
December, 2016

MASTER THESIS

ON-DEMAND
APP DEVELOPMENT

Thom Ritterfeld

Faculty of Electrical Engineering, Mathematics and Computer Science (EEMCS)
Chair

Exam committee:
L. Ferreira Pires
A. Rensink

Documentnumber
s1509101 — 1.1



Preface
This thesis is submitted as partial fulfilment for the Computer Science Master’s Degree of the
author. It contains work done from May, 2016 to December, 2016. The supervisors on the
project have been L. Ferreira Pires and A. Rensink.

The idea for this research topic evolved after years of app development. I developed multi-
ple apps for agencies, start-ups and corporations. At these companies, I worked on a wide
area of apps, such as news, social media and commercial apps. During development of the
apps I used different languages and technologies across all platforms. Despite the differences,
I noticed that I faced the same problems and patterns again and again, especially in the case
of updating apps in a timely manner. This motivated me to find a solution and write this thesis.

2



Table of Contents

1 Introduction 5
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.4 Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Background 9
2.1 Basic concepts in app development . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.1 Operating system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1.2 Frameworks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1.3 Libraries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1.4 Programming language . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.1.5 Development environment . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.1.6 Platforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2 Development approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2.1 Native . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2.2 Web . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2.3 Hybrid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2.4 Interpreted . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2.5 Generated . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3 Composition of an app . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3.1 Model-View-Controller (MVC) . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3.2 Remote MVC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.4 Server communication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.4.1 RESTful . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.4.2 JSON . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.4.3 System overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.5 Updating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3 Identifying requirements 20
3.1 Prioritisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.2 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.2.1 Stakeholders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.2.2 Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.3 Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.3.1 Existing requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.3.2 Additional requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3



TABLE OF CONTENTS

4 Design architecture 23
4.1 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.1.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.2 Napton architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.2.1 Fetch remote files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.2.2 Generate models on device . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.2.3 Execute functions of the controllers . . . . . . . . . . . . . . . . . . . . . . 27

4.3 System flows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.3.1 Initialising the app . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.3.2 Generate concrete instances of the abstract objects . . . . . . . . . . . . 28
4.3.3 Getting arguments of the concrete objects . . . . . . . . . . . . . . . . . . 29
4.3.4 Execute functions of the concrete objects . . . . . . . . . . . . . . . . . . 30

5 Prototype 32
5.1 Usecase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
5.2 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

5.2.1 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
5.2.2 Web approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
5.2.3 Native approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
5.2.4 Napton approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
5.2.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5.3 App update - change scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
5.3.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

6 Validation 39
6.1 Validating requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

6.1.1 Existing requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
6.1.2 Additional requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

6.2 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

7 Reflection 42
7.1 General conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
7.2 Answers to the research questions . . . . . . . . . . . . . . . . . . . . . . . . . . 43
7.3 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
7.4 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

Glossary 49

Acronyms 50

A Diagrams 51

B Manual 54

4



Chapter 1

Introduction

This chapter is structured as follows: Section 1.1 gives the motivation for this thesis. Section
1.2 describes the research objectives. Section 1.3 describes the approach to be followed to
achieve the objectives. Section 1.4 presents the structure of the report.

1.1 Motivation

Applications (apps) are everywhere around and with you, think about Pokémon Go, WhatsApp
or CNN (see Figure 1.1). They are all trying to make connecting and engaging with digital
content easier than ever before. Apps are usually downloaded ones and changed to provide
extra functionalty or another experience, like new icons in Pokémon Go, not only texting but
also calling contacts in WhatsApp or watching video clips next to the news items inside the
CNN app.

Figure 1.1: Pokémon Go, WhatsApp and CNN

Nowadays, almost all mobile devices have powerful processors and provide fast Internet
access. These two properties have led to new possibilities for building apps. Many apps give in-
formation about fast-changing content, such as news festivals and catalogues. Therefore, there
is high demand for apps that allow to be updated and expanded even quicker and smoother.
However, most frameworks that offer tools for the development of apps, still require numerous

5



CHAPTER 1. INTRODUCTION

steps and a great deal of experience to develop an app[1].

Many companies design their apps to use web page solutions by means of HTML interface
elements because it is easier, faster and cheaper to change a web page. This is due to the
fact that the web is flexible, changeable and able to grow according to business needs without
changing and building apps for multiple platform every time. The downside of using web pages
is that they do not work offline and do not provide a user experience that is as good as native
interface elements[2]. This is the reason why the web page based solutions do not qualify as a
good alternative, in terms of user experience and offline usage[3].

After time, functionality and needs of an app change because of the impact in technology,
business or society. The changes that need to be applied then are so called updates. Primarily,
it takes a significant amount of time (at least a few days) to apply updates to an app, and even
longer for the update to reach all users. Moreover, some users do not update their phone or
their apps at all, which means a great deal of legacy maintenance is required. Research has
shown that among users who do not allow automatic updates, 18.5% rarely update their mobile
apps and 45.6% update less than once a month[4].
The consequences are, firstly, that users are not getting the latest features and experience a
company wants to provide. Secondly, the company loses time and is not able to adequately
react to changes on the market. Lastly, developers need to change an app in a very short time
frame, which makes the app more liable to bugs and unstable features[5].

Previous research[6] has shown that some solutions allow apps to be changed at runtime. The
paper referenced here describes a remote Model View Controller (MVC) architecture, which
synchronises the user interactions of the app between all client devices.
This solution appears to perfectly fulfil the needs of updating an app dynamically, as it provides
an architecture that allows the user interface to be changed at runtime. However, the solution
also has disadvantages:

• No offline usage is possible
The user always needs an Internet connection to interact with the app, which is not always
available on a mobile device. The app should be able to work at least with the previously
fetched user interfaces and content.

• There is a centralised controller on a server
This means that all user interactions with the app are handled by the remote server. The
server load could be very high if many people are using the app at the same time, which
slows the solution down. It is therefore hardly scalable.

To process of updating an app is either slow and complicated, or provides a bad user ex-
perience. Remote MVC could be a solution, but, as of today, it is not scalable and requires an
Internet connection on the target device in order to work. Thus, neither of these solutions is
suitable to update an app dynamically.

1.2 Objectives

This research aims to address the two drawbacks of remote MVC, so to facilitate dynamic up-
dating of the app and improve the user experience.

6



CHAPTER 1. INTRODUCTION

The main objective of this thesis can therefore be described as follows:
To create a solution allowing decentralised and offline usage of a mobile app using the princi-
ples of the remote MVC pattern.

To achieve this objective, a framework must be developed and then used by a prototype app.
This methodology helps to achieve the main research objective. During development of the
framework the following questions are considered:

RQ1. What are possible approaches to decentralise the user interaction of the remote
MVC pattern?
A new software architecture must be designed which makes it possible to run the remote MVC
pattern on the platform-specific MVC architecture[6], without the need for an active Internet con-
nection. This allows the app to be used in a decentralised way, since it only requests data for
changes and not for making the user interactions functional.

RQ2. What are possible approaches to make the remote MVC pattern work offline?
The new software architecture should also work without an Internet connection. This could be
done by storing the dynamic app locally and use the stored data without being connected.

RQ3. How can a framework be developed that allows the app to be changed dynami-
cally when there is a connection, but still supports offline usage?
A new architecture is needed which should be capable of running remote MVC locally, while no
longer requiring neither an Internet connection nor a central remote controller.

1.3 Approach

The main objective of this research will be resolved by the following approach. The approach is
mainly based on creating a prototype which demonstrates the capabilities to solve the problems
of the main objective.

To find a solution to the main objective of this research, the following steps are taken:

1. Gather background information about the approaches to build apps and the MVC patterns,
its offline usability and decentralisation.

2. Identify requirements to be able to define an architecture that is capable of giving an
answer to the main objective. Which additional requirements give a solution to the main
objective and which existing requirements need to persist.

3. Define an architecture to use for developing the framework. The architecture should be
able meet all the defined requirements.

4. Implement a prototype that demonstrates the framework. The prototype proves that the
framework works and provides the ability to compare the approach against other app
development approaches.

5. Verify whether the framework complies with the requirements by performing a change
scenario. A change in the code base will simulate an app update and allow to compare
the framework before and after the update against other approaches.

7



CHAPTER 1. INTRODUCTION

1.4 Structure

The structure of the thesis is as follows:

Chapter 2 - Background Describes background information of app development and previ-
ous work on the remote MVC pattern.

Chapter 3 - Requirements Lists the requirements in order to define an architecture, and be
able to measure if the framework meets the needs.

Chapter 4 - Design architecture The architecture that is used to build the framework. The
architecture gives a solution to the objectives RQ1, RQ2 and RQ3.

Chapter 5 - Prototype Reports on the implementation of the prototype.

Chapter 6 - Validation Validates the correctness of the prototype

Chapter 7 - Reflection Concludes this report and suggests topics for further research.

8



Chapter 2

Background

This chapter justifies this research. It presents background information about basic concepts
in app development, current approaches in app development, composition of an app, server
communication and the update process.

2.1 Basic concepts in app development

This section describes the basic components needed for develop an app using current ap-
proaches.

2.1.1 Operating system

The mobile Operating System (OS) typically starts up when a device powers on, and fills the
screen with icons. Operating systems manage hardware and connectivity, and are responsible
for loading and managing apps and their processes, memory and storage. Most operating
systems are also tied to specific processors and hardware.

2.1.2 Frameworks

An application framework is a collection of software that provides a structure to support the
development of an app. A framework can acts as the basic skeleton for building an application.
The intention of designing application frameworks is to lessen the general issues faced during
the development of applications. This is accomplished by the use of code that can be shared
between different modules of an application. Application frameworks are used not only to build
the graphical user interface (GUI), but also in other areas to store data or provide algorithms
for recurring calculations. Frameworks give the ability for developers to develop apps faster and
share the same modules of software with other apps and developers in an easy way.

2.1.3 Libraries

A library is basically a framework but provides a lot of functionality. Most of the time a library is
used as starting point to develop an app. It provides general classes and structures to define the
app. For building iOS apps for example, CoreFoundation and Cocoa are used by default. These

9



CHAPTER 2. BACKGROUND

sample libraries contain for example classes for an NSString to store texts, UIButton interface
element to create and represent buttons on the screen.

2.1.4 Programming language

A programming language is used to write the code of a program. This code is interpreted by a
compiler, and the compiler constructs multiple binaries for all devices using the libraries of the
platform. In the end, this binary runs on the mobile phone, by which the OS knows how to set
up the environment and resources that are needed to run the binary. In other words, an app is
essentially a collection of binary code.

2.1.5 Development environment

The development environment is a collection of procedures and tools to develop, test and debug
an app. All platforms provide an IDE, simulators to simulate the app on the local machine and
libraries with interface objects, which allow developers to develop and test apps.

2.1.6 Platforms

A platform in the context of this paper refers to the tooling the vendor provides to develop apps
for a mobile operating system. It contains a development environment, programming language
and libraries. The main vendors of mobile operating systems are Apple, Google, Microsoft and
Samsung. These all provide hardware and software to build and consume apps. The three
main operating systems are iOS, Android and Windows Phone. Each operating system uses
a different development environment and programming languages. The vendors also provide a
way for developers to distribute the apps they build, via app stores.

2.2 Development approaches

There are several approaches to building apps. Each approach has its own benefits in terms
of time to develop, complexity and performance. All approaches share a layered architecture
principle: they run on top of the operating system of the operating system (see Figure 2.1). The
number of layers in a software architectures increase the complexity and decreases the perfor-
mance, but abstraction allows faster and easier development approaches[7]. For a developer, it
is important to make the right decision to achieve the proper balance between complexity and
performance (for all decisions see Table 2.1).

10



CHAPTER 2. BACKGROUND

Operating System

App

Operating System

Browser

Web App

Operating System

Interpreter

App

Operating System

App

Operating System

Browser

Web App

App

Generator

Native Web Hybrid Interpreted Generated

Figure 2.1: Difference in architectures between approaches [7].

2.2.1 Native

The native approach performs best by far. This is because it is directly coupled with the op-
erating system and the libraries the platform provides. However, the development costs are
high, the time-to-market is long, update processes are complex and the code of the app is not
reusable across different platforms because the use of different programming languages[8][9].
The native app runs directly on top of the operating system. The written code uses the frame-
works and programming language the platform supports, and is optimised for the device; in
addition, the layout rendering is done using the native objects of the platform. Because of this,
an app developed with this approach performs best[10][7].
The most popular frameworks are those provided by the operating system; these are CoreFoun-
dation for iOS[11], Application Framework for Android[12] and the .NET Compact Framework for
Windows Phone[13].

