
Combining multiple similar grammars into a single
modular grammar

Wijtse B. Rekker
University of Twente

P.O. Box 217, 7500AE Enschede
The Netherlands

w.b.rekker@student.utwente.nl

ABSTRACT
Implementing multiple similar grammars in one applica-
tion often results in duplicate code and multiple parsers
in general. This research discusses methods with which
multiple similar grammars can be combined into a single
modular grammar. In particular I take a look at the prop-
erty languages used in the model checker LTSmin. Here,
the similar languages CTL, LTL, and μ-calculus are used.
They are implemented each with their own grammar. As
a case study we determine if and how this can be improved
with a modular grammar implementation.

Keywords
Modular grammar, Temporal logics, Similar grammars,
Modular Grammar Converter

1. INTRODUCTION
In parser engineering, when multiple similar languages are
used in a specific application, it is often easy to build
individual grammars and parsers for each language even
though they are similar. This might seem like a good so-
lution, but it comes with some negative side effects. For
example to use the tool, it has to be detected which parser
should parse the input, which in turn adds more complex-
ity. Another option is that the user specifies which parser
should be used to parse the input. Side effects on the
programming level are duplication of grammar rules and
terminals, and overall more lines of code, which could lead
to code which is more difficult to maintain. Therefore it
can be highly beneficial to combine these similar grammars
into one modular grammar, so there is only one parser that
needs to be maintained.

This paper discusses different ways in how this can be
achieved. In particular the model checking tool LTSmin[8]
is taken as case study. LTSmin uses CTL*, LTL, state
based μ-calculus, and action based μ-calculus as property
checking languages. These are four languages with very
similar properties, and they are each implemented with
their own grammar. This provides a perfect example of
the previously stated problem. In this paper I first discuss
background information on some relevant topics, then the
existing solution is evaluated, next the Modular Grammar

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy oth-
erwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.
29th Twente Student Conference on IT July 6th, 2018, Enschede, The
Netherlands.
Copyright 2018, University of Twente, Faculty of Electrical Engineer-
ing, Mathematics and Computer Science.

Converter tool which I used for the new solution is ex-
plained, thereafter the new solutions are discussed, and
lastly the validation of the solutions is discussed.

1.1 Research questions
The main research question this paper answers is:

1) ”How can multiple similar grammars be combined
into one modular grammar?”

To help answer this question the following more specific
question can be answered:

2) ”How is a modular grammar capable of parsing CTL*,
LTL, and µ-calculus expressions best structured, and
how does this improve on the previous implementa-
tion of LTSmin?”

The following sub questions will help answer research ques-
tion 2):

2a) ”How does the new solution affect the total amount
of grammar rules?”

2b) ”How does the new solution affect the total amount
of tokens?”

2. RELATED WORK
There already are a couple papers on modular grammar
engineering, but not specifically about similar grammars.
One of these papers is ”Modular grammar specification”[7],
by Adrian Johnstone, Elizabeth Scott, and Mark van den
Brand. This paper discusses a modular approach to gram-
mar building, and how to import syntax from other gram-
mars. The problems in combining grammars that they
focus on are: name hygiene, overlapping syntax, and sep-
arate whitespace handling per module. They propose se-
mantics with which grammar modules can import nonter-
minals from other modules. Another paper in this area
is ”Modular Grammar Engineering in GF”[13], by Aarne
Ranta. It discusses modular grammar engineering in the
Grammatical Framework[12]. This is a grammar formal-
ism specifically designed for multilingual grammars. Here
the problem of duplicated code is solved with shared repre-
sentations of multiple grammars. A different type of mod-
ular grammar engineering is introduced in ”Compiler gen-
eration based on grammar inheritance”[1], by Mehmet Ak-
sit, Rene Mostert, and Boudewijn R.H.M. Haverkort. Here
modular grammars are specified with a mechanism simi-
lar to class structures in the programming language Java.
Grammar rules can be inherited from super grammars like
functions are inherited from super classes. Compared to
the methods proposed by Adrian Johnstone et al. they
provide a less fine grained way to import rules and produc-
tions from other grammars. Similar to LTSmin, CDAP[5]

1

is also an interesting model checking tool. Both tools use
state based and action based μ-calculus. These languages
are implemented in one grammar, alongside some exten-
sions like regular expressions.

3. BACKGROUND
In this section some background information is provided
on a couple topics relevant to this research. This infor-
mation is required in order to understand some subjects
further in the paper.

3.1 Modular grammars
Modular grammars are grammars built in modules. Here,
modules typically are different parts of the grammar which
can be changed without affecting the rest of the grammar
as a whole. This can be useful when embedding a lan-
guage in another language. This comes with some inter-
esting challenges. For example when embedding SQL in
the C language, the SQL comment brackets ’{}’ conflict
with the scope brackets in C. Adrian Johnstone, Elizabeth
Scott, and Mark van den Brand propose a method in their
paper [7] which solves problems like these and more. They
mainly propose extra syntax in addition to the usual gram-
mar specification syntax. These extra rules can be used
to specify grammars in a modular way. And with the se-
mantics they propose, this modular grammar specification
can be converted to a normal context free grammar spec-
ification. Since this paper will use this modular grammar
specification, the syntax and semantics of the rules will be
explained in the following section.

3.1.1 Syntax and semantics
Because the modular grammar specification syntax is an
addition to the normal grammar specification syntax, the
syntax still contains the normal rules like the following:

Module A; Module B;

S ::= ’x’ S | ’y’ ; S ::= ’xyz’ ;

Here, module A is specified with one rule with on the left
hand side the non terminal S and two productions on the
right hand side. The non terminal S in module A and B

are completely independent. Converting this to a normal
grammar results in the following grammar:

A.S ::= ’x’ A.S | ’y’ ;

B.S ::= ’xyz’ ;

Import by reference rule.
The import by reference rule is a rule specified in the form
of S <- M.T;. This states that all the productions of the
non terminal T in the module M are added to the produc-
tions of the non terminal S. As an example the following
modular grammar is defined using the import by reference
rule:

Module A; Module B;

E <- B.F; F ::= F ’<’ F

E ::= E ’+’ E | ’2’ ;

| ’1’ ;

Converting this to a normal grammar results in the fol-
lowing grammar:

A.E ::= A.E ’+’ A.E B.F ::= B.F ’<’ B.F

| ’1’ | ’2’ ;

| B.F ’<’ B.F

| ’2’ ;

The non terminal A.E now contains all the productions of
the non terminal B.F. As is visible in the resulting gram-
mar, the non terminal A.E can now parse for example:

’1+2<2’. But it can not parse ’1<2’. This problem is solved
with the next rule.

Import by clone rule.
The import by clone rule is a rule specified in the form
of S <= M.T;. This states that, much like the import by
reference rule, all the productions of the non terminal T in
the module M are added to the non terminal S. But every
occurrence of M.T in these productions is replaced with S.
As the example grammar we take the previous grammar,
but with the import by clone rule instead of the import
by reference rule.

Module A; Module B;

E <= B.F; F ::= F ’<’ F

E ::= E ’+’ E | ’2’ ;

| ’1’ ;

This converts into the following normal grammar:

A.E ::= A.E ’+’ A.E B.F ::= B.F ’<’ B.F

| ’1’ | ’2’ ;

| A.E ’<’ A.E

| ’2’ ;

Here you can see that the grammar is able to parse both
’1+2<2’ and ’1<2’. A more complex example is now also
possible: ’1+2<2+1<1’. Even though the non terminal B.F
is still included in the resulting grammar, it can not be
reached when using A.E as start non terminal. So if A.E
is selected as start non terminal of the final grammar, B.F
can be removed from the result.

