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ABSTRACT
Formal methods are a great way to provide more certainty
about the correct behaviour of a software system. Using
them, however, is generally associated with large costs.
This research explores a more lightweight approach of using
formal methods by creating a specification in a high-level
language, which is transformed into both a formal model in
mCRL2 and an implementation in Java. It has been tested
that the mCRL2 toolchain works with this workflow, and
that the mCRL2 and Java code generated are equivalent.
This paper describes the structure of this intermediate
model, along with its translation into mCRL2 and Java.
It also shows that these translations are correct, and that
the approach is effective in terms of reducing the effort of
changing requirements later on. While the result of this
research is not yet a complete language that could be used
in every domain, it shows that the concept is viable and
provides a solid starting point for such a language.

1. INTRODUCTION
For a long time, people have advocated the need of a way
to guarantee the correctness of computer software to ensure
correct behaviour of these systems [2].

Guaranteeing the correctness of large programs is nearly
impossible due to the high complexity. Previous research
has pointed out that finding software errors in the early
stages of development significantly reduces the cost of fixing
these errors [1].

Formal methods (FM) are often proposed as a solutions
to these issues. However, several costs are associated with
using these. For one, the programmer will have to be
trained in the use of these methods, which is often not
a skill programmers possess beforehand. Secondly, they
generally focus on the requirements discovery phase, during
which they are used extensively. Mistakes in this phase
either mean that either the correctness can no longer be
guaranteed, or it means re-doing a large number of steps
in the development process, costing significant amounts
of effort and time [1, pp. 6, 8]. This means that the
requirements have to be frozen for a long period of time in
order to guarantee as much certainty of the correctness of
the formal specification as possible [1, p. 8].

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy oth-
erwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.
24th Twente Student Conference on IT July 1st, 2016, Enschede, The
Netherlands.
Copyright 2016, University of Twente, Faculty of Electrical Engineer-
ing, Mathematics and Computer Science.

While this cost is worth it in a number of use cases, espe-
cially the cost of changing the requirements seems to be a
major obstacle for widespread adoption of FM in software
development [1]. This cost is hardly acceptable in certain
types of software, where requirements change quickly based
on iterations of customer feedback.

The goal of this research is to find a way of applying the
benefits of FM in an agile development process. The main
goal is to allow regular changes to the requirements in every
step of the development process, without having to spend a
large amount of time adapting the formal specification and
the resulting codebase. This has been done by writing a
language in which a system model can be defined, called the
Intermediate Model (IM). A parser has been written that
can transform this language into both a formal specification
in mCRL2 [9] and an implementation in Java. The choice
for mCRL2 has been made because a number of useful
tools exist for it, which have been used in this research.

The novelty of this approach is primarily in using an inter-
mediate model that creates both a formal specification and
an implementation, rather than attempting to translate a
formal specification into an implementation. This paper
shows that this approach can result in a large reduction of
workload spent on both the formal specification and the
implementation.

1.1 Research Questions
An appropriate format for the intermediate model (IM) will
have to be found. The desired format is dependent on how
it can be transformed into a formal specification in mCRL2
and an implementation in Java. What this format should
look like is the primary research question. To answer this
question, there are a number of subquestions:

1. Is the behaviour of the generated mCRL2 code equiv-
alent to the intended result based on the IM?

2. Is the behaviour of the generated Java code equivalent
to the intended result based on the IM?

3. Does using this approach indeed lower the effort re-
quired to use FM in an agile development process?

4. Does using this IM still provide the benefits of FM?

1



1.2 Method of Research
To answer the research questions, a number of experiments
will be performed. This will be done using an example
system which describes a traffic light system. This system
is described in detail in section 3.3.

1.2.1 Effort to change requirements
To answer the third research question, an analysis will
need to be made of the effort needed to make changes
to the definition if the requirements change. To do this,
a requirement change will be made in the intermediate
model. The total number of changes in the IM versus the
changes in the generated mCRL2 and Java files will give
an indication of how much easier making changes to the
requirements is using this method.