2.2.2 Web

Web apps are browser-based applications in which the software is downloaded from the web[9].
The web approach is easy to update, easy to maintain and functional on all platforms. It also
has a very short time-to-market without added costs which makes it flexible compared to other
approaches. Every platform has a browser that allows the user to access the app.
Web apps are based on widespread Internet technologies such as HTML and JavaScript. The
main disadvantage of web apps is the limited access to the underlying device’s hardware and
data. Another problem is the extra time needed to render the web pages and the extra cost
needed to download the web page from the Internet[8][10].
Examples of the most popular frameworks to implement web apps include JQuery Mobile[14],
Sencha Touch[15] and JQTouch[16].

2.2.3 Hybrid

The hybrid approach is a combination of the native and web approaches. It basically runs a
browser inside a native app. This approach offers the same benefits as using the web approach.

11



CHAPTER 2. BACKGROUND

Another benefit is that apps are able to access the hardware this way. However, the downside
of this approach is that there is an extra layer which prohibits the app from running smoothly
and providing a native experience[8][9].
Hybrid apps are neither purely native neither purely web-based. Not purely native comes from
the layout rendering that is done via HTML in the web browser instead of using the native
language and objects of the platform, whereas not purely web-based results from the lack of
support of some browser-specific features, which are now accomplished using native wrappers.
An example of the most popular container for creating hybrid mobile apps is PhoneGap[17].
Most of the time a web framework as described in the previous section is used in addition to a
hybrid framework to draw the user interface.

2.2.4 Interpreted

The interpreted approach runs another interpreter app inside a native app. This means that the
approach is more flexible than the native approach. The interpreter app is capable of reading
another language as well as bridging to the native language. This enables free choice of the
programming language and a native experience for the interface. The downside of this approach
is again poor performance and only being able to share the logic across platforms, not the user
interface.
In interpreted apps, native code is automatically generated to implement the user interface. The
end users interact with platform-specific native user interface components, while the application
logic is implemented independently using several technologies and languages, such as Java,
Ruby, XML etc[9]. Because the application logic runs in its own environment and only the user
interface runs natively, it requires more resources and does not performing as good as a native
app.
An example of one of the most popular software development environments for creating inter-
preted apps (as well as hybrid apps) is Appcelerator Titanium Mobile[18].

2.2.5 Generated

The generated approach is similar to the native approach, since it generates an app using a set
of instructions. Most of the time this approach is used by model-driven techniques[19] in which
the developer focuses on describing the problem domain in a model[9]. The model is able to
generate apps for different platforms. Because the generated apps are native apps, they have
good performance as well.
Generated apps achieve high overall performance because they are essentially native apps,
where all the layout rendering is done using the native objects of the platform[20].
A popular example of software development environment for creating generated apps is Ap-
plaus[21].

12



CHAPTER 2. BACKGROUND

Native Web Hybrid Interpreted Generated

Available in app store Yes No Yes, not guaranteed Yes Yes
Common technologies Yes Yes Yes Yes No

Hardware access Full Limited Limited Limited Full
Look & feel Native Simulated Simulated Native Native

Performance High Low Medium Medium High
Cross platform No Yes Yes Yes Yes

Offline Yes No Yes Yes Yes
Development cost High Low Medium Medium High
Code re-usability Low High Medium Medium Medium

Security High Low Medium Medium High
Potential users One platform All Multiple Multiple Multiple

Quality UX High Okay Good Good Native
Ease of updating Complex Easy Medium Medium Complex
Time-to-market Long Medium Short Short Long

Table 2.1: Overview of differences between the approaches combined[9][22][23].

2.3 Composition of an app

This section describes the common composition of an app and a newly developed alternative.
These are defined as programming patterns which means they can be implemented by all ap-
proaches.

2.3.1 Model-View-Controller (MVC)

The Model-View-Controller (MVC) pattern, is widely used in all approaches. This pattern is used
to separate different components in an application, namely the models, views and controllers
(see Figure 2.2). By separating these components, the developer is able to develop an app
because it represents the logical way of how an application is built. In particular, the models
represent the data, views represent the graphical representation, and controllers act like glue
and allow the models and views to communicate with each other. In this way the pattern defines
the separation between components inside an app and makes it easier to understand the struc-
ture of the app. Apps using the MVC pattern are more easily extend able than other applications
where the separations of concerns is different. The reason for this is that many objects tend
to be more reusable and the class interfaces are better defined, as the same button views for
example are probably reused in other views inside the same app[24][25].
Although this pattern could work for all platforms, there are slight differences. Every platform
uses its own kind of MVC composition, that works better with the provided language and li-
braries. This is particular one of the main reasons why cross-platform frameworks have difficul-
ties to share the same code across platforms[26].

13



CHAPTER 2. BACKGROUND

App

View

Controller

Model

Update

User interaction

Update

Notify

Figure 2.2: The MVC model of iOS [26].

2.3.2 Remote MVC

In a remote MVC pattern[27], the views are exposed to other devices. This approach allows
to share the user interface of a MVC pattern, to compatible apps shared with other devices
that have the ability to adapt the user interface to their specific look and feel. To accomplish
this, the remote user interface and the application state are synchronised using a web-based
event-driven system. This system uses events that are exposed during user interactions in
the interface, the views receive these interactions. The views syncronise the interactions with
a server and other clients receive these to reflect the same changes on their interfaces (see
Figure 2.3).
This shows that the remote MVC pattern is capable of synchronising interfaces, which is close
to our main objective. The problem is that it does not allow to change the controllers of the
MVC pattern, which makes offline usage impossible. Because the solution needs to constantly
synchronise the interactions with the server it is also not scalable.

14



CHAPTER 2. BACKGROUND

App

Concrete View Events

Server

Abstract View

Controller

Model

Update

User interaction

Update

Notify

Push changes Push changes

User interaction

Figure 2.3: Remote Model-View-Controller[27].

Offline usage

The main difference between a web page and an app is that an app is able to work offline.
Although there are apps which are content based, they still have a desired behaviour and allow
to interact with the interface and previously fetched content. This is a significant difference
between a website and an app. In figure 2.4 an sample is shown where the device is in Airplane
mode, which means not connected to the Internet. Apps allow offline interaction, whereas a
website without connection is not loading at all.

15



CHAPTER 2. BACKGROUND

Figure 2.4: Web app(left) versus an app(right) without Internet connection.

Decentralisation

The main goal of the remote MVC pattern (see Section 2.3.2), is to synchronise multiple devices
to represent and replicate the same user interface and actions on all devices at the same time.
By sending actions, waiting for the response and changing the interface.
The same scenario happens for websites, where the user requests a website in the browser,
the server sends a response, and another interface is shown.
This is in contrast to mobile apps which are used and in control of the user, only the user is able
to control the app on one device, and remains in control even when the app is used in areas
with poor connectivity. Which can be a problem as for decentralised techniques an active server
connection is required to use the app.

Differences

The differences between the MVC pattern (see Section 2.3.1) and the remote MVC pattern (see
Section 2.3.2), are the following:

• Moving the MVC pattern to a server. In the research they replicate the MVC pattern on
a device that acts like a server.

• Replicating the view part on remote devices. All clients push the user interactions on
the implemented abstract view to the server.

16



CHAPTER 2. BACKGROUND

• Keeping the view part in sync using event-based technologies. The clients are fetch-
ing user interactions from the server, and check if they need to display another concrete
view or update the current concrete view.

2.4 Server communication

Apps that connect to web services are widely available. Think about news, weather, stocks and
chat applications. Most of these apps are connected to web services using RESTful application
program interface (API)s and there main purpose is to deliver content to an end user, which
consumes the content using an app on his mobile phone.

2.4.1 RESTful

In Representational state transfer (REST) everything is about resources. A resource describes
an object and can contain sub resources or sub collection of resources. Because of this flexi-
bility REST is popular and used by many web services. All RESTful services are based upon
Hypertext Transfer Protocol (HTTP) and use resource identifiers, in form of URLs to gather con-
tent.
HTTP is a high level network protocol which offers already a lot useful functionality. For exam-
ple, resources can be managed in a CRUD(Create, Read, Update, Delete) way, HTTP provides
the same kind of methods (POST, GET, PUT, DELETE). Because of this and other properties
like authentication HTTP fits nicely to the main idea of REST.
Resource identifiers are another important property of REST. Most of the time the name of the
resource also acts as an identifier. For example, to get all contacts of an Address Book that are
stored in a REST service, you just need to do a GET (Read) on the resource itself ”contacts”, the
URL could be something like http://example.com/contacts. To create a contact POST is called
on http://example.com/contacts, to edit contact with id 1, PUT http://example.com/contact/1, to
destroy contact number 1, DELETE http://example.com/contact/1. HTTP and resource identi-
fiers together define already the interactions with the Restful web service. The content type is
free to choose; the most common content type for apps is JSON, but also others like XML or
YAML can be used.
In contrast to other web services like SOAP it is not possible to understand what content to
expect, and what resources can be called. This means that good documentation is necessary;
as the clients are tightly coupled with the response of the server. Making changes is difficult
because of this tight coupling, if the REST services changes, and clients are not updated at the
same time, they break without the proper use of versions[28].

2.4.2 JSON

Most of the time the content type for REST services is represented in a format, called JavaScript
Object Notation (JSON). JSON data can represent models in an abstract way using definitions
of text, numbers, dictionary and lists. It also is in comparison with Extensible Markup Language
(XML) or Simple Object Access Protocol (SOAP) envelopes, smaller and lightweight, which are
two important properties for limited bandwidth on mobile phones[29].
The developer needs to define the same abstract representation inside an app, parsing the
JSON files makes the app able to represent the abstract definitions on the screen. To achieve
this a developer needs to specify which parts of the models are represented on which part of
the screen, and he also defines whether the user is able to interact with these. An app is built

17



CHAPTER 2. BACKGROUND

out of multiple of these definitions.
Because the JSON and the app is tight so closely, both the server and client need to be aware
of the data they receive and accept. This also means that the developed app always needs to
be aware of the content of the JSON files, to be able to represent and understand the requested
content. Usually the app is not able to dynamically adapt changes without also changing the
code and so the binary.

2.4.3 System overview

In the most basic setup an app on a phone communicates with an server to gather content (see
Figure 2.5). Usually Restful APIs make use of HTTP request and responses. One server is able
to serve the data to multiple mobile phones running the particular app.

Server

App

Exchange content

App App

Figure 2.5: System overview

The following subsystem can be identified in the system overview:

• Server, which serves content for the app e.g. JSON files and images.

• App, runs on a mobile phone and is capable of parsing JSON content into objects to
represent content on a screen.

2.5 Updating

With the exception of the web approach, every approach needs to have a binary to be executed
on the phone. This binary can be distributed via the stores of each platform. Any change in
code requires a new binary build. To be able to reach all existing users the build needs to be
uploaded to the store. The new build is shown as an update in the stores, and the existing users

18



CHAPTER 2. BACKGROUND

are able to download the new build, which updates the app.

IDEDeveloper End usersStore

Updated

Change

Change code

Create binary

build

changes

Upload binary

Review binary

notify binary reviewed
Request update

binary

Figure 2.6: Steps involved in updating an app.

As seen in the sequence diagram (see Figure 2.6) binary update involves multiple steps be-
fore the update appears in the store[1]. First the developer gets a change, this change needs to
be replicated in the code, the developer needs to create a new binary, the developer needs to
upload the binary to the store, the store may needs to review the binary, the binary is processed
by the store and available to the end user. When the end user is connected and allows updating
the app or updates the app manually the version will be downloaded to the device. The process
of updating an app in this way is quite time-consuming as involves many steps for the develop-
ers. Additionally, the update does not reach all users at the same time, since each user is able
to control when he wants to update an app. In this way, the changes practically reach users
later because of all the necessary steps after changing the code[23].

19



Chapter 3

Identifying requirements

This chapter describes the requirements the newly developed framework must fulfil. These
requirements are gathered by identifying the needs of developing and updating an app. Existing
requirements and improvements are differentiated, all of which need to work with the newly
developed framework. The purpose of this chapter is to specify the requirements of the solution.