Import by clone recursive.
The import by clone recursive rule is an expansion on the
rule discussed in the previous paragraph. It is specified in
the form of S <=* M.T;. This does the same as the im-
port by clone rule, but in addition it creates a statement
X <=* Y.X; for every Y.X other than M.T in the produc-
tions of M.T. This is demonstrated in the following modular
grammar:

Module A; Module B;

E <=* B.F; F ::= F ’==’ F

E ::= E ’+’ E | X ;

| E ’-’ E ; X ::= N X | N ;

N ::= ’0’

| ’1’

| ’2’;

This results in the following normal grammar:

A.E ::= A.E ’+’ A.E B.F ::= B.F ’==’ B.F

| A.E ’-’ A.E | B.X ;

| A.E ’==’ A.E B.X ::= B.N B.X

| A.X ; | B.N

A.X ::= A.N A.X B.N ::= ’0’

| A.N ; | ’1’

A.N ::= ’0’ | ’2’;

| ’1’

| ’2’ ;

When resolving the import rule ’E <=* B.F’ you also en-
counter the non terminal B.X, so a rule ’X <=* B.X’ is cre-
ated in module A. While resolving this new rule recursively
another import-by-clone-recursive rule is created for the
non terminal B.N. Then this rule is resolved. Also in this
case the rules of module B are not reachable from the rules
of module A.

2

Remove production rule.
The last rule is a very simple rule. It is specified as
S :/= RHS; where S is a non terminal and RHS could be
any right hand side of a rule. This rule removes the pro-
duction specified in the RHS part from the non terminal S.
An example of this is given in the following grammar:

Module A; Module B;

E <= B.E; E ::= E ’==’ E

E ::= E ’+’ E | E ’&&’ E

| E ’-’ E | ’true’ ;

| ’1’ ;

E :/= E ’&&’ E;

E :/= ’true’;

Converting this into a normal grammar results in:

A.E ::= A.E ’+’ A.E B.E ::= B.E ’==’ B.E

| A.E ’-’ A.E | B.E ’&&’ B.E

| ’1’ | ’true’ ;

| A.E ’==’ A.E ;

The remove-production rules are always executed after the
import rules. So the productions of B.E are first imported
before the productions ’E ’&&’ E’ and ’’true’’ are re-
moved from the non terminal A.E.

3.2 Temporal logic syntax
In this section the syntax of the temporal logics used in
the property checker of LTSmin[8] is explained. The syn-
tax that is shown here is not the actual syntax used by the
tool, but the mathematical notation to get a better feel for
the subjects and how their syntax are similar. CTL and
LTL are inherently similar since they have a common an-
cestor logic CTL*. Temporal logics in model checking are
generally used to specify properties that can be checked
with traces of state machines.

3.2.1 CTL
CTL is short for Computational Tree Logic, and is a state
based temporal logic, which means it can specify proper-
ties of states in traces of a state machine. Given a set
AP containing atomic propositions the following can be
expressed[3]:

Definition 1. Every atomic proposition p ∈ AP is a
CTL formula. If f1 and f2 are valid CTL formulas, then
so are:
¬f1 f1 ∧ f2 EXf1 E[f1Uf2] EGf1

3.2.2 LTL
LTL is short for Linear Temporal Logic, and is similarly
to CTL also a state based temporal logic. Given a set of
atomic propositions AP, the following can be expressed
[4, 14]:

Definition 2. Every atomic proposition p ∈ AP is a
LTL formula. If φ and ψ are LTL formulas, then so are:
¬φ φ ∧ ψ φ ∨ ψ φ→ ψ Xφ
φUψ φRψ �φ ♦φ

3.2.3 mu-calculus
μ-calculus is used as well in model checking of state ma-
chines. Unlike CTL and LTL, μ-calculus additionally con-
tains action based expressions. In other words, in μ-calculus
formulas can be written to specify properties of states and
transitions in traces in state machines. Transitions are
also called actions. In order to help describe the syntax[2]
a few sets are defined. Act is a set of all possible actions,
S is a set containing all states, and Ra ⊆ S × S is a bi-
nary relation representing a transitions for every a ∈ Act.

Prop is a set containing all propositions, and a set Pi ⊆ S
exists for all pi ∈ Prop containing the states for which the
proposition pi holds. V ar is a set containing all the defined
variables. The formulas of the μ-calculus are expressed in
the following definition:

Definition 3. Every proposition pi ∈ Prop is a μ-calculus
formula, and every X ∈ V ar is as well. The rest of the
μ-calculus are defined as follows:

• α ∨ β and α ∧ β if α and β are μ-calculus formulas
• 〈a〉α and [a]α if a ∈ Act and α is a μ-calculus formula
• µX.α and νX.α if X ∈ V ar and α is a μ-calculus

formula

4. METHODS
To answer the research question with the LTSmin case
study, a parser has to be made, satisfying LTSmin’s needs
and it needs to be a proper modular grammar. Inspira-
tion will be taken from methods proposed in papers [7,
13]. Then the parser is tested and validated. For testing
and validation unit testing will be used and inspiration
will be taken from the methods proposed in [9, 11, 15].
The final product is compared to the previous implemen-
tation with special attention to amount of grammar rules,
amount of tokens, lines of code, and parse time. The re-
sult of the evaluation of these metrics answers research
questions 2a) and 2b). With these answers and the overall
process, question 2) can be answered, and in turn question
1). The parser will be written in ANTLR[10], since this is
the parser generator tool I am most familiar with.

5. EXPECTED RESULTS
It is expected the methods proposed in [7, 13] applied to
the LTSmin case study result in a better grammar and
parser. The expected results are that the final solution
will have less grammar rules, tokens, and lines of code
than the previous implementation. It is not expected that
the parser will be significantly faster than the previous
implementation.

6. EXISTING SOLUTION
The implementation of the property checking language
parser in LTSmin1 as of June 24 2018 is built in C with
the open source LEMON Parser Generator[6]. The parser
consists of three main components: the lemon lexer, the
lemon grammar, and the run time environment.

The lemon lexer is located in the file src/ltsmin-lib/

ltsmin-lexer.l. It only recognizes identifier, number,
string, chunk, and operator tokens. Upon lexing an iden-
tifier or operator, it looks up the characters in tables filled
by the run time environment. Based on these findings it
parses different tokens of the grammar. This means that
for example binary operators like ’+’ and ’-’ are not stat-
ically defined in the lexer or the grammar, but have to be
put in a table of the parse environment on run time before
the actual parsing takes place.

The lemon grammar can be seen as the base grammar of
LTSmin. It is located in the file src/ltsmin-lib/ltsmin-

grammar.lemon. For easier readability I translated the
lemon grammar to a normal grammar which can be found
in appendix A.1. This grammar is used for CTL*, LTL,
and μ-calculus expressions, but it does not describe these
languages as can be seen in the appendix. For example the

1https://github.com/utwente-fmt/ltsmin

3

https://github.com/utwente-fmt/ltsmin

BIN1-11 rules represent binary operators, but their char-
acter representations are not specifically defined. It is not
specifically stated that, for example, BIN1 can be a ’+’ or
a ’-’, and BIN2 a ’*’ or a ’/’.

This is where the run time environment comes in. This is
mainly located in the file src/ltsmin-lib/ltsmin-tl.c.
While providing LTSmin with an input expression, the
user has to specify which kind of expression it is. Then
three different functions can be called. One for CTL* ex-
pressions, one for LTL, and one for μ-calculus. In these
functions the tables of the parse environment are filled
first, with the operators and tokens of the selected tempo-
ral logic. Then the provided expression is parsed, and the
type checker is run with the result of the parse phase if no
errors occurred. The effective grammars after the tables
in the parse environment have been filled can be found in
appendix A.2, A.3, and A.4.

