
1

Automatically Generating Learning Setups for GUI-
based Programs through Annotation Processing

 Hans van der Laan
University of Twente

P.O. Box 217, 7500AE Enschede
The Netherlands

j.h.vanderlaan@student.utwente.nl

ABSTRACT
The main challenge for widespread adaptation of active automata
learning is the effort required to design and implement
application specific learning setups. In this paper, we propose an
abstraction of GUI elements by dividing them into three
categories: widgets, containers and windows. We analyse at how
events are handled in Java, JavaFX and how the MVC pattern is
structured. With this information in hand we propose a Mealy
machine based behaviour model. Learning GUI-based programs
has a few challenges: Event handler accessibility, event space
transmutations and the order of events. We solve the event
handler accessibility by performing checks, event space
transmutations by storing the event handlers dynamically and the
order of events by analysing the validity of queries through an
NFA-ε with as language all possible event sequences at that
given moment. With our research, we have paved the way for
active automata learning of GUI-based programs.

Keywords
Learning setup generation, Active automata learning, GUI, GUI
learning, GUI abstraction, learning framework, Learnlib, JavaFX

1. INTRODUCTION
As Isberner, Howar and Steffen [12] have stated: “The wealth of
model-based techniques developed in Software Engineer- such
as model checking or model-based testing – is starkly contrasted
with a frequent lack of formal models”. In an ideal world, a
model would be created before a system is deployed.
Unfortunately, this often is not the case. Design-time behavioural
models are typically hard and time-intensive to construct,
especially if they should be complete, and they are almost
guaranteed to get out of sync with the actual code. This hampers
the application of formal validation techniques such as model-
based testing or model checking, and thus most mistakes are most
often found only after deployment. Automata learning has been
proposed as a technique to solve this by automatically generating
automata based behavioural models of systems where models are
otherwise unavailable, incomplete or erroneous.

Active automata learning for DFA’s with membership queries
and equivalence queries was first presented by Angluin in 1987
[4]. It was adapted to Mealy machines by Niese in 2003 [17].
Since then other active automata learning algorithms have been
created for learning DFA’s and Mealy Machines; Steffen et al.
contains a survey [21]. Recently efforts to learn other types of

automata have been made, such as nominal automata [16],
register automata [11] and I/O automata [3].

As Hower, Isberner and Steffen have shown in practice active
automata learning has been applied create behavioural models
for a plenitude of systems such as: CTI systems [9], web-
applications [19], communication protocol entities [1], the new
biometric European passport [2], botnets [6] and a network of
integrated controllers in car doors [20]. As far as we know, only
once has it been used in combinations with GUI’s, namely to
automate black-box GUI testing for android apps [8].

The main challenge for widespread adaptation of active automata
learning is the effort required to design and implement
application specific learning setups. This requires determining a
suitable abstraction and finding ways to manage concrete
runtime data that influences the behaviour of the target system.
In [20], this process of finding a fitting abstraction and creating
correct test drivers has been estimated to have taken around 27%
of the total effort of analysing the network of integrated
controllers in car doors [15].

Active automat learning aims at constructing an abstract model
of a target system, better known as an SUL (System Under
Learning). Communication with the SUL is often dependent on
actions previously taken and data values previously transferred.
M. Merten et al., in an effort to reduce test driver setup time
proposed a reconfigurable and reusable test driver using interface
analysis, mainly targeted at web applications. However, this
reconfigurable test driver is not adequate for generating models
of GUI-based programs because some of the intricate challenges
this domain poses.

In this paper, we will answer the following research question:
“How can a behavioural model of a GUI-based Java program be
generated through active automata learning in LearnLib?”
While doing this, we will answer the following sub questions:
“What is a suitable abstraction to understand and capture the
behaviour of GUI-based programs?”, “How could we model this
in an automaton?”, “What challenges does the GUI domain
pose?” and “how could we generate learning setups for GUI-
based programs?”.

Outline: In section 2, we will shortly summarise the how
automata learning works and how it can learn a target system.
Section 3 presents an abstraction of GUI-based programs,
analyse how they work in the context of Java and JavaFX and
propose an automaton which captures this behaviour. In section
4 we introduce the challenges of GUI-based program learning
through a running example. Section 5 presents a learning setup
and solutions to the challenges introduced in section 4 while
section 6 introduces a framework for automatically generating
these setups. In section 7, we will discuss the correctness and
efficacy of the framework by applying it to a few use cases. The
final sections contain the conclusion, future work,
acknowledgements and references.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
27thTwente Student Conference on IT, July 7st, 2017, Enschede, The
Netherlands.
Copyright 2017, University of Twente, Faculty of Electrical Engineering,
Mathematics and Computer Science.