1.2.2 Validating the generated mCRL2 with µ-
calculus

To answer the first research question, the mCRL2 toolchain
will be used. By using this toolchain to verify the correct-
ness of the generated mCRL2 model with formal require-
ments written in µ-calculus [10], it can be shown that this
model can be used to create a correct model. This will
also partially answer the fourth research question, by show-
ing that at least a number of the benefits of the mCRL2
toolchain are still available.

1.2.3 Validation using JTorX
To answer the second research question, the program JTorX
[15] will be used. Because the mCRL2 model is proven
correct separately, it can be assumed, by extension, that the
Java program is also equivalent to the intended behaviour.

JTorX is a program that can be used to test the confor-
mance of the behaviour Java program against a formal
model as generated from a mCRL2 model. It can be used
with a Java program that takes actions from stdin to verify
against the formal model. By giving jtorx as a parame-
ter to the generated Java program, all non-error output
is disabled, which makes it compatible with the JTorX
workflow.

Using JTorX to check the equality of the generated models
is another part of the answer to the fourth research question,
as this is a tool more often used in development using FM.

1.3 Structure of this paper
Section 2.1 describes some background knowledge the
reader of this paper might find useful. After that, sec-
tion 2.2 will describe work that has been done in former
research to attempt to solve this problem.

In section 3, the designed IM is described. This is done by
first explaining the decisions regarding the design of the
IM in section 3.1, and then describing the exact structure
in section 3.2. Section 3.3 describes how this model is
transformed into mCRL2 and Java.

Section 4 will describe the results of the experiments. Sec-
tion 5 will discuss the implications of these results to answer
the research questions. Finally, section 6 will describe the
general conclusions that can be taken from the results of
this research.

2. LITERATURE
2.1 Formal Methods
Formal Methods are techniques used to model systems
as mathematical entities [3]. This is done using Formal
Specification Languages, which are mathematically inspired
languages. These languages enable the developer to define

the behavior of a system in a way that allows for verification
using mathematical proofs. The main rationale behind FM
is that time spent on specification and design will be repaid
by a higher quality product [6].

Using the Formal Specification Language (FSL), the de-
veloper writes a Formal Specification (FS). In the case of
mCRL2[9], which will be used during this research, this
FS consists of various processes which are composed to
a system. Each of these processes will usually simulate
the states and actions of one part of the final system, and
consists of data (state) and a state machine definition.

One advantage of FM is that the FS can be transformed
into various other formats, which can be simulated and
visualized as a state machine, or be verified. While these
verifications and proofs can be performed manually, Formal
Requirements (FR) can be written in e.g. µ-calculus, after
which verification of the specification can be done quickly
and automatically by formal tools.[9]

2.2 Related Work
The possibility of applying FM in a less extensive way
has been recognized before [3, The Lightweight Approach].
One idea that has been proposed in the past is to generate
an implementation from a formal specification [11, 8, 7, 16,
4]. This lowers the cost of using FM by largely removing
the effort of making the accompanying implementation.
However, this generally results in very domain-specific
languages, and is thus not useful in the general case.

Another proposed solution is Formal Specification-Driven
Development (FSDD). The first explicit mention of the
term FSDD in academical literature seems to be by Rut-
ledge et al[13], where he advocates for the application of FM
in the context of Test-Driven Development (TDD). They
propose a development method that combines FM with
TDD. TDD traditionally defines test cases, from which unit
tests are developed. The developer then writes source code
until the unit tests pass, thereby fulfilling the requirements
of the software [13, Fig. 1].

FSDD, in contrast, begins by writing a formal specification
based on the formal requirements. This formal specification
is then used to generate both unit tests and stubs for
the software. By writing code to fill the stubs in the
program, the developer makes the unit tests pass. Because
of the generated stubs, the program can still be tested and
verified based on the formal specification, as the structure
is known by the compiler. This method has been tested
quantitatively by Fofung[5]. However, this approach still
requires each involved developer to be well-versed with
FM.

3. THE LANGUAGE
3.1 Designing the Intermediate Model
Generating implementation code from a formal specifica-
tion is not a new approach [11, 8, 7, 16, 4]. However, these
papers use a complete formal specification and generate
an implementation from this. This means that completely
finished formal model is still needed to use this approach.
The novelty in the approach of this research is in being
able to make regular changes in the formal definition by
defining an intermediate model which makes it easier to
define one part of the system at a time.

