
Visually Representing and Manipulating
Hardware Descriptions in Viskell

Wander Nauta
University of Twente

P.O. Box 217, 7500AE Enschede
The Netherlands

w.nauta@student.utwente.nl

ABSTRACT
This paper investigates how the Viskell visual Haskell program-
ming environment can be used for describing complex hardware
in CλaSH. In particular, two concepts are discussed that are im-
portant in hardware design and CλaSH programming specifically,
but do not normally arise when writing a functional program. Fist
of all, in CλaSH, functions can contain memory and therefore
have state. Secondly, when designing hardware it is useful to
simulate the system that is being designed, showing changes to
its state over time. We have added these concepts to the Viskell
environment. To show the feasibility of using the combination of
Viskell and the CλaSH compiler to design real-world hardware,
we have developed a synthesizer chip that can play a simple tune.

Keywords
architecture design, visual and functional programming, Haskell

1. INTRODUCTION
Integrated circuit design was historically a manual process. As
the design of integrated circuits became larger and more complex,
the process of designing these circuits was automated. Schematic
capture tools aided in creating hardware from schematics. Hard-
ware description languages and logic synthesis tools started to
appear, which could automatically place and route components to
match a description of the intended behaviour.

Both hardware description languages in common use today, VHDL
and Verilog, first appeared in the 1980’s. They have since been
extended and improved. However, we believe that the level of
abstraction that these languages offer is still not high enough, and
that more productivity gains can be achieved. The topic of this
paper is to evaluate whether the visual programming environment
Viskell, paired with the hardware description language CλaSH,
could be a good approach to hardware design.

Section 2 will give a short overview of the problem domain and
the related work this research is built on, both regarding the
hardware design aspect as well as the visual programming aspect.
The following section, section 3, will describe the problems that
needed to be solved and changes that needed to be made to make
Viskell work with CλaSH. We continue with a description of our
demonstration project, in section 4, and finish with suggestions
for future work and conclusions.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
24th Twente Student Conference on IT Jan 22nd, 2016, Enschede, The
Netherlands.
Copyright 2016, University of Twente, Faculty of Electrical Engineer-
ing, Mathematics and Computer Science.

2. BACKGROUND
The research builds on top of both the CλaSH [1] and Viskell [3]
projects and seeks to combine the two into a tool that is useful for
hardware designers. This section is meant as a short background
on both projects. A description of CλaSH is given in section 2.1,
while Viskell is discussed in more detail in section 2.2.2.

2.1 CλaSH
CλaSH is a compiler that allows writing hardware descriptions in
(a subset of) the Haskell programming language. It uses Haskell
itself as a high-level hardware description language. Programs
written in CλaSH are valid Haskell programs, and can be executed
to simulate and test the described hardware. CλaSH code can also
be translated into a hardware description in VHDL, Verilog or
SystemVerilog by the CλaSH compiler. This hardware description
can then be used to synthesize actual hardware and program
FPGAs.

At a very high level, the CλaSH compiler applies the following
transformations:

• Function definitions are seen as ‘blueprints’ for a component,
describing both their structure and their behaviour.

• Function application is then the instantiation of such a
blueprint. In other words, a function application will be
synthesized into an actual piece of hardware.

• Static recursion, recursion where the recursion depth is
known (decidable) at compile time, is transformed into
repetition: repeating components and placing them side
by side. Recursion implicitly leads to parallel hardware in
CλaSH: the various invocations of the components run in
parallel.

• Choice, which would arise from Haskell constructs like
pattern matching, is transformed into components for cal-
culating each of the alternatives (‘branches’), as well as a
multiplexer for choosing the alternative that applies.

Not all possible Haskell programs can be compiled with CλaSH.
Programs that contain unbounded recursion, where the recursion
depth is not known at compile time, do not have a sensible repre-
sentation in hardware. Also, values have to be representable as
series of bits (wires), which means that there are some restrictions
on the types that can be used. The length of a Haskell list, for
example, is not known at compile time. Regular lists can therefore
not be used with CλaSH. Instead, CλaSH offers a fixed-size vector
type, Vec, which offers much of the same operations. In a similar
fashion, functions can be passed around as in Haskell, but CλaSH
has to be able to remove this abstraction at compile time to be able
to produce actual hardware. In practice, CλaSH code looks very
much like Haskell code (see figure 6 for an example).

