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ABSTRACT

Over the last few decades, risk analysis of maintainable
systems has played an increasingly important role in the
industry. One of the most common methods used for risk
analysis is fault tree analysis. In standard fault trees, a
component can be either failed or not. However, in real-
ity, the degradation of a component is often a continuous
process, which currently cannot be modeled in standard
fault trees. The goal of this is paper is to introduce an
extension to standard fault trees that will support con-
tinuous degradation processes and strategies for analysing
the extended model using UPPAAL.
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1. INTRODUCTION

Over the last few decades, the number of maintained auto-
mated systems has seen a steady growth. This has caused
the reliability analysis of such systems to play an increas-
ingly important role in the industry in order to achieve
higher reliability at lower costs.

One of the most common methods used for reliability anal-
ysis is fault tree analysis (FTA)[6]. Fault trees (FTs)
are used to model dependency-relations of components in-
side a system and can be used for identifying the possible
modes of failure within a system. In FTs, the failure of
individual components is represented by probability-based
basic events (BEs). BEs can be combined into compound
events through various gates (i.e. AND, OR, etc.) to
model the failing of a larger subsystem and therefore the
propagation of failures in a system.

In standard fault trees (SFTs), a basic event can only have
two states: either working or failed. In reality, however,
the degradation of (physical) components of a system is
a continuous process[2] that can (at least partially) be re-
versed by repairing the component before it fails. The use
of continuous degradation processes in F'T's allows for more
accurate models and therefore possibly smarter mainte-
nance strategies. Since SFTs and the corresponding anal-
ysis tools have no support for continuous degradation pro-
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cesses by default, it is necessary to create an extension to
SFTs that will allow this. There has already been work in
this direction [4], which provides an DFT extension that
supports multiple stages of degradation. This goal of this
paper is to provide an extension to SFTs supporting com-
pletely continuous degradable components. Furthermore,
the paper will answer the following subquestions:

RQ1 What is the state of the art in modelling fault trees?

RQ2 What is a suitable modeling tool for fault tree and
its proposed extension?

RQ3 How can continuous degradation functions be mod-
elled?

RQ4 How can continuous degradation functions be inte-
grated into fault trees?

RQ5 How to validate the proposed model?

RQ6 What is a suitable method for getting reliability in-
formation from the model?

RQ7 What is a suitable method for getting information
on maintenance intervals?

First, section 2 gives an overview of background informa-
tion and related work. Section 3 describes the method for
integrating continuous degradation function in fault trees
and the validation the proposed model. Section 5 dis-
cusses the results of the paper. Lastly, section 6 contains
the conclusion of the paper.

2. BACKGROUND & RELATED WORK
2.1 Fault Trees

Fault trees are a method of modelling the propagation
of component failures inside systems as a tree. BEs, the
leaves of the tree, represent the possible failures of compo-
nents. In standard fault trees, events can have two states:
active and failed. The transition between these states is
often modelled with a failure rate that often grows expo-
nentially over time.

The propagation of events within a system is described
with gates. Gates can have multiple event-inputs from
which new, compound events can be generated. Standard
fault trees support four kinds of gates:



()
=

Figure 1: Example of a fault tree

AND This gate has multiple inputs and only
triggers an event when all of them fail.
OR This gate also has multiple inputs and
triggers an event when at least one of
them fails.
k/N This gate has N inputs and triggers an
event when a least k£ of them fail.
INHIBIT This gate has exactly two inputs and func-
tions like an AND-gate with two inputs.
It is only used as a semantic nuance to the
AND-gate.

An example of a FT is given in fig. 1. The system S con-
sists of three fail-able components, described by the BFEs
A, B and C. A and B are connected to an AND-gate,
which will only generate an event when both, A and B,
have failed. The AND-gate and C are connected by an
OR-gate, which will generate an event if either one of the
subsystems fail. Since the system S is directly connected to
the OR-gate, S will fail simultaneously with the OR-gate.

