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ABSTRACT 
Model checking is used for checking whether systems 

conform to a given specification. These could instead also 

model puzzles in order to find their solutions. But little is 

known about restrictions (such as specific game rules) to 

implementing these games or about how complex such an 

implementation would be. The paper will compile a list of 

puzzles and group them based on their mechanics. Then 

compare the implementation and results for these puzzles to 

find relations between the data and their game rules. Based on 

this the data showed that rules that require the board to be 

explored for groups of tiles and their shapes has the most 

effect on their complexity. 
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1. INTRODUCTION 
Model checkers are used for testing often complex parallel 

systems, but can also be used for solving puzzles. This is done 

by verifying the "unsolvable" property of the puzzle. Meaning 

that the model checker thinks the system is broken if there is a 

solution to the puzzle. An advantage of using model checking 

for solving puzzles is that if the model checker determines the 

puzzle is solvable, it also can give the steps necessary to get to 

the solution. 

The model checker to be used for solving these puzzles is the 

LTSmin toolset [2][4]. Not all puzzles will be considered for 

the list of puzzles to model check. The main focus lays on 

pure logical puzzles, such that they have no hidden 

information, no random elements, no opponents and being 

playable on a grid or board. When talking about these 

limitations it is important to keep in mind that these reflect the 

puzzle rules, for example every puzzle has a hidden element 

namely the solution. When saying there is no hidden 

information or random elements it means there is no hidden 

information or random elements that influences the choice the 

player makes. The limitations will make it easier to simulate 

the puzzles as they are optimal for model checking. See Table 

1 for a list of the selected puzzles and their grouping. Any of 

the puzzles can be encoded in mainly two ways, either a 

matrix with some extra variables or a list of entities that make 

up the puzzle, though it is unknown what approach is better 

for specific puzzles to turn them into model checking 

problems. First chapter 2 will define the research questions of 

this paper. In chapter 3 background information on the tools 

and chosen puzzles will be given. Chapter 4 credits related 

work. Chapter 5 shows the implementation for these puzzles 

and explains the working of their algorithms. Chapter 6 

reports the results from testing the algorithms. The research 

questions are answered in chapter 7. Finally some future work 

is mentioned in chapter 8. 

2. RESEARCH QUESTIONS 
The puzzles chosen have in common that they can be played 

on a grid or a board. The puzzles have no hidden information 

or random element and all puzzles are single player. These 

puzzles are essentially purely logical puzzles, because of these 

key game mechanics. This makes modelling them easier. By 

modelling different types of puzzles, relations between their 

implementation and rule set can be found. From this we can 

also analyze how well these puzzles translate to model a 

model checker. 

Main research question: What puzzles from Table 1 can be 

efficiently solved using model checking? 

1. What search strategy used to explore the state space 

fits best for the puzzles? 

2. What are the effects the rules of the puzzles have on 

their state space? 

3. What rules make the implementation of a puzzle 

more complex? 

2.1 METHOD OF RESEARCH 
The first step is to make implementations of the puzzles, 

starting with the smaller and simpler puzzles (from the 

transport puzzles group) to gain experience with programming 

for LTSmin. After that the next step is to make an 

implementation for one puzzle (the primary) of each group. 

With these implementations the first two questions can be 

answered. The implementations will be tested on a virtual 

machine running Ubuntu 64-bit 16.04 using 1 processor core, 

4.3 GB ram, and 20 GB assigned hard drive space. For the 

Bloxorz and Picross puzzles a small stress test will be used to 

test DFS and BFS strategies for running time and 
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Table 1. Selected puzzles and their grouping

Puzzle name Group 

Fox, goose and bag of beans* Transport puzzle 

Bridge and torch problem Transport puzzle 

Bloxorz* Block sliding puzzle 

Sokoban Block sliding puzzle 

Picross* Binary determination puzzle 

Nurikabe Binary determination puzzle 

Sudoku* Sudoku 

*= primary puzzle of the group, to be model checked 
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depth/transition count. Each test is run 5 times and the 

runtime is averaged. Finally based on results from testing and 

reviewing the algorithms used to solve the puzzles the last 

question can be answered. 

The implementations will consist of two c-functions which are 

passed to LTSmin in order to calculate new states and to 

check whether the puzzle is solved or not. In the pseudocode 

these are next_state and check_goal. The next_state 

function reports newly found states through a callback which 

is called add_state in the pseudocode. For simplicity in 

pseudo code it is assumed that values passed to functions are 

copies of the local value, so passing state to a function that 

modifies it doesn’t change the local value. 

3. BACKGROUND 

3.1 LTSmin 
The LTSmin toolset is a model checking package with a core 

which links different specification languages (and C code) to 

an algorithm backend which allows for different methods to 

be used when solving the problems with model checking. 