The hardware descriptions that CλaSH generates can be used
to build application-specific integrated circuits (ASICs), or to

1



program field-programmable gate arrays (FPGAs). Application-
specific integrated circuits are, as the name implies, application-
specific: they are designed and built for a specific purpose. FPGAs,
on the other hand, can be reprogrammed after they are made (‘in
the field’) to perform different functions. For this research, we
have focused on FPGAs only; although FPGAs are expensive, the
cost of building an ASIC production line for a single demonstration
unit, which would then be used once, would have been prohibitive.

2.2 Visual programming languages
Almost all programming languages are visual: they represent
abstract concepts or computations using symbols. Most of these
languages are textual: they use keywords, usually from English,
and punctuation, usually from mathematics, to convey structure
and meaning. The term ‘visual programming language’ is usually
reserved for languages that are not textual. For this section, and
in the rest of the paper, we will limit the definition of the term
‘visual programming language’ even further to ‘a programming
language that use a visual notation with nodes and lines’.

2.2.1 Domain-specific languages
The nodes-and-lines concept is sometimes used in places where a
lot of flexibility is required, but where the user is not necessarily a
programmer.

For example, the node-based compositor interface that exists
in some 3D modeling packages like Blender [2] allows non-
programmers to create materials by combining images, values,
and functions in a visual manner. These materials are not programs
in and out of themselves: they do not have control flow, only data
flow, and there is no way to do iteration or recursion. However,
they do allow artists to create images that would otherwise require
hand-written shader programs.

Some game engines, including the Unreal Engine, have domain-
specific visual scripting languages that blur the line between
‘merely’ a visual data representation and a programming language.
These so-called ‘blueprints’ [4] are written in a visual representa-
tion of a simple (typed) imperative scripting language that includes
arrays, control flow, and function abstraction.

2.2.2 Viskell
The Viskell [3] project started in the beginning of 2015 as a second-
year design project. It was inspired by the Lambdas with Bowties
project by Philip Hölzenspies, and it tries to find a readable and
compact way to visualize functional programs. So far, it has
produced a proof-of-concept visual environment that allows the
user to write programs in a (growing) subset of Haskell.

Viskell follows a boxes-and-wires model, where boxes represent
the application of Haskell functions, and wires represent the flow
of data from one function application (use of a specific function)
to another. For example, to add two numbers together, they would
be connected to the input anchors of an application of the (+)
function. Functions can be partially applied, as in Haskell, by
dragging arguments from the input side (top) to the output side
(bottom), as the fib function is in figure 3.

A few language constructs from Haskell have Viskell counterparts.
Lambda expressions, which define anonymous functions, become
teal-colored lambda blocks in Viskell, which are discussed in more
detail in section 3.1. To represent choice, a case block (in maroon)
is available. The alternative (lane) that gets used depends on the
condition, which can be a pattern (in light blue) or a boolean value
(a guard). Choice blocks are read from left to right: the leftmost
lane that has a matching pattern, or a guard that evaluates to True,
gets used. Both these constructs are used in figure 4.

Some commonly-used functions also have special blocks. For
example, the (,) function that combines two values into a tuple can
also be represented with a joiner, the funnel-shaped blue block in
figure 1. Finally, constant values are in pink-colored blocks.

Figure 1. Part of a screenshot of Viskell.

Viskell is also a live programming environment: the user’s pro-
gram is type-checked and executed while the user is working on
it. Errors, specifically type errors, are highlighted immediately
and automatically, and widgets such as sliders allow for quick
adjustment of input values. This immediate feedback allows for
easy and quick exploration.

The environment is designed to be used on touch-sensitive devices,
like tablet computers and table-sized multi-touch enabled screens.
When used on a large multi-touch screen, it can be used bymultiple
users at once, for pair programming or joint experimentation.
Viskell is also usable with mouse and keyboard.

Besides being immediately executed, the Haskell code that Viskell
generates can also be viewed and exported. However, the generated
code is not intended to be human-readable, as can be seen in figure
5.

2.2.3 Related projects
Other experimental programming environments for functional
programming languages exist.

The Lamdu [5] live programming environment shares a few im-
portant characteristics with Viskell: it supports live type checking
and live execution of programs, like Viskell does. However, the
language that Lamdu targets is a language based on Haskell, while
Viskell targets Haskell itself. Lamdu does not use the nodes-
and-lines concept that Viskell uses. Instead, program logic is
visualized as a tree that is automatically formatted.