3.1 Prioritisation

The requirements are defined using the MoSCoW technique. The technique helps to prioritise
requirements; the word MoSCoW stands for Must, Should, Could and Won’t. The reasons for
MoSCoW are that the requirements are prioritised in an explicit and easy way to communicate
than for example High, Very High, Low priorities[30]. Must stands for requirements which guar-
antee if a project meets the goals, shoulds are trivial but not vital, could are nice to haves, and
wont’s are not implemented at all so to say out of focus.

3.2 Overview

This section gives an overview of the stakeholders of the system which are gathered from an
perspective of the process of developing and distributing an app with current approaches. The
use case model (see Figure 3.1) shows the system and users that are important in this process.

20



CHAPTER 3. IDENTIFYING REQUIREMENTS

App developer End user

App

Use offline

Development environment

Create 
binary

App Store

Download 
binary

Upload binary 
to store

Use online
Develop

Figure 3.1: Use case model

3.2.1 Stakeholders

• End users - install, update an app and using the app online as offline.

• App developers - create and maintain the apps using the tools the platform provides.

3.2.2 Systems

• Development environment - the tools are used by the app developer to develop the app
and create a binary.

• App - the app itself, the user is able to interact with the functionality that is developed by
the developer.

• App Store - the app store is used to distribute the binaries to the end user. The end users
are able to download these binaries as apps. Also the updates are binaries and uploaded
and accessible via the store.

3.3 Requirements

This section describes the requirements of the system. These are divided into two sections:
the first discusses the requirements that already exist in current the current native development
approach, while the second describes the additional requirements, that should be possible in
the future.

3.3.1 Existing requirements

R-1: End users must be able to download and install the app via the stores.
The end users of the resulting app should be able to download and install the app via the
stores of the users mobile phone. This means that the developer creates a binary and
submits it to the store of a specific platform.

R-2: End users should be able to use the app online and offline.
The app should persist the user interface between launches independently if the app is
connected to Internet; this allows the end user to use the app also without an active

21



CHAPTER 3. IDENTIFYING REQUIREMENTS

connection. Interactions that do not require an active network connection should work just
fine.

R-3: End users should have native user experience.
The app should present the user interface using native interface elements, this provides
the user a native feeling of the app with direct interaction. All interface elements should
respond directly in a similar manner as a native implementation.

3.3.2 Additional requirements

R-4: The app developer must be able to make changes to the app without creating a new
binary.
The approach being developed needs to allow change the functionality and layout of the
app on the fly. This means that if a developer changes code on a central location like a
server, it will automatically reflect all the changes to the clients. This principle is also used
in web development where new changes on the website are also visible to all end users.

R-5: When connected to the Internet, end users always could have access to the latest
changes.
When the app is connected to the Internet it is possible to connect to external services, to
validate if it is running the latest version, and downloads a new version if possible. This
means that the users is always using the latest version possible.

22



Chapter 4

Design architecture

This chapter describes the system architecture. The architecture is presented in multiple parts;
first there is a discussion about current implementations, current and new system architectures,
solutions compared. The other chapters present the new architecture with its class diagram and
system flows.

4.1 Discussion

As the remote MVC pattern already seems to achieve the main objective (see Section 1.2),
as it allows developers to change the app without a need to update the binary. In this pattern
not only the models are represented in an abstract way on the server, but also the views. The
relative small controller inside the binary communicates the user interaction with the server to
know which view to display in the next step.
Nevertheless, the solution has some drawbacks, as it does not work offline because it requires
an active connection. For mobile apps, this is not a good solution for building dynamic apps. It is
not scalable, since the server needs to maintain open network connections for every client who
connects; this is very expensive in terms of the number of clients per server. Apps are mainly
used in circumstances with poor network coverage, which also makes it difficult on the client
side to maintain an open connection.
Apps implementing the remote MVC pattern can present the user interfaces across all devices
and remotely synchronise them using server side technology. The approach is centralised be-
cause the server is maintaining all the events of the user interface. The user interface must
be updated with the response from a network which requires dealing with the mobile app, this
does not allow to distribute the app on millions of devices as an open connection needs to be
maintained.
A solution for this would be to decentralise the user interface events and models, views, con-
trollers from the server. In this way, the clients will only interact with the server to check if
there is a new version of a particular view, controller or model available. This goal can be
accomplished by using comparing version numbers or calculate hashes over the previously
downloaded files[31].
To gather new content a connection is always required. But the connection is not required to be
persistent and allow offline usage without an connection. In the remote MVC pattern the app
is only usable when there is an active connection to the server. To allow offline usage of the
app it is required to have all the necessary files on the device. A possible solution for this is to

23



CHAPTER 4. DESIGN ARCHITECTURE

download all files and allow to load the complete app locally.
In the remote MVC pattern, not everything is implemented on the client side but, instead on the
server. To make decentralisation possible and offline usability possible, it is necessary to move
the interaction model to the client, and download files only if there is a change.

4.1.1 Conclusion

A MVC architecture can be replicated in an abstract way. This means that the models, views
and controllers are defined on the server, but everything runs inside the client. In this way, it is
possible to distribute and use the app without an active Internet connection. This solution does
not require an active Internet connection to know which view it needs to display, but executes
the user interactions locally.
The proposed system architecture can be seen in figure 4.1. The figure shows the models,
views and controllers, all fetched from the server and executed on the client. The figure shows
the JSON files on the server, they act as abstract MVC representations, that allow the app to
generate instances that act as concrete counterparts, which allow a runtime MVC representa-
tion.
The solution could work in the same way as current objects are exchanged on the server using
Restful services and JSON as content type (see Section 2.4).

Server

Abstract 
View

Abstract 
Controller

Abstract 
Model

App

Concrete 
View

Concrete 
Controller

Concrete
Model

Update

User interaction

Update

Notify

Abstract App

Figure 4.1: Proposed architecture of the solution.

24



CHAPTER 4. DESIGN ARCHITECTURE

4.2 Napton architecture

The newly proposed framework is called Native Adaptive Protocol Translated Object Notation
(Napton). This name has been chosen because of the model definitions that are in JSON, which
is being translated to the native approach to develop apps.
In the end the framework needs to generate native software components. Generative software
usually use metamodels which allow to define an abstract models, that are parsed and con-
verted to concrete models. In existing app development approaches generative approaches are
used already, by parsing abstract JSON models into concrete models. Because the technology
has already shown that it is widely implemented on mobile devices, it should be possible to be
used for generating not only models into runtime objects but other definitions as well, like con-
trollers and views. In perfect harmony, all platforms would define the same pattern as one like
in figure 2.2. However, every platform is using its own variation of a MVC pattern. This makes
it difficult to define one common MVC structure for all platforms[26]. Because the variations
still inherit the same base model, the Napton architecture is based on a form of a basic MVC
pattern. The MVC pattern allows to define the abstract models, views and controllers on the
server.
Usually the developer needs to specify which classes are used to parse the abstract JSON
models into their concrete object counterparts. In Napton reflective programming is used to
accomplish this in combination with a decoration pattern[32]. The decorator ensures that the
framework is able to generate the platform-specific MVC pattern and native interface objects.
This allows the platform specific MVC pattern to delegate the communication of the user inter-
action to the abstract MVC pattern.
After fetching these abstract models, views and controllers, the framework is able to generate
the platform specific concrete counterparts. The JSON files act like metamodels for the Napton
generator.
The class diagram (see Appendix A.1) shows the classes that are required on the server and
the classes then are implemented in the framework on the app side. Basically every model,
view or controller which is defined in a JSON file is an abstraction stored on the server. When
the framework fetches these abstract objects it parses them and generates concrete counter-
parts. The concrete counterparts are able to execute the main flow of the app to start presenting
views on the screen. These are the NaptonObject subclasses. A NaptonObject instance is able
to generate its own native instance. This is possible using the kind property which is defined
inside every NaptonObject. The kind property defines the class which needs to be initialised as
native instance. These classes are implemented inside the Napton framework and adopt the
NaptonInterfaces. To clarify the generative process, it can be represented inside a metamodel
architecture. The metamodel architecture of Napton is shown in figure 4.2. First we see the
first abstraction layer(M3) in the case of Napton; the JSON language. The next abstraction
layer(M2) are the abstract models defined in JSON files on the server. After the app parsed
the(M2) JSON files into abstract NaptonObject instances(M1) it is able to generate the native
instances(M0). The native instances represent the runtime instances which represent the app,
which is the purpose of the framework.

25



CHAPTER 4. DESIGN ARCHITECTURE

Abstract 
button

Concrete 
button

UIButton

M0 - Native instance

M1 - Abstract instance

M2 - Abstract model

M3 - Content type

JSON

Figure 4.2: Napton metamodel: JSON(M3) to generated instances(M0).

Definition

The models, views and controllers are specified on the server side. Napton does not need a
specific developed server approach, but needs to be able to request files in a RESTful way, and
currently only supports JSON as a content type. In the previous section the class diagram and
metamodel of Napton are explained. As seen in figure 4.2, the abstract models are defined in
JSON, and as seen in the class diagram these are defined as abstract models on the server.
Napton needs specific files which are stored on the server, see the manual in Appendix B to get
started. The following files ar necesssary for Napton to create the app:

• app.json This file contains information about the abstract app, such as the version number,
root controller and defines where the other resources are located, (model/view/controllers)
All resources inside the app are cached and offline available.

• model.json The models can be defined like before in JSON. This means that it is fully
compatible with existing JSON resources.

• view.json The view defines the layout of the elements, subviews and the bindings between
the models.

• controller.json The controller defines the actions that it can respond to and loads missing
resources if necessary. The actions are able to execute functions on controllers.

4.2.1 Fetch remote files

Every time the app starts, Napton checks if any new remote files are available. This is checked
by means of a version number inside the app.json. If the version number differs, new remote files
for models, views and controllers are fetched. The most logical approach would be to organise
this in a RESTful way, where the models, controllers and views have their own resource identifier
/model, /view, /controller [27]. The fetched files are stored for offline in the document storage of
the device to allow offline usage. If the version of the app is newer, the framework will replaces
previously fetched files.
Napton first tries to connect to the specified server. If this fails, it will use the fetched files from

26



CHAPTER 4. DESIGN ARCHITECTURE

the previous state. In this way, it is possible to run the app offline as well. Furthermore, if an
Internet connection is available, Napton tries to fetch the new models, views and controllers to
update the app.

4.2.2 Generate models on device

After the remote models are fetched, Napton is able to generate concrete models on the client.
These concrete models represent a MVC structure, which is defined inside the fetched files.
The concrete models act like a decorator pattern, to allow communication between them above
the concrete layer which are the generated objects.
The MVC pattern defined inside the Napton framework is interpreted and able to run as runtime
instances. If the app needs to draw or interact with the native controllers provided by the sys-
tem framework, the Napton instance is able to generate the specific instance using reflective
programming. The only requirements for the native instance is that they implement the Napton
interface. For the Napton framework, all classes of the platforms library need to implement the
Napton interfaces. The reflective technique will call these interfaces to be able to be able to
generate the preferred instance.

4.2.3 Execute functions of the controllers

The functions that are defined on controllers are predefined functions. This means that the
Napton framework is limited to a feature set which is defined by the Napton framework. The
functions that are being called need to be defined inside the generated instances.
Like the model generation, the functions are executed on the generated instances of the con-
crete Napton instances using reflective programming. This makes it possible to access all the
native functions provided by the frameworks, which is often a limitation of other cross-platform
solutions[9].

4.3 System flows

The following sections describes the flow of Napton, based on the architecture. The most
important flow is the generator which generates runtime objects from the JSON files objects.
The framework first downloads the JSON files, parses them, generates an abstract MVC model
and generates objects native interface objects to represent on the screen.
The first section describes this initialisation flow, the second the generation of runtime objects,
the third section how a runtime instance is able to gathered arguments from the Napton MVC
instances, the last section describes how functions are executed on the Napton MVC instances.
These flows together represent the core functionality of the framework.

4.3.1 Initialising the app

During the starting up phase of the app, the app checks several things (see Figure 4.3). First it
fetches, if possible, the app.json from the server, in order to synchronise the previously fetched
files with the new remote files.
Initially, the Napton framework requests the app.json to discover the resources available on the
server. If the version is not equal to the local version, each resource is requested, this can be

27



CHAPTER 4. DESIGN ARCHITECTURE

a model, view or controller. If there does not exist a local copy or it is outdated, the resource is
downloaded and written to a file. The app.json also defines a rootController, this property is the
initial controller where the app starts with. Which is the one which will be returned and its view
displayed to the end user.