Languages supported are (at time of writing) DVE, ETF, 

mCRL2 muCRL, Promela, UPPAAL and PBES. Modeling 

using C-code is done using the PINS interface. This interface 

allows for models to be expressed in C-code. On the backend 

of the toolset are different algorithms for exploring the 

statespace for a given model. Among the settings for these 

algorithms is an option for setting the strategy used for 

searching new states. The initial state forms the root of a tree 

that can either be explored using depth-first search (DFS) or 

breadth-first search (BFS). When using DFS LTSmin keeps a 

stack of the states that are queued to be explored for new 

states and picks the last state and gets the states that can be 

reached from that state. New states are added to the end of the 

queue. When using BFS the program explores the first item in 

the stack of states while still appending new states to the end 

of the stack. LTSmin is able to remember states in such a way 

that it can quickly identify whether a state has been previously 

found or not. This way loops in the state space are ignored 

and not revisited. 

3.2 State space 
The state space is the space of possible states a model can be 

in. Theoretically any PSPACE problem can be solved on a 

Turing machine but some problems would need a very large 

amount of memory in order to find the solution, which causes 

model checkers to run out of memory. Reducing the state 

space is the main challenge for model checkers. 

3.3 Sudoku 
A popular number-placement puzzle with a set of rules 

dictating what numbers can and can’t be placed. Variations of 

this puzzle that have been chosen are Nonomino and KenKen. 

Nonomino: also known as jigsaw Sudoku, where the original 

3x3 regions have been replaced by 9 polygons made up of 1x1 

squares connected by their edge. The rules of Sudoku have 

not changed otherwise. KenKen: a grid of 4x4 has to be filled 

with the numbers 1 through 4 with each number appearing 

once in each column and row. With that regions have been 

drawn and have been assigned an operation and an answer. 

This operation must hold for the numbers entered and be 

equal to the answer assigned to the region. There also exist 

versions of this puzzle with 5x5 and 6x6 grids. 

3.4 Binary determination puzzles 
In a binary determination puzzle the player has to make a 

binary choice, usually for a group of cells in a grid. The 

effects of this choice depend on the rules of the puzzle. For 

example in the puzzle picross the player has to draw a picture 

by filling in squares (based on hints for each column and row) 

or leaving them blank. 

3.5 Block sliding puzzles 
A block sliding puzzle is a puzzle where the player controls 

one or more blocks to navigate them in a grid. The puzzle 

most true to this concept is Klotski, where the player is 

required to move a 2x2 tile through the exit of the puzzle. The 

puzzles chosen have various variations on the concept. Rush 

Hour: similar to Klotski, but all blocks are cars in that they are 

always 1 tile wide and can’t move sideways. Sokoban: a 

single man is controlled that has to push crates into storage 

locations. Blocnog: The player is required to extend their 

block into a specific shape before reaching the finish. 

Bloxorz: the block the player controls changes shape 

depending on the move made, this is because the player 

controls a 1x1x2 block. In Bloxorz the player is required to 

put the block straight up on a specific tile in the grid. 

3.6 Transport puzzles 
A transport puzzle is a puzzle where a group of items or 

persons have to be transported between locations, with certain 

restrictions to prevent combinations of items or persons to 

travel at the same time or be in the same place. One such 

puzzle is the Fox, goose and bag of beans puzzle, in which a 

farmer is transporting a fox, goose and bag of beans from one 

side of a river to another. With the following restrictions: the 

fox will eat the goose if they are left together, the goose will 

eat the beans if they are left together. Though not very 

challenging, it is a type of puzzle that lends itself for solving 

logistical problems. Another puzzle is the bridge and torch 

problem. The puzzle describes a group of four people trying 

to cross a bridge at night. Each of them runs at a different 

speed. At most two people can cross the bridge at once, but 

only while carrying a torch of which there is only one. The 

puzzle is solved when everyone is at the other side of the 

bridge and 15 minutes or less have passed 

4. RELATED WORK 
A lot of research has already been done into puzzles 

themselves. Some relevant research into puzzles are proofs 

that puzzles are NP-complete and PSPACE-complete. Sliding 

puzzles have been proven to be PSPACE-complete by Robert 

A. Hearn et al. [3]. Tom C. van der Zanden et al. have proven 

that the puzzle Bloxorz and puzzle puzzles in a broader sense 

are PSPACE complete [6]. 

Gihwon Kwon has done research into solving Sokoban 

puzzles using model checking [5]. In his research he makes 

several optimizations to reduce the space explosion problem 

in order to solve the toughest levels. 

Vincent Bloemen has looked into the viability of using model 

checkers for probabilistic puzzles [1]. This research will, in a 

way, extend this as the viability of LTSmin for solving 

puzzles in a general manner is a byproduct of the research. 