2.2 Degradation Processes

The degradation of a material is the change (to the worse)
of its internal structure and therefore the change of its
properties, i.e. strength, due to external influences over
time. This can be caused by many different (external) fac-
tors, for instance, the stress [5] that is applied, the temper-
ate that it is subjected to or corrosion. The effect of degra-
dation on materials can appear in many different forms,
most prominent being loss of strength, deformation and
possibly failure, which can lead to a loss of performance
of a component and higher maintenance costs.

For objects made of simple materials (i.e. pure metals)
experimental data is often readily available, although for
more complex components like compound materials (i.e.
alloys) or objects made of multiple materials use case spe-
cific material experiments have to be carried out. Since
this degradation process is influenced by too many vari-
ables to model, the overall degradation process of a compo-
nent is often simplified using failure probability over time
[2].

2.3 Dynamic Fault Trees

For more complex models, it can be difficult or even impos-
sible to implement them using SFTs, since they do not al-
low for more complex dynamic behaviour. Dynamic fault
trees[1] are an extension to the standard fault trees, inte-
grating more dynamic behaviour like spare components or
dependent components.

DFTs support a variety of additional gates:

SPARE, SPARE,

ojols

Figure 2: Example of a dynamic fault tree

PAND This gate has multiple inputs and only trig-
gers an event when all input fail from left to
right.

FDEP This gate has a trigger input and multiple

dependency inputs. It does not trigger any
event, but it will cause all dependent chil-
dren to fail when the trigger input fails.

SPARE This gate has one primary input and mul-
tiple spare inputs. When a primary com-
ponent fails it will claim one of the spare
components. It will only trigger an CE if no
other spares are available.

Furthermore, DFTs add another event state: inactive,
which allows components to have different failure rates
while inactive.

An example of a DFT is given in fig. 2. The system
S consists of the components A, B and the spare com-
ponent E, which is inactive at first. When either A or
B fails, they can claim component E, which is then acti-
vated and made unavailable to other parts of the system,
through the SPARE-gates SPARE:\ and SPARE> respec-
tively. SPAREy or SPARE,, and therefore system S, will
only fail if A or B, fail and spare component E has already
been claimed by one of the SPARE-gates.

2.4 Statistical Analysis of FTs

There are many different methods and tools for the sta-
tistical analysis of FTs. One of the most frequently used
tools for verification and statistical analysis of time-based
models is UPPAAL-SMC[3]. Systems in UPPAAL-SMC are
described with a combination of UPPAAL templates. A
template describes a single process, consisting of a stochas-
tic timed automaton and possible additional code to keep
track of more complex state information and to synchro-
nise with other templates in the system. Templates can be
give instantiation parameters, ie. color switching intervals
for traffic lights, in order to make templates more generic.

A stochastic timed automaton (STA) is a time-based state
machine. In a STA, states can have (exponential) rates for
taking transitions and invariants for staying in the state.
Transitions can have guards to enable the transition based
on state. Furthermore, transitions can be synchronised be-
tween STA in UPPAAL using system-wide channels. Spe-
cial branch points exist, that can choose the next transi-
tion based on a (linear) probability.

An example of a STA is provided in fig. 3. The first tran-
sition from A to B has a constraint that is has to be taken
when ¢ < 3, where ¢ is a timer. The transitions from B
to C1 and Cs have the probabilities 1 and %, respectively,

1
to be taken. Next, the transitions from Cy and Cy to END
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Figure 3: Example of a stochastic timed automa-
ton

have then time-constraints ¢ < 5 and 5 < ¢ < 10.

UPPAAL-SMC is a complete environment for specifying
and analysing systems using STA. For the declaration of
systems, it provides a visual editor for STAs and a code
editor for the template code. UPPAAL can be used to com-
pute the qualitative properties of a model using simula-
tions. For instance, the average frequency of reaching a
certain state in the system. Also, it can be used to com-
pute the qualitative properties of a model, for example,
the reachability of a state in the model.