2

2. BACKGROUND
2.1 Automata
In this section, we briefly give the definitions of a deterministic
finite automaton (DFA) and a Mealy machine.

Figure 1: Example behavioural model of a simple program

based on a DFA (left) and a Mealy Machine (right)

Let Σ be a finite set of input symbols a1,…,ak. Sequences of input
symbols are called words. The empty word (of length zero) is
denoted by ɛ. We write uv when concatenating two words u and
v. Finally, a language ࣦ ∈ Σ∗ is a set of words.

Definition 1 (Deterministic finite state machine). A
deterministic finite state machine or deterministic finite
automaton (DFA) is defined as a tuple 〈ܳ, ,ݍ Σ , ,ߜ where ,〈ܨ

- Q is the finite set of states,

∋ ݍ - ܳ is the dedicated initial state,

- Σ is the finite input alphabet,

ߜ - ∶ ܳ ൈ Σ → ܳ is the transition function and,

ܨ - ∈ ܳ is the set of final states.

Definition 2 (Mealy machine). A Mealy machine is defined as a
tuple 〈ܵ, ,ݏ Σ, Ω, ,ߜ where ,〈ߣ

- S is the finite set of states,

∋ ݏ - ܵ is the dedicated initial state,

- Σ is the finite input alphabet,

- Ω is the finite output alphabet,

ߜ - ∶ ܵ ൈ Σ → ܵ is the transition function and,

ߣ - ∶ ܵ ൈ Σ → Ω is the output function.

Let’s consider a very simple GUI-based program with one button
which changes colour when a user clicks on it. Here above, the
reader can find this example simulated as DFA and a Mealy
machine. Here Q = ሼݍ, ଵሽ, (which represent that the button isݍ
red and blue respectively), S = ሼݏ, ଵሽ, Σݏ = ሼܲ݊ݐݐݑܾ ݏݏ݁ݎሽ,
Ω = ሼܾ݈݁ݑ, are determined by what happens when ߣ ሽ, δ and݀݁ݎ
you “Press the button” and F = ሼݍଵሽ. The language ࣦ ∈ Σ∗ of
the automatons are all valid sequences of interactions which can
be performed with the program. In this case it’s (Press button)*

The difference between a Mealy machine and a DFA is that a
Mealy machine has an output function and has defined behaviour
for each input in each state while a DFA has a set of accepting
states. Additionally, states in the DFA can represent pre-defined
states of the program while in a mealy machine states are
abstracted representations of conditions which lead to a given
output.

2.2 Active Automata Learning
In this section, we present active automata learning and how it
works in practice when used to learn a target system, better
known as an SUL (System Under Learning). We only summarise
the basic concepts; a more detailed explanation and discussion
can be found in [21].

As M.Merten et al. summarised: In active automata learning,
“models of an SUL are created by active interaction and by
reasoning on the observed output behaviour. This is done by

constructing queries, which are sequences of input symbols from
an alphabet that represents actions executable on the SUL, and
answering these queries using actual execution.” [19].

Figure 2: High-level overview of a Learning Setup

A learning setup generally consists of a learner and a teacher.
The leaner implements the learning algorithm that interrogates
the teacher and reasons about the observed output. The teacher
answers the learner. The teacher is either the SUL itself or more
often an adapter to the SUL. This is because generally the SUL
has no interface to apply test cases for realising queries.

In more detail, the learning is done by the learner asking
membership queries and equivalence queries to a teacher as to
extract behavioural information and by successively refining its
hypothesis automaton (the automaton which the learner believes
models the SUL’s behaviour), such as a DFA or a mealy
machine, based on the answers. A membership query tests
whether a word is accepted by the target system, that is the word
is in the target system’s automaton’s language. Membership
queries have to be independent: two queries with the same word
should always lead to the same state. An equivalence query
checks the hypothesis automaton for language equivalence with
respect to the system (i.e. the constructed automaton correctly
represents the behaviour of the SUL) and provides a counter-
example if they are not equal. When they are equal, the learning
procedure is successfully completed, and the generated model
correctly describes the SUL’s behaviour.