5. MODELLING 

5.1 Fox, goose and the bag of beans 
The state of the puzzle is stored in an array of integers which 

is cast into a struct (made up of integer fields), with 0 

indicating the item is on the left side of the river, and 1 for the 

opposite side of the river. Aside from the items the man also 

has an entry in the list. 
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#define LEFTSIDE 0 
#define RIGHTSIDE 1 
typedef state_t { 
    int fox; int goose; int beans; int man; 
} 

In the next_state function the algorithm has to find all 

possible states that can be reached from a given state. LTSmin 

caches previous states and explores only new states. In the 

pseudocode this is done by calling add_state passing the 

newly found state. The state space is displayed Figure 1, 

where the underscore indicates the river, meaning letters to 

the left of the underscore are on the left side of the river and 

letters to the right are on the right side of the river. The letter 

M indicates the man with his boat, the F stands for the fox, the 

G for the goose and the B for the bag of beans. States that 

have a dashed outline are invalid according to the rules and 

won’t be reported to the add_state function. The bold states 

are begin- and end-states. 

next_state(state) { 
  try_switch(state, fox) 
  try_switch(state, goose) 
  try_switch(state, beans) 
  try_switch_man(state) 
} 
 
try_switch(state, item) { 
  if (state[item] == state.man) { 
    state[item] = 1 – state[item] 
    state.man = 1 – state[item] 
    if is_valid(state) 
      add_state(state) 
  } 
} 
try_switch_man(state) { 
  state.man = 1 – state[item] 
  if is_valid(state) 
    add_state(state) 
} 

The is_valid function is used to verify that after a move the 

resulting state is valid. If it isn’t it won’t be reported as a new 

state. By the rules of the puzzle the state is invalid if the fox 

and goose or goose and bag of beans are left alone. 

is_valid(state) { 
  return (state.fox != state.goose || 
    state.fox == state.man) && 
    (state.goose != state.beans || 
    state.goose == state.man) 
} 

The check_goal function checks whether the puzzle is solved 

using the is_valid function in combination with a check for 

the end conditions. 

check_goal(state) { 
  return is_valid(state) && 
    state.fox == RIGHTSIDE && 
    state.goose == RIGHTSIDE && 
    state.beans == RIGHTSIDE 
} 

As LTSmin explores the states that are being found a directed 

graph can be made of the states that are found. Figure 2 shows 

the states as they are found by LTSmin when using BFS. In 

the figure only lines to new states are drawn, meaning some 

lines to invalid states are missing as well as the line between 

MFG_B and G_MFB. 

5.2 Bridge and torch 
The bridge and torch problem’s main difference with the fox 

goose and beans problem is the time limit. The boat has been 

replaced with a torch and the focus of the puzzle lays on 

getting everyone across under a certain time limit. Each 

person walks at a different speed which affects the time it 

takes them to cross the bridge. The times it takes for each 

person to cross are 1, 3, 5 and 8 minutes. In the pseudo code 

person A is the fastest, taking only 1 minute, followed by 

person B taking 3 minutes, person C takes 5 minutes and 

person D takes 8 minutes. When two people cross the bridge 

at the same time, the faster walker needs to slow down to stay 

with the other person. 

Figure 1. Complete state space of the fox, goose and 

bag of beans problem 

 

Figure 2. Actual state space as found with BFS  strategy 
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#define LEFTSIDE 0 
#define RIGHTSIDE 1 
typedef state_t { 
int personA; int personB; 
int personC; int personD; 
int torch; int time; 
} 
 
next_state(state) { 
  //Switch single person 
  try_switch1(state, 1, personA) 
  try_switch1(state, 2, personB) 
  try_switch1(state, 5, personC) 
  try_switch1(state, 8, personD) 
  //Switch 2 persons 
  try_switch2(state, 2, personA, personB) 
  try_switch2(state, 5, personA, personC) 
  try_switch2(state, 8, personA, personD) 
  try_switch2(state, 5, personB, personC) 
  try_switch2(state, 8, personB, personD) 
  try_switch2(state, 8, personC, personD) 
} 
 
try_switch1(state, inctime, person) { 
  if state.torch == state[person] { 
    state.torch = 1 – state.torch 
    state[person] = 1 – state[person] 
    state.time += inctime 
    if is_valid(state) 
      add_state(state) 
  } 
} 
 
try_switch2(state, inctime, person1, person2) { 
  if state.torch == state[person1] && 
     state.torch == state[person2] { 
    state.torch = 1 – state.torch 
    state[person1] = 1 – state[person1] 
    state[person2] = 1 – state[person2] 
    state.time += inctime 
    if is_valid(state) 
      add_state(state) 
  } 
} 