Since FTs are not directly supported in UPPAAL-SMC,
they first have to be converted to STA. This process will
be elaborated later on in the paper.

2.5 Fault Maintenance Trees

Fault maintenance trees (FMTs) [4] are an extension to
dynamic fault trees. They support the possibility of re-
placing failed components and they add maintainable BEs
(MBESs) which use multiple phases to describe the current
degradation state: functioning, lightly degraded and un-
detectable, lightly degraded and detectable, and extremely
degraded and failed. MBEs have different probabilities for
each transition from one degradation phase to the next.

Furthermore, FMTs allow for the addition of inspections,
during which, failed or damaged components can be re-
placed or repaired. A visualisation of the different phases
of a MBE modeled as a STA can be seen in fig. 4. In-
spections can happen on a periodic interval or when spe-
cific MBEs reach their inspection threshold phase which
represents the first detectable signs of the degradation of
the component and will also cause an inspection to hap-
pen. Also, it the concept of repair units is added, where
a group of multiple components can be repaired at the
same time once a specific MBE fails, even if these com-
ponents have not yet failed. Lastly, it adds an additional
RDEP-gate, which can be used to describe a relation be-
tween the phase of degradation of one component and the
failure-rate of another.

Although FMTs can describe degradation processes with
multiple phases instead of the default two, working and
failed, they do not fully support continuous degradation
processes, which restricts models to phase-type failure rate
distributions like the exponential distribution. Moreover,
since maintenance levels can only be set on a phase transi-
tion, this limits the possible number of maintenance strate-
gies for a model.

3. METHOD
3.1 Modelling of Degradation Processes

Since degradation processes of components depend on a
large amount of external factors, they are too difficult to

replace

repair

threshold ~ ~ A2 A3
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functioning lightly lightly extremely failed
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Figure 4: Maintainable BE modelled as a STA

Figure 5: Example of a simplified degradation pro-
cess

model accurately while avoiding complexity. Therefore,
for the simplicity of this paper, all degradation processes
will be modelled using linear degradations.

For the failure probability of a component, various cumu-
lative distributions can be used. This paper will deal with
the exponential distribution, since this is often used for ex-
isting discrete FTs. Also, the Erlang distribution will be
covered, since it essentially combines multiple consecutive
exponential distributions and can be used for describing
the fail rate of F'T's with multiple degradation phases, as
in [4]:

Feoap(t;\) =1 — P®
— 1
For(t;ksA) =1— Z* AP D)™
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Other distributions are possible as well, but are not cov-
ered in this paper.

Ezxamples of these different distributions in degradations
processes can be found in fig. 5. D(t;tmaz) s the degrada-
tion of the component over time. Fezp(t; N) and Feri(t; k; \)
show possible failure probabilities of the component over
time.

3.2 Continuous Degradation Processes in FTs
To support components with continuous degradation, the
degradation function has to be integrated into the BEs
(RQ4).

As a first step, the most straightforward solution would
be to compute a failure probability f, for the current time
since the replacement of a component t,,, using the distri-
butions from section 3.1. Then, generate a uniform dis-
tributed random value r, where r € (0.0, 1.0], and compare
it to the » < fp. Since this calculation would have to be



done for every time unit of uptime of a component, it has
a quite large computation overhead. Moreover, this would
also lead to UPPAAL not being able to optimize the model
as it could for other models, since every time unit is now
a separate state.

Alternatively, this computation can be reversed by start-
ing with a randomly generated time-to-fail ¢; for each BE.
For the calculation of the time-to-fail, the random func-
tions corresponding to the components degradation distri-
bution should be used. Provided are the random functions
for the exponential and Erlang distributions.

Given a uniform random function Run:() that generates
numbers from U € (0, 1], the exponential distributed ran-
dom function can be defined as:

Resp()) = —i 1= Runi()

And similarly the Erlang distributed random function:

k
1
Repi(k;A) = =1 In [ RuniO
=1

Once the time-to-fail ¢y has been calculated, the BE can
be treated deterministically until it fails, which will lead to
the model using less overall computation steps per state
and therefore more efficiency. For other, more complex
distributions, the use of distribution functions can prove
to be difficult due to, among others, performance issues
and implementation limitations in UPPAAL. For these dis-
tributions a reverse lookup table of arbitrary accuracy can
be used.