6.1 Advantages
The advantages of this solution are:

• State and edge variable names in the expressions are
checked on parse time, since the tables of the parse
environment are also filled with the state and edge
variable names. So the lexer will only lex correct
variable names.
• The setup with the base grammar makes the oper-

ator priority definition easy. Because the BIN1-11

rules have fixed priorities of 1 to 11, and with the
tables of the parse environment you can simply add
operators to the production of their corresponding
BIN non terminal.

6.2 Disadvantages
The disadvantages of this solution are:

• Since for every temporal logic the run time environ-
ment fills the tables of the parse environment sepa-
rately and there is a fair amount of overlap between
the temporal logics, several tokens and rules defined
more than once. So if a feature is added, for exam-
ple, to the predicate expressions, the same changes
need to be made in multiple locations, which is extra
work.
• Because there is not only one grammar with one start

non terminal, but effectively three grammars, the
user has to specify which grammar has to be used.
• In the current implementation all the grammars use

only one grammar rule with a large amount of right
hand sides. Because of this the grammar can parse
some incorrect expressions like for example: ’(2==4)
+3’. This has to be fixed after the parsing phase by
the type checker.
• In order to understand the parser you have to un-

derstand 4 fairly big code files, and how they work
together. Because of this it is difficult to maintain
the parser.

7. REQUIREMENTS
This section contains the requirements for the parser that
is going to parse CTL*, LTL, and μ-calculus expressions.
The requirements are written in the MoSCoW form.

Must.
These requirements must be met in order to get a minimal
viable product.

1 The grammar must only have one start rule.

This is important, because it removes the need for the

user to specify which kind of expression the user wants to
parse.

2 The grammar must be able to parse CTL*, LTL, and
μ-calculus expressions

Without this the grammar could not be used for LTSmin.

3 The parser must only accept expressions with the
correct typing.

This means that for example an LTL formula can not con-
sist of both LTL and CTL* expressions.

Should.
These requirements are also important, but not essential
in order to get a working product.

4 The grammar must not contain any duplicate tokens.
5 The grammar should have less tokens than the pre-

vious grammar.
6 The grammar should have less grammar rules than

the previous grammar.
7 The parser should be easier to maintain than the

previous grammar.

All these requirements aim for a better solution than the
current solution in LTSmin.

Could.
These requirements are focused on only if enough time is
available.

8 The parser could maintain the correct operation or-
dering.

Since this is a difficult task to accomplish for the whole
modular grammar, this requirement is placed in the ’Could’
section.

Won’t.
These requirements do not fit in the scope of this project,
but are interesting for further research.

9 The parser won’t be fully integrated in LTSmin.

8. MODULAR GRAMMAR CONVERTER
Since there are no tools that can read or convert modu-
lar grammar specifications, I built my own2. It is a tool
with which you can convert any grammar written in the
modular grammar syntax to a grammar with a normal syn-
tax. Currently it is able to convert modular grammars to
ANTLR4 grammars. The converter is built in such a way
that it is possible to add more export modules, so it can
be used to generate grammars for more parser generator
tools tools.

The converter has four main stages. First it parses the
modular grammar files and converts the parse tree to a
abstract syntax tree. Next, error-checking is carried out on
this abstract syntax tree. Then the modular grammar is
converted to a normal grammar by resolving all the import
rules, and lastly the normal grammar model is exported
to an ANTLR4 grammar file.

8.1 Parse phase
For the parser side of the modular grammar converter
ANTLR4[10] is used. The ANTLR grammar for the mod-
ular grammar syntax is included in appendix B. Because
the Modular Grammar Converter is built with the inten-

2https://github.com/wijtserekker/
ModularGrammarConverter

4

https://github.com/wijtserekker/ModularGrammarConverter
https://github.com/wijtserekker/ModularGrammarConverter

a

b c

d

Figure 1. Example module dependency graph

tion to convert the modular grammars to ANTLR4 gram-
mars, a lot of the features of ANTLR4 grammars are also
embedded in the grammar used to parse modular grammar
files, for example regular expressions and wild cards. The
wild card token, however, is given the symbol ’$’ because
the symbol used in ANTLR (’.’) is already used for a dif-
ferent purpose. The regular expressions are implemented
in a simple way (rule ’right_hand_side’ and ’regexp’ in
appendix B), since the Modular Grammar Converter is
not affected by incorrectly structured regular expressions,
and the tool to which the modular grammar is exported
to will already check the syntax of these expressions.

The parse tree created from the input is converted to an
abstract syntax tree. This is an object oriented model of
the modular grammar.

8.2 Error checking phase
The error checking phase is there to ensure that the pro-
gram will not continue with incorrect input, and to make
clear to the user why the input is incorrect. First it is
checked if the parse tree contains any errors. Then the
model is searched for the incorrect use and declaration of
names. This can, for example, be two module names that
are the same, the usage of a non-terminal from another
module while not importing that module, or the usage of
a non-terminal that does not exist. Then lastly the mod-
ular grammar is checked for cyclic module dependencies.
The Modular Grammar Converter is not built to handle
these complex dependency structures since it would take
too much time to implement. In order to check this a
dependency graph is made, and this graph is checked for
cycles. For example the modular grammar below has the
corresponding dependency graph shown in figure 1.

module a ; module b ;

using b ; ...

using c ;

using d ;

...

module c ; module d ;

using d ; ...

...

In this example the modular grammar has no cycles in the
dependency graph, but if module d had a dependency on
module a instead of a on d, then the dependency graph
would be cyclic.

8.3 Conversion phase
To convert the modular grammar to a normal grammar,
all the import rules have to be resolved. This needs to
be done in a specific order. When for example module
a uses module b, the import rules of module b have to
be resolved before the module can be imported into a.
Otherwise, module a does not get the complete module
b. To get the right order of the modules, the module de-
pendency graph is used. Traversing the dependency graph

depth first returns the correct order of the modules. The
module containing the start non-terminal is taken as the
root of the graph. If we apply this, for example, to the de-
pendency graph shown in figure 1 with as main module a,
it results in the module order: b, d, c, a. And if the same
is done, but with module c as main module, it results in
the order: d, c. Here a and b are left out since they are
not reachable from c and d, so these can be ignored during
the conversion and export phase.

Now the module order is known, the import rules can be
resolved. For every module the following steps are taken:

1. Generate import-by-clone rules for every import-by-
clone-recursive rule.

2. Resolve all the other import rules.
3. Apply the remove-production rules.

This has to be done in this order. When, for example,
a remove-production rule is applied. Then extra produc-
tions are added to the rule from which the remove-production
rule tried to remove a production. This could result in the
rule containing a production that the remove-production
rule was supposed to remove.

When either an import rule or a remove-production rule
is resolved, this rule is removed from the grammar model.
This means that when the conversion has finished the
model only contains normal grammar rules.

8.4 Export phase
In the export phase the grammar model is written to a
single file using the ANTLR4 grammar syntax. Before the
grammar is written to a file, a rule reachability check is
run on the grammar starting from the main non-terminal.
This checks which grammar rules are actually used in
the final grammar. The grammar rules that can not be
reached from the start non-terminal are not written to the
output file.

The order of the rules and their productions is kept the
same as the order in the modular grammar file. This is
important since the order of the productions in a rule in
ANTLR determine the priorities of the productions over
each other.

To avoid overlap in non-terminal naming, the name of the
module and the name of the rule are concatenated with a
’_’ in between. Also readability of the output file is kept
in mind. Every rule of the grammar is printed on its own
line and every production of a rule is also printed on a
new line. The indentations used for the productions are
the same as in the grammars shown in section 3.1.