Since the try_switch functions prevents crossing the bridge 

without the torch, the is_valid function only needs to check 

that the time. 

is_valid(state) { 
  return (state.time <= 15) 
} 

The check_goal function uses the is_valid function to check 

the time constraint and confirms everyone is has crossed the 

bridge. 

check_goal(state) { 
  return is_valid(state) && 
    state.personA == RIGHTSIDE && 
    state.personB == RIGHTSIDE && 
    state.personC == RIGHTSIDE && 
    state.personD == RIGHTSIDE 
} 

5.3 Sokoban 
The Sokoban algorithm was made by storing the entire board 

into an array and keeping the state of the player separate. Each 

cell is coded with a value indicating what is in that cell. Since 

the player and boxes need to be able to stand on top of goal 

tiles the number stored in each cell is encoded using a bitflag. 

The WIDTH and HEIGHT of the board are put into define 

statements and need to be adjusted for different sized boards.  

#define EMPTY 0 
#define WALL 1 
#define BOX 2 
#define GOAL 4 
#define MAN 8 
typedef state_t { 
  int board[WIDTH * HEIGHT]; 
} 

In order to access the board as a two dimensional structure 

helper functions have been made to read and write to the 

board using an x- and y-coordinate. If a coordinate passed to a 

read and write operation lies outside of the board it pretends 

the tile is a permanent wall. 

out_of_bounds(x, y) { 
  return x < 0 || x >= WIDTH || y < 0 || y >= HEIGHT 
} 
 
get_value(state, x, y) { 
  if out_of_bounds(x, y) { return WALL } 
  return state.board[(y * WIDTH) + x] 
} 
 
set_value(state, x, y, value) { 
  if out_of_bounds(x, y) { return } 
  state.board[(y * WIDTH) + x] = value 
} 

The code also uses some helper functions to decode the bitflag 

values. To check if a specific flag is set on the bitflag the 

other bits are filtered out using a bitwise and operation. 

is_empty(cell) { 
  return cell == EMPTY || cell == GOAL 
} 
is_wall(cell) { return cell & WALL } 
is_box(cell) { return cell & BOX } 
is_goal(cell) { return cell & GOAL } 
is_man(cell) { return cell & MAN } 

The moves a player can make at a given moment is to either 

move in one of the four cardinal directions, or push (a box) in 

one of the four cardinal directions. When pushing a box onto a 

tile, it into must be empty or a goal tile and the man must push 

it from the opposite side. The following code segment shows 

the code used for moving up and pushing a box up. Similar 

functions exist for moving and pushing in the other directions. 

find_man(state) { 
  for x=0,WIDTH { 
    for y=0,HEIGHT { 
      if is_man(get_value(state, x, y)) 
        return x, y 
    } 
  } 
} 
 
try_move_up(state) { 
  x, y = find_man(state) 
  current = get_value(state, x, y) 
  above = get_value(state, x, y – 1) 
  if is_empty(above) { 
    set_value(state, x, y, current - MAN) 
    set_value(state, x, y - 1, above + MAN) 
    if is_valid(state) 
      add_state(state) 
  } 
} 
 
try_push_up(state) { 
  x, y = find_man(state) 
  current = get_value(state, x, y) 
  box = get_value(state, x, y – 1) 
  target = get_value(state, x, y – 2) 
  if is_empty(target) && is_box(box) { 
    set_value(state, x, y, current – MAN) 
    set_value(state, x, y - 1, (box – BOX) + MAN) 
    set_value(state, x, y – 2, target + BOX) 
    if is_valid(state) 
      add_state(state) 
  } 
} 
 
next_state(state) { 
  try_move_up(state) 
  try_move_down(state) 
  try_move_left(state) 
  try_move_right(state) 
  try_push_up(state) 
  try_push_down(state) 
  try_push_left(state) 
  try_push_right(state) 
} 

The is_valid function makes sure the man and all boxes are 

not put inside of a wall. If it finds a man on top of a box or 

wall it returns false. It also returns false if a box is inside of a 

wall. 
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is_valid(state) { 
  for x=0,WIDTH { 
    fox y=0,HEIGHT { 
      cell = get_value(state, x, y) 
      if is_man(cell) && (is_box(cell) || 
         is_wall(cell)) 
        return 0 
      if is_box(cell) && is_wall(cell) 
        return 0 
    } 
  } 
} 

The check_goal function uses the is_valid function and 

confirms all goals have a box on top of them. 

check_goal(state) { 
  if !is_valid(state) { return 0 } 
  for x=0,WIDTH { 
    for y=0,HEIGHT { 
      cell = get_value(state, x, y)  
      if is_goal(cell) && !is_box(cell) 
        return 0 
    } 
  } 
  return 1 
} 

5.4 Bloxorz 
Because in Bloxorz the state of the object the player controls 

has more data associated with it than in Sokoban, a different 

approach in encoding the state of the puzzle was chosen. 