Furthermore, continuous degradation has to be respected
for maintenance as well. Maintainable BEs can have an
inspection threshold at a certain level of degradation d;,
with d; € (0.0,1.0], where d; = 1 means the component
is completely broken. The inspection time ¢; can then
calculated using t; = d;ty, assuming a linear degradation
process.

3.3 Fault Trees in UPPAAL

In order to be able to analyse FT's continuous degradation
processes in UPPAAL (RQ4), the F'T models first have to be
converted to an analogous UPPAAL model, since UPPAAL
uses templates with STAs. For this purpose, a set of DFT-
to-template conversion strategies for the various BEs and
gates are defined for this paper similar to [4].

Each type of BE or gate is modelled in a separate Up-
PAAL template with a STA. In the system declaration, the
templates for BEs are given an identifier and probability
parameters, i.e. A for exponential distributed BEs. Gates
are given an identifier, as well as the identifiers for its sub
nodes, to describe a complete tree.

Here, the way of modelling is explained using a maintain-
able AND-gate with two inputs in UPPAAL can be seen in
fig. 6. The WORKING state is the initial state where both
subcomponents S1 and S2 are functional. From there each
subcomponent can fail separately, possibly causing the fail-
ure of the gate if both fail. Failed subcomponents can be
repaired leading to the gate working again.

The other SFT gates are modelled analogously. Using this
method, the different templates for the FT nodes can be
composed to create a complete system specification for the
FT in UppPAAL. For keeping track of the different state
variables of a node, i.e. current down-time and accumu-
lated number of failures, special monitoring STAs are used
in order to keep the model simple and reduce the state
space.

eplace(id]

working @ ) Failed

eplacelid]

Figure 6: Maintainable AND-gate converted to an
UprPAAL template

For the FT model in UPPAAL to support continuous degra-
dation, specialized BE templates are created, as described
below.

In fig. 7, a template for the continuous maintainable BE
1s shown. The process starts in the top left node. Since
this node is marked as committed, meaning no time may
pass, the time-to-fail (max.ptimeq in the model) and pos-
sibly also the inspection time (see section 3.2) are imme-
diately calculated using the reset(t) function. The model
is then in the WORKING state or in the WORKINGNI state
if the BE makes use of an inspection threshold. In that
case, the model will trigger an inspection and transition to
the reqular WORKING state when the inspection time has
been reached. From the WORKING state, once the com-
puted time-to-fail has been reached, the model will transi-
tion to the FAILING state, and will trigger an inspection
if the inspection threshold has been reached at the same
time. From there the component can be repaired, which
will cause the process to repeat itself and a new time-to-
fail and inspection time to be calculated.

3.4 Validation of Models

For the validation of the model (RQ5), separate smaller
test cases will be used. The test cases will implemented us-
ing the proposed continuous model and the discrete model
from [4]. Since both models are stochastic, they will be
compared by simulating them and comparing the results
statistically. If the results match, the proposed model is
assumed to be valid.

The first test case uses a simple SF'T with periodic replace-
ments. The FT for this test case is shown in fig. 1. The
BEs, A, B, and C| use Erlang distributed failure rates with
k=2 and X = 3,2, 1, respectively. For the replacements,
all BEs use 180 as the interval.

The second text cases uses a simple DFT with periodic
inspections and SPAREs. The FT for this test case is
shown in fig. 2. The BEs, A, B and S again use Erlang
distributed failure rates with £k = 2 and A = 1.5,1.0,1.25,
respectively. While in deactivated state, the BE S only has
a failure rate of A = 0.125. For the inspections of A, B
and S, the intervals 360, 360 and 180 are used respectively.
The SPARE-gates used for the continuous model of this
text case are a variation of the maintainable continuous
BE described in section 3.3.

