
Implementing and Testing the Performance of Parameter
Fitting algorithms for Systems Biology networks

Michiel Bakker
University of Twente

P.O. Box 217, 7500AE Enschede
The Netherlands

m.a.bakker@student.utwente.nl

ABSTRACT
Recently biological research has put more focus on the
mathematical and computational modelling of systems.
ANIMO was developed to help the researchers with this,
by allowing them to make computational models using a
simple user interface. ANIMO can run simulations of bio-
logical networks which produce the same results as the
real biological processes. ANIMO has a feature called
parameter fitting, which automatically sets the parame-
ters of a network such that the outcome of the simulation
matches experimental data. Parameter fitting has been
implemented in various ways in different pieces of software,
but little research has been performed that compared the
performance of them. This research implemented four
algorithms and tested their performance, and concluded
that of those four algorithms the genetic algorithm pro-
duced the best results.

Keywords
ANIMO, systems biology, s systems, parameter fitting, pa-
rameter estimation

1. INTRODUCTION
Recently, biological research has shifted in the direction of
systems biology, which focuses on the mathematical and
computational modelling of biological systems. ANIMO
(Analysis of Networks with Interactive MOdelling) [7] was
developed as a tool to model and analyse biological sig-
nalling networks. The biological network of the user is
transformed to a Timed Automata model, which is anal-
ysed using the model checking tool UPPAAL [3].

A model in ANIMO (see Figure 1) has a certain topology,
i.e. the set of reactants and the interactions between these
reactants. Every reactant has a certain activity level that
changes over time, which represents the ratio between the
quantity of active and inactive forms of a protein. For
instance, the phosphorylated state of a kinase is considered
active. The interactions all have a certain reaction speed,
in this paper referred to as the k parameter.

Initially when designing an ANIMO model the user will
often guess a value for k, using a qualitative scale from
’very slow’ to ’very fast’. This is done because the reac-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy oth-
erwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.
25th Twente Student Conference on IT July 1st, 2016, Enschede, The
Netherlands.
Copyright 2016, University of Twente, Faculty of Electrical Engineer-
ing, Mathematics and Computer Science.

EGF

EGFR

ERK

EGFR int.

ERK phos.

0.004

0.004

0.008

0.004

0.001

Figure 1. Example ANIMO model [5]. The num-
bers at the edges specify the k parameters.

tion speeds are often not known, either because the reac-
tion is hypothetical, or the speed cannot be measured by
experiment. By tweaking the k parameters of every re-
actant, a model can be constructed whose output of the
simulation accurately matches data gathered via an exper-
iment. However, this process is slow and error prone, since
the user constantly has to guess a parameter to change,
and re-simulate the updated network to check whether the
model fits the data better.

In order to improve this process, ANIMO has the option to
perform automated parameter fitting (PF). The user can
use this when it is observed that the data of the simula-
tion does not match experimental data, such as in Figure
2. To solve this, the user can use the parameter fitter to
find k parameters that better fit the experimental data,
such as in Figure 3. This feature automatically creates
models with different parameters and simulates them to
find the model that fits the data most accurately. Cur-
rently, two different algorithms can be used to perform the
parameter fitting; either a brute-force approach, or using
the Levenberg-Marquardt algorithm (LMA) [4]. The PF
feature is currently only implemented in the desktop ver-
sion of ANIMO, and not webANIMO [9]. This is a project
which attempts to have the same functionality of ANIMO
in a web site.

Section 2 and 3 will discuss necessary background informa-
tion to read this paper and previously done work related
to this study. The algorithms that were compared are
described in Section 4. Section 5 describes the method
that was used to acquire the results of this study, which
are presented in section 6. The results and limitations of
this research are discussed in section 7, and the research

1



0 100 200 300 400 500

0

50

100

Time (minutes)

A
ct

iv
it

y
le

v
el

ERK (sim)

ERK (exp)

Figure 2. A mismatch between simulation and ex-
perimental data of an ANIMO model.

0 100 200 300 400 500

0

50

100

Time (minutes)

A
ct

iv
it

y
le

v
el

ERK (sim)

ERK (exp)

Figure 3. Simulation and experimental data of an
ANIMO model after parameter fitting on all inter-
actions.

questions are answered in section 8.

1.1 Research goal
Many algorithms can be used to perform parameter fitting
[10], but it is challenging to choose which to use. Little
research has been performed that compared the perfor-
mance1 of various PF algorithms with regard to biological
networks. The goal of this research is to select and imple-
ment various algorithms and measure their performance.
The implemented algorithms were extensively tested using
benchmarks.