Instead of encoding the player into the board, the board and 

the player information was kept separate. This was done 

because for Bloxorz the state of a player also involves the 

rotation of the block (standing up or laying down on either 

axis). Implementing this by encoding the squares a player 

occupies would add the overhead of locating and identifying 

the orientation of the player in every next_state function call. 

#define STANDING 0 
#define LAYING_X 1 
#define LAYING_Y 2 
#define EMPTY 0 
#define FLOOR 1 
#define GOAL 2 
typedef state_t { 
  int x; int y; int rot; 
  int board[WIDTH * HEIGHT]; 
} 

The position of the player is measured as the top left square 

the player occupies. When the player is lying along the x-axis 

this would be the left tile and the top tile when lying along the 

y-axis. 

Because the orientation of the player changes the way the 

player navigates the board each direction the player can move 

in handles the player’s orientation differently. An example of 

this is shown in Figure 3, in which the black block is the 

current tiles the player occupies. In the following code snippet 

the functions to move the player up and down are shown. 

try_move_up(state) { 
  switch(state.rot) { 
    case STANDING: 
      state.y -= 2 
      state.rot = LAYING_Y 
    case LAYING_X: 
      state.y -= 1 
    case LAYING_Y: 
      state.y -= 1 
      state.rot = STANDING 
  } 
  if is_valid(state) { 
    add_state(state) 
  } 
} 
 
try_move_down(state) { 
  switch(state.rot) { 
    case STANDING: 
      state.y -= 1 
      state.rot = LAYING_Y 
    case LAYING_X: 
      state.y -= 1 
    case LAYING_Y: 
      state.y -= 2 
      state.rot = STANDING 
  } 
  if is_valid(state) 
    add_state(state) 
} 

The is_valid function ensures that at all times the player is 

fully supported by the level. It uses a helper function 

is_floor to detect whether a specific tile can support the 

player (both FLOOR and GOAL can support the player). Tiles 

outside of the board are assumed to be EMPTY. 

is_floor(state, x, y) { 
  if x < 0 || x >= WIDTH || y < 0 || y >= HEIGHT 
    return 0 
  return state.board[(y * WIDTH) + x] != EMPTY 
} 
 
is_valid(state) { 
  if !is_floor(state, state.x, state.y) 
    return 0 
  switch(state.rot) { 
    case STANDING: 
      return 1 
    case LAYING_X: 
      return is_floor(state, state.x + 1, state.y) 
    case LAYING_Y: 
      return is_floor(state, state.x, state.y + 1) 
  } 
} 

A Bloxorz level is solved by putting the player’s block 

standing on top of a GOAL tile. The check_goal function tests 

this by confirming the player is standing and on top of a GOAL 

tile. 

is_goal(state, x, y) { 
  return state.board[(y * WIDTH) + x)] == GOAL 
} 
 
check_goal(state) { 
  return state.rot == STANDING && 
         is_goal(state, state.x, state.y) 
} 

5.5 Sudoku 
The state of Sudoku is stored in an 81 slot array. Accessing 

the board using x- and y-coordinates is done as with previous 

puzzles using helper functions. But instead of tracking a 

player object every time a next state has to be determined it 

finds the next empty slot and tries the values 1-9 and reports 

back all states that still meet the Sudoku requirements. 

Figure 3. The orientation of the block changes the way 

it moves around the board 
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#define EMPTY 0 
typedef state_t { 
  int board[WIDTH * HEIGHT]; 
} 
 
get_value(state, x, y) { 
  return state.board[(y * WIDTH) + x)] 
} 
 
set_value(state, x, y, value) { 
  state.board[(y * WIDTH) + x)] = value 
} 
 
next_empty(state) { 
  for y=0,HEIGHT 
    for x=0,WIDTH 
      if get_value(state, x, y) == EMPTY 
        return x, y 
  return -1, -1 
} 
 
next_state(state) { 
  x, y = next_empty(state) 
  if x == -1 { return } 
  for i=1,10 { 
    try_value(state, x, y, i) 
  }  
} 
 
try_value(state, x, y, value) { 
  set_value(state, x, y, value) 
  if is_valid(state) { 
    add_state(state) 
  } 
} 

The is_valid function checks for each row and column that 

each number only appears once (ignoring EMPTY values). Also 

it does this for each 3-by-3 block. Only the implementation 

for validating columns is given, but validating rows works the 

same apart from using a different axis. 

