
1

Solving Logic Puzzles using Model Checking in LTSmin
Kamies, Bram

University of Twente
P.O. Box 217, 7500AE Enschede

The Netherlands

b.kamies@student.utwente.nl

ABSTRACT
Model checking is used for checking whether systems

conform to a given specification. These could instead also

model puzzles in order to find their solutions. But little is

known about restrictions (such as specific game rules) to

implementing these games or about how complex such an

implementation would be. The paper will compile a list of

puzzles and group them based on their mechanics. Then

compare the implementation and results for these puzzles to

find relations between the data and their game rules. Based on

this the data showed that rules that require the board to be

explored for groups of tiles and their shapes has the most

effect on their complexity.

Keywords

Logic, model checking, puzzles, puzzles, state space,

Sokoban, Bloxorz, rush hour.

1. INTRODUCTION
Model checkers are used for testing often complex parallel

systems, but can also be used for solving puzzles. This is done

by verifying the "unsolvable" property of the puzzle. Meaning

that the model checker thinks the system is broken if there is a

solution to the puzzle. An advantage of using model checking

for solving puzzles is that if the model checker determines the

puzzle is solvable, it also can give the steps necessary to get to

the solution.

The model checker to be used for solving these puzzles is the

LTSmin toolset [2][4]. Not all puzzles will be considered for

the list of puzzles to model check. The main focus lays on

pure logical puzzles, such that they have no hidden

information, no random elements, no opponents and being

playable on a grid or board. When talking about these

limitations it is important to keep in mind that these reflect the

puzzle rules, for example every puzzle has a hidden element

namely the solution. When saying there is no hidden

information or random elements it means there is no hidden

information or random elements that influences the choice the

player makes. The limitations will make it easier to simulate

the puzzles as they are optimal for model checking. See Table

1 for a list of the selected puzzles and their grouping. Any of

the puzzles can be encoded in mainly two ways, either a

matrix with some extra variables or a list of entities that make

up the puzzle, though it is unknown what approach is better

for specific puzzles to turn them into model checking

problems. First chapter 2 will define the research questions of

this paper. In chapter 3 background information on the tools

and chosen puzzles will be given. Chapter 4 credits related

work. Chapter 5 shows the implementation for these puzzles

and explains the working of their algorithms. Chapter 6

reports the results from testing the algorithms. The research

questions are answered in chapter 7. Finally some future work

is mentioned in chapter 8.

2. RESEARCH QUESTIONS
The puzzles chosen have in common that they can be played

on a grid or a board. The puzzles have no hidden information

or random element and all puzzles are single player. These

puzzles are essentially purely logical puzzles, because of these

key game mechanics. This makes modelling them easier. By

modelling different types of puzzles, relations between their

implementation and rule set can be found. From this we can

also analyze how well these puzzles translate to model a

model checker.

Main research question: What puzzles from Table 1 can be

efficiently solved using model checking?

1. What search strategy used to explore the state space

fits best for the puzzles?

2. What are the effects the rules of the puzzles have on

their state space?

3. What rules make the implementation of a puzzle

more complex?

2.1 METHOD OF RESEARCH
The first step is to make implementations of the puzzles,

starting with the smaller and simpler puzzles (from the

transport puzzles group) to gain experience with programming

for LTSmin. After that the next step is to make an

implementation for one puzzle (the primary) of each group.

With these implementations the first two questions can be

answered. The implementations will be tested on a virtual

machine running Ubuntu 64-bit 16.04 using 1 processor core,

4.3 GB ram, and 20 GB assigned hard drive space. For the

Bloxorz and Picross puzzles a small stress test will be used to

test DFS and BFS strategies for running time and

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee.

24thTwente Student Conference on IT, July 1st, 2016, Enschede, The
Netherlands.

Copyright 2016, University of Twente, Faculty of Electrical Engineering,

Mathematics and Computer Science.

Table 1. Selected puzzles and their grouping

Puzzle name Group

Fox, goose and bag of beans* Transport puzzle

Bridge and torch problem Transport puzzle

Bloxorz* Block sliding puzzle

Sokoban Block sliding puzzle

Picross* Binary determination puzzle

Nurikabe Binary determination puzzle

Sudoku* Sudoku

*= primary puzzle of the group, to be model checked

2

depth/transition count. Each test is run 5 times and the

runtime is averaged. Finally based on results from testing and

reviewing the algorithms used to solve the puzzles the last

question can be answered.

The implementations will consist of two c-functions which are

passed to LTSmin in order to calculate new states and to

check whether the puzzle is solved or not. In the pseudocode

these are next_state and check_goal. The next_state

function reports newly found states through a callback which

is called add_state in the pseudocode. For simplicity in

pseudo code it is assumed that values passed to functions are

copies of the local value, so passing state to a function that

modifies it doesn’t change the local value.