9. NEW ARCHITECTURE
In order to create a modular grammar for the languages
in LTSmin, first was looked at the overlap between the
languages so the modules the whole grammar will consist
of can be defined. As can be seen in the grammars in
appendix A, each language uses the same predicate lan-
guage. Therefore the predicate language is put in its own
module. This can also be said for the boolean expressions,
but not completely, because the language μ-calculus does
not support the ’imply’ and ’equivalent’ operators. Also
some temporal logic operators like the ’next’ and ’exist’
are used by multiple languages, so these tokens must also
be moved to a module to prevent duplicate declarations.

From here there are two possible optimization paths in the
way the modules can be linked together:

1. Reduce the rule and production count to a minimum.
2. Reduce the need for type checking.

5

These two paths go against each other because if you put
all the possible expressions into one rule, the grammar
parses a lot of unwanted expressions along the correct ex-
pressions. This is demonstrated in the following two gram-
mars:

Grammar A; Grammar B;

E ::= E ’+’ E E ::= C ’<’ C

| E ’-’ E | C ’>’ C

| E ’<’ E | C ;

| E ’>’ E C ::= C ’+’ C

| N ; | C ’-’ C

N ::= 1 | 2 | 3 ; | N ;

N ::= 1 | 2 | 3 ;

Here everything that grammar B is able to parse is also
possible to parse with grammar B. In this example gram-
mar A is also able to parse more expression combinations
than grammar B, but these expressions are not correct, for
example: ’1<3<2’. Grammar B prevents this at the cost of
one extra rule and one extra production.

In the following sections, solution 1 will aim to achieve the
smallest amount of rules and right hand sides, and solution
2 will aim to prevent the need for type checking.

9.1 Solution 1
The modular grammar in this solution consists of 5 mod-
ules:

main Containing the start non-terminal of the expres-
sion. It will import rules from the module mu-
calc, ctl, ltl, and pred. It combines all the modules
into one rule.

mucalc Containing the rule capable of parsing μ-calculus
expressions. It uses the module pred for some
token definitions.

ctl Containing the rule capable of parsing all CTL*
expressions. Like mucalc it also uses the module
pred for some token definitions.

ltl Containing the rule capable of parsing all LTL
expressions. It uses the module pred for some
token definitions.

pred Containing all the possible predicate and boolean
expressions. It does not use any of the other
modules. It also contains some tokens used by
multiple modules to prevent duplicate token def-
initions.

The dependency graph of the modules can be seen in fig-
ure 2. Since the syntax for the temporal logics are defined
recursively (explained in section 3.2), they can be repre-
sented by one rule. For example the rule in the ctl module
looks like this:

expr ::= ’E’ expr

| ’A’ expr

| ’[]’ expr

| ’<>’ expr

| ’X’ expr

| expr ’U’ expr

;

This rule does not yet include the predicate expressions.
Those will be added in the main module, because since
these expressions are the same for the temporal logics they
do not need to be imported in every module separately. To
combine the expressions of all the temporal logics into one
rule, the main module is written as follows:

module main ;

using ctl ;

using ltl ;

main

mucalc ltlctl

pred

Figure 2. Dependency graph of the modular gram-
mar in solution 1

using mucalc ;

using pred ;

expr <= ctl.expr ;

expr <= ltl.expr ;

expr <= mucalc.expr ;

expr <= pred.expr ;

The rule ’expr <= pred.expr;’ is added to also include
the predicate expressions. This way the temporal logic
expressions also have access to the predicate expressions.
The final modular grammar of this solution can be found
in appendix C.

9.2 Solution 2
The modular grammar in this solution consists of 6 mod-
ules:

main Containing the rule which combines the temporal
logics. It uses module mucalc, ctl, and ltl.

mucalc Containing the rule which is able to parse com-
plete μ-calculus expressions. It imports the pred-
icate expressions from the module pred, and the
boolean expressions from module bool.

ctl Containing the rule which is able to parse com-
plete CTL* expressions. Like the module mucalc
it also uses the modules pred and bool.

ltl Also works the same as modules mucalc and ctl.
pred Containing all the predicate expressions, except

for the boolean expressions. The boolean expres-
sions are imported from the module bool.

bool Containing all the boolean expressions.

The dependency graph of the modules can be seen in figure
3. The modules mucalc, ctl, and ltl are structured mostly
the same as in section 9.1. The only difference is that here
the predicate expressions are added already in the module
itself instead of later in the module main. This is done
with the following rules:

expr <= bool.expr ;

expr <= bool.expr_extra ;

expr ::= ’E’ expr

| ’A’ expr

| ’[]’ expr

| ’<>’ expr

| ’X’ expr

| expr ’U’ expr

| pred.comp_expr

;

The boolean expressions are added with the import-by-

6

main

mucalc ltlctl

pred bool

Figure 3. Dependency graph of the modular gram-
mar in solution 2

clone rules. This makes it possible to parse expressions
like ’(CTL expression)>(CTL expression)’. To also in-
clude predicate expressions, the non-terminal pred.expr
is added to the productions of expr. Importing predicate
expressions like this makes sure that a CTL expression
can not be a child of a predicate expression in the parse
tree. The non-terminal bool.expr_extra contains expres-
sions with the operators ’->’(imply) and ’<->’(equivalent).
These operators are not supported in μ-calculus expres-
sions in LTSmin currently, so they had to be imported
separately.

The module pred also had to be structured in a special
way to avoid the acceptance of expressions like ’(1==9)<2’.
As can be seen in appendix D, the predicate expressions
have two layers: comparison expressions and calculation
expressions. A smaller example of this structure is shown
in the grammar below.

CO ::= CA ’==’ CA CA ::= CA ’+’ CA

| CA ’<’ CA ; | CA ’-’ CA

N ::= 1 | 2 | 3 ; | N ;

The module main also has to preserve the type correct-
ness, so in main a rule is created with three productions
containing the start terminals for μ-calculus, CTL, and
LTL.

expr ::= ctl.expr

| ltl.expr

| mucalc.expr

;

The complete modular grammar of solution 2 can be found
in appendix D.

10. VALIDATION
To check for improvement on the existing solution the fol-
lowing elements are counted in the grammars:

• Rules. Includes normal grammar rules, token rules,
and import rules. The lines at the top of modules
specifying the module name and the imported mod-
ules are not counted.
• Productions. This is the total number of right hand

sides of the rules of the grammar. Import rules are
not counted here.
• Tokens. The total amount of token rules.
• Duplicate tokens. The total amount of duplicate to-

ken definitions. If for example a token is defined
three times, it will count as two duplicate tokens.

Table 1. Comparison of the two modular gram-
mars with the existing solution

Rules Prod. Tokens Dup. tokens
Existing sol. 137 223 137 65
Solution 1 49 84 41 0
Solution 2 54 92 41 0

Table 2. Comparison of the two generated gram-
mars with the existing solution

Rules Prod. Tokens Dup. tokens
Existing sol. 137 223 137 65
Solution 1 42 78 41 0
Solution 2 47 108 41 0

These elements are counted in the existing solution, the
modular grammar of solution 1, the modular grammar of
solution 2, the generated grammar of solution 1, and the
generated grammar of solution 2. Since the grammars of
LTSmin are not setup in a normal way but with a base
grammar, I do not simply count everything in appendix
A. The parts that are included are in appendix A.1 un-
til the rule ’CONSTANT ::= IDENT;’, in appendix A.4 after
the rule ’VALUE ::= STRING | CHUNK;’, in appendix A.2
after the rule ’VALUE ::= STRING | CHUNK;’, and in ap-
pendix A.3 after the rule ’VALUE ::= STRING | CHUNK;’.
The results of the modular grammars compared to the ex-
isting solution can be found in table 1, and the results of
the generated grammars compared to the existing solution
can be found in table 2. At first glance it is visible that
the numbers of the new solutions are significantly lower
than those of the existing solution.