:AppDelegate

End-user

:ConcreteApp

starts app
loadApp downloadApp

constructEntryPoint

Server

rootController

request(x)

:NaptonGenerator

ref
initController(args)

loop x in (app, models, views, controllers)

writeToFile(x)

if connected

readFile(x)

Figure 4.3: Flow initialising the app.

4.3.2 Generate concrete instances of the abstract objects

The parser inside Napton is able to convert the fetched files into concrete models. This means
that the defined abstract models(M2) are translated into concrete models(M1) that are able to
execute and handle code inside the app (see Figure 4.2). Every concrete model is initiated by
the kind which is defined inside the abstract JSON model; in this way, the parser knows where
to store and how to generate the concrete model.
Every concrete Napton object(M1) has its own generated instance(M0). The generated instance
represents the native object of the library of the platform. For example, an Abstract Button is
converted into an Concrete Button, which has a generated instance that is a native UIButton on
iOS.
The flow in figure 4.4 show how a generated instance(M0) is created, first an object calls the
NaptonGenerator first, the generator tries to allocate an object given having the given class
name. It will call initWithNaptonObject, which requires arguments, to know exactly how the
instance should look and behave. The parent argument can be an NaptonObject and is needed
to execute functions and gather the required function arguments after the object is generated,
which is described in the following two sections.

28



CHAPTER 4. DESIGN ARCHITECTURE

:NaptonGenerator :ConcreteController :NSObject

initView(parent, args) generateInstance
(parent, args)

:NaptonGenerator

initWithNaptonObject
(kind, args)

:ConcreteView

:ConcreteModel

initModel(parent, args)
initController(parent, args)

Figure 4.4: Flow generating concrete objects.

4.3.3 Getting arguments of the concrete objects

Every function that is initiated needs specific arguments to define the behaviour of the particular
function.
Most generic structures are called dictionaries or hashmaps. They allow to store an object to
for a given key. The dictionary is used to hold the arguments of the previous metamodel. If the
generated instances of the platform request an argument, they can gather the argument through
the dictionary of the Napton object, which is one metalevel higher. The generated instance calls
every time it needs an argument, the getArg function with a key for the value wants to get (see
Figure 4.5). To accomplish this every generated instance has access to NaptonObject a parent
to call and execute the function of a higher metalevel. The getArg returns the first match which
can be found.

29



CHAPTER 4. DESIGN ARCHITECTURE

:NaptonObject:NSObject

getArg(key)

:NaptonObject

loop (parent)

parent.getArg(key)

arg

Figure 4.5: Flow getting arguments of the concrete objects.

4.3.4 Execute functions of the concrete objects

Executing functions works almost like getting arguments. When a button is pushed, for example,
it first sends the user interaction to the concrete Napton view, which checks if it is able to handle
the function or passes it to the concrete Napton controller, which is most likely able to respond to
it. Every concrete NaptonObject(M1) is able to respond to functions, the Napton function which
responds at first defines the scope. If the Napton object is able to respond, it attempts to execute
the function on the generated instance. The generated instance obtains the function name and
the arguments. The function is then executed using reflective programming techniques as can
be seen in figure 4.6.

30



CHAPTER 4. DESIGN ARCHITECTURE

:NSObject

executeWithArgs(args)

:NaptonObject

loop (parent)

parent.executeWithArgs(key)

execute(args)

Figure 4.6: Flow executing function of the concrete objects.

31



Chapter 5

Prototype

In this chapter a sample implementation of the web and native approach and the Napton ap-
proach described, based on a usecase, and a change scenario.

5.1 Usecase

It is necessary to validate whether the framework works as expected, and compare and validate
against other approaches. The following case and the prototypes have been developed for this
purpose.
Every year the organisation ’Kick-In’ of the University Twente is organises an introduction week
for the new students. They want to provide an app to the students so that the students can
easily see where they need to go. The app should list the events that are organised for students
to participate. If a user presses on an list item, he should be able to see the details. Because
the organisation is not sure which user interface elements they want to display for each event,
they would like to keep this part flexible. For some events, the organisation may want to add
pictures after or during the event, or require a form for students to sign-up or win a price. The
app should contain at least the two main views: the list view and a view to display the details of
a selected event.

5.2 Implementation

Based on the use case, an architecture is proposed and implemented for different approaches.
The implementations allow the Napton approach to be validated.

5.2.1 Architecture

A prototype of the architecture for this use case is displayed in figure 5.1. The architecture
shows the MVC pattern, which is implemented by the chosen approaches (web/native/napton).
The basic model called Event can be seen, which is the abstraction of a single event. Also
depicted are the two main controllers, the EventListControllers basically connects the view with
the list of event models. If a user presses on an event the controller will display an EventDetail-
Controller, which also has a view and displays all the data for the event.

32



CHAPTER 5. PROTOTYPE

App

- title
- description
- starts
- ends

Event

- titleLabel
- dateTimeLabel

EventRow

- openDetail(event)
 
EventsListController

 
App

 
EventsListView

- event
EventDetailController

- titleLabel
- dateTimeLabel
- detailsLabel

EventDetailView

1* events

1

1

event

1

1

root_controller

1

1
view

*

1

rows

1

1

view

detailController

1

1

Figure 5.1: Architecture prototype

5.2.2 Web approach

The web approach is implemented using the jQuery mobile[14] framework. This fetches the list
of events in JavaScript and displays the list using the interface components of the framework
(see Figure 5.2), these are defined using HTML and CSS.

33



CHAPTER 5. PROTOTYPE

Figure 5.2: Web prototype

5.2.3 Native approach

The native approach is implemented using the Cococa Touch[11] framework, provided by the
iOS platform. The app also fetches the events, but displays them using the native user interface
components delivered by the Cocoa Touch framework. The native user interface elements look
and behave like the rest of the OS (see Figure 5.3, compared to the web approach Figure 5.2).

34



CHAPTER 5. PROTOTYPE

Figure 5.3: Native prototype

5.2.4 Napton approach

The Napton approach is mainly written on the server side and requires just an implementation of
the Napton framework inside the app binary. The Napton framework is able to use the underlying
Cocoa Touch framework to facilitate the creation of native components. By using native user
interface elements the experience and look is the same as using a native approach (see Figure
5.4, compared to the similar native approach in Figure 5.3).

35



CHAPTER 5. PROTOTYPE

Figure 5.4: Napton prototype

5.2.5 Conclusion

For this particular project, the web approach fits very well. This is because it is highly flexible,
and permits the changes as described, although it is not offline available and does not provide
a great user experience, causing the interface is built using less responsive web technologies
and not using the native interface components the platform provides.
The native approach is not a perfect fit either, because it does not allow quick updates; however,
it provides suitable performance and allows offline usage.
Because the Napton approach is implemented on the server side, it allows the app to be
changed without the need for an update. By using native interface components it also provides
a better user interface experience compared to the web.

5.3 App update - change scenario

The day before the introduction week of the new students at the University of Twente starts, the
“Kick-In” committee has a problem. They have completely forgotten that their photographer had
taken pictures for every event to display next to the event details in the app.
A new property must be added to the server, and all clients need to display the image in a new
view. The architecture of the client prototype needs to reflect these changes as well, this is done

36



CHAPTER 5. PROTOTYPE

by adding an image url and an ImageView to the architecture (see Figure 5.5). All prototypes
have been changed to show the image in the detail screen (see Figure 5.6).

App

- title
- description
- image_url
- starts
- ends

Event

- titleLabel
- dateTimeLabel

EventRow

- openDetail(event)
 

EventsListController

 
App

 
EventsListView

- event
EventDetailController

- titleLabel
- imageView
- dateTimeLabel
- detailsLabel

EventDetailView

1* events

1

1

event

1

1

root_controller

1

1
view

*

1

rows

1

1

view

detailController

1

1

Figure 5.5: Prototype architecture updated according to the change scenario.

37



CHAPTER 5. PROTOTYPE

Figure 5.6: Implementation of app before and after the update (web/native/Napton).

5.3.1 Conclusion

The changes in code were particularly easier for Napton and the web approach as just changes
on the server needed to be made. On the native approach not only the code on the server, but
also on the client needs to be changed and requires a new binary to be uploaded to the App
Store.

38



Chapter 6

Validation

This chapter validates whether the proposed framework fulfils the requirements stated in chapter
3, and assesses how our framework performs compared to other frameworks. This is accom-
plished by measuring the performance of the proposed framework against the competition. The
requirements are validated using quantitative measurements.
Times and lines of code are used in order to measure performance and complexity. Validation
is carried out using a sample application. Included in the measurement process are one web
app, one native app and one app which uses the Napton framework.
The apps are the ones developed and described in chapter 5. All apps use the same back-end,
listing all the events of the Kick-In introduction week.

6.1 Validating requirements

This section validates whether the product - the framework in this case - is able to meet the
requirements defined in section 3.3. The requirements validated based on the prototype dis-
cussed in chapter 5, and by applying the change of section 5.3 above.

6.1.1 Existing requirements

R-1: End users must be able to download and install the app via the stores.
The first version of the app needs be created inside the development environment of the
platform. The Napton framework must be added to the libraries and initiated. After these
steps, the binary can be built and uploaded to the store. The implementation of the app is
specified on the server side.

R-2: End users should be able to use the app online and offline.
The app is able to work offline because the required files are stored locally. Every time the
app starts and is not connected to the Internet and therefore cannot download the remote
files, it falls back on the local files. In this way, the end users are able to use the app offline.

R-3: End users should have native user experience.
To measure the user experience very exactly multiple methods have been considered, as
automated user interface testing, measuring time on launch, or response of buttons. But
it is still very difficult to measure the user experience in these ways, as it is influenced

39



CHAPTER 6. VALIDATION

by many factors like: processor speed, networking speed, drawing cycles, memory load,
threading, frame rate etc.
To make a fair comparison between the approaches; as they all use different technologies
to draw user interface elements and make use of different techniques for threading and
drawing the user interface. Because of this, the performance has been measured in dif-
ferent ways. A very important measurement of changes in code is the number of lines in
code (LOC). Another very important metric for mobile devices is the size of the app.

Changes in code
The number of lines of code (LOC) is often used to measure and predict the development
effort and size of a software project. This metric gives a rough indication of the degree of
effort put forth by one developer[33][34]. To compare the changes in code of the Napton
framework against existing approaches, the number of lines before and after the update
were measured.
To measure the number of lines of code, a tool called Cloc[35] was used. Cloc is able to
count lines of code of different programming languages in an equal way by ignoring com-
ments and white spaces. After the changes were implemented, the count was repeated in
order to see how many lines were added.

Approach initial LOC updated LOC difference
Native 382 390 8
Web 71 82 11
Napton 120 123 3

Table 6.1: Comparing initial app LOC with updated app LOC.

Download size
The download size is defined as a measurement which includes all files that are neces-
sarily to run the app, in other words, all the instructions to draw and interact with the user
interface. The models requested during runtime on the server are not counted because
they are requested on all implemented approaches.
For the initial download size, the elements considered are as follows:

• Native The binary size is counted as initial download size.

• Web The HTML, JavaScript and CSS files are counted for the web approach.

• Napton For Napton the binary size plus the required remote files are counted.

For the updated size:

• Native the binary size is used again for native, because users need to download the
update via the store.

• Web The HTML, JavaScript and CSS files are used again for web.

• Napton Only the remote files are counted for Napton, since a new binary is not
necessary.

To count the number of bytes of a file, the Unix utility WC[36] was used. WC is able to
count the number of bytes of the defined files, and the same utility was used in order to
have a fair comparison.

40



CHAPTER 6. VALIDATION

Approach Initial size in bytes Updated size in bytes Growth
Native 241.139 241.610 0.19%
Web 2775 3071 10.66%
Napton 274.151 2513 -0.92%

Table 6.2: Comparing initial app download size with updated app download size.

6.1.2 Additional requirements

R-4: The app developer must be able to make changes to the app without creating a new
binary.
Because the whole application is specified inside the server, the developer is able to mod-
ify the server-side files and make changes inside the app whenever a view or functionality
needs to change. This means that the app developer does not need to carry out all the
steps for uploading a binary (see Section 2.5).
A problem like the app change scenario (see Section 5.3) is easy to implement because
it only involves changing files on the server. Next to adding the image url JSON property
to the events to know which image belongs to the event, just a new ImageView needs to
be specified inside the JSON which describes the EventDetailView. No other changes
are needed, to accomplish the same result as the other approaches, which both need
changes on the client side architecture as well.