3.5 Case Study: Train Compressor

In order to further verify the proposed FT extension (RQ5)
and retrieve reliability information from a FT (RQ6), a
more real-life test case, with over 70 concurrent UPPAAL
processes, will be used. The train compressor case study
describes a model for an air compressor used in the pneu-
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matic system of a passenger train. It is provided by Ned-
Train and is also used in [4]. The pneumatic system is,
among other things, responsible for braking and open-
ing/closing doors. Failure of the compressor can lead to
downtimes or possibly even causalities and therefore is to
be avoided.

The compressor model makes use of discrete DFT's includ-
ing periodic maintenance and specialised BEs for specific
cases. In the discrete version, the BEs have different stages
of degradation, each of which uses a cumulative exponen-
tial distribution for transition to next stage. For the con-
version to a continuous model, these BEs can be modeled
using cumulative Erlang distributions to ensure equivalent
behaviour as described in section 3.1. An overview of the
model can be seen in fig. 8.

As for the smaller test cases in section 3.4, the model will
be simulated in UPPAAL and the results will be compared
to the corresponding discrete FMT from the case study in
[4].

3.6 Results

Validation Test Cases.

In Figure 9 and fig. 10, the accumulated amount of failures
for each test case from section 3.4 can be seen. It shows
that there is sufficient similarity between the continuous
and discrete models to consider their behaviour equivalent.
Therefore the proposed FT extension is assumed to be
valid for these models.

Train Compressor.

In fig. 11, the accumulated amount of failures for the train
compressor model can be seen. Although, the two simula-
tion do not overlap perfectly, it shows sufficient similarity

| | | | | | | |
0 5 10 15 20 25 30 35 40 45 50
t

Figure 9: Case 1: accumulated amount of failures
over time
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Figure 10: Case 2: accumulated amount of failures
over time



1.4

1.2+ |

1+ 4 |

0.8 L=t N

0.6 - £ N

041 ' —— phased

- - - - continuous | |

0.2 -

0 == ! ! ! ! ! ! ! !
0 5 10 15 20 25 30 35 40 45 50

t (years)
Figure 11: Train compressor: accumulated
amount of failures over time

between the proposed continuous model and the model
with multiple degradation phases from [4]. This is can
probably be lead back to subtle differences in the calcula-
tion of failure rates in respect to reparations. Therefore,
the extension is assumed to be correct for this model as
well.

Furthermore, this extended model can be used to derive
information about the failure behaviour of the air com-
pressor. Although, only the average amount of system
failures over time can be seen in fig. 11, more information
can be retrieved from the simulation. For example, the
average time-to-fail or uptime a component or the cost of
repairs and inspections in the system.

4. DISCUSSION

The suggested implementation of the FT extension in Up-
PAAL is a proof of concept that continuous degradation
can be integrated in fault trees, allowing for more precise
models, that provide more accurate reliability information
and therefore allow for smarter maintenance strategies.

Since UPPAAL is a multi-purpose tool for modelling and
analysing state machines, it is not the most efficient so-
lution for some more advanced calculations, ie the Erlang
distribution. More efficient solutions maybe either found
in dedicated extensions of UPPAAL, other existing tools,
or dedicated tailored implementations to be done.

S.  CONCLUSIONS

The work shown provides an extension to fault trees inte-
grating continuous degradation processes of components,
as well as strategies for analysing such fault trees in Up-
PAAL. The implementation of the model in UPPAAL shows
that the model generates the expected behaviour, ie. the
model is valid. Furthermore, it is shown that it is possi-
ble to convert existing discrete fault trees to the extended
model without altering its behaviour.

Future work could include supporting more types of dis-
tributions for the degradation functions. Increasing the
computational performance of degradation functions using
more complex distributions, ie. the cumulative Erlang dis-
tribution, while keeping accurate models, could be looked
into as well.
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