The results of the study will allow future developers of PF
features to select the algorithm with the highest perfor-
mance. Additionally, webANIMO was extended to include
the PF feature to allow a greater group of users to employ
the feature.

1.2 Research questions
The research was guided by the following research ques-
tions:

1. Which algorithm produces the highest quality solu-
tions when performing parameter fitting on networks
occurring in systems biology?

2. How can algorithms be combined to achieve better
performance?

3. Will the algorithms converge to a local minimum, or
always converge to the global minimum?

4. How is the parameter fitting feature implemented in
an online environment?

1Note: in this paper performance is used to indicate the
quality of solutions that an algorithm finds in the allocated
time period.

2. BACKGROUND
In general, PF algorithms start with an initial solution,
and iteratively attempt to find a solution that fits exper-
imental data better. A solution is represented as array
of real numbers, each representing the parameter k of an
interaction in a network model. A solution that fits the
data well has a high fitness or a low cost. These num-
bers describe how well the simulation and experimental
data match. Generally, PF algorithms represent cost as
the mean squared error, calculated as follows

C(P ) =


1

n∗m

n∑
i=1

m∑
j=1

(yi,j − fi,j(P ))2, if ∀p ∈ P, p ≥ 0

∞, otherwise

Where P is the array of parameters, n is the number of
experimental time points, m the number of compared re-
actants, yi,j is experimental value of parameter j at time
i, and fi,j(P ) is the value of reactant j according to the
simulation at time i with parameters P . Since negative
parameters are not allowed in ANIMO, the cost is infinite
if there exists any negative parameter.

Other metrics to estimate the fitness exists, but for con-
sistency the algorithms implemented during this research
will use the method above.

3. RELATED WORK
Sun et. al. reviewed various applications of metaheuris-
tics to solve the parameter estimation problem [10]. It
describes the algorithms used to perform parameter fit-
ting in various studies, along with their advantages and
disadvantages. However, the paper does not compare the
performance of the algorithms that are listed. The paper
was used as a guide to select algorithms to study in this
research.

The parameter fitting used in ANIMO is described in [5].
The paper only describes the brute-force parameter fitter
of ANIMO, and not the more advanced LMA implementa-
tion. Also, the paper mainly focuses on the usefulness and
work flow of PF in ANIMO, instead of the technicalities
behind it.

4. IMPLEMENTATION
Here the implementation of the four algorithms, and the
implementation in webANIMO is discussed. Changes to
the standard implementation of an algorithm are noted,
such as how to mutate parameters, or when to stop iter-
ating. Base knowledge of the workings of the algorithms
is assumed in the description.

4.1 Levenberg-Marquadt Algorithm
A parameter fitter implementation using the LMA, a lo-
cal optimisation technique, was implemented in ANIMO
before the start of this research. The implementation com-
putes the numerical Jacobian by perturbing each param-
eter slightly, performing a simulation, and seeing how the
cost changes.

The damping parameter λ is first set to an initial value.
When a solution with a lower cost is found after an iter-
ation, λ is divided by 10. If a worse solution is found, it
is increased by a factor 10, with an upper limit of 1015.
The algorithm stops iterating when either 50 iterations
have been performed, or the difference of the new cost
compared to the previous cost is lower than 10−6.

2



4.2 Simulated Annealing
Simulated Annealing (SA) is a metaheuristic to find the
global optimum for an optimization problem. SA has been
used before to implement parameter estimation, among
others by Gonzalez et al. [2]. For every iteration of the SA
algorithm a neighbouring state is compared to the current
state. The ’neighbour’ of a state is chosen by randomly
perturbing every parameter of the input parameters. The
new parameter is calculated as follows:

p′ = p ∗mr

Where p′ is the new parameter, p is the old parameter,
m is the mutation factor, and r is an random number
chosen uniformly from [−1, 1]. Using this method, the
new parameter can become at most be m times larger or
at least m times smaller, giving p′ ∈ [p/m, p ∗m]. This is
convenient because the parameters can differ by orders of
magnitude, and adding or subtracting a set amount would
affect small parameters more than high ones.