One of the major issues with defining a complete system
in a formal language is often that a lot of concepts in
conventional programming languages, such as I/O, are not
easily defined in a formal model. The reason for this is
that a formal language is in essence a state model, while
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a lot of those systems are more dependent on behaviour
than state. This similarity to a state model does give us
an interesting starting point for the definition of the IM.

A lot of systems have a number of components that can
be modelled as a simple state system. Think of the traffic
lights on an intersection, the carts in a roller coaster or a
vending machine. In all of these cases, there are a number
of elements that each have a state, which may change when
something happens. These elements are called actors (e.g.
a traffic light, a roller coaster cart), which each have a
state (e.g. current color, whether or not it is moving), and
actions which they can perform to change their state (e.g.
change to red, start moving forward).

By modelling each actor as a separate state machine, each
of these actions could be performed at any time by any
of the actors. However, in reality, it is desirable to limit
when they can be performed. It is undesirable to have
all traffic lights to be green at the same time, or for two
roller coaster carts to collide due to moving to the same
place at the same time. Which actions should and should
not be allowed at a given moment depends on the state of
different actors. For example, if traffic light A is not red,
traffic light B can not turn green. One actor preventing an
action by another actor is called a guard.

By focussing on writing a language to model elements like
this, the part of software where strict requirements are
most relevant can at least be modelled. With just these
elements, complete models can be defined, which is needed
to correctly model a wide variety of systems. However, 2
more elements will be added to the vocabulary of the IM
to simplify its usage.

The first of these is to add new types, so that e.g. the
colours red, yellow and green for the traffic lights can be
defined. These are called sorts in the IM, based on the
term mCRL2 uses for this.

The second are instances of a certain actor. In some cases,
there will be several actors with the same behaviour, but
with separate state. Examples are the rows of a vending
machine or the carts of a roller coaster. By being able to
define multiple instances of the same actor, this can easily
be implemented without duplicating code.

Thus, the final IM has sorts and actors. Each actor can
have multiple instances which all have states, actions, and
guards towards other actors. The exact structure of the
language, and how it is transformed into mCRL2 and Java
will be discussed in the following sections.

To parse the IM, a parser generator in Python called Py-
Parsing [12] is used. The grammar that it uses is described
in section 3.2. The resulting parse tree is used for a basic
analysis of the model itself, and it assist in generating the
translations.

3.2 Intermediate Model structure
The IM has a number of repeating constructs. These are
mainly identifiers, blocks, conditions and actions. Com-
ments can also be added to a model description by using a
#.

Identifiers are generally used to refer to a certain object,
such as an actor, action or struct item. They have to be
unique, and can consist of alphanumeric characters and
underscores.

Blocks are used to show which lines belong with which
grammatical construction, actor, action, or condition. A
block starts at an opening brace and ends with a matching
closing brace. A block is generally prefixed with a fixed

token or an identifier.

Conditions and actions will be described in detail later in
this paper.

An IM is constructed from 2 main components: sorts and
actors. Both are declared in their respective top-level block.
While sorts are completely optional, there has to be at least
one actor, so the actors block is required.

An abstract syntax tree showing the full structure of the
grammar can be found in appendix A.

3.2.1 Sort
A sort is a custom type that can be defined. One example
of a sort is the position of a switch (i.e. up or down). In
this iteration of the grammar, only one type of sorts is
supported: structs, or enumerated types. These consist of
a list of possible items.

The sorts block, as seen in snippet 1 is prefixed with the
sorts token. In the block, any number of sorts can be
defined with a struct() operator, prefixed with the identifier
of that sort. Within the struct’s parentheses, a list of
comma-separated identifiers identify which values that type
can have.

Snippet 1. IM Sorts
1 sorts: {
2 Segment: struct(station, lift, main

↪→ , braking, repair)
3 SwitchPos: struct(up, down)
4 }

3.2.2 Actor
Within the actors block, as seen in snippet 2, multiple
actors have been defined. Each actor is denoted by an
identifier, followed by a block that contains its properties.