Visual Haskell is an earlier visual notation for Haskell, introduced
by John Reekie in [7]. Like in Viskell, boxes represent the
application of functions, and lines represent the flow of data from
one such application to another.

There are also differences. Visual Haskell intends to find a visual
syntax for every construct in the Haskell language, while Viskell
does not. It also intends to allow an end user to switch between
textual and visual representations of the same program, andmixing
textual and visual elements. These are not current goals for Viskell.
There are superficial differences as well: Visual Haskell makes
more use of icons and iconography than Viskell does, for example
to show the types of values that lines carry. In Viskell, data flows

2



by convention from top to bottom, while in Visual Haskell, it
mostly flows from right to left.

Reekie introduces a way of using Visual Haskell to program
digital signal processors (DSPs). This, too, has a few similarities
with Viskell/CλaSH: Visual Haskell programs can work with
signals, which are called streams in the thesis but work and will be
discussed in section 3.2. In addition, Visual Haskell is intended to
look similar to a hardware block diagram.

3. DESIGN
This chapter describes the changes that were applied to Viskell to
make it usable for working with CλaSH.

3.1 Large programs and hierarchy
The CλaSH compiler, as mentioned in section 2.1, translates
Haskell function definitions into hardware descriptions. Each
Haskell function gets its own module (entity) in the resulting
hardware description language (HDL) code, to make it more
obvious which HDL code represents which part of the CλaSH
program. To support this, we have added support for Haskell
function definitions (‘toplevels’) to Viskell. With this addition,
there are two ways of abstracting and reusing functionality in
Viskell/CλaSH:

Lambda blocks define a lambda function: an anonymous function
where the argument and result types are unnamed. These blocks
can be used like regular blocks: their result is a lambda. The
output anchor of lambda blocks can be connected to blocks that
expect a function, like the Haskell map function. Lambda blocks
are teal-colored in Viskell.

Lambda blocks can optionally have a fixed type, as well as a name.
Because they have a name, functions defined in definition blocks
can be used in different places in a Viskell program without having
to drag a connection between them, making definition blocks
useful for reusing common subexpressions.

Toplevels are not blocks themselves, but containers for blocks
with a name and type. They map to functions in Haskell, which
then correspond to HDL files when the output is compiled with
CλaSH.

Viskell/CλaSH projects are then a hierarchy of these containers.
A project contains multiple (Haskell) modules, each of which can
have a number of toplevel function definitions. Toplevel functions
are made up of blocks, including lambda and definition blocks.
The hierarchy can be navigated by using a breadcrumb navigation
bar, as shown in figure 1: the user is currently editing the ‘adsr’
toplevel function, inside the ‘Envelopes’ module, which is part of
the ‘Synth’ project, our example synthesizer.

3.2 State and signals
The Signal type from CλaSH is a type that is conceptually similar
to an infinite sequence of values. Every element of the sequence
represents a stable value at a single moment in time. The Signal
type allows the CλaSH programmer to work with memory, and
more generally with state.

In CλaSH, the register function is a function that returns its input
signal delayed by one clock cycle. In other words, the register
function behaves like a hardware register that is continuously
overwritten: every cycle, it will output the previous value and read
the next. (Contrary to a ‘real’ (hardware) register, the register
function has an additional argument that supplies its initial value.)

In Viskell, connections that carry Signals are presented in a
different color than connections that carry ‘regular’ values: normal
connections are black, while Signals are blue. (A Signal-carrying
connection is shown in figure 2). Some common operations can
be used on signals directly; for example, when the (+) function
is used to sum two Signals of numbers, it behaves like an adder
would in hardware, adding each pair of values from both signals

Figure 2. Fibonacci generator, implemented with signals

Figure 3. Fibonacci generator, implemented with mealy

together. Other functions can be lifted so that they work on signals,
either using the fmap function from CλaSH or the ‘lift’ button
from Viskell’s right-click menu.

Figure 2 shows an implementation of a simple function with state
in Viskell/CλaSH. The function contains two registers, which
both store integer numbers. The initial value of both registers
is a constant, the integer one. Every clock cycle, the two (old)
numbers are summed using the Signal-aware version of (+). This
sum gets written to the first register through a mechanism known
as feedback. The second register meanwhile takes the old value of
the first, which means it is delayed by two clock cycles total. As
shown in the simulation block, the entire fib function generates
Fn = Fn−1 + Fn−2, which is the Fibonacci sequence. (The
function’s input is disconnected and ignored.)