3. BACKGROUND

3.1 LTSmin
The LTSmin toolset is a model checking package with a core

which links different specification languages (and C code) to

an algorithm backend which allows for different methods to

be used when solving the problems with model checking.

Languages supported are (at time of writing) DVE, ETF,

mCRL2 muCRL, Promela, UPPAAL and PBES. Modeling

using C-code is done using the PINS interface. This interface

allows for models to be expressed in C-code. On the backend

of the toolset are different algorithms for exploring the

statespace for a given model. Among the settings for these

algorithms is an option for setting the strategy used for

searching new states. The initial state forms the root of a tree

that can either be explored using depth-first search (DFS) or

breadth-first search (BFS). When using DFS LTSmin keeps a

stack of the states that are queued to be explored for new

states and picks the last state and gets the states that can be

reached from that state. New states are added to the end of the

queue. When using BFS the program explores the first item in

the stack of states while still appending new states to the end

of the stack. LTSmin is able to remember states in such a way

that it can quickly identify whether a state has been previously

found or not. This way loops in the state space are ignored

and not revisited.

3.2 State space
The state space is the space of possible states a model can be

in. Theoretically any PSPACE problem can be solved on a

Turing machine but some problems would need a very large

amount of memory in order to find the solution, which causes

model checkers to run out of memory. Reducing the state

space is the main challenge for model checkers.

3.3 Sudoku
A popular number-placement puzzle with a set of rules

dictating what numbers can and can’t be placed. Variations of

this puzzle that have been chosen are Nonomino and KenKen.

Nonomino: also known as jigsaw Sudoku, where the original

3x3 regions have been replaced by 9 polygons made up of 1x1

squares connected by their edge. The rules of Sudoku have

not changed otherwise. KenKen: a grid of 4x4 has to be filled

with the numbers 1 through 4 with each number appearing

once in each column and row. With that regions have been

drawn and have been assigned an operation and an answer.

This operation must hold for the numbers entered and be

equal to the answer assigned to the region. There also exist

versions of this puzzle with 5x5 and 6x6 grids.

3.4 Binary determination puzzles
In a binary determination puzzle the player has to make a

binary choice, usually for a group of cells in a grid. The

effects of this choice depend on the rules of the puzzle. For

example in the puzzle picross the player has to draw a picture

by filling in squares (based on hints for each column and row)

or leaving them blank.

3.5 Block sliding puzzles
A block sliding puzzle is a puzzle where the player controls

one or more blocks to navigate them in a grid. The puzzle

most true to this concept is Klotski, where the player is

required to move a 2x2 tile through the exit of the puzzle. The

puzzles chosen have various variations on the concept. Rush

Hour: similar to Klotski, but all blocks are cars in that they are

always 1 tile wide and can’t move sideways. Sokoban: a

single man is controlled that has to push crates into storage

locations. Blocnog: The player is required to extend their

block into a specific shape before reaching the finish.

Bloxorz: the block the player controls changes shape

depending on the move made, this is because the player

controls a 1x1x2 block. In Bloxorz the player is required to

put the block straight up on a specific tile in the grid.

3.6 Transport puzzles
A transport puzzle is a puzzle where a group of items or

persons have to be transported between locations, with certain

restrictions to prevent combinations of items or persons to

travel at the same time or be in the same place. One such

puzzle is the Fox, goose and bag of beans puzzle, in which a

farmer is transporting a fox, goose and bag of beans from one

side of a river to another. With the following restrictions: the

fox will eat the goose if they are left together, the goose will

eat the beans if they are left together. Though not very

challenging, it is a type of puzzle that lends itself for solving

logistical problems. Another puzzle is the bridge and torch

problem. The puzzle describes a group of four people trying

to cross a bridge at night. Each of them runs at a different

speed. At most two people can cross the bridge at once, but

only while carrying a torch of which there is only one. The

puzzle is solved when everyone is at the other side of the

bridge and 15 minutes or less have passed

4. RELATED WORK
A lot of research has already been done into puzzles

themselves. Some relevant research into puzzles are proofs

that puzzles are NP-complete and PSPACE-complete. Sliding

puzzles have been proven to be PSPACE-complete by Robert

A. Hearn et al. [3]. Tom C. van der Zanden et al. have proven

that the puzzle Bloxorz and puzzle puzzles in a broader sense

are PSPACE complete [6].

Gihwon Kwon has done research into solving Sokoban

puzzles using model checking [5]. In his research he makes

several optimizations to reduce the space explosion problem

in order to solve the toughest levels.