Snippet 2. IM Actors
1 actors: {
2 cart: {
3 ...
4 }
5 switch: {
6 ...
7 }
8 }

Each actor has 4 types of properties: instances, states,
actions and guards. States are optional, and if an actor has
no states, then its instances are optional as well. Finally,
both the actions and guards are optional, but an actor
with neither of those will not do anything useful.

Snippet 3. IM actor states
1 states: {
2 position: Segment
3 locked: Bool
4 }

Actors will often have one or more states associated with
them. These are defined in the states block, as shown in
snippet 3. Each state is defined by an identifier, followed

3



by a type. The type can either be the built-in Number or
Boolean, or a custom type as defined in the sorts block.

A basic actor will have one instance. In this case, it suffices
to simply have a list of assignments for each of the actor’s
states, as shown in snippet 4, and that instance can be
referred to with the actor’s identifier. However, if there
are multiple actors with exactly the same behaviour, the
instances block can be used to do so, as shown in snippet 5.
If more instances are created this way, either all of an actor’s
instances or a specific instance in guards can be referred
to by referring to the actor’s identifier or the instance’s
identifier respectively. This can be seen in snippet 8 on
line 4 and in snippet 10 on line 4 respectively. Inside an
instance definition block, the initial states for that instance
are defined.

Snippet 4. IM single instance
1 instances: {
2 position = main
3 locked = true
4 }

Snippet 5. IM multiple instances
1 instances: {
2 cart1: {
3 position = braking
4 locked = false
5 }
6 cart2: {
7 position = repair
8 locked = false
9 }

10 }

3.2.3 Actions and Guards
Each actor can have any number of actions and guards.
Since the syntax for both is very similar, these will be
treated together.

First, it is important to know the difference between actions
and functions.

An action is any action an actor can perform, such as
moving or changing colour. An action has an identifier and
a list of parameter types it can take. Finally, an action has
one or more function blocks, which contain if/elseif/else
statements and functions.

A function defines the effect of the action on the states of
the actor. It has a list of possible values for the parameters
of the action, along with a list of state changes that it
causes.

An action is defined by an identifier, which should describe
what the action does, and has one or more function blocks.
Each function block has a function call, possibly being
surrounded by if/elseif/else statements.

A function call, as seen in snippet 6, describes what param-
eters the action can take, and what the resulting change
in the actor’s state is.

The parameters can be seen as conditions, as the function
can only be executed with those parameters. A parameter
can either be a value of the type of the parameter, or it
can be an Any or Not operator.

Snippet 6. A function call in the IM
1 -> <parameters> {
2 <assignments>
3 }

By giving Any(Struct) as a parameter to a function, the
function can be called with any of that struct’s values. For
example, Any(SwitchPos) allows the function to be called
with either up or down, as defined in snippet 1.

A Not operator has similar behaviour and functionality.
However, it also takes a list of either struct values or a state
of the current or guarded actor to be excluded, in the case
of actions and guards respectively. For example, by giving
Not(Segment: main, braking, repair) as a parameter, the
function can be called with either station or lift, since these
are Segment ’s values as defined in snippet 1. If the actor
has a state called position of type Segment, that identifier
can also be used in the list of excluded values. This will
exclude position’s value at the time of execution from the
function call as well.

Any function call can be surrounded by if/elseif/else blocks.
These behave in the same way they do in other languages.
Only if the conditions of the surrounding block are met, can
the function call (with the given parameters) be executed.

All of the elements described above can be seen in snippet
7. For actions, these elements are enough to define what
an actor can and can not do based on its own states.

Snippet 7. An action surrounded by an ’if ’-
statement in the IM
1 actions: {
2 # define an action with 2 parameters
3 # of type Segment
4 forward(Segment, Segment): {
5 # Allow this block if the actor

↪→ ’s current
6 # position is ’lift’
7 if (position == lift) {
8 # call the function
9 -> lift, main {

10 # change current
↪→ position

11 position = main
12 }
13 }
14 }
15 }

Basically the same syntax, however, can also be used to de-
scribe what another actor can and can not do. In the guards
block, a block can be added for each actor that should be
influenced. Inside that block, one or more functions of the
guarded actor can be influenced.