2.3 Challenges in Practical Applications
As Steffen, Howar and Merten have shown, there are five main
challenges which one faces when using automata learning to
learn real-world systems [10] [21].

1. Interacting with real systems: Interaction with real-world
systems poses two problems: establishing an interface to apply
test cases for realising membership queries and bridging the gap
between abstract queries and actions executable on the SUL.

2. Membership queries: “Whereas small learning experiments
generally require only a few hundred membership queries,
learning realistic systems often requires several orders of
magnitude more” [10]. Also, the speed of which the experimental
simulation test environments can process membership queries is
much faster than that of realistic test environments, in which a
query could cost as much as a second or a minute.

3. Resets: Membership queries have to be independent. This is
typically no problem for simulated systems but it may be quite a
problem when dealing with realistic systems. This might require
resets. which can be a very time expensive task, especially for
server-based systems or systems interacting with databases.

4. Parameters and value domains: Automata learning is based
on abstract communication alphabets. The parameters and
interpreted values used in a system have to be expressed in the
abstract alphabet. However, applications can have very complex
or infinite alphabets.

5. Equivalence queries: Realising equivalence queries through
testing is typically unrealistic, in particular when learning a

3

black-box system. In practice, equivalence queries will have to
be approximated using membership queries.

Due to equivalence queries having to be approximated through
membership queries, black-box active learning in practice is
inherently neither correct nor complete. Without assuming extra
knowledge, e.g. about the number of states of the system under
learning the possibility of not having tested extensively enough
will always remain and the model could have incorrect or
missing states and transitions.

3. GUI-BASED PROGRAM
ABSTRACTION
The chosen abstraction has a great influence on the
expressiveness and usefulness of the final learned model. In this
section, we propose an abstraction of GUI-based programs
through abstracting the GUI and the design pattern used to create
this program. We will then analyse how this abstraction is
connected practically to Java and JavaFX (the new GUI library
which is intended to replace Swing as the new standard) and
propose an automaton which captures this behaviour.

3.1 GUI Abstraction
The abstraction presented in this section is inspired by [13] [14]
but modified to better suit the level of abstraction we necessary.

Figure 3. GUI Class Diagram

A Graphical User Interface (GUI) is a hierarchical, graphical
front-end to a program that accepts user-generated and system-
generated events as input, from a fixed set of events and produces
deterministic output. A GUI contains windows that contain
widgets (e.g. buttons, labels). Widgets have a fixed set of
properties. At any time during the execution, these properties
have discrete values, the set of which constitutes the state of the
GUI. [13] Containers are a subclass of widgets. The difference
between containers and widgets is that a container can contain
other widgets. Examples of containers are grids, tables and menu
bars.

At all times during interaction with the GUI, the user interacts
with events within a dialog window also called a dialog. [14] This
dialog window contains a container, called the root container,
which can contain other containers. The difference between a
dialog window and a regular window, whether is modal or
modeless, is that a dialog window contains a container and has
window decorations, typically consisting of a title bar along the
top of the window and a minimal border around the other sides.
The most dominant paradigm used in GUI’s is event-driven
programming. This means that interactions with windows and
widgets, such as clicking or dragging them generate events which
are captures and processed by the windows’ and widgets’ event
handlers.

3.2 MVC Pattern Abstraction
The Model-View-Controller Pattern, better known as the MVC
pattern, is a software architectural pattern for implementing user

interfaces. The pattern consists of three components: The model,
which manages the data and logic of the application, the view
which manages the output representation of the information in
the model and the controller, which accepts user inputs and
modifies the model and the view presentation of the information
in the model.

Figure 4. Structure of the MVC pattern, inspired by [22]

In GUI-based programs created with the MVC pattern we can
observe two different kinds of events: user gestures and change
notifications. These events are processed by event handlers.
There are thus two different kinds of event handlers: user gesture
handlers and change notification handlers. The set of user
gesture handlers which can trigger at a given moment is called
the event space. We call the union of all possible event spaces
the complete event space. User gestures handlers can invoke view
modifications and state changes. A view modification in the
context of the MVC pattern is a change in the view while a state
change is a modification of the model. Change notification
handlers can invoke state queries. A state query is a query of
information in the model.

During our research, we will consider that the GUI is the only
means of interaction with the program. This means that change
notifications can only be caused by user gestures.

