resets.

Improve on the equivalence relation While the first two suggestions for
future work were relatively concrete, the last one is more a small piece of brain-
storming. Recall the equivalence relation ∼= as presented in section 4.2, which
was defined as:

s ∼= s′ ⇔ l̄s = l̄s′∧∀a ∈ A : (Relevant(a, s)⇒ vals(a) = vals′(a)), where s, s′ ∈ S
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The first part of the right hand side of this equation, l̄s = l̄s′ , may offer possi-
bilities for further study. Is this part required or can we make this requirement
less strict making it possible to incorporate for instance symmetry.
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