Vincent Bloemen has looked into the viability of using model

checkers for probabilistic puzzles [1]. This research will, in a

way, extend this as the viability of LTSmin for solving

puzzles in a general manner is a byproduct of the research.

5. MODELLING

5.1 Fox, goose and the bag of beans
The state of the puzzle is stored in an array of integers which

is cast into a struct (made up of integer fields), with 0

indicating the item is on the left side of the river, and 1 for the

opposite side of the river. Aside from the items the man also

has an entry in the list.

3

#define LEFTSIDE 0
#define RIGHTSIDE 1
typedef state_t {
 int fox; int goose; int beans; int man;
}

In the next_state function the algorithm has to find all

possible states that can be reached from a given state. LTSmin

caches previous states and explores only new states. In the

pseudocode this is done by calling add_state passing the

newly found state. The state space is displayed Figure 1,

where the underscore indicates the river, meaning letters to

the left of the underscore are on the left side of the river and

letters to the right are on the right side of the river. The letter

M indicates the man with his boat, the F stands for the fox, the

G for the goose and the B for the bag of beans. States that

have a dashed outline are invalid according to the rules and

won’t be reported to the add_state function. The bold states

are begin- and end-states.

next_state(state) {
 try_switch(state, fox)
 try_switch(state, goose)
 try_switch(state, beans)
 try_switch_man(state)
}

try_switch(state, item) {
 if (state[item] == state.man) {
 state[item] = 1 – state[item]
 state.man = 1 – state[item]
 if is_valid(state)
 add_state(state)
 }
}
try_switch_man(state) {
 state.man = 1 – state[item]
 if is_valid(state)
 add_state(state)
}

The is_valid function is used to verify that after a move the

resulting state is valid. If it isn’t it won’t be reported as a new

state. By the rules of the puzzle the state is invalid if the fox

and goose or goose and bag of beans are left alone.

is_valid(state) {
 return (state.fox != state.goose ||
 state.fox == state.man) &&
 (state.goose != state.beans ||
 state.goose == state.man)
}

The check_goal function checks whether the puzzle is solved

using the is_valid function in combination with a check for

the end conditions.

check_goal(state) {
 return is_valid(state) &&
 state.fox == RIGHTSIDE &&
 state.goose == RIGHTSIDE &&
 state.beans == RIGHTSIDE
}

As LTSmin explores the states that are being found a directed

graph can be made of the states that are found. Figure 2 shows

the states as they are found by LTSmin when using BFS. In

the figure only lines to new states are drawn, meaning some

lines to invalid states are missing as well as the line between

MFG_B and G_MFB.

5.2 Bridge and torch
The bridge and torch problem’s main difference with the fox

goose and beans problem is the time limit. The boat has been

replaced with a torch and the focus of the puzzle lays on

getting everyone across under a certain time limit. Each

person walks at a different speed which affects the time it

takes them to cross the bridge. The times it takes for each

person to cross are 1, 3, 5 and 8 minutes. In the pseudo code

person A is the fastest, taking only 1 minute, followed by

person B taking 3 minutes, person C takes 5 minutes and

person D takes 8 minutes. When two people cross the bridge

at the same time, the faster walker needs to slow down to stay

with the other person.

Figure 1. Complete state space of the fox, goose and

bag of beans problem

Figure 2. Actual state space as found with BFS strategy

4

#define LEFTSIDE 0
#define RIGHTSIDE 1
typedef state_t {
int personA; int personB;
int personC; int personD;
int torch; int time;
}

next_state(state) {
 //Switch single person
 try_switch1(state, 1, personA)
 try_switch1(state, 2, personB)
 try_switch1(state, 5, personC)
 try_switch1(state, 8, personD)
 //Switch 2 persons
 try_switch2(state, 2, personA, personB)
 try_switch2(state, 5, personA, personC)
 try_switch2(state, 8, personA, personD)
 try_switch2(state, 5, personB, personC)
 try_switch2(state, 8, personB, personD)
 try_switch2(state, 8, personC, personD)
}

try_switch1(state, inctime, person) {
 if state.torch == state[person] {
 state.torch = 1 – state.torch
 state[person] = 1 – state[person]
 state.time += inctime
 if is_valid(state)
 add_state(state)
 }
}

try_switch2(state, inctime, person1, person2) {
 if state.torch == state[person1] &&
 state.torch == state[person2] {
 state.torch = 1 – state.torch
 state[person1] = 1 – state[person1]
 state[person2] = 1 – state[person2]
 state.time += inctime
 if is_valid(state)
 add_state(state)
 }
}

Since the try_switch functions prevents crossing the bridge

without the torch, the is_valid function only needs to check

that the time.

is_valid(state) {
 return (state.time <= 15)
}

The check_goal function uses the is_valid function to check

the time constraint and confirms everyone is has crossed the

bridge.

check_goal(state) {
 return is_valid(state) &&
 state.personA == RIGHTSIDE &&
 state.personB == RIGHTSIDE &&
 state.personC == RIGHTSIDE &&
 state.personD == RIGHTSIDE
}

5.3 Sokoban
The Sokoban algorithm was made by storing the entire board

into an array and keeping the state of the player separate. Each

cell is coded with a value indicating what is in that cell. Since

the player and boxes need to be able to stand on top of goal

tiles the number stored in each cell is encoded using a bitflag.