With this can be checked if the requirements specified in
section 7 are met in the new solutions, except for require-
ment 2 and 3. These requirements are checked with Unit
testing3. Here is tested if the grammars can actually parse
the correct expressions, and that they fail where they are
supposed to. Of the must requirements, all the require-
ments are met.

1 Because both solutions have only one start rule.
2 Because the Unit tests were successful.
3 Because the Unit tests were successful for solution

2. For solution 1 however the correct typing was not
preserved, but this was as expected. This could be
fixed by adding type checking after the parse phase.

All the should requirements are also met. This can be
concluded by simply looking at table 1 and 2. Requirement
7 however is a difficult one to actually measure, but it is
safe to say that understanding the grammars of the new
solutions is a lot easier than the grammars of LTSmin.
Because, in the new solutions you only have to look at the
compact modular grammar file, and in LTSmin you have
to go through 4 files. Requirements 8 and 9 are not met,
but this was as expected. That was due to the limited
amount of time available.

11. CONCLUSION
Overall, can be concluded from the results presented in
section 10 that solution 2, presented in section 9.2, is over-
all a good solution for the temporal logic parser in the
model checking tool LTSmin. It is only lacking the opera-
tor priorities. The amount of grammar rules, productions,
and tokens are significantly reduced compared to the ex-

3https://github.com/wijtserekker/
LTSminGrammarTest

7

https://github.com/wijtserekker/LTSminGrammarTest
https://github.com/wijtserekker/LTSminGrammarTest

isting solution. Now with this said the research questions
can be answered.

The answer to question 2b) is, that the amount of tokens
can be reduced significantly. All the duplicate token defi-
nitions have been eliminated along with some unnecessary
token definitions. So the new solution affects the total
amount of tokens positively. The answer to question 2a)
is similar. The amount of grammar rules has been reduced
significantly, so the new solution affects the total amount
of grammar rules also positively.

To answer question 2), the structure of the modular gram-
mar of the solution 2 is taken. A modular grammar ca-
pable of parsing CTL, LTL, and μ-calculus expressions
should consist of the 6 modules main, ctl, ltl, mucalc, pred,
and bool. The grammar rules should also be layered as de-
scribed in section 9.2. This prevents the need for type
checking the parse tree, which is necessary in the current
solution in LTSmin. Along with the reduction of the size of
the grammar, another improvement upon the current solu-
tion is that the grammar is more self contained compared
to the existing grammar which was ultimately specified by
four different files.

With the answer to question 2), the main research ques-
tion 1) can be answered. When combining similar gram-
mars into one modular grammar, the biggest part comes
down to defining the modules correctly. The complete
separate parts of the grammars should be defined in their
own module (like CTL, LTL, and μ-calculus in the mod-
ular grammars of LTSmin), and when two or more parts
overlap, those should be combined into one module which
other modules can use. How these modules interconnect
depends on the applications needs. In the case of LTSmin,
the modules and rules had to be layered to preserve the
correct formula typing.

12. FURTHER WORK
Since some features were not possible to implement, be-
cause of the limited time available, there are a few points
that could be interesting for future research.

In the Modular Grammar Converter it is currently not yet
possible to specify the priority of certain productions over
other productions, especially for the productions imported
from other rules since they are simply added at the end
of the already existing productions. Another feature that
can be added is support for cyclic dependencies. This
is possible to achieve, but a fair amount of research has
to be done to find a way how this can be implemented
efficiently. Also multiple export modules could be added
to the Modular Grammar Converter so the tool can be
used for more parser generators.

Because the Modular Grammar Converter does not yet
support the specification of the priorities of productions,
the modular grammars designed for LTSmin do not pre-
serve the correct operator priorities. This could be further
developed so the modular grammars can be integrated in
LTSmin.

13. ACKNOWLEDGEMENTS
Above all, I would like to thank my supervisor Jaco van de
Pol for his guidance and great advice. Secondly, I would
like to thank Jeroen Meijer for helping me understand the
back-end of LTSmin. Also the feedback of the other peo-
ple who reviewed my paper, sometimes more than once,
was invaluable to the research. And lastly, many thanks
to Adrian Johnstone, Elizabeth Scott, and Mark van den
Brand for their research on the syntax of modular gram-
mar specification used in this paper.

14. REFERENCES
[1] M. Aksit, R. Mostert, and B. Haverkort. Compiler

generation based on grammar inheritance.
Memoranda informatica, 0(07):–, 1990.

[2] J. Bradfield and I. Walukiewicz. The mu-calculus
and model-checking. Handbook of Model Checking.
Springer-Verlag, pages 35–45, 2015.

[3] E. M. Clarke, E. A. Emerson, and A. P. Sistla.
Automatic verification of finite-state concurrent
systems using temporal logic specifications. ACM
Trans. Program. Lang. Syst., 8(2):244–263, Apr.
1986.

[4] E. A. Emerson. CHAPTER 16 - temporal and
modal logic. In J. v. Leeuwen, editor, Formal Models
and Semantics, Handbook of Theoretical Computer
Science, pages 995 – 1072. Elsevier, Amsterdam,
1990.

[5] H. Garavel, F. Lang, R. Mateescu, and W. Serwe.
Cadp 2011: a toolbox for the construction and
analysis of distributed processes. International
Journal on Software Tools for Technology Transfer,
15(2):89–107, Apr 2013.

[6] Hipp, Wyrick & Company, Inc. (Hwaci). The
LEMON parser generator.
https://www.hwaci.com/sw/lemon/ (last visited
29-6-2018).

[7] A. Johnstone, E. Scott, and M. van den Brand.
Modular grammar specification. Science of
Computer Programming, 87:23 – 43, 2014.

[8] G. Kant, A. Laarman, J. Meijer, J. van de Pol,
S. Blom, and T. van Dijk. LTSmin:
High-performance language-independent model
checking. In C. Baier and C. Tinelli, editors, Tools
and Algorithms for the Construction and Analysis of
Systems, pages 692–707, Berlin, Heidelberg, 2015.
Springer Berlin Heidelberg.

[9] R. Lämmel. Grammar testing. In H. Hussmann,
editor, Fundamental Approaches to Software
Engineering, pages 201–216, Berlin, Heidelberg,
2001. Springer Berlin Heidelberg.

[10] T. J. Parr and R. W. Quong. ANTLR: A
predicated-LL(k) parser generator. Software:
Practice and Experience, 25(7):789–810, 1995.

[11] P. Purdom. A sentence generator for testing parsers.
BIT Numerical Mathematics, 12(3):366–375, Sep
1972.

[12] A. Ranta. Grammatical framework. Journal of
Functional Programming, 14(2):145–189, 2004.

[13] A. Ranta. Modular Grammar Engineering in GF.
Research on Language and Computation,
5(2):133–158, Jun 2007.

[14] K. Y. Rozier and M. Y. Vardi. LTL satisfiability
checking. In D. Bošnački and S. Edelkamp, editors,
Model Checking Software, pages 149–167, Berlin,
Heidelberg, 2007. Springer Berlin Heidelberg.

[15] M. Stijlaart and V. Zaytsev. Towards a taxonomy of
grammar smells. In Proceedings of the 10th ACM
SIGPLAN International Conference on Software
Language Engineering, SLE 2017, pages 43–54, New
York, NY, USA, 2017. ACM.