R-5: When connected to the Internet, end users always could have access to the latest
changes.
Each time it is connected to the Internet, the app checks if there are any changes to the
remote files. If there are any files, the app is always able to adapt its interface and provide
the newest features. Because the app is always up-to-date, all end users have the same
version and see the same functionality.

6.2 Conclusion

The update of the app (see Section 5.3) demonstrates that the framework fulfils the require-
ments and is able to update the app dynamically. This means that some of the steps to update
an app are no longer necessary, and this allows very quick changes to be made for all end
users.
The performance measurements conducted show results for Napton that are better than the
competitors in terms of less number of lines of code added for the same change, and the
smaller download size after a change.
Less changes in the number of lines means that a new feature can be implemented faster,
since the developer is able to write more lines in less time, given the complexity of every line is
the same[34]. Smaller download sizes to update an app uses less data, and provides a faster
overall performance for the end user since less data needs to be processed[37].

41



Chapter 7

Reflection

This chapter gives the final remarks of this research. The chapter gives the general conclusions,
answers to the research questions, limitations and recommendations for future work.

7.1 General conclusions

In this thesis, a new approach to developing apps was developed. This approach is capable of
dynamically updating the whole app without downloading a new binary. This is accomplished by
not only parsing models but the whole architecture of an app, which allows the definition of an
app on the server. The new approach is combining parts of existing approaches, but does not
offer the same functionality, they are not capable of being used offline, Instead, an active server
connection was always required in order to interact with the app. Napton combines the benefits
of using the web approach with the native approach, by using native user interface elements,
which is also used in the generated approach. This makes Napton living between the native,
generated and web approach (see Figure 7.1).

Web
Native

Generated

Napton

Figure 7.1: Napton approach, sits between the native, generated and web approach.

42



CHAPTER 7. REFLECTION

The Napton framework is my contribution to give another insight to app development. Nap-
ton is able to generate an app based on JSON files on the server. This allows developers to
develop an app without the need to build and compile code, but rather by writing files server
side, like web development. The composition contains models, views and controllers that reflect
the MVC development pattern, which is a common composition pattern used to define the user
interface and interactions of apps. The framework uses reflective techniques to generated na-
tive instances. This technique allows objects to be generated that interact with the arguments
and actions of a higher level MVC composition. The remote files are defined in JSON, thus
enabling compatibility with all RESTful server implementations, which are already widely used
for mobile app development.

Different app prototypes were developed, including an app built using the web approach, an-
other app using the native approach and one using the Napton approach. A real-world case
study has been implemented to contain the same functionality on all prototypes. This allows to
evaluate the developed framework against other approaches. Using these prototypes, a com-
prehensive comparison was carried out. The conclusion of this comparison shows that the web
approach is the most flexible, while the native approach has the best user experience because
of its use of native interface elements. The newly developed Napton approach has both bene-
fits, the use of native interface elements and the flexibility of the web approach by changing the
app on the server instead of making changes locally and deploy a new binary. To compare the
newly developed framework against the other approaches, a change scenario was done which
includes an app update for the prototype apps.

The initial idea of measuring performance of user experience was more difficult than expected.
Processor speed, networking speed, drawing cycles, memory load, threading, frame rate are
factors that have big impacts on measuring completely different development approaches. Be-
cause of this, the performance has been measured in different ways: number of lines of code,
and the download sizes of the different prototype apps.
These performance measurements show a smaller footprint of the Napton framework. The pro-
totype using the Napton framework does have a much smaller size in terms of number of lines
of code for the same change, as well as the download size after a change. This means that
features can be implemented even faster, and an update requires the use of less data for users
since they do not need to download the whole app. In addition, the whole process of updating
an app is different, as the steps typically needed (building, waiting, uploading, waiting, store
review, releasing, updating from the end users) are not necessary anymore. Furthermore, if
the end users have the latest remote files, they always have the last version of the app with the
newest features available.

Requirements were defined in order to specify the features which the developed framework
should fulfil.

7.2 Answers to the research questions

The research questions defined for this thesis are described below:

RQ1. What are possible approaches to decentralise the user interaction of the re-
mote MVC pattern?
In chapter 2, possible solutions were analysed for decentralising the user interaction. In
the design architecture of chapter 4, we present a possible solution. The solution does

43



CHAPTER 7. REFLECTION

not require a server to synchronise and interact with the app, it allows the usage in a
decentralised way, where only the user is in control of the app.

RQ2. What are possible approaches to make the remote MVC pattern work offline?
In chapter 2, the remote MVC pattern is described, which shows the lack of allow offline
usage when the app is being used. The design of the Napton framework in chapter 4
takes into account offline usage. The framework is able to parse local or remote JSON
files. Every time the app fetches new files it stores the files locally for offline usage.

RQ3. How can a framework be developed that allows the app to be changed dynam-
ically when there is a connection, but still supports offline usage?
The architecture of the framework is described in chapter 4. The architecture is designed
to allow offline usage and change the user interface of the app upon connection. The
definition of an MVC pattern in JSON enables clients to generate an app on-demand. The
JSON files which are fetched from the server, stored locally and refreshed upon a change,
allow offline usage without connection in a decentralised way. If there is a connection, the
app updates the models, views and controllers and stores the latest version.

7.3 Limitations

The Napton approach works good for content based apps. This means apps that provide rich
content to the user, like serving news, images, location based info, magazines, blogs or web-
shops. The apps could also provide some minimal interactions with Restful services, to submit
data and request external resources.
The main limitation of the framework is the number of classes that are available inside the
framework. The more classes support the NaptonInterface the more functionality is available.
By broader adoption and implementation of the NaptonInterface(s) and the principles used by
the Napton framework, it could be possible to create utility based apps, which require hardware
access, like a compass app, navigation app, or apps communicating via Bluetooth. Also, apps
that require more specific requirements as streaming live data, editing media, interacting with
local data, requesting data from other protocols as JSON and maintaining complex databases
are not feasible to build right now. Although the framework allows easy extension of the frame-
work by implementing the NaptonInterface for custom classes, not all apps are easier and faster
to build and dynamically changeable this way, as still specific classes cannot be changed using
the JSON arguments Napton provides, but also need to update deeper class based logic.

7.4 Future work

The following problems are still unresolved, and could offer new opportunities for future work.

Cross-platform support
The implemented solution has theoretically cross-platform support, but there is currently
no cross-platform prototype implemented at this moment, which proves the support. A
similar framework could be implemented for platforms like Android and Windows Phone.
To support the remote Napton files, a platform-specific framework needs to be developed,
which supports reflective programming and be able to parse JSON. To do so, a developer
just need to adopt the remotes files’ MVC pattern to their own platform-specific MVC
pattern.

44



CHAPTER 7. REFLECTION

Translator for platforms
The Napton framework defines all the concrete classes that can be used by the abstract
classes defined in the remote files. Not all native classes are translated at this time. This
means that not all library classes can be initiated. It is a very large task to maintain a
framework like this, and it will lead to possible incompatibilities in deprecated frameworks
of newer operating systems. To allow faster adoption of the Napton framework a translator
application could help create the missing concrete classes automatically. Additionally, the
translator could generate the documentation and align platform specific classes with equal
implementations of other platforms.

Business logic
No real business logic can be defined in the current prototype. The apps that can be de-
veloped with the prototype at this point are content-driven and do not really need model
modifications. Sending and receiving content is possible, however, because it is possible
to pass arguments around and to execute network requests. Still, to displaying for example
dates, a definition of business logic is necessary. In the current prototype a custom tem-
plate language was defined which is able to perform basic string concatenations and date
formatting. To allow modifications of properties, calculations, sorting, which allows broader
definitions of functions in models, a language to define business logic is needed. There is
already been worked on solutions to allow logic inside JSON called JsonLogic[38], which
looks promising in defining logic without the need of a whole programming language.

Dynamic runtime class injection
The Napton framework only allows the use of abstract classes that are defined by the
framework. New concrete classes are only accessible when contained inside the binary
build, which allows the Napton framework to generate the native instances. Tools already
exist to allow quick fixes of bugs, such as Rollout.io[39]. These tools use runtime code
injections. A similar solution could allow the framework to be extended dynamically. This
permits the extensions of the available classes inside the binary build, and makes it pos-
sible to define more abstract classes in the remote JSON files.

45



Bibliography

[1] Apple. (). Replacing your app with a new version, [Online]. Available: https://developer.
apple.com/library/ios/documentation/LanguagesUtilities/Conceptual/iTunesConnect_

Guide/Chapters/ReplacingYourAppWithANewVersion.html (visited on 05/20/2016).

[2] P. Gokhale and S. Singh, “Multi-platform strategies, approaches and challenges for devel-
oping mobile applications,” in Circuits, systems, communication and information technol-
ogy applications (cscita), 2014 international conference on, Apr. 2014, pp. 289–293. DOI:
10.1109/CSCITA.2014.6839274.

[3] P. Smutny, “Mobile development tools and cross-platform solutions,” in Carpathian con-
trol conference (iccc), 2012 13th international, May 2012, pp. 653–656. DOI: 10.1109/
CarpathianCC.2012.6228727.

[4] M. Nayebi, B. Adams, and G. Ruhe, “Release practices for mobile apps – what do users
and developers think?” In 2016 ieee 23rd international conference on software analysis,
evolution, and reengineering (saner), vol. 1, Mar. 2016, pp. 552–562. DOI: 10 . 1109 /
SANER.2016.116.

[5] W. Maalej and H. Nabil, “Bug report, feature request, or simply praise? on automatically
classifying app reviews,” in 2015 ieee 23rd international requirements engineering confer-
ence (re), Aug. 2015, pp. 116–125. DOI: 10.1109/RE.2015.7320414.

[6] T. Ritterfeld, “Research topic on-demand app development,” May 2016.

[7] C. P. R. Raj and S. B. Tolety, “A study on approaches to build cross-platform mobile
applications and criteria to select appropriate approach,” in India conference (indicon),
2012 annual ieee, Dec. 2012, pp. 625–629. DOI: 10.1109/INDCON.2012.6420693.

[8] M. Joorabchi, A. Mesbah, and P. Kruchten, “Real challenges in mobile app development,”
in Empirical software engineering and measurement, 2013 acm / ieee international sym-
posium on, Oct. 2013, pp. 15–24. DOI: 10.1109/ESEM.2013.9.

[9] S. Xanthopoulos and S. Xinogalos, “A comparative analysis of cross-platform develop-
ment approaches for mobile applications,” in Proceedings of the 6th balkan conference
in informatics, ser. BCI ’13, Thessaloniki, Greece: ACM, 2013, pp. 213–220, ISBN: 978-
1-4503-1851-8. DOI: 10.1145/2490257.2490292. [Online]. Available: http://doi.acm.
org/10.1145/2490257.2490292.

[10] A. Charland and B. Leroux, “Mobile application development: Web vs. native,” Commun.
acm, vol. 54, no. 5, pp. 49–53, May 2011, ISSN: 0001-0782. DOI: 10.1145/1941487.
1941504. [Online]. Available: http://doi.acm.org/10.1145/1941487.1941504.

[11] Apple. (2000). Cocoa foundation, [Online]. Available: https://developer.apple.com/
reference/foundation (visited on 01/06/2016).

46

https://developer.apple.com/library/ios/documentation/LanguagesUtilities/Conceptual/iTunesConnect_Guide/Chapters/ReplacingYourAppWithANewVersion.html
https://developer.apple.com/library/ios/documentation/LanguagesUtilities/Conceptual/iTunesConnect_Guide/Chapters/ReplacingYourAppWithANewVersion.html
https://developer.apple.com/library/ios/documentation/LanguagesUtilities/Conceptual/iTunesConnect_Guide/Chapters/ReplacingYourAppWithANewVersion.html
http://dx.doi.org/10.1109/CSCITA.2014.6839274
http://dx.doi.org/10.1109/CarpathianCC.2012.6228727
http://dx.doi.org/10.1109/CarpathianCC.2012.6228727
http://dx.doi.org/10.1109/SANER.2016.116
http://dx.doi.org/10.1109/SANER.2016.116
http://dx.doi.org/10.1109/RE.2015.7320414
http://dx.doi.org/10.1109/INDCON.2012.6420693
http://dx.doi.org/10.1109/ESEM.2013.9
http://dx.doi.org/10.1145/2490257.2490292
http://doi.acm.org/10.1145/2490257.2490292
http://doi.acm.org/10.1145/2490257.2490292
http://dx.doi.org/10.1145/1941487.1941504
http://dx.doi.org/10.1145/1941487.1941504
http://doi.acm.org/10.1145/1941487.1941504
https://developer.apple.com/reference/foundation
https://developer.apple.com/reference/foundation


BIBLIOGRAPHY

[12] Android. (2008). Android application framework, [Online]. Available: https://developer.
android.com/guide/index.html (visited on 01/06/2016).