There are four different kinds of view modifications: widget
property modifications, event space expansions, event space
contractions and event space transmutations. Widget property
modifications are when the controller directly modifies
properties of widgets, for example when a controller disables a
button after it has been clicked. Event space expansions expand
the set of currently triggerable event handlers. This would for
example happen when a pop-up or a menu is opened or when a
controller adds a new event handler to an already existing widget.
Event space contractions is when event handlers are removed
from the event space. This could, for example, occur whenever a
window is closed.

3.3 Abstractions in Practice
3.3.1 GUI’s in JavaFX
The proposed abstraction in section 3.1 and 3.2 map very well
with how JavaFX works in practice. In JavaFX, widgets are
classes which implement the EventTarget interface (more
about this in section 3.3.2). Examples of widgets in JavaFX are
buttons, labels and menu items.

The containers in JavaFX are the classes which extend the
 class. Examples of containers, which we will also use in

our running example in section 4, are AnchorPanes (anchoring
their children based on an offset from the pane’s edges) and

4

SplitPanes (containing two AnchorPanes separated by a
Divider). From this point on, whenever we talk in JavaFX
about classes which implement the EventTarget interface we
will call them widgets. If they also extend the Parent class we
will call them containers.

In JavaFX, a class designated to act as a controller is both the
controller and the view when we look at it through the MVC
pattern. The controller is instantiated by the FXMLLoader when
an FXML file, a file providing the structure of a screen of the
user interface, is loaded and has it has specified this particular
class to be a controller of this screen.

3.3.2 User gesture events & event handlers in
JavaFX
In JavaFX, there are eight classes of events which can be
triggered by user gestures: ContextMenuEvents,
DragEvents GestureEvents, InputMethodEvents,
KeyEvents, MouseEvents, TouchEvents and
Windowevents.

Every event has a type. Event types are used to further classify
the event classes. For example, the KeyEvent class contains
KEY_PRESSED, KEY_RELEASED and KEY_TYPED event types.
These types are hierarchical, and all have a super type. For
example, the name of the event for a key being pressed is
KEY_PRESSED, and the supertype is KeyEvent.ANY. This
means that whenever a KeyEvent.ANY is propagated, event
handlers of KeyEvent.KEY_PRESSED will also respond. From
this point on, we will refer to events combined with their types,
such as KeyEvent.KEY_PRESSED as KEY_PRESSED events.

Summarising the official JavaFX Oracle documentation: “The
event delivery process consists of four steps: Target selection,
route construction, event capturing and event bubbling. […] In
the target selection phase, the system determines when the action
occurs which [widget] is the target, based on internal rules. […]
For key events, the target is the [widget] that has focus. For
mouse events, the target is the [widget] at the location of the
cursor. […] During the route construction phase, the event
dispatch chain which the event should follow is created. […] The
route can be modified when event handlers and event filters
process the event. […] If an event handler or a filter consumes
the event at any point, some [widgets] on the route may not
receive the event ” [18]. We will consider for our research that
no route modifications or event consumptions are made by any
of the widgets along the dispatch chain. “In the event capturing
phase, the event is dispatched by the root [container] of the
application and passed down the event dispatch chain to the
target widget. […] [Afterwards,] in the event bubbling phase, the
event returns along the dispatch chain from the target [widget] to
the [root container]. […] Event handling is provided by event
filters and event handlers. […] An event filter is executed during
the event capturing phase […] [,] an event handler is executed
during the event bubbling phase” [18]. During our research, we
will not look at event filters, we will only take into account event
handling done by event handlers.

Many widgets define event handler properties, which provide a
way to register event handlers. Setting an event handler property
to a user-defined event handler automatically registers the
handler to receive the corresponding event type. Examples of
such properties are onKeyPressed, onKeyReleased and
onKeyTyped. We will focus on event handlers registered by
event handler properties because it is the most common way of
registering event handlers. It gives us a denumerable set of event
handlers and it ensures each widget has no or one unique event
handlers for each event. In JavaFX, no new event in response to

a user gesture is thrown before the event before is fully
processed. However, this means that whenever event handlers
are badly designed and too much stress is put on the applications
it could happen that events are not captured and skipped.

3.3.3 Change notification events & event handlers
in Java
With the MVC pattern the most common way of dealing with
change notifications is through the observer pattern. In this
pattern, one defines a one-to-many dependency between objects
so that when one object changes state, all its dependents are
notified and updated automatically.