is_valid(state) { 
  for x=0,9 
    if !is_valid_column(state, x) 
      return 0 
  for y=0,9 
    if !is_valid_row(state, x) 
      return 0 
  for x=0,3 
    for y=0,3 
      is_valid_block(state, x*3, y*3) 
} 
 
is_valid_column(state, x) { 
  int count[9] = {}//filled with 0’s 
  for y=0,9 { 
    value = get_value(state, x, y) 
    if value != EMPTY 
      count[value]++ 
      if count[value] > 1 
        return 0 
  } 
  return 1 
} 
 
is_valid_block(state, _x, _y) { 
  int count[9] = {} 
  for x=_x, _x + 3 { 
    for y=_y, _y + 3 { 
      value = get_value(state, x, y) 
      if value != EMPTY { 
        count[value]++ 
        if count[value] > 1 
          return 0 
      } 
    } 
  } 
  return 1 
} 

In order to check whether the puzzle is solved the algorithm 

only needs to check that there is no empty cell in the grid and 

that is_valid returns true. 

check_goal(state) { 
  x, y = next_empty(state) 
  if x == -1 { 
    return is_valid(state) 
  } 
  return 0 
} 

5.6 Picross 
The implementation made for picross is similar to that of 

Sudoku in the way that the algorithm finds the next empty cell 

and gives it a value. For picross this value is either white or 

black. The hints for the rows and columns are stored on the 

state struct. A constant MAX_HINTS indicates the largest 

number of hints any row of column can have. 

#define NO_HINT 0 
#define EMPTY 0 
#define WHITE 1 
#define BLACK 2 
typedef state_t { 
  int hints_x[WIDTH][MAX_HINTS]; 
  int hints_y[HEIGHT][MAX_HINTS];  
  int board[WIDTH * HEIGHT]; 
} 

The pseudo code for helper functions and next_state is 

nearly identical to that of Sudoku, with the difference of the 

values being tried. 

get_value(state, x, y) { 
  return state.board[(y * WIDTH) + x)] 
} 
 
set_value(state, x, y, value) { 
  state.board[(y * WIDTH) + x)] = value 
} 
 
next_empty(state) { 
  for y=0,HEIGHT 
    for x=0,WIDTH 
      if get_value(state, x, y) == EMPTY 
        return x, y 
  return -1, -1 
} 
 
next_state(state) { 
  x, y = next_empty(state) 
  if x == -1 { return }  
  try_value(state, x, y, WHITE) 
  try_value(state, x, y, BLACK) 
} 
 
try_value(state, x, y, value) { 
  set_value(state, x, y, value) 
  if is_valid(state) 
    add_state(state) 
} 

The most complex part of the algorithm comes from the 

is_valid function, which needs to analyze each row and 

column to verify it obeys the hints. 

is_valid(state) { 
  for x=0,WIDTH 
    if !is_valid_column(state, x) 
      return 0 
  for y=0,HEIGHT 
    if !is_valid_row(state, y) 
      return 0 
} 

The following function verifies a given column obeys to the 

hints of that column. A similar function exists for verifying 

rows. The function starts by fetching the array of hints, and 

then loops through this array to read every hint. This is done 

by either checking all or reaching a hint of length 0 (NO_HINT). 

To check a hint first the next black square in the column is 

found. If the end of the column is reached then the function 

returns false because one or more hints were missed. After 

finding the first black square it verifies that the number of 

consecutive black squares after the first black square matches 

that of the hint. The algorithm also makes sure there is a white 
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square after the row of black squares. The variable _y tracks 

the current position in the column. If at any point a blank 

square is found, the function returns true. This makes sure that 

the hints up to the blank square are correct, without skipping 

the column entirely. 

is_valid_column(state, x) { 
  hints = state.hints_x[x] 
  y = 0 
  for i = 0,MAX_HINTS { 
    hint = hints[i] 
    if hint == NO_HINT 
      break 
    if y >= HEIGHT { 
      return 0 
    //Find next black square 
    while y < HEIGHT { 
      int value = get_value(state, x, y) 
      if value == BLACK 
        break 
      if value == EMPTY 
        return 1 
      y++ 
    } 
    //Read hint number of squares 
    for j = 0, hint { 
      if y >= HEIGHT 
        return 0 
      int value = get_value(state, x, y) 
      if value == WHITE 
        return 0 
      if value == EMPTY 
        return 1 
      y++ 
    } 
    //In case the hint doesn’t end with the column 
    if y < HEIGHT { 
      //Check next is not black 
      int value = get_value(puzzle->board, x, y) 
      if (value == BLACK) 
        return 0 
      if (value == EMPTY) 
        return 1 
    } 
  } 
  //Check remaining tiles to be not black 
  while y < HEIGHT { 
    if get_value(state, x, y) == BLACK) 
      return 0 
    y++ 
  } 
  return 1 
} 

5.7 Nurikabe 
An attempt was made to implement this puzzle, though it 

didn’t yield any timing or depth result, it did give an insight 

into the difficulty of programming its possible solution. The 

part of the algorithm that couldn’t be devised was about 

verifying the state of the puzzle. The rules of the puzzle state 

that a hint indicates how many white squares are connected to 

it and are not allowed to be connected together. A final rule 

requires all black squares to be connected and not fill any 2x2 

area. 