[13] Microsoft. (2008). .net compact framework, [Online]. Available: https://msdn.microsoft.
com/en-us/library/f44bbwa1(v=vs.90).aspx (visited on 01/06/2016).

[14] T. jQuery Foundation. (2016). Jquery mobile, [Online]. Available: https://jquerymobile.
com (visited on 01/06/2016).

[15] S. Inc. (2016). Sencha touch, [Online]. Available: https://www.sencha.com/products/
touch/ (visited on 01/06/2016).

[16] D. Kaneda. (2014). Jqt, [Online]. Available: http://jqtjs.com (visited on 01/06/2016).

[17] A. S. Inc. (2016). Adobe phonegab, [Online]. Available: http://phonegap.com (visited on
01/06/2016).

[18] A. Inc. (2016). Appcelerator, [Online]. Available: http://www.appcelerator.com (visited
on 01/06/2016).

[19] M. Usman, M. Z. Iqbal, and M. U. Khan, “A model-driven approach to generate mobile
applications for multiple platforms,” in Software engineering conference (apsec), 2014
21st asia-pacific, vol. 1, Dec. 2014, pp. 111–118. DOI: 10.1109/APSEC.2014.26.

[20] T. A. Majchrzak, J. Ernsting, and H. Kuchen, “Achieving business practicability of model-
driven cross-platform apps,” Open journal of information systems (ojis), vol. 2, no. 2, pp. 4–
15, 2015, ISSN: 2198-9281. [Online]. Available: http://www.ronpub.com/publications/
OJIS_2015v2i2n02_Majchrzak.pdf.

[21] P. Friese. (2013). Applaus, [Online]. Available: https://github.com/applause/applause
(visited on 01/06/2016).

[22] S. Charkaoui, Z. Adraoui, and E. Benlahmar, “Cross-platform mobile development ap-
proaches,” in Information science and technology (cist), 2014 third ieee international col-
loquium in, Oct. 2014, pp. 188–191. DOI: 10.1109/CIST.2014.7016616.

[23] I. Dalmasso, S. Datta, C. Bonnet, and N. Nikaein, “Survey, comparison and evaluation
of cross platform mobile application development tools,” in Wireless communications and
mobile computing conference (iwcmc), 2013 9th international, Jul. 2013, pp. 323–328.
DOI: 10.1109/IWCMC.2013.6583580.

[24] J. Deacon, “Model-view-controller (mvc) architecture,” Online][citado em: 10 de maro de
2006.] http://www. jdl. co. uk/briefings/mvc. pdf, 2009.

[25] A. Inc. (). Model-view-controller, [Online]. Available: https://developer.apple.com/
library/ios/documentation/General/Conceptual/DevPedia-CocoaCore/MVC.html

(visited on 10/21/2015).

[26] V. Giedrimas and S. Omanovic, “The impact of mobile architectures on component-based
software engineering,” in Information, electronic and electrical engineering (aieee), 2015
ieee 3rd workshop on advances in, Nov. 2015, pp. 1–6. DOI: 10.1109/AIEEE.2015.
7367317.

[27] V. Stirbu, “A restful architecture for adaptive and multi-device application sharing,” in Pro-
ceedings of the first international workshop on restful design, ser. WS-REST ’10, Raleigh,
North Carolina, USA: ACM, 2010, pp. 62–65, ISBN: 978-1-60558-959-6. DOI: 10.1145/
1798354.1798388. [Online]. Available: http://doi.acm.org/10.1145/1798354.1798388.

[28] Oracle. (). What are restful web services? [Online]. Available: http://docs.oracle.com/
javaee/6/tutorial/doc/gijqy.html (visited on 12/05/2016).

47

https://developer.android.com/guide/index.html
https://developer.android.com/guide/index.html
https://msdn.microsoft.com/en-us/library/f44bbwa1(v=vs.90).aspx
https://msdn.microsoft.com/en-us/library/f44bbwa1(v=vs.90).aspx
https://jquerymobile.com
https://jquerymobile.com
https://www.sencha.com/products/touch/
https://www.sencha.com/products/touch/
http://jqtjs.com
http://phonegap.com
http://www.appcelerator.com
http://dx.doi.org/10.1109/APSEC.2014.26
http://www.ronpub.com/publications/OJIS_2015v2i2n02_Majchrzak.pdf
http://www.ronpub.com/publications/OJIS_2015v2i2n02_Majchrzak.pdf
https://github.com/applause/applause
http://dx.doi.org/10.1109/CIST.2014.7016616
http://dx.doi.org/10.1109/IWCMC.2013.6583580
https://developer.apple.com/library/ios/documentation/General/Conceptual/DevPedia-CocoaCore/MVC.html
https://developer.apple.com/library/ios/documentation/General/Conceptual/DevPedia-CocoaCore/MVC.html
http://dx.doi.org/10.1109/AIEEE.2015.7367317
http://dx.doi.org/10.1109/AIEEE.2015.7367317
http://dx.doi.org/10.1145/1798354.1798388
http://dx.doi.org/10.1145/1798354.1798388
http://doi.acm.org/10.1145/1798354.1798388
http://docs.oracle.com/javaee/6/tutorial/doc/gijqy.html
http://docs.oracle.com/javaee/6/tutorial/doc/gijqy.html


BIBLIOGRAPHY

[29] E. T. Bray. (). The javascript object notation (json) data interchange format, [Online]. Avail-
able: https://tools.ietf.org/html/rfc7159 (visited on 11/07/2016).

[30] 2. A. B. C. Limited. (). Moscow prioritisation, [Online]. Available: https://www.agilebusiness.
org/content/moscow-prioritisation (visited on 12/08/2016).

[31] M. Klein, D. Fensel, A. Kiryakov, and D. Ognyanov, “Ontology versioning and change
detection on the web,” in Knowledge engineering and knowledge management: Ontolo-
gies and the semantic web: 13th international conference, ekaw 2002 sigüenza, spain,
october 1–4, 2002 proceedings, A. Gómez-Pérez and V. R. Benjamins, Eds. Berlin, Hei-
delberg: Springer Berlin Heidelberg, 2002, pp. 197–212, ISBN: 978-3-540-45810-4. DOI:
10.1007/3-540-45810-7_20. [Online]. Available: http://dx.doi.org/10.1007/3-540-
45810-7_20.

[32] R. S. Moreira, G. S. Blair, and E. Carrapatoso, “A reflective component-based and archi-
tecture aware framework to manage architecture composition,” in Distributed objects and
applications, 2001. doa ’01. proceedings. 3rd international symposium on, 2001, pp. 187–
196. DOI: 10.1109/DOA.2001.954084.

[33] A. J. Albrecht and J. E. Gaffney, “Software function, source lines of code, and devel-
opment effort prediction: A software science validation,” Ieee transactions on software
engineering, vol. SE-9, no. 6, pp. 639–648, Nov. 1983, ISSN: 0098-5589. DOI: 10.1109/
TSE.1983.235271.

[34] J. D. Blackburn, G. D. Scudder, and L. N. Van Wassenhove, “Improving speed and produc-
tivity of software development: A global survey of software developers,” Ieee trans. softw.
eng., vol. 22, no. 12, pp. 875–885, Dec. 1996, ISSN: 0098-5589. DOI: 10.1109/32.553636.
[Online]. Available: http://dx.doi.org/10.1109/32.553636.

[35] A. Danial. (). Cloc, [Online]. Available: https://github.com/AlDanial/cloc (visited on
10/16/2016).

[36] FreeBSD. (). Wc - word, line, character, and byte count, [Online]. Available: https://www.
freebsd.org/cgi/man.cgi?wc (visited on 08/24/2015).

[37] J. H. Christensen, “Using restful web-services and cloud computing to create next gener-
ation mobile applications,” in Proceedings of the 24th acm sigplan conference companion
on object oriented programming systems languages and applications, ser. OOPSLA ’09,
Orlando, Florida, USA: ACM, 2009, pp. 627–634, ISBN: 978-1-60558-768-4. DOI: 10 .
1145/1639950.1639958. [Online]. Available: http://doi.acm.org/10.1145/1639950.
1639958.

[38] J. Wadhams. (). Jsonlogic, [Online]. Available: http://jsonlogic.com (visited on 01/08/2016).

[39] Rollout.io. (). Rollout.io, [Online]. Available: https://rollout.io (visited on 10/21/2016).

48

https://tools.ietf.org/html/rfc7159
https://www.agilebusiness.org/content/moscow-prioritisation
https://www.agilebusiness.org/content/moscow-prioritisation
http://dx.doi.org/10.1007/3-540-45810-7_20
http://dx.doi.org/10.1007/3-540-45810-7_20
http://dx.doi.org/10.1007/3-540-45810-7_20
http://dx.doi.org/10.1109/DOA.2001.954084
http://dx.doi.org/10.1109/TSE.1983.235271
http://dx.doi.org/10.1109/TSE.1983.235271
http://dx.doi.org/10.1109/32.553636
http://dx.doi.org/10.1109/32.553636
https://github.com/AlDanial/cloc
https://www.freebsd.org/cgi/man.cgi?wc
https://www.freebsd.org/cgi/man.cgi?wc
http://dx.doi.org/10.1145/1639950.1639958
http://dx.doi.org/10.1145/1639950.1639958
http://doi.acm.org/10.1145/1639950.1639958
http://doi.acm.org/10.1145/1639950.1639958
http://jsonlogic.com
https://rollout.io


Glossary

Android Android is a mobile operating system (OS) currently developed by Google, based on
the Linux kernel and designed primarily for touchscreen mobile devices.

binary The compressed file of all translated sources and files, which is usually stored in a
binary format.

compiler A compiler is a computer program that translates source code written in a program-
ming language.

framework A software framework is a universal, reusable software environment that provides
particular functionality as part of a larger software platform to facilitate development of
software applications, products and solutions. Software frameworks may include support
programs, compilers, code libraries, tool sets, and application programming interfaces
(APIs) that bring together all the different components to enable development of a project
or solution.

iOS Is the world’s most advanced mobile operating system, and it’s the foundation of iPhone,
iPad, and iPod touch.

native Native apps are apps that are build using an approach which takes full advantage of the
platform. The ap is developed specifically for one platform, and can take full advantage of
all the device features. This delivers the best performance compared to other approaches.

platform The platform is the set of tools and devices to enable developers a way to deploy, test
and manage mobile apps.

Windows Phone Windows Phone (WP) is a family of mobile operating systems developed by
Microsoft for smartphones.

49



Acronyms

API application program interface.

GUI graphical user interface.

HTML HyperText Markup Language.

HTTP Hypertext Transfer Protocol.

IDE integrated development environment.

JSON JavaScript Object Notation.

MVC Model View Controller.

OS Operating System.

REST Representational state transfer.

SOAP Simple Object Access Protocol.

UX User Experience.

XML Extensible Markup Language.