In our simple Java implementation of the MVC pattern, we use a
Singleton which extends the Observable class as a Model.
The views implement the Observer interface. This interface
contains the update method which is invoked whenever one of
the models’ observables changes and will then notify its
observers about its change. The update method of an observer
will not be executed on a new thread, it will be executed on the
thread which notified the observers.

3.4 Abstract Model
Learnlib currently supports two types of state machines: DFAs
and Mealy Machines. In 2013 plans have been made to also
include Register Automata in the open-source version. In 2015
Cassel, Howar and Jonsson have created an extension for
Learnlib named RALib that supports register automata [7]. Since
the development of this addition seems to have stalled and
RALib is not part of the official Learnlib ecosystem we have
focused on DFAs and Mealy machines.

In general, it is desirable to use a DFA if the output sought after
is a single boolean value that denotes whether the input sequence
leads to a desired result and a Mealy machine to display the
results itself.

Which kind of automaton is used as behavioural model impacts
the way in which it reflects the GUI-based program as follows:

A model based on a DFA would show whether a sequence of user
interactions would lead to the desired state of the system,
effectively making it a test oracle on itself. Given for example a
program with a few buttons which can influence the color of a
shape, a DFA could find all button sequences which result in the
shape being red or find all button sequences which lead to a bug,
for instance the color of the shape not being the same as the color
of the shape stored in the model.

A model based on a Mealy machine could show the state of the
system by reporting it through its output function. Going back to
our last example, a Mealy machine can be used to show which
button sequences result in which colour. A Mealy machine could
also show if a sequence of user interactions would lead to a
desired state of the system by making the output true if this is the
case. We could for example find all button sequences that result
in the shape being red by making the mealy machine output true
whenever the shape has become red.

Since a Mealy machine can do everything a DFA can and more
in the context of representing GUI’s, a Mealy machine is the best
automaton for representing GUI-program behavior.

As defined before, a Mealy machine consists of a finite set of In
the context based on the definition of a GUI we made in the
section before, this would mean that in our behavioral model, S
is the finite set of states the GUI-based program can be in during
execution (the combination of the state of the model, view and
the controllers). and the alphabet Σ the set of pairs of events with
their respective event handlers.

5

The alphabet seems counterintuitive. Since the only way of
interacting with the program is through user gestures at first
glance the most logical thing would seem that the symbols of our
input alphabet would solely consist of the user gestures.
However, a user gesture in itself does not cause behaviour. The
handling of the user gesture by a user gesture handler causes
behaviour. We also cannot take the complete event space of a
program as our input alphabet because event handlers behave
differently given the same event with different parameters. For
example, an event handler of a MOUSE_CLICKED event could
behave differently given that the event represents a left mouse,
right mouse or middle mouse click. Our input symbols are thus
pairs of user gestures and the event handlers from the complete
event space of the program which are triggered by these events.

Because we are generating the behavioural model through
automata learning, they are state minimal. This means that a state
∋ ݏ ܵ can represent multiple complete states of the program.
Two complete states 1ݏ, are represented by the same set 2ݏ
∋ ݏ ܵ if the intersection of the properties of the states used in the
transition and output functions are equivalent in regards to these
functions, i.e. they give the same transition and output for the
transition and output functions.

4. A RUNNING EXAMPLE
In this paper, we will discuss the generation of learning setups
along the example of a simple GUI program in which users can
interact with a shape.

Figure 5. Screen 1

Figure 6. Screen 2

On each of the screens, the following interactions are exposed:

On the first screen, shown in figure 5, the user can change the
shape of the figure, change the colour to a pre-determined colour
and change screens through the screen menu.

On the second screen, shown in figure 6, the user can change the
colour of the figure, which is different depending on the current

colour stored in the model, with the minus, equal and plus buttons
in a traffic light fashion. With the buttons, one can either reverse
the traffic light (turning it from red to yellow, yellow to green, or
green to red), keep it as it is or advances the traffic light (turning
it from green to yellow, yellow to red and red to green). In
addition to this, the number next to the can be changed through
mouse interactions with the coloured figure and the Pane (a
container in JavaFX) it is in. To lock this number, the user can
click the white square around the number to remove the coloured
figures event handlers.

When the program is started, screen 1 is presented to the user.
Initially the figure is a green square.

When interacting with this example system, the following
challenges have to be addressed, and we will refer to these
challenges when elaborating on our learning generator:

Event handler accessibility: If a widget is not shown on a screen,
is disabled, is not able to get focus or is a window while another
modal window is active the event handler should not be
triggered. For instance, none of the minus button’s event handlers
can be triggered while screen 2 is not displayed. In this case, the
teacher should not invoke the event handlers referenced in input
symbols and return the result of the corresponding output
function but do nothing and return an error instead. If we do
process the input symbol we create sequences of events handler
invocations which would not be possible in practice.