The syntax for a guard can be seen in snippet 8. While
either a complete actor or single instances of that actor
can be guarded, overlapping guards are not allowed. This
means that, if a guard is defined for an actor, defining
guards on the same function for a single instance of that
actor will not work.
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Snippet 8. A guard with an ’else-if ’-statement in
the IM
1 # In the switch actor
2 guards: {
3 # Influence any cart’s actions
4 cart: {
5 # Influence the ’forward’ action of

↪→ any cart
6 forward: {
7 if (switch_position == down) {
8 # Allow cart to move from

↪→ braking to station
9 # The state of the switch does

↪→ not change
10 -> braking, station { }
11 } elseif (switch_position == up)

↪→ {
12 -> repair, station { }
13 }
14 # Regardless of the switch’s own

↪→ state, always
15 # allow the cart to move anywhere

↪→ else.
16 -> Any(Segment), Not(Segment:

↪→ station) { }
17 }
18 }
19 }

3.3 Translating the Intermediate Model
To demonstrate how various components of the IM are
transformed into mCRL2 and Java, an example system
describing traffic lights on a four-way intersection will be
used. The full full source can be found on the repository
for this project [14].

This is a system that can very easily be modelled by the
IM. Each direction is labelled by a wind direction (north,
east, south and west), and has 3 traffic lights (left turn,
straight on and right turn).

Each traffic light will block specific other lights from turning
green if it is not red itself. For example, if the northern
traffic light for straight on is green or yellow, the eastern
and western traffic lights for straight on should not be
allowed to turn green. This is shown in figure 1.

The model has three actors, one for each type of light. Each
actor has an instance for each direction. Each instance
has a state variable for its direction, which will never be
changed, and a state variable for its current color. This
is enough to model the complete interaction between the
traffic lights.

Note that this implementation could also have been made
with either an actor for each individual light, or with a
single actor that also has a state for its light type (left,
straight, right). However, the current implementation
provides a middle ground between readability (guards for
each traffic light type are grouped) and code duplication,
and it demonstrates more features of the IM.

The following sections will describe how this model is
translated. For a couple of IM features that are not used
by this traffic lights model, snippets from the roller coaster
example in the repository will be used.

3.3.1 Translation to mCRL2
Sorts
The only custom sort currently supported is a struct. This
is a structure that is directly taken from mCRL2 syntax,

Figure 1. lights blocked by left turn being green

Snippet 9. Actor definitions in the example IM
1 sorts: {
2 WindDir: struct(north, east, south,

↪→ west)
3 Colour: struct(red, yellow, green)
4 }
5
6 actors: {
7 straight_light: {
8 states: {
9 winddir: WindDir

10 color: Color
11 }
12
13 instances: {
14 straight_north: { ... }
15 straight_east: { ... }
16 ...
17 }
18 ...
19 }
20 ...
21 }

and therefore this is by far the most simple translation.
An example in IM can be seen on line 1 of snippet 9.

For each struct, a sort type will be defined in mCRL2,
along with each possible value. This can be seen on line 6
of snippet 11.

Actors, instances and states
For each instance, a process will be generated in the mCRL2
code. The only difference between instances is the process
name. The main reason for this is that this makes it easy
to directly refer to that instance’s actions and process.

Actions and Guards
For each action and guard in the IM, a single line is emitted
in the mCRL2 model, separated by ’+’ signs. Each line
starts with any if/else-if/else statements, followed by any
sum operators for special parameter operations (explained
below). After this, there will be the specific action or guard,
with a specific naming scheme as can be seen on lines 2
and 6 of snippet 12. Finally, the process with any changed
parameters is emitted.
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Snippet 10. Action definitions
1 actions: {
2 green(): {
3 if (color == red) {
4 -> { color = green }
5 }
6 }
7 ...
8 }
9

10 guards: {
11 straight_north: {
12 green: {
13 if (winddir == east winddir ==

↪→ west) {
14 if (color == red) { -> {} }
15 } else { -> {} }
16 }
17 }
18 ...
19 }

Snippet 11. Translation of snippet 9 to mCRL2
1 act
2 left_east_red ;
3 left_west_red ;
4 ...
5
6 sort
7 WindDir = struct north | east | south

↪→ | west ;
8 sort
9 Color = struct red | yellow | green ;

10
11 proc straight_north(winddir: WindDir,

↪→ color: Color ) =
12 ...
13 proc straight_east(winddir: WindDir,

↪→ color: Color ) =
14 ...