50



Appendix A

Diagrams

51



APPENDIX A. DIAGRAMS

52



APPENDIX A. DIAGRAMS

A.1 Napton class diagram

Ap
p

Se
rv

er

Ab
st

ra
ct

 
M

od
el

- n
am

e

Ab
st

ra
ct

 
Vi

ew
- n

am
e

- r
en

de
r

Ab
st

ra
ct

 
Co

nt
ro

lle
r

- g
en

er
at

ed
M

od
el

()

- v
er

sio
n

- n
am

eCo
nc

re
te

M
od

el

- v
er

sio
n

- n
am

e
- r

oo
t_

ur
l

- r
oo

t_
co

nt
ro

lle
r

Ab
st

ra
ct

 A
pp

- e
xe

cu
te

(a
rg

s)

<<
in

te
rfa

ce
>>

Na
pt

on
Vi

ew
He

lp
er

iO
S

<<
Na

pt
on

Co
nt

ro
lle

rIn
te

rfa
ce

>>
Na

pt
on

Vi
ew

Co
nt

ro
lle

rIn
te

rfa
ce

- g
en

er
at

ed
Co

nt
ro

lle
r()

- i
sE

xe
cu

ta
bl

e(
ar

gs
)

- e
xe

cu
te

(a
rg

s)

<<
Na

pt
on

In
te

rfa
ce

>>
Na

pt
on

Co
nt

ro
lle

rIn
te

rfa
ce

Vi
ew

 : 
UI

Vi
ew

Bu
tto

nV
ie

w
 : 

UI
Bu

tto
n

Vi
ew

Co
nt

ro
lle

r :
 

UI
Vi

ew
Co

nt
ro

lle
r

- i
ni

t(N
ap

to
nO

bj
ec

t n
ap

to
nO

bj
ec

t)

<<
in

te
rfa

ce
>>

Na
pt

on
In

te
rfa

ce
- p

ar
se

()
- r

un
()

- v
er

sio
n

- n
am

e

Co
nc

re
te

 A
pp

- f
et

ch
M

od
el

()
- f

et
ch

Vi
ew

()
- f

et
ch

Co
nt

ro
lle

r()
- a

rg
Fo

rK
ey

()

- i
ni

t(p
ar

en
t)

- n
am

e
- k

in
d

- a
rg

s
- p

ar
en

t
- g

en
er

at
ed

In
st

an
ce

- m
od

el
s

- v
ie

ws
- c

on
tro

lle
rs

- c
ac

he
dM

od
el

s
- c

ac
he

dV
ie

ws
- c

ac
he

dC
on

tro
lle

rs

Na
pt

on
O

bj
ec

t
- c

on
ifg

O
bj

ec
t(o

bj
, a

rg
s)

Na
pt

on
Pa

rs
er

An
dr

oi
d

Vi
ew

 : 
Vi

ew
Bu

tto
nV

ie
w

 : 
Bu

tto
n

Vi
ew

Co
nt

ro
lle

r :
 

Ac
tiv

ity

- r
en

de
r()

- g
en

er
at

ed
Vi

ew
()

<<
Na

pt
on

In
te

rfa
ce

>>
Na

pt
on

Vi
ew

In
te

rfa
ce

- g
en

er
at

ed
Vi

ew
()

- n
ap

to
nM

od
el

Co
nc

re
te

 
Vi

ew

- g
en

er
at

ed
Co

nt
ro

lle
r()

- c
on

tro
lle

r_
m

od
el

- n
ap

to
nM

od
el

Co
nc

re
te

 
Co

nt
ro

lle
r

+ 
ge

ne
ra

te
M

od
el

()
+ 

ge
ne

ra
te

Vi
ew

()
+ 

ge
ne

ra
te

Co
nt

ro
lle

r()
+ 

ge
ne

ra
te

In
st

an
ce

()

Na
pt

on
G

en
er

at
or

- g
et

()
- p

ut
()

- p
at

ch
()

- p
os

t()
- d

el
et

e(
)

- b
as

eU
RL

Na
pt

on
Cl

ie
nt

<<
Na

pt
on

In
te

rfa
ce

>>
Na

pt
on

M
od

el
In

te
rfa

ce

Figure A.1: Napton class diagram
53



Appendix B

Manual

54



Napton Manual

Thom Ritterfeld

Version 0.1



Table of Contents

1 Getting Started with Napton 3
1.1 Setup a web server to host JSON files . . . . . . . . . . . . . . . 3
1.2 Create a new Xcode Project . . . . . . . . . . . . . . . . . . . . . 4
1.3 Add the Napton.framework to your Xcode Project . . . . . . . . . 5
1.4 Add handlers to the Napton framework . . . . . . . . . . . . . . . 5
1.5 What’s next? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Specify the app 7
2.1 Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Sample . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3 Specify the models 9
3.1 Sample . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

4 Specify the views 11
4.1 Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
4.2 Sample . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

5 Specify the controllers 15
5.1 Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
5.2 Sample . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

6 Custom classes 17
6.1 Implementing an interface . . . . . . . . . . . . . . . . . . . . . . 17

6.1.1 NaptonControllerInterface . . . . . . . . . . . . . . . . . . 17
6.1.2 NaptonViewControllerInterface . . . . . . . . . . . . . . . 18
6.1.3 NaptonViewInterface . . . . . . . . . . . . . . . . . . . . . 18
6.1.4 NaptonViewHelper . . . . . . . . . . . . . . . . . . . . . . 18

6.2 Gathering context . . . . . . . . . . . . . . . . . . . . . . . . . . 18
6.2.1 Getting parent object . . . . . . . . . . . . . . . . . . . . . 18
6.2.2 Getting arguments . . . . . . . . . . . . . . . . . . . . . . 19

6.3 Sample . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

7 API-reference 22
7.1 View . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

7.1.1 Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
7.2 ListView . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

7.2.1 Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

1



7.3 LabelView . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
7.3.1 Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

7.4 ButtonView . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
7.4.1 Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

7.5 ImageView . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
7.5.1 Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

7.6 ViewController . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
7.6.1 Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

7.7 NavViewController . . . . . . . . . . . . . . . . . . . . . . . . . . 25
7.7.1 Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
7.7.2 Actions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

7.8 SystemController . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
7.8.1 Actions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2



Chapter 1

Getting Started with Napton

Napton is another approach to build apps, especially designed for mobile apps.
Nowadays mobile apps are difficult to maintain because the update processes
are slow due to long review times, changing technology and users that are not
always running the latest versions.
To accomplish these shortcomings websites are generally preferred, but they
do not provide the same advantages as native apps.
Napton is a combination of native development combined with the flexibility
of web technologies. Many mobile apps nowadays use the JSON format to
exchange data between the server. The JSON data contains the content to
present on the user interface. Right now this JSON data mostly contains pure
data contents about what the app needs to present. Why are we not using
JSON as well for business logic and building the user interface?
Napton is a first step into a suitable solution to describe not only the content
presented on the screen but the whole structure of an app.
Napton uses an abstract MVC pattern, is defined in JSON and hosted on a
server. This allows the mobile device to adopt any user interface or functionality
on the fly.
The following steps help to get you started:

1.1 Setup a web server to host JSON files

The easiest way to quickly start under macOS is to run this command in the
Terminal:

sudo apachectl start

Check if the server runs by entering: http://localhost in your browser, you
should see a message ”It works!”, which confirms that the server is running
(see Image 1.1). Files can now be created inside the Apache document root,
on macOS the folder usually is /Library/WebServer/Documents.

3



Figure 1.1: Apache runs now

1.2 Create a new Xcode Project

Create a new application inside Xcode. Create a new project and choose a
Single View Application from the template drawer. Give the app a name which
you would like to use (see Image 1.2).

Figure 1.2: Create project

4



1.3 Add the Napton.framework to your Xcode Project

The Napton framework is available here: http://ritterfeld.com/napton/Napton.framework.zip.
Next add the downloaded framework to your Xcode project by dragging it into
your project files on the left side (see Image 1.3).

Figure 1.3: Add framework

Note: make sure that the framework is an Embedded binary in the Project
overview (see Image 1.4).

Figure 1.4: Add to embedded binaries

1.4 Add handlers to the Napton framework

Change the following lines of your AppDelegate.m:

5



- (BOOL)application:(UIApplication *)application

didFinishLaunchingWithOptions:(NSDictionary *)launchOptions {

[NaptonManager provideAppURL:@"http://<YOUR_IP>/app.json"];

return YES;

}

- (void)applicationDidBecomeActive:(UIApplication *)application {

[NaptonManager loadApp];

}

1.5 What’s next?

Everything is done for now to start developing the app. This is done by spec-
ifying JSON files on the server. To run successfully an app, controllers, views
and models are needed. The next steps will help you to understand how to
specify these files and how the framework works. To make understanding the
framework easier, the last sections always provides a sample, these samples
together describe an Address Book app (see Figure 1.5) and should help to
get you up and running faster.

Figure 1.5: Sample Address Book app

6



Chapter 2

Specify the app

This chapter describes the properties that can be defined for the remote app
file. This file is the main entry point of the app and is loaded on launch of the
app. The URL of section 1.3 should point towards this file. The file basically
describes the version number, name of the app, models, views and controllers
that are needed upon launch. Every model, view or controller is defined by a
key and the value should be an URL pointing towards the JSON specification.
The Napton framework is storing these files for offline usage and to be able to
launch the app quicker.

2.1 Properties

The following properties can be defined inside the app.json:

• name The name of the application, this value will be used to determine
the application title.

• version The version of the application, if this is changed apps will be
updated. (during development a the app is always refreshing as long as
the DEBUG flag is set).

• models A key value JSON object, where the key is the name of the model
and the value a string with a path or URL where the model(s) lives.

• views A key value JSON object, where the key is the name of the view
and the value a string with a path or URL where the view lives.

• controllers A key value JSON object, where the key is the name of the
controller and the value a string with a path or URL where the controller
lives.

• root controller A string with the name of the initial view controller. Make
sure the name exists inside the controllers property.

7



2.2 Sample

Create a file on the server called app.json with the following content:

{

"name": "Address Book",

"version": 1,

"models": {

"Contacts": "/contacts"

},

"views": {

"ContactsView": "/views/contacts_view",

"ContactDetailView": "/views/contact_detail_view",

"ContactRow": "/views/contact_row"

},

"controllers": {

"ContactsController": "/controllers/contacts_controller",

"ContactDetailController": "controllers/contact_detail_controller"

},

"root_controller": "ContactsController"

}

Listing 1: app.json

8



Chapter 3

Specify the models

Models are free to specify, this means there are no requirements or reserved
words, and even existing API JSON resources can be used, as long as they
confirm to the valid JSON data types.

Specify objects

An object in JSON describes an unordered collection of values, using the
key:value technique.

{"firstName":"John", "lastName":"Doe"}

Specify arrays

An array in JSON specifies an ordered collection of values, which can be any
valid JSON value. Also objects for example:

[

{"firstName":"John", "lastName":"Doe"},

{"firstName":"Anna", "lastName":"Smith"},

{"firstName":"Peter", "lastName":"Jones"}

]

Specify values

A value in JSON can be a number, string, boolean, null, array or object. These
are all supported data types in JSON which is very flexible to describe all re-
quired objects inside an application. Values can also be nested for example an
object can contain a list with another object inside, for example a company has
a list of employees can be described as follows:

9



{

"name": "Haribo"

"employees":[

{"firstName":"John", "lastName":"Doe"},

{"firstName":"Anna", "lastName":"Smith"},

{"firstName":"Peter", "lastName":"Jones"}

]

}

3.1 Sample

Create a file called contacts.json, which represents the contacts of the Address
Book, with the following content:

[

{"firstName":"John", "lastName":"Doe"},

{"firstName":"Anna", "lastName":"Smith"},

{"firstName":"Peter", "lastName":"Jones"},

{"firstName":"John", "lastName":"Doe"},

{"firstName":"Anna", "lastName":"Smith"},

{"firstName":"Peter", "lastName":"Jones"},

{"firstName":"John", "lastName":"Doe"},

{"firstName":"Anna", "lastName":"Smith"},

{"firstName":"Peter", "lastName":"Jones"}

]

Listing 2: contacts.json

10



Chapter 4

Specify the views

The view describes how an interface element looks like. A basic view has just
a background colour, and is able to contain subviews (the contents property is
used for this, which is an array containing other view elements). Some specific
views display data, like labels, images or allow user input like a button. These
views let you allow to define other properties, for these have a look at the API-
reference inside chapter 7.

4.1 Properties

These JSON properties can be specified on all view objects:

• name The name of the view inside your application, this should match
in any case you refer to this view. (Make sure the name is equal to the
name inside the views property of your app.json)

• kind The class which you want to initiate, for example a ButtonView to
generate a Button. (by default: View)

• contents An array to specify subviews of this view.

• top Distance to the top next element inside the view hierarchy.

• left Distance to the left next element inside the view hierarchy.

• right Distance to the right next element inside the view hierarchy.

• bottom Distance to the bottom next element inside the view hierarchy.