Widget event space transmutations: A widget’s set of event
handlers can change. Event handlers can be added, removed or
replaced during runtime. In the example of our program, event
handlers can be removed from the shape by clicking the white
square.

Order of events: Not all user interactions can be performed at any
given moment. For example, users cannot click on a button
before he moved their mouse to the button. Certain events can
only be dispatched after other events, meaning that certain event
handlers can only be triggered before or after other event
handlers in certain situations. For instance, the figure’s event
handler on screen 2 of events with the type MOUSE_CLICKED or
MOUSE_DRAGGED will always be triggered after one of the type
MOUSE_PRESSED, while after an MOUSE_EXITED no event
handler other than that of the MOUSE_ENTERED event can be
triggered. For instance, in our program, the number mapped to
the MOUSE_CLICKED event can never be displayed directly after
the number mapped to the MOUSE_EXITED event.

With containers and widgets, we have the case that if a widget is
contained in a container, a MOUSE_MOVED targeting the container
will always be dispatched before a MOUSE_MOVED targeting the
widget is dispatched. This also means that the event handler
listening for the MOUSE_MOVED of the container is always
triggered before the one of the widget. This means that for
example the number mapped to the MOUSE_MOVED event of the
widget can never be displayed after the MOUSE_EXITED event of
the container.

5. LEARNING GUI-BASED PROGRAMS
In this section, we introduce our learning setup architecture and
explain how we have solved the challenges presented above.

5.1 Learning Setup
InputSymbol: We use the InputSymbol class to wrap
concrete methods and use these as alphabet symbols for the
learning algorithm.

Proxy: The Proxy is the class which contains all controllers
created during runtime. When they are created, they have to be
added to the Learner through the generated setters in this class.

6

The Proxy also contains the information which input symbol
corresponds to which widget, which widget listens to which
events as well as which query corresponds to which event.

Mapper: The Mapper is the component which contains all the
actions executable on the SUL and which output function it
should use given the input symbol. When the query has been
executed, it returns the output of the input symbols
corresponding output function.

Teacher: This is the component which executes the queries. In
our implementation, it is as an adapter funnelling learning
queries to the SUL. Before an input symbol is mapped and
invoked, the Teacher checks whether input symbols event
handler should be accessible in normal running conditions and
whether the next event can be dispatched given the inputs
symbols before in the query and the order of events. It also
ensures the independence of the queries.

Leaner: This is the component which performs the learning
experiment. It creates the alphabet of the SUL, consisting of all
but the constructor methods in the Proxy, the membership oracle
based on the Teacher, the equivalence oracle based on the
membership oracle and performs the learning experiment. When
a final hypothesis behavioural model has been reached, it reports
it back to the user.

5.2 Dealing with the challenges
5.2.1 Event handler accessibility
There are five things which can influence event handler
accessibility concerning mouse and keyboard events: whether the
widget is disabled, whether a widget/window can get input focus,
whether events are consumed when passing through the event
dispatch chain, whether it is visible and its location in the
rendered scene, e.g. a widget cannot receive certain mouse events
if it is hidden behind another widget. Event handler accessibility
can be guaranteed by the teacher by checking these conditions
individually.

For our research, we have not taken into account the graphical
hierarchy of the rendered scene, event consumptions in the event
dispatch chain and focus. Furthermore, we have focused on
programs with one window.

5.2.2 Event space changes
The event space of a given program can change during runtime.
We have solved the problem of event space changes by instead
of storing a the event handler or an direct reference to the
instantiated event handler, storing an indirect reference which
widget variable it belongs and in which view this instance
variable is defined. When an event handler is called, the view is
obtained through the proxy. This frees us from specific instances
of controllers, views, widgets and event handlers and allows
them to be added, removed and changed during runtime. Before
the event is passed to the event handler, the teacher also verifies
that the controller, widget and event handler are instantiated as
to prevent null pointers.

5.2.3 Order of events
As introduced in section four, not all user interactions can be
performed at any given moment. In term of automata learning,
this means that the language of the SUL cannot accept certain
words and we want to prevent them from being processed by the
SUL. However, the teacher has no knowledge about this, and we
have to give it this information. Going back to our example, a
user cannot click on a button before they have moved their mouse
to the button. This introduces a hierarchy of events and a
constraint when each event can happen. In the case of JavaFX,
this hierarchy is ensured by the event delivery process, which is
deterministic by design.