8

https://www.hwaci.com/sw/lemon/

APPENDIX
A. THE OLD GRAMMARS OF LTSMIN
A.1 The base grammar for the temporal log-

ics

expr ::= LPAR expr RPAR

| STATE_VAR

| IDENT

| EDGE_VAR

| VALUE

| NUMBER

| CONSTANT

| expr BIN1 expr

| expr BIN2 expr

...

| expr BIN11 expr

| PREFIX1 expr

| PREFIX2 expr

...

| PREFIX9 expr

| expr POSTFIX1

| expr POSTFIX2

...

| expr POSTFIX9

| MU_SYM IDENT DOT expr

| NU_SYM IDENT DOT expr

| EXISTS_SYM expr DOT expr

| ALL_SYM expr DOT expr

| IF IDENT THEN expr

| EDGE_EXIST_LEFT EDGE_VAR

EDGE_EXIST_RIGHT expr

| EDGE_ALL_LEFT EDGE_VAR

EDGE_ALL_RIGHT expr

;

WHITE_SPACE ::= [\t]+ ;

IDENT ::= [_]* ([a-zA-Z] | ’\\’ [[:print:]])

([a-zA-Z0-9_’] | ’\\’ [[:print:]])* ;

NUMBER ::= [0-9]+ ;

STRING ::= ’\"’ (([[:print:]] {-}

[\\\"]) | ’\\\\’ | ’\\\"’)* ’\"’ ;

CHUNK ::= #([0-9a-fA-F] [0-9a-fA-F])*# ;

OPERATOR ::= [~!@<>=\-+/?&\\|*\[\]]+ ;

ENDOFLINE ::= ’\n’ | ’\r’ | ’\n\r’ | ’\r\n’ ;

LPAR ::= ’(’ ;

RPAR ::= ’)’ ;

DOT ::= ’.’ ;

COLON ::= ’:’ ;

VALUE ::= STRING | CHUNK ;

CONSTANT ::= IDENT ;

PREFIX1 ::= IDENT | OPERATOR ;

PREFIX2 ::= IDENT | OPERATOR ;

...

PREFIX9 ::= IDENT | OPERATOR ;

POSTFIX1 ::= IDENT | OPERATOR ;

POSTFIX2 ::= IDENT | OPERATOR ;

...

POSTFIX9 ::= IDENT | OPERATOR ;

BIN1 ::= IDENT | OPERATOR ;

BIN2 ::= IDENT | OPERATOR ;

...

BIN11 ::= IDENT | OPERATOR ;

STATE_VAR ::= IDENT ;

EDGE_VAR ::= IDENT ;

MU_SYM ::= IDENT | OPERATOR ;

NU_SYM ::= IDENT | OPERATOR ;

EXISTS_SYM ::= IDENT | OPERATOR ;

ALL_SYM ::= IDENT | OPERATOR ;

EDGE_EXIST_LEFT ::= IDENT | OPERATOR ;

EDGE_EXIST_RIGHT ::= IDENT | OPERATOR ;

A.2 Effective grammar for CTL
expr ::= LPAR expr RPAR

| STATE_VAR

| IDENT

| EDGE_VAR

| VALUE

| NUMBER

| CONSTANT

| expr BIN1 expr

| expr BIN2 expr

| expr BIN3 expr

| expr BIN4 expr

| expr BIN7 expr

| expr BIN8 expr

| expr BIN9 expr

| expr BIN10 expr

| expr BIN11 expr

| PREFIX5 expr

| PREFIX6 expr

;

WHITE_SPACE ::= [\t]+ ;

IDENT ::= [_]* ([a-zA-Z] | ’\\’ [[:print:]])

([a-zA-Z0-9_’] | ’\\’ [[:print:]])* ;

NUMBER ::= [0-9]+ ;

STRING ::= ’\"’ (([[:print:]] {-}

[\\\"]) | ’\\\\’ | ’\\\"’)* ’\"’ ;

CHUNK ::= #([0-9a-fA-F] [0-9a-fA-F])*# ;

OPERATOR ::= [~!@<>=\-+/?&\\|*\[\]]+ ;

ENDOFLINE ::= ’\n’ | ’\r’ | ’\n\r’ | ’\r\n’ ;

LPAR ::= ’(’ ;

RPAR ::= ’)’ ;

DOT ::= ’.’ ;

COLON ::= ’:’ ;

VALUE ::= STRING | CHUNK ;

STATE_VAR ::= IDENT ;

EDGE_VAR ::= IDENT ;

CONSTANT ::= CTL_FALSE | CTL_TRUE | CTL_MAYBE ;

BIN1 ::= CTL_MULT | CTL_DIV | CTL_REM ;

BIN2 ::= CTL_ADD | CTL_SUB ;

BIN3 ::= CTL_LT | CTL_LEQ

| CTL_GT | CTL_GEQ ;

BIN4 ::= CTL_EQ | CTL_NEQ | CTL_EN ;

PREFIX5 ::= CTL_NOT ;

PREFIX6 ::= CTL_EXIST | CTL_ALL | CTL_GLOBALLY

| CTL_FUTURE | CTL_NEXT ;

BIN7 ::= CTL_AND ;

BIN8 ::= CTL_OR ;

BIN9 ::= CTL_EQUIV ;

BIN10 ::= CTL_IMPLY ;

BIN11 ::= CTL_UNTIL ;

CTL_FALSE ::= ’true’

CTL_TRUE ::= ’false’

CTL_MAYBE ::= ’maybe’

CTL_MULT ::= ’*’

CTL_DIV ::= ’/’

CTL_REM ::= ’%’

9

CTL_ADD ::= ’+’

CTL_SUB ::= ’-’

CTL_LT ::= ’<’

CTL_LEQ ::= ’<=’

CTL_GT ::= ’>’

CTL_GEQ ::= ’>=’

CTL_EQ ::= ’==’

CTL_NEQ ::= ’!=’

CTL_EN ::= ’??’

CTL_NOT ::= ’!’

CTL_EXIST ::= ’E’

CTL_ALL ::= ’A’

CTL_GLOBALLY ::= ’[]’

CTL_FUTURE ::= ’<>’

CTL_NEXT ::= ’X’

CTL_AND ::= ’&&’

CTL_OR ::= ’||’

CTL_EQUIV ::= ’<->’

CTL_IMPLY ::= ’->’

CTL_UNTIL ::= ’U’

A.3 Effective grammar of LTL
expr ::= LPAR expr RPAR

| STATE_VAR

| IDENT

| EDGE_VAR

| VALUE

| NUMBER

| CONSTANT

| expr BIN1 expr

| expr BIN2 expr

| expr BIN3 expr

| expr BIN4 expr

| expr BIN7 expr

| expr BIN8 expr

| expr BIN9 expr

| expr BIN10 expr

| expr BIN11 expr

| PREFIX5 expr

| PREFIX6 expr

;

WHITE_SPACE ::= [\t]+ ;

IDENT ::= [_]* ([a-zA-Z] | ’\\’ [[:print:]])

([a-zA-Z0-9_’] | ’\\’ [[:print:]])* ;

NUMBER ::= [0-9]+ ;

STRING ::= ’\"’ (([[:print:]] {-}

[\\\"]) | ’\\\\’ | ’\\\"’)* ’\"’ ;

CHUNK ::= #([0-9a-fA-F] [0-9a-fA-F])*# ;

OPERATOR ::= [~!@<>=\-+/?&\\|*\[\]]+ ;

ENDOFLINE ::= ’\n’ | ’\r’ | ’\n\r’ | ’\r\n’ ;

LPAR ::= ’(’ ;

RPAR ::= ’)’ ;

DOT ::= ’.’ ;

COLON ::= ’:’ ;

VALUE ::= STRING | CHUNK ;

STATE_VAR ::= IDENT ;

EDGE_VAR ::= IDENT ;

CONSTANT ::= LTL_FALSE | LTL_TRUE | LTL_MAYBE ;

BIN1 ::= LTL_MULT | LTL_DIV | LTL_REM ;

BIN2 ::= LTL_ADD | LTL_SUB ;

BIN3 ::= LTL_LT | LTL_LEQ

| LTL_GT | LTL_GEQ ;