When the new parameters are chosen, the chance that
these parameters are kept is:

P (c, c′, T ) =

{
e
−(c′−c)

T , if c′ > c

1, otherwise

Where c is the cost of the current parameters, c′ is the
new cost and T is the current temperature. The temper-
ature is a value that decreases over time and affects the
chance that a worse solution is accepted. The acceptance
formula is chosen such that the acceptance probability for
higher costs decreases as the temperature decreases. The
temperature value is calculated as follows:

T =

(
1− i

n

)
∗ tempScale

Where i is the current iteration index, n is the total num-
ber of allocated iterations, and tempScale is a parameter
that describes the range of temperature values, and thus
affects the acceptance chances. The algorithm continues
until the total number of iterations has been reached.

With this implementation, the SA algorithm has three pa-
rameters: the mutation factor, the temperature scale, and
the number of iterations. These parameters need to be
tweaked in order to have the algorithm produce optimal
results.

4.3 Hill Climbing
Hill Climbing (HC) is an optimization technique that is
used to find a local optimum in the search space. It was
chosen to include HC to study the effectiveness of an al-
gorithm that does not necessarily converge to the global
optimum. In the implementation used by this research
every parameter is increased or decreased as long as the
change produces a better solution. Like the SA algorithm,
the parameters are multiplied or divided by the mutation
factor to provide mutation that is independent on the scale
of the parameters. The mutation factor decreases after an
iteration of all parameters to avoid a potential ’overshoot’
of the ideal parameter value. The full algorithm is de-
scribed in Algorithm 1.

The algorithm has two parameters, the number of simula-
tions, and the mutation factor, whose optimal value need
to be selected.

P is the mutable array [P1..Pn] of input parameters
while true do

m← 1 + (1− i
numSimulations

) ∗ (mutFactor − 1) ;
currentCost← cost(P );
for i← 1 to n do

p← Pi ;
bestV alue← p;

for m′ ∈ {m,m−1} do
for j ← 1 to ∞ do

p′ ← p ∗ (m′)j ;
P ′ ← P ;
P ′i ← p′;
c← cost(P ′);
if max simulations reached then

stop algorithm;
end
if c < currentCost then

currentCost← c;
bestV alue← p′;

else
break loop;

end

end

end
Pi ← bestV alue;

end

end
Algorithm 1: Hill Climb

4.4 Genetic Algorithm
Genetic algorithm (GA) is a metaheuristic to find the
global optimum inspired by the process of natural selec-
tion. GA has been used for parameter fitting before in re-
search done by Arisi et al. [1]. In the implementation used
the initial population consist of mutations of the starting
parameters. The parameters are mutated as defined by
Equation 1, where m = 8. This gives a population whose
parameters are in the same order of magnitude as the ini-
tial parameters.

p′ = p ∗mr (1)

Where r is randomly selected from [−1, 1].

Each generation, the costs of every solution in the pop-
ulation is calculated. This is done in parallel to achieve
speed up on multi core systems. The solutions are sorted
based on their costs, and the n solutions with the low-
est costs are used to form the next generation. Here n =
bselectRatio∗populationSizec, where selectRatio ∈ [0, 1].

Every member of the new generation is formed by recom-
bination of two random ’parents’ from the selected popu-
lation. The child’s parameters are selected as follows:

ci =

{
p1,i, if r = 0

p2,i, otherwise

Where c are the child parameters, p1 and p2 are the par-
ent parameters, and r is a random variable chosen from
{0, 1}. After recombination the parameters are mutated
according to Equation 1. Similarly to the HC implemen-
tation, the mutation factor decreases linearly over time to
achieve higher precision as the algorithm converges to an
optimum:

3



m = 1 +

(
1− i

numGenerations

)
∗ (mutFactor − 1)

Where i is the current generation index. The selection
and recombination process repeats itself until the allocated
number of generations is reached. The algorithm has four
parameters that affect the performance; the population
size, the number of generations, the selection ratio and
the mutation factor.

The parallel simulation of the solutions was done using a
thread pool with four threads. This number was chosen
because it resembled the ’typical’ number of cores a normal
user’s processor would have. The reason the number of
threads was not set to the actual number of cores available
was to represent realistic usage circumstances. This is
because the hardware that ran the benchmarks had more
than typical (16) cores.

4.5 webANIMO implementation
The functionality of the webANIMO back end was ex-
tended to include parameter fitting. The design challenge
was in allowing the front end to visualize intermediate re-
sults, similar to what is seen in the desktop version of
ANIMO. When performing parameter fitting in ANIMO
the simulations of attempted solutions are displayed, com-
bined with their costs. The realised implementation saves
the simulation data and the cost of an attempted solution
server side, if its cost is lower than the lowest cost found
so far. The front end is now able to periodically poll the
server for the latest intermediate results and display them.