The algorithm would have to explore the board like a maze 

multiple times, once for each hint and once to check the black 

squares. While checking the black squares it would also have 

to confirm it doesn’t contain any squares of 2x2. 

Checking all these requirements made the algorithm complex 

to the point where it could not be completed in the given 

timeframe. This showed that rules involving groups of tiles 

that can vary in shape and require the algorithm to explore the 

board make the algorithm more complex.  

6. RESULTS 
The version of LTSmin used is tacas2015-dirty, which is used 

on Ubuntu 16.04 running inside a virtual machine. The host 

OS is Windows 7 64-bit, the virtual machine software is 

VMware Workstation 12 Player. The physical hardware the 

VM has access to consists of an Intel i7 processor running at 

2.30 GHz, 4.3GB of RAM and 20GB of hard-drive space. 

Table 2. Timing results for DFS and BFS tests 

Puzzle Duration DFS Duration BFS 

Fox, goose and 

bag of beans 

0.002s 0.002s 

Bridge and torch 0.004s 0.002s 

Bloxorz 0.258s 0.002s 

Sudoku 0.047s 0.081s 

Table 3. Test results for various sizes of Bloxorz puzzles 

Level 

size 

Duration 

BFS 

Depth 

BFS 

Duration 

DFS 

Depth 

DFS 

10x10 0.005s 13 0.010s 58 

20x20 0.069s 27 0.051s 199 

50x50 4.271s 67 1.535s 1329 

100x100 1m16.073s 133 25.989s 5578 

150x150 13m38.848s 201 2m38.044s 13150 

Table 4. Test results for various sizes of Sokoban puzzles 

Level 

size 

Duration 

BFS 

Depth 

BFS 

Duration 

DFS 

Depth 

DFS 

10x10 0.128s 20 0.060s 72 

20x20 9.087s 40 1.491s 152 

50x50 >30m NA 4m37.992s 392 

100x100 >30m NA >30m NA 

150x150 >30m NA >30m NA 

 

Figure 4. The first level of Bloxorz 

 

Figure 5. The board used for testing the Sudoku algorithm 

The commands used to test implementations with DFS and 

BFS are listed below. 

time pins2lts-seq game.so –-strategy=bfs 
  --invariant=”! goal” 
time pins2lts-seq game.so –-strategy=dfs 
  --invariant=”! goal” 

The Linux command ‘time’ was used to measure the time 

taken to find the solution to a puzzle. Of the output from this 

command the ‘real’ time was used. The times it took for the 
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implementations to find a solution to the puzzle is shown in 

Table 2. The level used for testing Bloxorz is shown in Figure 

4. For Sudoku the board shown in Figure 5 was used for 

testing. 

6.1 Sokoban 
In the tests to find the limits for Sokoban a square level of 

different sizes and without walls was used. The player is 

placed in the top-left corner of the map with a box placed one 

down and one to the right of the player. The goal of the level 

is placed in the very bottom-right corner of the map. 

6.2 Picross 
The results of testing the picross algorithm with puzzles of 

different sizes are shown in Table 5. 

7. CONCLUSIONS 
First the sub-questions will be answered before answering the 

main research question. 

7.1 What search strategy used to explore 

the state space fits best for the puzzles? 
The method of implementation for the binary determination 

group and Sudoku naturally favors DFS because the puzzles 

require a specific amount of answers to be filled in before the 

puzzle can be considered complete. The underlying reason for 

this is that the DFS strategy is able to reach the required depth 

to fill the entire board sooner than that of BFS. Intuitively this 

also means that BFS does take longer to reach its required 

depth but can quickly enumerate all possible answers once the 

required depth has been reached. 

For puzzles where the player controls an entity (Sokoban and 

Bloxorz) showed that using the BFS strategy yielded better 

results (using less transitions), but DFS was still faster on 

time. These puzzles don’t require a specific amount of 

transitions before reaching a definite answer. This means that 

DFS can find a path faster, which may be longer but won’t 

contain loops. Whereas BFS finds an answer using the 

minimal amount of transitions but needs to explore much 

more states to reach the same depth DFS would need. 