The actions and guards on these actions are synchronized
in the init block of the mCRL2 model. This means that
the individual actors can communicate internally through
synchronized actions.

Special parameter operations
There are two special parameter operators, which can be
used to define a function call with a number of possible
values. These are Any and Not. A detailed explanation
on these parameters can be found in section 3.2.3, and an
example can be seen in snippet 13.

Since mCRL2 has an operator that can be used to allow
an action with multiple parameters, the sum operator,
these can be used. For the Not operator, a number of
’if’-statements can be added after this sum operator. The
result can be seen in snippet 14.

Other mCRL2 structures
There are two more structures in mCRL2 that have to be
generated. The first of these is the list of available actions.
To do this, a list of all actions and guards is kept and
append these to the start of the document, as can be seen
on line 1 of snippet 11.

A subset of these, the perform actions, will also have to be
emitted in the init block of the mCRL2 model. However,
this has been omitted from these snippets.

Snippet 12. Translation of snippet 10 to mCRL2
1 proc straight_north( ... ) =
2 ( color == red ) -> (
3 straight_north_green .

↪→ straight_north ( color =
↪→ green )

4 )
5 + ... +
6 ( winddir == east || winddir == west

↪→ ) -> (
7 ( color == red ) -> (
8 straight_north_allows

↪→ _straight_north_green .
↪→ straight_north ( )

9 )
10 )
11 <> ( straight_north_allows

↪→ _straight_north_green .
↪→ straight_north ( )

12 )
13 +
14
15 init
16 allow ( { ... } ,
17 comm ( {
18 gate_open | button_allows_gate_open

↪→ -> perform_gate_open , ...
19 } ,
20 straight_north ( winddir = north ,

↪→ color = red ) || straight_west
↪→ ( winddir = west , color = red
↪→ ) || ...

Snippet 13. A guard with Any and Not parameters
1 forward: {
2 if (pos == station) {
3 -> Any(Segment), Not(Segment:

↪→ station) {}
4 }
5 ...
6 }

Snippet 14. Translation of snippet 13
1 ( pos == station ) -> (
2 sum segment_1 : Segment . sum

↪→ segment_0 : Segment . (
↪→ segment_0 != station ) ->
↪→ cart1_allows_cart2_forward (
↪→ segment_1 , segment_0 ) . cart1
↪→ ( )

3 )

3.3.2 Translation to Java
For the translation to Java, a number of classes are gener-
ated. This can be seen in figure 2.

First off, classes are generated for all the actors. These
are called Models in Java. Each of these classes have an
instance variable for each of the actor’s parameters, a con-
structor that takes the values for these instance variables,
and a method for each of the actions and guards the actor
has. A part of one of these classes is shown in figure 3.

Then, a Sorts class is generated. This class contains an
enum for all of the custom structs that have been defined.
All of the models and the controller import this class to
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Figure 2. Class diagram of generated Java

Figure 3. Partial LeftLightModel.java description

refer to the custom sorts.

A controller class is generated which holds an instance of
each model for each instance the actors have in the IM. For
each action, it has both an executing method (e.g. perform-
LightGreen()) and a method that just returns whether or
not a given action would be allowed (e.g. isLightGreenAl-
lowed()). Both return a boolean value indicating whether
or not it is/was allowed, but only the former will perform
the relevant state changes if it was allowed.

Figure 4. Partial Controller.java description

These classes can be used directly in a program, as they
are encapsulated in their own sub-package. Currently, a
sample class ConsoleProgram.java is also generated, which
runs the model from a console or terminal directly. When
doing so, it will show the current state of all actors, and

accept inputs through the console. This program can also
be used to test if an implementation in MCRL2 and Java
are equivalent.