The benefit of the method used is that the client is free to
poll and visualise the intermediate results at any interval.
Another possible solution would be to use a streaming-
based approach, where the client and server would keep
open a stream. Every time a better solution is found there
would be a response sent by the server to the client de-
scribing the solution. The advantage of this approach is
that the client immediately receives the data that needs
to be visualised, instead of waiting for the next poll mo-
ment. This method was not chosen because it imposed
more requirements for the front end, and because it was
more complicated than the conventional request-response
method.

5. METHOD
In this research four algorithms were compared, whose im-
plementation is described in section 4. In a test case an
algorithm will optimize parameters until a certain budget
of simulations has been reached. This budget was selected
such that one run of all algorithms take an equal amount
of time. This way there is a constant allocated time bud-
get in which the algorithms attempt to find a solution with
the least cost.

To simulate actual usage circumstances, models of real
biological processes were used in the test cases. The model
to be fitted is a mutated version of the starting model,
where a subset of the parameters are scaled up or down
by a factor up to 8. The ’experimental’ data that the
test model is fitted against are a selection of points from
a simulation of the (non-mutated) starting model. This
way there is a guarantee that an optimal solution with
zero cost exists.

With this model and fitting data the algorithm is run. Ev-
ery time the algorithm performs a simulation the cost of
the best solution so far, and the time since the start of

0 2 4 6 8 10 12
0

0.05

0.1

Time (seconds)

B
es

t
co

st

Figure 4. Best cost found over time by the HC
algorithm optimizing 10 parameters of the chon-
drocyte model.

the run is stored. For each run there are two results that
are of interest: the cost of the best solution, and the solu-
tion time. An assumption was made that most algorithms
converge to an optimum after some time, and do not find
a (significantly) better solution. This behaviour can be
seen in Figure 4. The solution time is the time it took for
the algorithm to find the best solution. It is defined as
the time it took for an algorithm to find a solution with
a cost that was at most 5% higher than the lowest cost
found. This is to avoid having very small changes to the
cost found affect the solution time.

To facilitate performing the experiments, a test suite was
developed, as specified in Algorithm 2. Per test case there
is a set of test models (combined with the number of pa-
rameters that are optimized) and a set of algorithm config-
urations. An algorithm configuration specifies which algo-
rithm should be used, and what parameters this algorithm
should have. The test suite benchmarks an algorithm for
every combination of test model and algorithm configura-
tion.

for m ∈ models do
expData = simulation(m);
params = random subset of model parameters;
mutate params;
for a ∈ algorithms do

run(a,m, params, expData);
log best solution costs and solution time

end

end
Algorithm 2: Test suite

In order to make a fair comparison of all algorithms, the
optimal configuration of algorithm parameters needs to be
found. Therefore for each algorithm test cases were made
with various configurations of parameters. The configura-
tions per algorithm that were tested are specified in Sec-
tion 6. The algorithm configuration with the best results
will be used in the comparison across all algorithms.

Three biological models were used in this research:

• A simple 5 node network modelling part of the MAPK
pathway [5] (seen in Figure 1)

• A 16 node network modelling a chondrocyte cell [8]

• A 52 node network modelling crosstalk between the
TNF and EGF pathways [6]

Both the parameter selection and algorithm comparison
tests use same set of models. Every model is used 20 times,

4



giving 60 optimisation cases per algorithm configuration.
The chondrocyte and TNF EGF model configurations re-
quire 1 to 20 parameters to be optimized. The MAPK
model only has 5 interactions, so it cycles the number of
optimized parameters from 1 to 5, in total 4 times.

All benchmarks were performed on a cluster of Dell Pow-
erEdge M610 servers, each with 2 Intel Xeon E5520 pro-
cessors, giving a total of 16 cores.

6. RESULTS
First, the results of the experiments attempting to find
the best parameters per algorithm are presented. The test
suite was run four times per algorithm, giving a total of
4 ∗ 60 = 240 runs per algorithm configuration. The values
whose runs gave the lowest average cost over all runs were
chosen as the best parameters. If that was not conclusive,
the lowest average solution time was used for selection.
Then, all algorithms are compared using the best param-
eters found based on those results.

For LMA, different values for the λ parameter were com-
pared. The tested values were 10−3, 10−4 and 10−5. Based
on the results found in Table 1, the best value for the λ
parameter is 10−3.