7.2 What are the effects the rules of 

puzzles have on their state space? 
If you compare the results for Bloxorz in Table 3 with the 

results for Sokoban in Table 4 it is clear that Sokoban has a 

faster growing state space than Bloxorz. This can be explained 

by the fact that in Sokoban the player can move boxes. When 

a player moves a box in Sokoban it is essentially modifies the 

board area in which the man can move. In the tests the level 

only consisted of a big square room with one box and one 

goal. Whenever the man pushed the box onto a new square the 

man was able to traverse the entire board without reaching a 

previous state. While in Bloxorz any state the player is in can 

only occur once, since the rest of the state is a static board. So 

the number of pieces that the player can move directly or 

indirectly severely impacts the state space. 

For the Sudoku game the rules allowed the algorithm to 

optimize the exploration of the state space. As soon as the 

algorithm finds any part of the board to be invalid it is able to 

terminate all states that would come after it. This is also seen 

for Picross and explains why the test with a 30-by-30 board 

took much less time than the previous 25-by-25 board. 

Because the only difference besides the size of the board is 

the hints for the puzzle, it was the hints that allowed the 

algorithm to find a solution to the puzzle quicker. The hints of 

that particular Picross puzzle were able to eliminate more 

possible solutions than the hints for the 25-by-25 board could. 

7.3 What rules make the implementation 

of a puzzle more complex? 
The implementation of the transport puzzles was a 

straightforward translation of the rules. These only involved 

binary like conditions which translate with little effort to code. 

Beyond this their algorithm only needed to try all possible 

moves and confirm each new state conforms to the restrictions 

the rules state. 

Puzzles from the block sliding group were more complex 

because each move had its own requirements. Rather than 

only checking the end state to be valid, first a move needs to 

be possible. Comparing the solutions to Bloxorz and Sokoban, 

Bloxorz showed that separating movable objects in the puzzle 

from the board of the puzzle can simplify implementation 

when the objects become more complicated. Bloxorz player 

object could not only move but also change shape. Separating 

these removes the overhead of identifying the information 

when calculating next possible states. 

The puzzles from the binary determination group turned out to 

be the most difficult to implement compared to their 

description. Their rules described patterns spanning over 

multiple tiles, for example Nurikabe requires the algorithm to 

search and count all tiles connected to a tile that contains a 

hint as well as demanding certain shapes do not exist in the 

shape the connected tiles form. Even though Sudoku is similar 

to puzzles from the binary determination group, its 

complexity was much lower due to its rules affecting specific 

groups of tiles (rows, columns and 3-by-3 blocks) which 

didn’t require the algorithm to explore the board but only 

check these known groups on certain conditions. 

7.4 What puzzles can be efficiently solved 

using model checking? 
The transport puzzles showed that it takes little effort to 

implement puzzles where the rules only limit the possible 

states by denying specific combinations from existing. 

Implementations (and lack thereof) for puzzles in the binary 

determination group show that puzzles with rules about 

patterns and shapes make their implementation more complex 

and time consuming. 

The Bloxorz and Sokoban puzzles showed that for puzzles 

where the player controls one or more objects, the number of 

objects cause the state space to grow. 

When solving a puzzle, using DFS can improve the runtime of 

the model checking, though it doesn’t make any guarantees on 

the depth the solution will be found at. This makes using DFS 

and BFS a tradeoff between speed and accuracy respectively. 

If the solutions to a puzzle are found by filling in the puzzle 

then DFS is better. This is because this method of solving the 

puzzle ensures the solution is found at a specific depth 

because every part of the puzzle is filled in (guessed) only 

once. 

Table 5. Testing duration of picross puzzles 

Level size Duration BFS Duration DFS 

5x5 0.020s 0.022s 

10x10 0.018s 0.048s 

25x25 2m14.450s 41.035s 

30x30 29.037s 14.603s 

50x50 >30mins >30mins 
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8. FUTURE WORK 
The effect of having multiple movable pieces has been shown 

by Sokoban. Another block sliding game RushHour allows 

the player to directly control multiple pieces either 

horizontally or vertically. Researching this game could show 

what effect having a certain number of pieces has on the 

statespace. 

Since the implementation of binary determination games were 

the most complex of the set it could be worthwhile to look 

into possible ways to reduce the complexity of algorithms that 

have to explore the board of the puzzle. 

Similarly the implementation for Sokoban used could be 

compared to an implementation which only tracks the areas in 

which the player can move. This nullifies the state transitions 

that have to be made to get the man from one position on the 

board to another and would only consider the moving of a box 

as a move.  

The games from the transport puzzle group (logistical 

puzzles) showed to be straightforward in their implementation 

but didn’t lend themselves to be scaled up like other games 

did. Investigating this could show the potential to solve 

problems based around combinatory binary rules that restrict 

the state. 
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