The WIDTH and HEIGHT of the board are put into define

statements and need to be adjusted for different sized boards.

#define EMPTY 0
#define WALL 1
#define BOX 2
#define GOAL 4
#define MAN 8
typedef state_t {
 int board[WIDTH * HEIGHT];
}

In order to access the board as a two dimensional structure

helper functions have been made to read and write to the

board using an x- and y-coordinate. If a coordinate passed to a

read and write operation lies outside of the board it pretends

the tile is a permanent wall.

out_of_bounds(x, y) {
 return x < 0 || x >= WIDTH || y < 0 || y >= HEIGHT
}

get_value(state, x, y) {
 if out_of_bounds(x, y) { return WALL }
 return state.board[(y * WIDTH) + x]
}

set_value(state, x, y, value) {
 if out_of_bounds(x, y) { return }
 state.board[(y * WIDTH) + x] = value
}

The code also uses some helper functions to decode the bitflag

values. To check if a specific flag is set on the bitflag the

other bits are filtered out using a bitwise and operation.

is_empty(cell) {
 return cell == EMPTY || cell == GOAL
}
is_wall(cell) { return cell & WALL }
is_box(cell) { return cell & BOX }
is_goal(cell) { return cell & GOAL }
is_man(cell) { return cell & MAN }

The moves a player can make at a given moment is to either

move in one of the four cardinal directions, or push (a box) in

one of the four cardinal directions. When pushing a box onto a

tile, it into must be empty or a goal tile and the man must push

it from the opposite side. The following code segment shows

the code used for moving up and pushing a box up. Similar

functions exist for moving and pushing in the other directions.

find_man(state) {
 for x=0,WIDTH {
 for y=0,HEIGHT {
 if is_man(get_value(state, x, y))
 return x, y
 }
 }
}

try_move_up(state) {
 x, y = find_man(state)
 current = get_value(state, x, y)
 above = get_value(state, x, y – 1)
 if is_empty(above) {
 set_value(state, x, y, current - MAN)
 set_value(state, x, y - 1, above + MAN)
 if is_valid(state)
 add_state(state)
 }
}

try_push_up(state) {
 x, y = find_man(state)
 current = get_value(state, x, y)
 box = get_value(state, x, y – 1)
 target = get_value(state, x, y – 2)
 if is_empty(target) && is_box(box) {
 set_value(state, x, y, current – MAN)
 set_value(state, x, y - 1, (box – BOX) + MAN)
 set_value(state, x, y – 2, target + BOX)
 if is_valid(state)
 add_state(state)
 }
}

next_state(state) {
 try_move_up(state)
 try_move_down(state)
 try_move_left(state)
 try_move_right(state)
 try_push_up(state)
 try_push_down(state)
 try_push_left(state)
 try_push_right(state)
}

The is_valid function makes sure the man and all boxes are

not put inside of a wall. If it finds a man on top of a box or

wall it returns false. It also returns false if a box is inside of a

wall.

5

is_valid(state) {
 for x=0,WIDTH {
 fox y=0,HEIGHT {
 cell = get_value(state, x, y)
 if is_man(cell) && (is_box(cell) ||
 is_wall(cell))
 return 0
 if is_box(cell) && is_wall(cell)
 return 0
 }
 }
}

The check_goal function uses the is_valid function and

confirms all goals have a box on top of them.

check_goal(state) {
 if !is_valid(state) { return 0 }
 for x=0,WIDTH {
 for y=0,HEIGHT {
 cell = get_value(state, x, y)
 if is_goal(cell) && !is_box(cell)
 return 0
 }
 }
 return 1
}

5.4 Bloxorz
Because in Bloxorz the state of the object the player controls

has more data associated with it than in Sokoban, a different

approach in encoding the state of the puzzle was chosen.

Instead of encoding the player into the board, the board and

the player information was kept separate. This was done

because for Bloxorz the state of a player also involves the

rotation of the block (standing up or laying down on either

axis). Implementing this by encoding the squares a player

occupies would add the overhead of locating and identifying

the orientation of the player in every next_state function call.