The function in figure 3 also generates a Fibonacci sequence,
but uses a Mealy machine [6] instead of using signals in the
implementation itself. A Mealy machine is a function that, given
a previous state and an input, gives a new state and an output. In
our example, the ‘fib’ function is such a function. (Note that, like
in figure 2 but unlike in most Mealy machines, the input value is
ignored.) The state in the example is a tuple (pair) that contains
the previous two Fibonacci numbers. This tuple is immediately
split using a splitter block. The Fibonacci number on the right
in the old state switches places in the new state: it moves to the
other position in the tuple. The other element of the new state
is the sum of both numbers in the old, added together using the
regular (+) function from Haskell. Finally, the new state and the

3



output value (the oldest value) are combined and connected to the
function’s output. The new state is therefore (Fn, Fn+1) and the
output is simply Fn.

Working with Signals is not obligatory: the two implementations
in figures 2 and 3 could be used interchangeably. When the second
implementation is combined with the mealy function, they have
the same type and the same behaviour.

The first approach has the advantage that it will likely look similar
to its implementation in hardware: it will probably be synthesized
as two registers and an adder, just as the Viskell implementation
contains two register blocks and a (+) block. It also makes the
registers explicit, which makes the data flow between the registers
more obvious.

However, the mealy approach is arguably higher-level. The
important logic in the example is described as a pure, functional
Haskell function. Where the state is stored is implicit. When
some logic can be cleanly described as a Mealy machine, that is,
a function taking an input and a state and resulting in an output
and a state, the mealy function can help avoid having to work with
signals directly.

Both approaches are valid, and it will depend on the problem at
hand which approach is clearer or easier to understand.

3.3 Time and debugging
To aid in debugging and testing stateful functions and functions
that work on signals, we have added the simulation block (the
green block in figures 2 and 3). It is an interface for the CλaSH
built-in simulate function that takes a function as its input and
simulates it, generating a simple increasing sequence as its input
and showing the result of evaluating the function up to that point.

The simulation block has a stepping function: every time the
‘Step’ button is touched, the CλaSH function is evaluated for one
additional ‘clock cycle’. This would be comparable with clicking
through a program in an ordinary debugger.

Of course, it is possible to combine the input that the simulation
block generates with a different input signal (stimulus). If the
stepping ability is not required, the simulate function from CλaSH
can also be used directly.

4. DEMONSTRATION PROJECT
Amajor part of the research was to discover whether it was possible
to build synthesizable CλaSH descriptions of nontrivial hardware
in Viskell. We decided to show this possible by doing it: we have
built a demonstration project in CλaSH/Viskell.

The demonstration chip is a synthesizer: a device that has a number
of keys for input, and generates sound as its output.

The synthesizer is polyphonic: multiple notes can be generated at
the same time. A number of oscillators are available, as well as
an attack-decay-sustain-release envelope generator or ADSR. The
oscillators are responsible for generating sound waves, which can
be either square-, sawtooth- or sine-shaped. The ADSR controls
the amplitude of the generated sound waves.

On real musical instruments, the amplitude of the sound is not
constant but instead follows a curve. The ADSR roughly emulates
this curve, basing the amplitude on the time since a key was
pressed or released. When a key on a piano is pressed, it takes a
short time (the attack time) for the sound to reach its maximum
loudness. After it reaches its peak, the sound gets quieter (the
decay time). If the sustain pedal is pressed, the volume becomes
more or less constant after this decay time. Finally, when the
key is released, pianos have a damper for every key that quickly
(during the release time) dampens the sound. The demonstration
chip simulates this by having the loudness of the generated sound
follow a similar curve, making the output sound less artificial.

The CλaSH code for the demonstration project has been imple-
mented in Viskell. However, the entire implementation would be
too large to legibly fit here. Instead, we will show and describe a
representative part, the sine wave oscillator, below.

4.1 Sine wave oscillator
The sine wave oscillator is responsible for generating a sine wave.
A sine wave is a sound wave that has no harmonics: it sounds
‘smoother’ than other waves.

To generate a mathematically accurate sine wave on the fly, or even
a polynomial approximation of one, would be relatively intensive.
Instead, the sine wave oscillator from our demonstration chip uses
a wave table. A block of read-only memory contains half of a sine
wave, stored as a vector of sixteen-bit numbers. Only the positive
half of the sine wave is stored (i.e. the values of sin(x) where
0 ≤ x < π).