• orientation Orientation of the contents (”vertical” or ”horizontal”)

• background color Hexadecimal string of the colour of the background.
(for black ”#000000”)

11



4.2 Sample

For the sample we need to define three views this time, one for the list, one
for the row which is an item of the list, and one for the detail view, the view
you will see if you press on a list item. Define all three the JSON files on your
webserver:

{

"name": "ContactsView",

"orientation": "vertical",

"background_color": "#ffffff",

"contents":[

{

"kind": "ListView",

"items_model": "Contacts",

"row_view": "ContactRow",

"top": 0,

"left": 0,

"height": "fill",

"actions":[

{

"action": "openController",

"controller": "ContactDetailController",

"controller_model": "@",

}

]

},

]

}

Listing 3: contacts view.json

12



{

"name": "ContactRow",

"orientation": "horizontal",

"contents":[

{

"kind": "LabelView",

"text": "@.firstName",

"text_color":"#000000",

"text_size":16,

"top": 6,

"left": 8,

"height": 40,

"width": 80

},

{

"kind": "LabelView",

"text": "@.lastName",

"text_color":"#000000",

"text_size":16,

"top": 6,

"left": 0,

"height": 40,

"width": 100

}

]

}

Listing 4: contact row.json

13



{

"name": "ContactDetailView",

"orientation": "horizontal",

"background_color": "#ffffff",

"contents":[

{

"kind": "RoundImageView",

"url": "http://placehold.it/150x150",

"top": 0,

"left": 0,

"height": 150,

"width": 150

},

{"orientation": "vertical",

"top": 0,

"left": 0,

"height": 150,

"width": 150,

"contents":[

{

"kind": "LabelView",

"text": "@.firstName",

"text_color":"#000000",

"text_size": 24,

"background_color": "#ffffff",

"top": 50,

"left": 8,

"right": 8

},

{

"kind": "LabelView",

"text": "@.lastName",

"text_color":"#000000",

"text_size": 24,

"background_color": "#ffffff",

"top": 0,

"left": 8,

"right": 8

},

]

}

]

}

Listing 5: contact detail view.json

14



Chapter 5

Specify the controllers

In Napton the controller basically owns a view and manages the user inter-
action. The render property defines the name of the view which needs to be
rendered. Optional models, views or controllers can be specified inside the
other properties. There exist some other controllers that manage navigation
bars for example, for further information see the API-reference inside chapter
7.

5.1 Properties

These JSON properties can be specified on all controller objects:

• name The name of the controller inside your application, this should
match in any case you refer to this controller. (Make sure the name is
equal to the name inside the controllers property of your app.json)

• kind The kind of controller, by default a ViewController.

• models A key value JSON object, where the key is the name of the model
and the value a string with a path or URL where the model(s) lives.

• views A key value JSON object, where the key is the name of the view
and the value a string with a path or URL where the view lives.

• controllers A key value JSON object, where the key is the name of the
controller and the value a string with a path or URL where the controller
lives.

• title The title of the controller, this will be displayed in controller and nav-
igational buttons inside the user interface.

• render Defines which view to render, refer to a view inside your app.json
or inside the views property and matches this particular name.

15



5.2 Sample

Create two controllers on the server called contacts controller.json and con-
tact detail controller.json with the following content:

{

"name": "ContactsController",

"kind": "NavViewController",

"render": "ContactsView",

"title": "Contacts",

"models": [],

"views": [],

"controllers": [],

"actions": [

{

}

]

}

Listing 6: contacts controller.json

{

"name": "ContactDetailController",

"title": "Contact Details",

"render": "ContactDetailView",

}

Listing 7: contact detail controller.json

16



Chapter 6

Custom classes

The Napton framework has no support for all classes and options. It only de-
livers basic functionality of the most used views. If there is more functionality
needed still custom classes need to be implemented. Right now this is not
possible on the server side. To extend the Napton framework on the client you
just need to implement the NaptonInterface. There are different interfaces to
choose from, they all need to fit inside a part of the MVC pattern.

6.1 Implementing an interface

The following interfaces are available right now to be implemented. All inter-
faces inherit from the NaptonInterface, and every object is initiated using the
following class call:

• initWithNaptonObject: The call wants to receive a class instance and
passes a NaptonObject to your class. The NaptonObject contains the
parsed JSON arguments and context about where the object is inside
the hierarchy. This allows your implementation to retrieve arguments and
execute actions on another object inside your application.

6.1.1 NaptonControllerInterface

• configWithNaptonModel This method is called whenever the model is
updated. This can be caused because of many reasons most common is
that the data has changed. In case you are subclassing a controller you
should update the views.

• actionIsExecutable This method should return a Boolean if the instance
is able to respond to the given selector, upon returning true the method
executeWithArgs is called immediately.

• executeWithArgs This method is called upon execution of an action. It
also contains a dictionary of arguments which are passed from the JSON
and contain arguments that can be used for a particular method.

17



• generatedController This method should return the instance, in most
cases return self here.

6.1.2 NaptonViewControllerInterface

This interface basically inherits all functionality of the NaptonControllerInter-
face. It only returns a different kind of instance in the generatedController,
namely a UIViewController, which is needed for the iOS platform as controllers
managing the views are specific ViewControllers. Because of the differentia-
tion on iOS it made sense to create another interface, it may will be extended
with other functionality in the future.

6.1.3 NaptonViewInterface

A subclass of the NaptonViewInterface always needs to return a UIView in-
stance and implement a render method which prepares the view to be returned.

• render Is called every time the view is going to be presented or cached.
This is defined by the framework, its just recommended to render the view
which will be returned later on.

• generatedView Should return an instance of UIView that can be pre-
sented on the screen.

6.1.4 NaptonViewHelper

A view helper can be used to identify functions inside views. For example pars-
ing the date or representing numbers into currency helpers can be used. Right
now the framework only support string representations.

• executeWithArgs: The execute with arguments method is executed upon
run time and the framework expects to return a string from the helper.

6.2 Gathering context

To gather a context of where the object you are creating is inside the composi-
tion hierarchy a parent object exists. This parent object is depending on your
interface a NaptonModel, NaptonView or NaptonController. And allow you to
walk through the app even till the NaptonApp. This makes it possible to get
arguments and properties of other views and controllers.

6.2.1 Getting parent object

The initWithNaptonObject: is always called upon initiation of a class. The Nap-
ton instance which is passed to you brings you a way to gather more infor-
mation about application data you need, but also arguments of yourself. It is

18



basically the parsed JSON specification with its arguments. In the next section
we explain how we gather arguments from this context.

6.2.2 Getting arguments

To gather arguments from a NaptonObject is quite easy. You just need to spec-
ify the key and the NaptonObject tries to retrieve the argument if its available.
Make sure in your custom classes to have a fall back or maybe display an alert
so the developer knows what is missing or wrong. See the following code for
a sample. The sample shows how to get the title argument of an NaptonCon-
troller inside a class which implements the NaptonController interface. The
code will print: ”Hello World”, ”My name is Thom”.

@implementation CustomController

@synthesize naptonController = _naptonController;

- (id)initWithNaptonObject:(NaptonObject *)naptonObject{

self = [super init];

if(self){

//Set our parent context

self.naptonController = (NaptonController *)naptonObject;

}

return self;

}

- (void)viewDidLoad {

[super viewDidLoad];

NSLog(@"title %@", [self.naptonController argForKey:@"title"]);

NSLog(@"My name is: %@", [self.naptonController argForKey:@"dev_name"]);

}

Listing 8: Getting arguments CustomController implementation

{

"name": "MyCustomController",

"kind": "CustomController",

"title": "Hello World",

"dev_name": "Thom"

}

Listing 9: Getting arguments Napton controller specification

6.3 Sample

This sample shows how a RoundImageView class can be created. The RoundIm-
ageView is used inside the ContactDetailView within the views samples in sec-

19



tion 4.2. Create these files inside your Xcode Project, as they need to be
specified inside the app and are not part of the Napton framework.

#import <UIKit/UIKit.h>

#import "NaptonViewInterface.h"

@interface RoundImageView : UIImageView<NaptonViewInterface>

@end

Listing 10: RoundImageView.h

20



#import "RoundImageView.h"

#import "NaptonModel.h"

#import "NaptonUtils.h"

@implementation RoundImageView

@synthesize naptonView = _naptonView;

- (id)initWithNaptonObject:(NaptonObject *)naptonObject{

self = [super initWithFrame:CGRectZero];

if(self){

self.naptonView = (NaptonView *)naptonObject;

[self render];

}

return self;

}

- (void)render{

[NaptonUtils styleView:self withNaptonView:self.naptonView];

[self setContentMode:UIViewContentModeScaleAspectFill];

[self setClipsToBounds:YES];

NSString *url = [self.naptonView argForKey:@"url"];

if(url){

[self setImage:[UIImage imageWithData:

[NSData dataWithContentsOfURL:

[NSURL URLWithString:url]]]];

}else{

[self setImage:nil];

}

}

- (UIView *)generatedView{

return self;

}

- (void)configWithNaptonModel:(NaptonModel *)naptonModel{

[self render];

}

- (void)layoutSubviews{

[super layoutSubviews];

[self.layer setCornerRadius:self.frame.size.width/2]; //make it circular

}

@end

Listing 11: RoundImageView.m

21



Chapter 7

API-reference

This API reference describes the objects currently available and their properties
and actions(methods). There is also a sample included which show samples
of the definition in code.

7.1 View

7.1.1 Properties

• name The name of the view inside your application, this should match
in any case you refer to this view. (Make sure the name is equal to the
name inside the views property of your app.json)

• kind The class which you want to initiate, for example a ButtonView to
generate a Button. (by default: View)

• contents An array to specify subviews of this view.

• top Distance to the top next element inside the view hierarchy.

• left Distance to the left next element inside the view hierarchy.

• right Distance to the right next element inside the view hierarchy.

• bottom Distance to the bottom next element inside the view hierarchy.

• orientation Orientation of the contents (”vertical” or ”horizontal”)

• background color Hexadecimal string of the colour of the background.
(for black ”#000000”)

22



{

"kind": "View",

"background_color": "#ffffff",

"top": 6,

"left": 8,

"right": 8,

"height": 20,

"contents": [],

"orientation": "vertical"

}

7.2 ListView

The ListView basically draws a list with multiple items, and lets the user scroll
through these items. The cells can be customised using another view.

7.2.1 Properties

• items model The list of models to be used inside the list.

• row view The name of the view which should be used for the rows.

• actions An array to define actions which should be executed.

{

"kind": "ListView",

"items_model": "Events",

"row_view": "EventRow",

"height": "fill",

"actions":[

{

"action": "openController",

"controller": "EventDetailController",

"controller_model": "@.url",

}

]

}

7.3 LabelView

The LabelView allows representing texts inside a view. This can be usefull to
show texts of objects inisde the user interface.

23



7.3.1 Properties

• text The textual content of the label.

• text color Color of the text in a hexadecimal string. (default is ”#000000”)

• text font String with the font-family of the text.

• text size Height of the text in points, default is 16.

• text lines Number of lines the text label in integers, default is 0.

{

"kind": "LabelView",

"text": "Hello World",

"text_color":"#000000",

"text_size": 24,

"background_color": "#ffffff"

}

7.4 ButtonView

The buttonView is able to interact with the user and executes actions upon
touch.

7.4.1 Properties

• title The title of the button.

• actions An array to define actions which should be executed.

{

"kind": "ButtonView",

"title": "Show Dialog",

"actions": [

{

"kind": "SystemController",

"action": "showAlert",

"message": "Warning!"

}

]

}

7.5 ImageView

The image view is able to load and display an image for the given URL.

24



7.5.1 Properties

• url The url of the image to display.

{

"kind": "ImageView",

"url": "http://placehold.it/350x150"

}

7.6 ViewController

The viewcontroller manages a view and is able to present other view controllers
on top.

7.6.1 Properties

• title The name of the controller can be appear inside menu items.

• openController Opens another controller with its view modally.

{

"name": "EventDetailController",

"title": "Event Info",

"render": "EventDetailView"

}

7.7 NavViewController

The navigation controller behaves a bit different than a usual ViewController as
it manages a Navigationbar and opens new viewcontrollers as pages instead
of modally on top.

7.7.1 Properties

• title The name of the controller can be appear inside the navigation bar.

7.7.2 Actions

• openController Pushes another controller with its view inside the navi-
gation hierarchy.

25



{

"name": "EventsController",

"kind": "NavViewController",

"render": "EventsView",

"title": "Events",

"models": [],

"views": [],

"controllers": [],

"actions": []

}

7.8 SystemController

The system controller does not manage views, it basically contains basic sys-
tem actions which can be executed.

7.8.1 Actions

• showAlert Show an alert, which accepts an title and message as argu-
ments. The alert is shown on top of all other views.

{

"kind": "SystemController",

"action": "showAlert",

"message": "Warning!"

}

26



APPENDIX B. MANUAL

82


	Introduction
	Background
	Identifying requirements
	Design architecture
	Prototype
	Validation
	Reflection
	Glossary
	Acronyms
	Diagrams
	Manual