#define STANDING 0
#define LAYING_X 1
#define LAYING_Y 2
#define EMPTY 0
#define FLOOR 1
#define GOAL 2
typedef state_t {
 int x; int y; int rot;
 int board[WIDTH * HEIGHT];
}

The position of the player is measured as the top left square

the player occupies. When the player is lying along the x-axis

this would be the left tile and the top tile when lying along the

y-axis.

Because the orientation of the player changes the way the

player navigates the board each direction the player can move

in handles the player’s orientation differently. An example of

this is shown in Figure 3, in which the black block is the

current tiles the player occupies. In the following code snippet

the functions to move the player up and down are shown.

try_move_up(state) {
 switch(state.rot) {
 case STANDING:
 state.y -= 2
 state.rot = LAYING_Y
 case LAYING_X:
 state.y -= 1
 case LAYING_Y:
 state.y -= 1
 state.rot = STANDING
 }
 if is_valid(state) {
 add_state(state)
 }
}

try_move_down(state) {
 switch(state.rot) {
 case STANDING:
 state.y -= 1
 state.rot = LAYING_Y
 case LAYING_X:
 state.y -= 1
 case LAYING_Y:
 state.y -= 2
 state.rot = STANDING
 }
 if is_valid(state)
 add_state(state)
}

The is_valid function ensures that at all times the player is

fully supported by the level. It uses a helper function

is_floor to detect whether a specific tile can support the

player (both FLOOR and GOAL can support the player). Tiles

outside of the board are assumed to be EMPTY.

is_floor(state, x, y) {
 if x < 0 || x >= WIDTH || y < 0 || y >= HEIGHT
 return 0
 return state.board[(y * WIDTH) + x] != EMPTY
}

is_valid(state) {
 if !is_floor(state, state.x, state.y)
 return 0
 switch(state.rot) {
 case STANDING:
 return 1
 case LAYING_X:
 return is_floor(state, state.x + 1, state.y)
 case LAYING_Y:
 return is_floor(state, state.x, state.y + 1)
 }
}

A Bloxorz level is solved by putting the player’s block

standing on top of a GOAL tile. The check_goal function tests

this by confirming the player is standing and on top of a GOAL

tile.

is_goal(state, x, y) {
 return state.board[(y * WIDTH) + x)] == GOAL
}

check_goal(state) {
 return state.rot == STANDING &&
 is_goal(state, state.x, state.y)
}

5.5 Sudoku
The state of Sudoku is stored in an 81 slot array. Accessing

the board using x- and y-coordinates is done as with previous

puzzles using helper functions. But instead of tracking a

player object every time a next state has to be determined it

finds the next empty slot and tries the values 1-9 and reports

back all states that still meet the Sudoku requirements.

Figure 3. The orientation of the block changes the way

it moves around the board

6

#define EMPTY 0
typedef state_t {
 int board[WIDTH * HEIGHT];
}

get_value(state, x, y) {
 return state.board[(y * WIDTH) + x)]
}

set_value(state, x, y, value) {
 state.board[(y * WIDTH) + x)] = value
}

next_empty(state) {
 for y=0,HEIGHT
 for x=0,WIDTH
 if get_value(state, x, y) == EMPTY
 return x, y
 return -1, -1
}

next_state(state) {
 x, y = next_empty(state)
 if x == -1 { return }
 for i=1,10 {
 try_value(state, x, y, i)
 }
}

try_value(state, x, y, value) {
 set_value(state, x, y, value)
 if is_valid(state) {
 add_state(state)
 }
}

The is_valid function checks for each row and column that

each number only appears once (ignoring EMPTY values). Also

it does this for each 3-by-3 block. Only the implementation

for validating columns is given, but validating rows works the

same apart from using a different axis.

is_valid(state) {
 for x=0,9
 if !is_valid_column(state, x)
 return 0
 for y=0,9
 if !is_valid_row(state, x)
 return 0
 for x=0,3
 for y=0,3
 is_valid_block(state, x*3, y*3)
}

is_valid_column(state, x) {
 int count[9] = {}//filled with 0’s
 for y=0,9 {
 value = get_value(state, x, y)
 if value != EMPTY
 count[value]++
 if count[value] > 1
 return 0
 }
 return 1
}

is_valid_block(state, _x, _y) {
 int count[9] = {}
 for x=_x, _x + 3 {
 for y=_y, _y + 3 {
 value = get_value(state, x, y)
 if value != EMPTY {
 count[value]++
 if count[value] > 1
 return 0
 }
 }
 }
 return 1
}

In order to check whether the puzzle is solved the algorithm

only needs to check that there is no empty cell in the grid and

that is_valid returns true.

check_goal(state) {
 x, y = next_empty(state)
 if x == -1 {
 return is_valid(state)
 }
 return 0
}

5.6 Picross
The implementation made for picross is similar to that of

Sudoku in the way that the algorithm finds the next empty cell

and gives it a value. For picross this value is either white or

black. The hints for the rows and columns are stored on the

state struct. A constant MAX_HINTS indicates the largest

number of hints any row of column can have.