4. RESULTS
In this section, the results of the experiments described in
section 1.2 are shown. A discussion of these results can be
found in section 5.

4.1 Effort to change requirements
In a second iteration of the traffic light system, bicycle
lights have been added. The bicycle lights are mutually
exclusive with the normal traffic lights. Thus, if any bicycle
light is not green, the other traffic lights should be red,
and vice versa.

The old implementation can be found in the repository
[14] in the trafficlights v1 folder, and the second iteration
can be found in trafficlights v2. The differences between
each set of files between the first and second iterations can
be found in table 1. This table shows both the number of
lines (excluding empty and pure comment lines) and the
number of lines that were changed by the requirements
change.

Table 1. Differences in the intermediate model vs.
generated files

Files Initial lines Changed lines
IM 453 108
mCRL2 1115 483
Java 1210 414

4.2 Validating the generated mCRL2 with µ-
calculus

The properties that each traffic light should have are that
it can only turn green when that can not cause a collission
with cars from another light, that each traffic light will take
on each color at some point, in a fixed order (green, yellow,
red, green), and that the model contains no deadlocks.

A number of formulas have been written in µ-calculus,
which describe these properties. One of these formulas
can be found in snippet 15. Using these formulas and the
mCRL2 toolchain, it has been verified that the generated
model satisfies each of these properties.

Snippet 15. An example of µ-calculus used to ver-
ify the mCRL2 code
1 [true . perform_left_north_green . (!

↪→ left_north_red) . (
2 perform_left_east_green ||

↪→ perform_straight_east_green ||
3 perform_left_west_green ||

↪→ perform_straight_west_green ||
4 perform_right_south_green ||

↪→ perform_straight_south_green
5 )] false

4.3 Results of validation using JTorX
JTorX needs an explicit list of possible input actions to
the program. Since, for this model, all permitted actions
are input actions and there are no output actions, the list
of actions of the mCRL2 model’s allow block can be used.

Since JTorX does not attempt to visit each transition in the
model, the best way to reach full coverage is by randomly
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performing tests a large number of times with various
random seeds. Both the initial version and the changed
version of the traffic light system, as defined in section 4.1,
are tested this way. In table 2, the number of states and
transitions for both of these systems is shown. For both of
these, ten runs with different seeds have been done, during
each of which 20,000 random actions will be performed.

By manually changing one of the labels the generated Java
program accepts into an invalid label, it has been verified
that JTorX does indeed detect invalid actions and fail the
run. The used settings for JTorX can be found in this
project’s code repository [14]. The seeds used for the ten
runs are the numbers 1 through 10.

All of the runs passed.

Table 2. Sizes of mCRL2 models
Model States Transitions
Traffic lights v1 1737 8640
Traffic lights v2 1817 8964

5. DISCUSSION
The approach described in this paper has, so far, been used
to model two systems: The traffic light system described in
this paper, and a rollercoaster system. During this process,
various issues with the initial version of the project have
been discovered, and for a large part fixed. One weak point
of the research presented in this paper, however, is that
this method has only been applied to these two systems
so far. Thus, it is not yet clear what features are missing
from the language.

5.1 Effort to change requirements
Working with the IM has, based on the results of this test,
very clear advantages versus working with the mCRL2 and
Java code directly. For 100 changed lines in the IM, there
are four times as many changes in both the mCRL2 and
in the Java code. While not all of these changes will be
substantial, and an eight times work reduction can thus
not be assumed even in this particular case, this is still a
good demonstration of the reduced amount of work needed
to change requirements.

5.2 Validating the generated mCRL2 with µ-
calculus

The written µ-calculus formulas give a good coverage of
the expected behaviour of the model, both in terms of
what it has to be able to do and what it should never do.
The generated code passing the validation against these
formulas gives reason to believe the behaviour is correct.

This means that at least a correct behavioural model can be
generated from the IM. Based on this, it can be concluded
that at least for a relatively restricted set of language
features, this approach works.