The SA implementation has two parameters, the muta-
tion factor and the temperature scale. For the mutation
factor the tested values were 1.1, 1.5 and 2.0, and for the
temperature scale 0.1, 0.5 and 1.0. All combinations of
these parameters were tested, given a total of 9 configura-
tions, whose results are found in Table 2. The best values
found were 2.0 for the mutation factor, and 0.1 for the
temperature scale.

The HC implementation only has one parameter, the mu-
tation factor. Tested values were 1.05, 1.1, 1.2, 1.5 and
2.0, giving the results found in Table 3. The runs where
the mutation factor was 2.0 gave the lowest average cost,
so this value was selected.

For GA, there are four parameters: the selection ratio, mu-
tation factor, population size and number of generations.
Because the amount of combinations rises exponentially
with the number of parameters not all parameters could
be tested thoroughly. The tested values for the selection
ratio were 0.25 and 0.125, and the mutation factor was
1.25 for all tests. The values for the population size and
number of generations were chosen such that their prod-
uct was constant, making the total number of simulations
constant across the tests. Their values were 100x5, 50x10,
25x20 and 10x50, giving a total of 8 configurations for this
benchmark, of which the results can be found in Table 4.
The configuration that gave the lowest average cost was a
selection ratio of 0.25, population size of 50, and 10 gen-
erations.

Using the parameter configurations found above, the bench-
marks comparing all algorithms were performed. The test
suite was performed 15 times, giving 15 ∗ 60 = 900 runs
per algorithm. The results of these runs, combined with
whether the algorithm converges to a global or local min-
imum, can be found in Table 5. For the TNF EGF model
the number of parameters optimized is plotted against the
average solution costs in Figure 5.

7. DISCUSSION
It can be seen in Table 5 that the GA implementation
found the best solutions on average. The better perfor-
mance of GA compared to the other algorithms can prob-
ably be attributed to the fact that GA allows for paral-

0 5 10 15 20

0

0.5

1

1.5
·10−2

Number of parameters

A
v
er

a
g
e

co
st

GA

LMA

SA

HC

Figure 5. Comparison between the number of pa-
rameters to optimize, and the average cost found,
using the TNF EGF model.

lelism, and that it converges to the global minimum. The
average solution time of GA is higher than SA or HC. This
means that in a use case where fast convergence is more
important than the quality of the solution SA or HC may
be preferred.

Figure 5 plots the number of parameters that were op-
timized against the average cost found. This data also
shows that GA produces the best solutions, having near
optimal (cost ≈ 0) solutions when the number of parame-
ters is below 10. It can be seen that all algorithms produce
worse solutions as the number of parameters rises. This
can be explained by the fact that the search space grows as
the number of parameters grows, and that therefore more
solutions need to be tried.

It is believed that the executed method is a valid way
of assessing the performance of the selected algorithms.
However, because of the limited number of tested algo-
rithms, it cannot be said that GA is the best possible ap-
proach. Further research can be performed using a similar
method but implementing additional algorithms, in an ef-
fort to find an even better PF solution. For instance, more
metaheuristics, hybrid strategies or local optimisation al-
gorithms may be of interest.

Also, the number of models used for the benchmarks in
this research is rather low. It could be the case that the al-
gorithms compared are only optimized for the models used
here, and that they perform significantly worse on other
models. Therefore further research could be performed
that use a larger set of models in their benchmarks. This
could also discover correlations between the performance
of certain algorithms and the size or topology of the model.

With the method used in this study research question 2
cannot be answered. Future research could attempt to
answer this. This could be achieved by running one algo-
rithm for half of the allocated time, and continuing with
another. Another possibility could be to include some
pre-processing algorithm, for instance an algorithm that
prunes a part of the network that is not needed for calcu-
lating cost.