#define NO_HINT 0
#define EMPTY 0
#define WHITE 1
#define BLACK 2
typedef state_t {
 int hints_x[WIDTH][MAX_HINTS];
 int hints_y[HEIGHT][MAX_HINTS];
 int board[WIDTH * HEIGHT];
}

The pseudo code for helper functions and next_state is

nearly identical to that of Sudoku, with the difference of the

values being tried.

get_value(state, x, y) {
 return state.board[(y * WIDTH) + x)]
}

set_value(state, x, y, value) {
 state.board[(y * WIDTH) + x)] = value
}

next_empty(state) {
 for y=0,HEIGHT
 for x=0,WIDTH
 if get_value(state, x, y) == EMPTY
 return x, y
 return -1, -1
}

next_state(state) {
 x, y = next_empty(state)
 if x == -1 { return }
 try_value(state, x, y, WHITE)
 try_value(state, x, y, BLACK)
}

try_value(state, x, y, value) {
 set_value(state, x, y, value)
 if is_valid(state)
 add_state(state)
}

The most complex part of the algorithm comes from the

is_valid function, which needs to analyze each row and

column to verify it obeys the hints.

is_valid(state) {
 for x=0,WIDTH
 if !is_valid_column(state, x)
 return 0
 for y=0,HEIGHT
 if !is_valid_row(state, y)
 return 0
}

The following function verifies a given column obeys to the

hints of that column. A similar function exists for verifying

rows. The function starts by fetching the array of hints, and

then loops through this array to read every hint. This is done

by either checking all or reaching a hint of length 0 (NO_HINT).

To check a hint first the next black square in the column is

found. If the end of the column is reached then the function

returns false because one or more hints were missed. After

finding the first black square it verifies that the number of

consecutive black squares after the first black square matches

that of the hint. The algorithm also makes sure there is a white

7

square after the row of black squares. The variable _y tracks

the current position in the column. If at any point a blank

square is found, the function returns true. This makes sure that

the hints up to the blank square are correct, without skipping

the column entirely.

is_valid_column(state, x) {
 hints = state.hints_x[x]
 y = 0
 for i = 0,MAX_HINTS {
 hint = hints[i]
 if hint == NO_HINT
 break
 if y >= HEIGHT {
 return 0
 //Find next black square
 while y < HEIGHT {
 int value = get_value(state, x, y)
 if value == BLACK
 break
 if value == EMPTY
 return 1
 y++
 }
 //Read hint number of squares
 for j = 0, hint {
 if y >= HEIGHT
 return 0
 int value = get_value(state, x, y)
 if value == WHITE
 return 0
 if value == EMPTY
 return 1
 y++
 }
 //In case the hint doesn’t end with the column
 if y < HEIGHT {
 //Check next is not black
 int value = get_value(puzzle->board, x, y)
 if (value == BLACK)
 return 0
 if (value == EMPTY)
 return 1
 }
 }
 //Check remaining tiles to be not black
 while y < HEIGHT {
 if get_value(state, x, y) == BLACK)
 return 0
 y++
 }
 return 1
}

5.7 Nurikabe
An attempt was made to implement this puzzle, though it

didn’t yield any timing or depth result, it did give an insight

into the difficulty of programming its possible solution. The

part of the algorithm that couldn’t be devised was about

verifying the state of the puzzle. The rules of the puzzle state

that a hint indicates how many white squares are connected to

it and are not allowed to be connected together. A final rule

requires all black squares to be connected and not fill any 2x2

area.

The algorithm would have to explore the board like a maze

multiple times, once for each hint and once to check the black

squares. While checking the black squares it would also have

to confirm it doesn’t contain any squares of 2x2.

Checking all these requirements made the algorithm complex

to the point where it could not be completed in the given

timeframe. This showed that rules involving groups of tiles

that can vary in shape and require the algorithm to explore the

board make the algorithm more complex.