The table contains 1024 entries (samples), but it can return 2048
different values. When the index requested is above 1024, the
address is wrapped around and the result is inverted (since sin(x) =
−sin(x − π)).

The Viskell code for this part of the demonstration project is shown
in figure 4. The asyncRomFile function is from CλaSH, and reads
a file on the machine running the CλaSH compiler. That file,
here abssin.dat, is put into a block of read-only memory on the
final device. The size of the memory is fixed. The asyncRomFile
function finally takes a read address, which is attached to the
lambda’s argument. The result, coming from the block of memory,
is unpacked into a signed 16-bit integer. If the address is below
1024, it is passed along as-is. (The identity function id in Haskell
returns its argument unchanged.) If not, the sample is negated and
then returned. All blocks are then wrapped in a definition block
named sinOsc.

The raw Haskell code that Viskell generates from this is shown
in figure 5. Viskell’s output is a graph of let-expressions: each
block is converted into a let-expression, and refers to other blocks
by name. As mentioned in section 2.2.2, the generated output is
not intended to be human readable: it is only ever read by GHC
(or CλaSH in this case), which will simply ignore (inline) most of
the trivial names. With some manual inlining and reformatting,
the code is equivalent to the Haskell source in figure 6.

The generated code from figure 5 can be put into a file, which
can then be translated by CλaSH into a number of VHDL files.
These VHDL files can in turn be compiled into a register-transfer
level (RTL) design by a VHDL compiler like Quartus. The VHDL
source for our sine wave oscillator would be too long to reproduce
here, but Quartus can generate a diagram of the compiled design,
which is included as figure 7.

When looking at the RTL diagram at a 90-degree angle, it is easy to
draw parallels between it and the original Viskell implementation
of figure 4. There are a few differences between the end result
and the Viskell version; for example, the unpack and id functions
have been optimized away entirely, and the read-only memory we
specified turns out to be a RAM memory with its write-enable
port stuck on 0. However, the comparison (LessThan0), negation
(Add0) and conditional (bodyVar) parts are clearly visible.

5. RESULTS AND EVALUATION
All components of the demonstration project can indeed be im-
plemented in Viskell, and the generated code can be compiled by
CλaSH to produce actual hardware.

The information density of Viskell is lower than that of textual
Haskell, and therefore lower than that of textual CλaSH. In our
experience, a logic fragment implemented in Viskell will take up
more screen space than its textual equivalent or even a description
in English (compare figures 4 and 6) at legible text sizes.

4



Figure 4. Viskell for the sine wave oscillator

(let {} in (\ a_0__71b6dfcb -> (let {val__267acf83 = (1024); res__1f20efe2 = (unpack
res__7f8d0877); res__7b653b4b = ((mod a_0__71b6dfcb) val__267acf83); val__7f95f0fb = (
"abssin.dat"); val__68cc9325 = (d1024); res__7f8d0877 = (((asyncRomFile val__68cc9325)
val__7f95f0fb) res__7b653b4b); choiceoutput__581bbaf5 = case (()) of {() |
res__49377758 <- (((<) a_0__71b6dfcb) val__267acf83), True <- res__49377758 ,
res__1ae92258 <- (id res__1f20efe2), True -> res__1ae92258; () | val__1444fb56 <- (
otherwise), True <- val__1444fb56 , res__5485e1a3 <- (negate res__1f20efe2), True ->
res__5485e1a3; }; } in choiceoutput__581bbaf5)))

Figure 5. Viskell-generated Haskell code for the function in figure 4

sinOsc t = if (t < 1024) then (id sample) else (negate sample)
where sample = unpack (asyncRomFile d1024 "abssin.dat" (t ‘mod‘ 1024))

Figure 6. Cleaned-up (but functionally equivalent) Haskell corresponding to figure 5

Synth_sinOsc_1:Synth_sinOsc_1_repANF_0

clk_i1.product0_sel1[31..0]

clk_i1.product0_sel0[31..0]

topLet_o[15..0]

+

Add0
A[17..0]

B[17..0]18'h1
OUT[17..0]

=

Equal0
A[31..0]