However, creating the µ-calculus formulas is not yet a
smooth integration with this project. The mCRL2 tools
have to be called manually, and the generated files have to
be examined to see the labels of the available actions. This
approach could be improved a lot by automatically gener-
ating these formulas. This idea has also been mentioned
in earlier research by Rutledge [13].

5.3 Validation using JTorX
Having a large number of random actions without any
issues gives a very solid reason to believe that the Java
program has at least the same features as the mCRL2

model, which has been proven to be correct separately in
subsection 5.2.

This alone does not yet guarantee that the Java model will
not have additional behaviour that is undesirable. However,
the systems that have been used to test the approach
are small enough to make it possible to manually verify
the Java code, and there certainly does not seem to be
additional behaviour. At the same time, together they use
enough features of the language to make it a good test of
the project. Also, since the logic to generate the mCRL2
and the Java code is very similar, it is very likely that no
unexpected behaviour will have been added.

This test, however, does not prove the generated implemen-
tations are equal in general. Thus, this test would have to
be run for every project separately.

6. CONCLUSION
Based on the results of the research method as found in
section 4, the first two research questions can be considered
answered. While the experiments done to validate the
correctness of both the mCRL2 and the Java program can
not guarantee complete correctness in the general case, the
correctness of the example systems seems very likely.

The fourth research question has been answered in various
parts of this research. During the development of both
systems, the toolchain has been used extensively to sim-
ulate the formal model. This made it easy to see if the
implementation and translation were correct.

Furthermore, it was relatively easy to write µ-calculus
formulas to verify these generated models. This is also
helped by the labels that have been generated by the
actions mostly being constant. However, they are not easy
to predict without looking at the generated code, which
makes this integration still somewhat bothersome.

Because the generated model can be used directly with the
toolchain, it can be concluded that at least a number of
the benefits of working directly with a formal specification
in mCRL2 are still available.

Testing the difference in lines of code changed clearly shows
the potential benefits in reduced workload by using an
intermediate model. Apart from the reduced amount of
lines of code that have to be changed, a large part of the
reduction in the effort comes from only having to implement
the functionality once. This reduces the chance of errors
being introduced during either development step.

It also invites the developer to keep using FM throughout
the development process, rather than focussing only on the
Java implementation due to time constraints. This means
that even if the requirements change weekly and there are
only a few days to implement and test these changes, a
more formal development approach can be followed using
this approach.

Thus, it can be assumed that the answer to the third re-
search question is that this approach indeed lowers the
effort needed to change requirements. This also implies
that applying this approach in an agile development envi-
ronment is much more viable than the traditional way of
using FM.

Based on the answers to the subquestions, it can be con-
cluded that the language described in this paper is a good
basis for an intermediate model with which FM can be
used better in an agile development environment. While it
is not yet a complete language, it has been shown with two
quite different systems that it is a functional and efficient
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way to describe systems.

6.1 Future work
The approach itself, both working with actor and guards in
a mCRL2 model and generating both the formal model and
the implementation from an intermediate model, is still
very new. Especially for the latter, no other research has
been found discussing the approach. Thus, it is important
to do more research in this regard, and especially to try to
use these approach in real, larger software projects.

The IM language can also still use a lot of work to ease
the development process, and to support more types of
systems.

To reduce the amount of code duplication, extra custom
parameter operations can be added, besides Not and Any.
Examples of these would be custom functions that map one
struct item to another, to construct ring or mesh structures
between instances. Another idea is to introduce inheritance,
so there is no need to duplicate code if multiple actors have
the same methods.

To make the language easier to work with, parsing errors
still have to be improved a lot. There are only standard
PyParsing errors for the moment, which do not describe
the exact issue and location very well.

Debugging an IM implementation is currently quite both-
ersome if larger amounts of code are introduced at once,
since it is not possible to see why a certain action is not
allowed. Being able to visualize either real-time, or based
on a log, what actors are blocking a certain action, would
make debugging a lot easier.

Finally, better integration with the mCRL2 toolchain would
help a great deal. It is currently hard to create µ-calculus
formulas or Java integrations with the model, as there is no
simple way to see which actions are available. Even better
would be a way to automatically generate the µ-calculus
formulas.
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