6. RESULTS
The version of LTSmin used is tacas2015-dirty, which is used

on Ubuntu 16.04 running inside a virtual machine. The host

OS is Windows 7 64-bit, the virtual machine software is

VMware Workstation 12 Player. The physical hardware the

VM has access to consists of an Intel i7 processor running at

2.30 GHz, 4.3GB of RAM and 20GB of hard-drive space.

Table 2. Timing results for DFS and BFS tests

Puzzle Duration DFS Duration BFS

Fox, goose and

bag of beans

0.002s 0.002s

Bridge and torch 0.004s 0.002s

Bloxorz 0.258s 0.002s

Sudoku 0.047s 0.081s

Table 3. Test results for various sizes of Bloxorz puzzles

Level

size

Duration

BFS

Depth

BFS

Duration

DFS

Depth

DFS

10x10 0.005s 13 0.010s 58

20x20 0.069s 27 0.051s 199

50x50 4.271s 67 1.535s 1329

100x100 1m16.073s 133 25.989s 5578

150x150 13m38.848s 201 2m38.044s 13150

Table 4. Test results for various sizes of Sokoban puzzles

Level

size

Duration

BFS

Depth

BFS

Duration

DFS

Depth

DFS

10x10 0.128s 20 0.060s 72

20x20 9.087s 40 1.491s 152

50x50 >30m NA 4m37.992s 392

100x100 >30m NA >30m NA

150x150 >30m NA >30m NA

Figure 4. The first level of Bloxorz

Figure 5. The board used for testing the Sudoku algorithm

The commands used to test implementations with DFS and

BFS are listed below.

time pins2lts-seq game.so –-strategy=bfs
 --invariant=”! goal”
time pins2lts-seq game.so –-strategy=dfs
 --invariant=”! goal”

The Linux command ‘time’ was used to measure the time

taken to find the solution to a puzzle. Of the output from this

command the ‘real’ time was used. The times it took for the

8

implementations to find a solution to the puzzle is shown in

Table 2. The level used for testing Bloxorz is shown in Figure

4. For Sudoku the board shown in Figure 5 was used for

testing.

6.1 Sokoban
In the tests to find the limits for Sokoban a square level of

different sizes and without walls was used. The player is

placed in the top-left corner of the map with a box placed one

down and one to the right of the player. The goal of the level

is placed in the very bottom-right corner of the map.

6.2 Picross
The results of testing the picross algorithm with puzzles of

different sizes are shown in Table 5.

7. CONCLUSIONS
First the sub-questions will be answered before answering the

main research question.

7.1 What search strategy used to explore

the state space fits best for the puzzles?
The method of implementation for the binary determination

group and Sudoku naturally favors DFS because the puzzles

require a specific amount of answers to be filled in before the

puzzle can be considered complete. The underlying reason for

this is that the DFS strategy is able to reach the required depth

to fill the entire board sooner than that of BFS. Intuitively this

also means that BFS does take longer to reach its required

depth but can quickly enumerate all possible answers once the

required depth has been reached.

For puzzles where the player controls an entity (Sokoban and

Bloxorz) showed that using the BFS strategy yielded better

results (using less transitions), but DFS was still faster on

time. These puzzles don’t require a specific amount of

transitions before reaching a definite answer. This means that

DFS can find a path faster, which may be longer but won’t

contain loops. Whereas BFS finds an answer using the

minimal amount of transitions but needs to explore much

more states to reach the same depth DFS would need.

7.2 What are the effects the rules of

puzzles have on their state space?
If you compare the results for Bloxorz in Table 3 with the

results for Sokoban in Table 4 it is clear that Sokoban has a

faster growing state space than Bloxorz. This can be explained

by the fact that in Sokoban the player can move boxes. When

a player moves a box in Sokoban it is essentially modifies the

board area in which the man can move. In the tests the level

only consisted of a big square room with one box and one

goal. Whenever the man pushed the box onto a new square the

man was able to traverse the entire board without reaching a

previous state. While in Bloxorz any state the player is in can

only occur once, since the rest of the state is a static board. So

the number of pieces that the player can move directly or

indirectly severely impacts the state space.

For the Sudoku game the rules allowed the algorithm to

optimize the exploration of the state space. As soon as the

algorithm finds any part of the board to be invalid it is able to

terminate all states that would come after it. This is also seen

for Picross and explains why the test with a 30-by-30 board

took much less time than the previous 25-by-25 board.

Because the only difference besides the size of the board is

the hints for the puzzle, it was the hints that allowed the

algorithm to find a solution to the puzzle quicker. The hints of

that particular Picross puzzle were able to eliminate more

possible solutions than the hints for the 25-by-25 board could.

7.3 What rules make the implementation

of a puzzle more complex?
The implementation of the transport puzzles was a

straightforward translation of the rules. These only involved

binary like conditions which translate with little effort to code.

Beyond this their algorithm only needed to try all possible

moves and confirm each new state conforms to the restrictions

the rules state.

Puzzles from the block sliding group were more complex

because each move had its own requirements. Rather than

only checking the end state to be valid, first a move needs to

be possible. Comparing the solutions to Bloxorz and Sokoban,

Bloxorz showed that separating movable objects in the puzzle

from the board of the puzzle can simplify implementation

when the objects become more complicated. Bloxorz player

object could not only move but also change shape. Separating

these removes the overhead of identifying the information

when calculating next possible states.