B[31..0]32'h0
OUT<

LessThan0
A[31..0]32'h400

B[31..0]
OUT

\asyncROMFile_n_18:ROM_n_19

SYNC_RAM

WE
1'h0

DATAIN[15..0]
16'h0

WADDR[9..0]
10'h0

RADDR[9..0] DATAOUT[15..0]

bodyVar_0~[15..0]
0

1

1
5
,1

5
:0

6
:0

7
:0

Figure 7. RTL diagram for the sine wave oscillator generated from figure 5

5



More time was spent on the layout of the Viskell program than
on the layout of the Haskell program. Especially trying to find a
layout that communicated the intended meaning well was, in the
author’s opinion, more difficult in Viskell than in Haskell, where
well-known conventions and tools for formatting and code layout
exist. Adding to the difficulty of formatting a Viskell program was
that there was a balance between trying to find a compact layout,
and finding a layout where the graph was mostly planar (that is,
where none of the wires crossed).

Whether the visual or the textual version of the synthesizer is
easier to read and understand is likely to be subjective, and will
depend at least in part on the reader’s familiarity with Viskell,
Haskell, and CλaSH.

6. FUTURE WORK
There is much work, both in research and in development, left to
be done on Viskell/CλaSH and on Viskell in general. There are
many open questions that could be answered and a great number
of missing features that could be added.

Compilation process The process of taking Viskell’s output and
compiling it first with CλaSH, then taking the CλaSH output and
compiling that with a HDL compiler, is not yet automated and has
to be done manually. Ideally, one would integrate both compilers
into Viskell so that the manual procedure is no longer necessary.
However, most FPGA vendors have their own compilation and
synthesis tools, and these tools usually do not work with other
FPGA’s. That would mean many such integrations would have to
be developed.

General improvements Not all the Viskell improvements de-
scribed in the research proposal have been implemented yet.
Especially saving and loading programs would make Viskell a
lot more useful, and additional tools for structuring programs
would be very practical. Ideally, there would be an easy way
to convert pieces of a Viskell program between different forms:
grouping parts of a Viskell program into a lambda expression,
turning a lambda expression into a toplevel, and so on, comparable
to the extraction and inlining of functions in other programming
languages. However, while general improvements like these would
be a good avenue for further development, they would not be a
good fit for further research.

User research This research focused on seeing if it was possible
to describe hardware in Viskell. We have not evaluated the
productivity of doing so, or how it compares to using just CλaSH,
or just a hardware description language directly. It could be
interesting to do this comparison, especially for different target
audiences.

7. CONCLUSIONS AND DISCUSSION
We have demonstrated that Viskell, when combined with CλaSH,
is a possible tool for developing hardware designs. The demon-
stration project, a polyphonic synthesizer, shows that non-trivial
hardware can be implemented in Viskell, generated as CλaSH,
compiled to a hardware description language and finally used on a
field-programmable gate array.

However, developing the demonstration chip did not prove that
Viskell is a productive tool for describing hardware. During the
development of the demonstration project, much time was needed
to make the layout of the Viskell program look just right. Some
time was also lost to interfacing Viskell, the CλaSH compiler,
and the HDL development environment. We believe that more
work needs to be done to make Viskell/CλaSH a comfortable
environment for developing programs.

Finally, more research is required to see how productivity when
working on CλaSH code in Viskell compares to writing hardware
descriptions in ‘regular’, textual CλaSH.

8. REFERENCES
[1] C. P. R. Baaij. Digital circuits in CλaSH: functional

specifications and type-directed synthesis. PhD thesis,
Enschede, Jan. 2015. http://doc.utwente.nl/93962/.

[2] Blender Foundation. Blender reference manual: Compositing.
https://blender.org/manual/en/compositing/. Accessed Dec.
07 2015.

[3] M. Bruning, K. Hartsuiker, J. J. Kester, W. Nauta, and
D. Snijders. Report on Viskell, July 2015. Report of a design
project for Technical Computer Science, University of
Twente.

[4] Epic Games. Unreal Engine 4 Documentation: Blueprint
User Guide. https://docs.unrealengine.com/latest/INT/.
Accessed Dec. 07 2015.

[5] E. Lotem et al. Lamdu. https://peaker.github.io/lamdu/.
Accessed Oct. 07 2015.

[6] G. H. Mealy. A method for synthesizing sequential circuits.
Bell System Technical Journal, The, 34(5):1045–1079, Sept
1955.

[7] H. J. Reekie. Realtime Signal Processing: Dataflow, Visual,
and Functional Programming. PhD thesis, Sidney, Sept. 1995.
http://ptolemy.eecs.berkeley.edu/~johnr/papers/thesis.html.

6