BIN4 ::= LTL_EQ | LTL_NEQ | LTL_EN ;

PREFIX5 ::= LTL_NOT ;

PREFIX6 ::= LTL_GLOBALLY | LTL_FUTURE

| LTL_NEXT ;

BIN7 ::= LTL_AND ;

BIN8 ::= LTL_OR ;

BIN9 ::= LTL_EQUIV ;

BIN10 ::= LTL_IMPLY ;

BIN11 ::= LTL_UNTIL | LTL_WEAK_UNTIL

| LTL_RELEASE ;

LTL_FALSE ::= ’true’ ;

LTL_TRUE ::= ’false’ ;

LTL_MAYBE ::= ’maybe’ ;

LTL_MULT ::= ’*’ ;

LTL_DIV ::= ’/’ ;

LTL_REM ::= ’%’ ;

LTL_ADD ::= ’+’ ;

LTL_SUB ::= ’-’ ;

LTL_LT ::= ’<’ ;

LTL_LEQ ::= ’<=’ ;

LTL_GT ::= ’>’ ;

LTL_GEQ ::= ’>=’ ;

LTL_EQ ::= ’==’ ;

LTL_NEQ ::= ’!=’ ;

LTL_EN ::= ’??’ ;

LTL_NOT ::= ’!’ ;

LTL_GLOBALLY ::= ’[]’ ;

LTL_FUTURE ::= ’<>’ ;

LTL_NEXT ::= ’X’ ;

LTL_AND ::= ’&&’ ;

LTL_OR ::= ’||’ ;

LTL_EQUIV ::= ’<->’ ;

LTL_IMPLY ::= ’->’ ;

LTL_UNTIL ::= ’U’ ;

LTL_WEAK_UNTIL ::= ’W’ ;

LTL_RELEASE ::= ’R’ ;

A.4 Effective grammar for mu-calculus
expr ::= LPAR expr RPAR

| STATE_VAR

| IDENT

| EDGE_VAR

| VALUE

| NUMBER

| CONSTANT

| expr BIN1 expr

| expr BIN2 expr

| expr BIN3 expr

| expr BIN4 expr

| expr BIN7 expr

| expr BIN8 expr

| PREFIX5 expr

| MU_SYM IDENT DOT expr

| NU_SYM IDENT DOT expr

| EDGE_EXIST_LEFT EDGE_VAR

EDGE_EXIST_RIGHT expr

| EDGE_ALL_LEFT EDGE_VAR

EDGE_ALL_RIGHT expr

;

WHITE_SPACE ::= [\t]+ ;

IDENT ::= [_]* ([a-zA-Z] | ’\\’ [[:print:]])

([a-zA-Z0-9_’] | ’\\’ [[:print:]])* ;

NUMBER ::= [0-9]+ ;

STRING ::= ’\"’ (([[:print:]] {-}

[\\\"]) | ’\\\\’ | ’\\\"’)* ’\"’ ;

CHUNK ::= #([0-9a-fA-F] [0-9a-fA-F])*# ;

OPERATOR ::= [~!@<>=\-+/?&\\|*\[\]]+ ;

ENDOFLINE ::= ’\n’ | ’\r’ | ’\n\r’ | ’\r\n’ ;

LPAR ::= ’(’ ;

10

RPAR ::= ’)’ ;

DOT ::= ’.’ ;

COLON ::= ’:’ ;

VALUE ::= STRING | CHUNK ;

STATE_VAR ::= IDENT ;

EDGE_VAR ::= IDENT ;

CONSTANT ::= MU_FALSE | MU_TRUE | MU_MAYBE ;

BIN1 ::= MU_MULT | MU_DIV | MU_REM ;

BIN2 ::= MU_ADD | MU_SUB ;

BIN3 ::= MU_LT | MU_LEQ | MU_GT | MU_GEQ ;

BIN4 ::= MU_EQ | MU_NEQ | MU_EN ;

PREFIX5 ::= MU_NOT ;

BIN6 ::= MU_AND ;

BIN7 ::= MU_OR ;

BIN8 ::= MU_NEXT | MU_EXIST | MU_ALL ;

MU_SYM ::= MU_MU ;

NU_SYM ::= MU_NU ;

EDGE_EXIST_LEFT ::= MU_EDGE_EXIST_LEFT ;

EDGE_EXIST_RIGHT ::= MU_EDGE_EXIST_RIGHT ;

EDGE_ALL_LEFT ::= MU_EDGE_ALL_LEFT ;

EDGE_ALL_RIGHT ::= MU_EDGE_ALL_RIGHT ;

MU_FALSE ::= ’true’

MU_TRUE ::= ’false’

MU_MAYBE ::= ’maybe’

MU_MULT ::= ’*’

MU_DIV ::= ’/’

MU_REM ::= ’%’

MU_ADD ::= ’+’

MU_SUB ::= ’-’

MU_LT ::= ’<’

MU_LEQ ::= ’<=’

MU_GT ::= ’>’

MU_GEQ ::= ’>=’

MU_EQ ::= ’==’

MU_NEQ ::= ’!=’

MU_EN ::= ’??’

MU_NOT ::= ’!’

MU_AND ::= ’&&’

MU_OR ::= ’||’

MU_NEXT ::= ’X’

MU_EXIST ::= ’E’

MU_ALL ::= ’A’

MU_MU ::= ’mu’

MU_NU ::= ’nu’

MU_EDGE_EXIST_LEFT ::= ’<’

MU_EDGE_EXIST_RIGHT ::= ’>’

MU_EDGE_ALL_LEFT ::= ’[’

MU_EDGE_ALL_RIGHT ::= ’]’

B. MODULAR GRAMMAR CONVERTER
GRAMMAR

grammar ModGram;

gram : module+ ;

module : ’module’ LC_NAME ’;’

(’using’ LC_NAME ’;’)* (gram_rule ’;’)*;

gram_rule : left_hand_side ’::=’ right_hand_side

| left_hand_side ’<-’ LC_NAME

’.’ left_hand_side

| left_hand_side ’<=’ LC_NAME

’.’ left_hand_side

| left_hand_side ’<=*’ LC_NAME

’.’ left_hand_side

| left_hand_side ’:/=’ right_hand_side

;

left_hand_side : LC_NAME | UC_NAME ;

right_hand_side : regexp+ ;

regexp : LC_NAME

| UC_NAME

| LC_NAME ’.’ LC_NAME

| LC_NAME ’.’ UC_NAME

| ’$’

| STRING

| CHARS

| ’(’ regexp+ ’)’

| ’+’

| ’*’

| ’?’

| ’~’

| ’|’

;

LC_NAME: [a-z] [a-z_0-9]*;

UC_NAME: [A-Z] [A-Z_0-9]*;

STRING: ’\’’ (’\\’. | ~(’\’’|’\\’))* ’\’’;

CHARS: ’[’ (~(’\\’| ’]’ | ’[’) | ’\\’.)* ’]’;

WS: [\t\n\r]+ -> skip;

C. LTSMIN MODULAR GRAMMAR 1
module main ;

using ctl ;

using ltl ;

using mucalc ;

using pred ;

expr <= ctl.expr ;

expr <= ltl.expr ;

expr <= mucalc.expr ;

expr <= pred.expr ;

module mucalc ;

using pred ;

expr ::= MU pred.VAR DOT expr

| NU pred.VAR DOT expr

| EDGE_EXIST_LEFT pred.VAR

EDGE_EXIST_RIGHT expr

| EDGE_ALL_LEFT pred.VAR

EDGE_ALL_RIGHT expr

| pred.NEXT expr

| pred.EXIST expr

| pred.ALL expr

;

MU ::= ’mu’ ;

NU ::= ’nu’ ;