8. CONCLUSION
From the results found in this research it may be concluded

5



Table 1. LMA benchmark results
λ parameter 10−5 10−4 10−3

Average best cost 0.106 0.065 0.049
Average solution time 31.554 32.015 43.855

Table 2. SA benchmark results
Mutation factor 1.1 1.5 2.0 1.1 1.5 2.0 1.1 1.5 2.0
Temperature scale 0.1 0.5 1.0

Average best cost 0.0863 0.0300 0.0288 0.0987 0.0451 0.0346 0.1029 0.0522 0.0446
Average solution time 16.0141 15.8935 14.1066 11.3849 13.8098 12.2283 10.1661 12.7718 10.2504

Table 3. HC benchmark results
Mutation factor 2.0 1.5 1.2 1.1 1.05

Average best cost 0.0260 0.0336 0.0494 0.0676 0.0875
Average solution time 17.6804 17.5548 17.0401 16.1080 14.4709

Table 4. GA benchmark results
Selection ratio 0.25 0.125 0.25 0.125 0.25 0.125 0.25 0.125
Population size 100 50 25 10
Number of generations 5 10 20 50

Average best cost 0.00323 0.00255 0.00237 0.00239 0.00360 0.00336 0.00543 0.01038
Average solution time 39.0758 39.9916 39.9655 39.6461 36.2205 36.1320 35.6279 32.7343

Table 5. All algorithms benchmark results
Algorithm GA LMA SA HC

Average best cost 0.0028 0.0372 0.0258 0.0222
Average solution time 40.2459 46.1136 14.4923 18.3721
Global minimum Yes No Yes No

that the answer to research question 1 is the Genetic Al-
gorithm. The average cost found in the experiments was
over a factor 7.5 lower than the next best average cost.
This makes it by far the most suitable algorithm for the
circumstances that were used in this research.

The answer to research question 3 can be found in Table
5. GA converges to the global optimum and is the high-
est performing algorithm tested. However, it cannot be
concluded that convergence to the global optimum always
leads to a higher performance, since the SA implementa-
tion performed worse than the HC, which always converges
to a local optimum.

An answer to research question 4 was found by implement-
ing the parameter fitting functionality into the back end of
webANIMO. This allows for the inclusion of PF in the we-
bANIMO front end in future work. To allow for the same
user experience in webANIMO as in ANIMO for the desk-
top intermediate results can be collected by the front end.
The solution used for this was a polling-based approach,
keeping the requirements on the client side low.

The work done and results found in this research will be of
use to others performing research related to parameter fit-
ting. By performing extensive benchmarks under various
circumstances this research was able to thoroughly com-
pare the performance of the tested algorithms. The work
done should improve the experience of ANIMO users by
allowing them to use more powerful PF algorithms, both
in the web and desktop versions of ANIMO.

9. REFERENCES
[1] I. Arisi, A. Cattaneo, and V. Rosato. Parameter

estimate of signal transduction pathways. BMC
neuroscience, 7(1):1, 2006.

[2] O. R. Gonzalez, C. Küper, K. Jung, P. C. Naval, and
E. Mendoza. Parameter estimation using simulated

annealing for s-system models of biochemical
networks. Bioinformatics, 23(4):480–486, 2007.

[3] K. G. Larsen, P. Pettersson, and W. Yi. Uppaal in a
nutshell. International Journal on Software Tools for
Technology Transfer (STTT), 1(1):134–152, 1997.

[4] K. Levenberg. A method for the solution of certain
non–linear problems in least squares. 1944.

[5] S. Schivo, J. Scholma, M. Karperien, J. N. Post,
J. van de Pol, and R. Langerak. Setting parameters
for biological models with animo. arXiv preprint
arXiv:1404.0444, 2014.

[6] S. Schivo, J. Scholma, P. E. van der Vet,
M. Karperien, J. N. Post, J. C. van de Pol, and
R. Langerak. Modelling with animo: between fuzzy
logic and differential equations. BMC Systems
Biology, 2016.

[7] S. Schivo, J. Scholma, B. Wanders, R. A. Urquidi
Camacho, P. E. van der Vet, H. B. J. Karperien,
R. Langerak, J. C. van de Pol, and J. N. Post.
Modelling biological pathway dynamics with timed
automata. IEEE Journal of Biomedical and Health
Informatics, 18(3):832–839, May 2014.

[8] J. Scholma, S. Schivo, R. A. Urquidi Camacho, J. C.
van de Pol, H. B. J. Karperien, and J. N. Post.
Biological networks 101: computational modeling for
molecular biologists. Gene, 533(1):379–384, January
2014.

[9] W. Siers, M. Bakker, B. Rubbens, R. Haasjes,
J. Brandt, and S. Schivo. webanimo: Improving the
accessibility of animo. submitted to F1000Research,
2016.

[10] J. Sun, J. M. Garibaldi, and C. Hodgman.
Parameter estimation using metaheuristics in
systems biology: A comprehensive review.
IEEE/ACM Transactions on Computational Biology
and Bioinformatics, 9(1):185–202, Jan 2012.

6