The puzzles from the binary determination group turned out to

be the most difficult to implement compared to their

description. Their rules described patterns spanning over

multiple tiles, for example Nurikabe requires the algorithm to

search and count all tiles connected to a tile that contains a

hint as well as demanding certain shapes do not exist in the

shape the connected tiles form. Even though Sudoku is similar

to puzzles from the binary determination group, its

complexity was much lower due to its rules affecting specific

groups of tiles (rows, columns and 3-by-3 blocks) which

didn’t require the algorithm to explore the board but only

check these known groups on certain conditions.

7.4 What puzzles can be efficiently solved

using model checking?
The transport puzzles showed that it takes little effort to

implement puzzles where the rules only limit the possible

states by denying specific combinations from existing.

Implementations (and lack thereof) for puzzles in the binary

determination group show that puzzles with rules about

patterns and shapes make their implementation more complex

and time consuming.

The Bloxorz and Sokoban puzzles showed that for puzzles

where the player controls one or more objects, the number of

objects cause the state space to grow.

When solving a puzzle, using DFS can improve the runtime of

the model checking, though it doesn’t make any guarantees on

the depth the solution will be found at. This makes using DFS

and BFS a tradeoff between speed and accuracy respectively.

If the solutions to a puzzle are found by filling in the puzzle

then DFS is better. This is because this method of solving the

puzzle ensures the solution is found at a specific depth

because every part of the puzzle is filled in (guessed) only

once.

Table 5. Testing duration of picross puzzles

Level size Duration BFS Duration DFS

5x5 0.020s 0.022s

10x10 0.018s 0.048s

25x25 2m14.450s 41.035s

30x30 29.037s 14.603s

50x50 >30mins >30mins

9

8. FUTURE WORK
The effect of having multiple movable pieces has been shown

by Sokoban. Another block sliding game RushHour allows

the player to directly control multiple pieces either

horizontally or vertically. Researching this game could show

what effect having a certain number of pieces has on the

statespace.

Since the implementation of binary determination games were

the most complex of the set it could be worthwhile to look

into possible ways to reduce the complexity of algorithms that

have to explore the board of the puzzle.

Similarly the implementation for Sokoban used could be

compared to an implementation which only tracks the areas in

which the player can move. This nullifies the state transitions

that have to be made to get the man from one position on the

board to another and would only consider the moving of a box

as a move.

The games from the transport puzzle group (logistical

puzzles) showed to be straightforward in their implementation

but didn’t lend themselves to be scaled up like other games

did. Investigating this could show the potential to solve

problems based around combinatory binary rules that restrict

the state.

9. REFERENCES
[1] V. Bloemen. Analyzing old puzzles with modern

techniques: Probabilistic model checking using SCOOP

and PRISM. Diss. Bachelor’s thesis, University of

Twente, 2012.

http://fmt.cs.utwente.nl/files/sprojects/130.pdf

[2] S. Blom, J. van de Pol, M. Weber. “Bridging the gap

between enumerative and symbolic model checkers”.

Technical Report TR-CTIT-09-30

(http://eprints.eemcs.utwente.nl/15703/), Centre for

Telematics and Information Technology University of

Twente, Enschede. ISSN 1381-3625.

[3] R. A. Hearn, E. D. Demaine. “PSPACE-completeness of

sliding-block puzzles and other problems through

nondeterministic constraint logic model of computation”,

Theoretical Computer Science Volume 343(issues 1-2):

72-96. 2005. DOI: 10.1016/j.tcs.2005.05.008

[4] G. Kant, A. Laarman, J. Meijer, J. van de Pol, S. Blom,

T. van Dijk. “Ltsmin: High-performance language-

independent model checking”. In: Tools and Algorithms

for the Construction and Analysis of Systems. Springer

Berlin Heidelberg, 692-707, 2015. DOI: 10.1007/978-3-

662-46681-0_61

[5] G. Kwon. “Applying Model Checking Techniques to

Puzzle Solving”. In: Software Engineering Research and

Applications. Springer Berlin Heidelberg, 290-303,

2004. DOI: 10.1007/978-3-540-24675-6_23

[6] T. C. van der Zanden, H. L. Bodlaender. “PSPACE-

Completeness of Bloxorz and of Puzzles with 2-

Buttons”. In: Algorithms and Complexity. Springer

Berlin Heidelberg, 403-415, 2015. DOI: 10.1007/978-3-

319-18173-8_30

http://fmt.cs.utwente.nl/files/sprojects/130.pdf