EDGE_EXIST_LEFT ::= ’<’ ;

EDGE_EXIST_RIGHT ::= ’>’ ;

EDGE_ALL_LEFT ::= ’[’ ;

EDGE_ALL_RIGHT ::= ’]’ ;

DOT ::= ’.’ ;

11

module ctl ;

using pred;

expr ::= pred.EXIST expr

| pred.ALL expr

| GLOBALLY expr

| FUTURE expr

| pred.NEXT expr

| expr pred.UNTIL expr

;

GLOBALLY ::= ’G’ ;

FUTURE ::= ’F’ ;

module ltl ;

using pred ;

expr ::= GLOBALLY expr

| FUTURE expr

| pred.NEXT expr

| expr pred.UNTIL expr

| expr WEAK_UNTIL expr

| expr RELEASE expr

;

GLOBALLY ::= ’[]’ ;

FUTURE ::= ’<>’ ;

WEAK_UNTIL ::= ’W’ ;

RELEASE ::= ’R’ ;

module pred ;

expr ::= VAR

| NUMBER

| TRUE

| FALSE

| MAYBE

| STRING

| CHUNK

| LPAR expr RPAR

| expr MULT expr

| expr DIV expr

| expr REM expr

| expr ADD expr

| expr SUB expr

| expr LT expr

| expr LEQ expr

| expr GT expr

| expr GEQ expr

| expr EN expr

| expr EQ expr

| expr NEQ expr

| expr AND expr

| expr OR expr

| NOT expr

| expr EQUIV expr

| expr IMPLY expr

;

STRING ::= ’"’ (~[\\"] | ’\\’$)* ’"’ ;

CHUNK ::= ’#’ ([0-9a-fA-F]

[0-9a-fA-F])* ’#’ ;

NUMBER ::= [0-9]+ ;

TRUE ::= ’true’ ;

FALSE ::= ’false’ ;

MAYBE ::= ’maybe’ ;

VAR ::= ’_’* ([a-zA-Z] | ’\\’$)

([a-zA-Z0-9_’] | ’\\’$)* ;

LPAR ::= ’(’ ;

RPAR ::= ’)’ ;

MULT ::= ’*’ ;

DIV ::= ’/’ ;

REM ::= ’%’ ;

ADD ::= ’+’ ;

SUB ::= ’-’ ;

LT ::= ’<’ ;

LEQ ::= ’<=’ ;

GT ::= ’>’ ;

GEQ ::= ’>=’ ;

EQ ::= ’==’ ;

NEQ ::= ’!=’ ;

EN ::= ’??’ ;

NOT ::= ’!’ ;

AND ::= ’&&’ ;

OR ::= ’||’ ;

EQUIV ::= ’<->’ ;

IMPLY ::= ’->’ ;

NEXT ::= ’X’ ;

EXIST ::= ’E’ ;

ALL ::= ’A’ ;

UNTIL ::= ’U’ ;

D. LTSMIN MODULAR GRAMMAR 2
module main ;

using ctl ;

using ltl ;

using mucalc ;

expr ::= ctl.expr

| ltl.expr

| mucalc.expr

;

module mucalc ;

using pred ;

using bool ;

expr <= bool.expr ;

expr ::= MU pred.VAR DOT expr

| NU pred.VAR DOT expr

| EDGE_EXIST_LEFT pred.VAR

EDGE_EXIST_RIGHT expr

| EDGE_ALL_LEFT pred.VAR

EDGE_ALL_RIGHT expr

| pred.NEXT expr

| pred.EXIST expr

| pred.ALL expr

| pred.comp_expr

;

MU ::= ’mu’ ;

NU ::= ’nu’ ;

EDGE_EXIST_LEFT ::= ’<’ ;

EDGE_EXIST_RIGHT ::= ’>’ ;

EDGE_ALL_LEFT ::= ’[’ ;

EDGE_ALL_RIGHT ::= ’]’ ;

DOT ::= ’.’ ;

12

module ctl ;

using bool ;

using pred ;

expr <= bool.expr ;

expr <= bool.expr_extra ;

expr ::= pred.EXIST expr

| pred.ALL expr

| pred.GLOBALLY expr

| pred.FUTURE expr

| pred.NEXT expr

| expr pred.UNTIL expr

| pred.comp_expr

;

module ltl ;

using pred ;

using bool ;

expr <= bool.expr ;

expr <= bool.expr_extra ;

expr ::= pred.GLOBALLY expr

| pred.FUTURE expr

| pred.NEXT expr

| expr pred.UNTIL expr

| expr WEAK_UNTIL expr

| expr RELEASE expr

| pred.comp_expr

;

WEAK_UNTIL ::= ’W’ ;

RELEASE ::= ’R’ ;

module pred ;

using bool ;

comp_expr ::= calc_expr EQ calc_expr

| calc_expr NEQ calc_expr

| calc_expr LT calc_expr

| calc_expr LEQ calc_expr

| calc_expr GT calc_expr

| calc_expr GEQ calc_expr

| calc_expr EN calc_expr

;

calc_expr ::= VAR

| NUMBER

| bool.LPAR calc_expr bool.RPAR

| calc_expr MULT calc_expr

| calc_expr DIV calc_expr

| calc_expr REM calc_expr

| calc_expr ADD calc_expr

| calc_expr SUB calc_expr

;

STRING ::= ’"’ (~[\\"] | ’\\’$)* ’"’ ;

CHUNK ::= ’#’ ([0-9a-fA-F]

[0-9a-fA-F])* ’#’ ;

NUMBER ::= [0-9]+ ;

VAR ::= ’_’* ([a-zA-Z] | ’\\’$)

([a-zA-Z0-9_’] | ’\\’$)* ;

MULT ::= ’*’ ;

DIV ::= ’/’ ;

REM ::= ’%’ ;

ADD ::= ’+’ ;

SUB ::= ’-’ ;

LT ::= ’<’ ;

LEQ ::= ’<=’ ;

GT ::= ’>’ ;

GEQ ::= ’>=’ ;

EQ ::= ’==’ ;

NEQ ::= ’!=’ ;

EN ::= ’??’ ;

GLOBALLY ::= ’[]’ ;

FUTURE ::= ’<>’ ;

NEXT ::= ’X’ ;

EXIST ::= ’E’ ;

ALL ::= ’A’ ;

UNTIL ::= ’U’ ;

module bool;

expr ::= expr AND expr

| expr OR expr

| NOT expr

| TRUE

| FALSE

| MAYBE

| LPAR expr RPAR

;

expr_extra ::= expr_extra EQUIV expr_extra

| expr_extra IMPLY expr_extra

;

LPAR ::= ’(’ ;

RPAR ::= ’)’ ;

TRUE ::= ’true’ ;

FALSE ::= ’false’ ;

MAYBE ::= ’maybe’ ;

NOT ::= ’!’ ;

AND ::= ’&&’ ;

OR ::= ’||’ ;

EQUIV ::= ’<->’ ;

IMPLY ::= ’->’ ;

13

	Introduction
	Research questions

	Related work
	Background
	Modular grammars
	Syntax and semantics

	Temporal logic syntax
	CTL
	LTL
	mu-calculus

	Methods
	Expected results
	Existing solution
	Advantages
	Disadvantages

	Requirements
	Modular grammar converter
	Parse phase
	Error checking phase
	Conversion phase
	Export phase

	New architecture
	Solution 1
	Solution 2

	Validation
	Conclusion
	Further work
	Acknowledgements
	References
	The old grammars of LTSmin
	The base grammar for the temporal logics
	Effective grammar for CTL
	Effective grammar of LTL
	Effective grammar for mu-calculus

	Modular Grammar Converter grammar
	LTSmin modular grammar 1
	LTSmin modular grammar 2