Figure 7. DFA of valid MouseEvent sequences given a single

widget

Based on Oracle’s JavaFX MouseEvent documentation, we
have constructed a DFA representing the language of all valid
MouseEvent sequences on a given widget. With this DFA the
teacher can know if given an input symbol and the sequence of
input symbols before this one in the query the action executable
on the SUL represented by the input symbol could happen at that
moment. If this is not the case, he should not execute the action
but instead return an error.

However, when dealing with input sequences, we often do not
deal with the complete MouseEvent alphabet but with a subset
of the alphabet. For instance, if a widget only reacts when we
drag or when we click on it, it means that the widgets have only
an MOUSE_PRESSED and MOUSE_CLICKED event handlers in its
complete event space. When we thus try to learn a system with
this widget, only the MOUSE_PRESSED and with its event handler
and the MOUSE_CLICKED event with its event handler will be
added to the learner’s alphabet as input symbols. When we thus
test if sequences are valid or not, we only have sequences with
these two input symbols. From the DFA we can conclude that
MOUSE_PRESSED events should always come before a mouse
MOUSE_CLICKED event, but an MOUSE_PRESSED event can
occur without being, directly or indirectly, followed by an
MOUSE_CLICKED event. This means that we need something
which accepts words of the form MOUSE_PRESSED*
(MOUSE_PRESSED, MOUSE_PRESSED* MOUSE_CLICKED)*
MOUSE_PRESSED*. Otherwise said, given that we remove event
types from the alphabet we will need to be able to reason about
the validity of the sequences with words still left in the alphabet.
We have resolved this issue by transforming the DFA into an
NFA-ε, with ε-transitions replacing transitions of MouseEvent
types not in the subset.

This leaves us with the problem that widget sequence validity can
also depend on the widget hierarchy of a given scene. For
instance, in our example in screen two the figure in the top part
of the split pane is itself in an anchor pane. Because the figure is
contained in a split pane, an MOUSE_MOVED event targeting the
split pane is always dispatched before an MOUSE_MOVED event
targeting the figure. Furthermore, when an MOUSE_EXITED
event has been captured by the container, the widget could not
receive any new events before the container captures an
MOUSE_ENTERED event. This means that, to correctly validate
the behaviour of containers and widgets we have to combine their
NFA’s and adjust them based on the widget’s order in the
hierarchy of the widgets. For our proof of concept, we have
implemented the growing of the NFA in regards to all events
except the MOUSE_DRAGGED event. This dramatically increased
the size and complexity of the NFA without introducing any new
theoretical challenges. In the case of the Mouse Event NFA, this
is done by taking the current NFA, creating an NFA which
describes all valid behaviour when the mouse is within the
bounds of the new widget and connecting the new NFA to the

7

old NFA with the appropriate MOUSE_ENTERED,
MOUSE_ENTERED_TARGET, MOUSE_EXITED and
MOUSE_EXITED_TARGET events. MOUSE_ENTERED_TARGET
and MOUSE_EXITED_TARGET events occurs when mouse enters
a widget. It's the bubbling variant, which is delivered also to all
parents of the entered widget.

5.2.4 Step algorithm
In this section, we show how the solutions presented above could
be implemented into the teacher.

Figure 8. Alg. for processing input symbols in the Teacher

In the algorithm, his stands for history, e.g. the input symbols
processed before the current one of this query.

The algorithm checks whether the event handler is accessible and
whether the input symbol’s mapped event handler can be invoked
given the event history.

Intuitively, what this algorithm does is that after checking if the
event handler is in the widget’s event space and the event handler
is accessible it handles 4 different cases: In the case when it is
the first input symbol of the query or the widget of the input
symbols event handler is not structurally related (i.e.,.is, not a
child) to any of the containers of input symbols event handlers
before, the NFA is updated to be able to simulate the widget. In
the case the widget is not structurally related, we can just update
the NFA to only simulate the new widget and clear the history
because the new widget’s events are not in any way dependent
on/for the widgets in the old hierarchy. In the case where the new
widget is a child of a widget somewhere in the hierarchy, all the
widgets not structurally related to the new widget are removed
from the hierarchy, and their events from the observable events
because as before the new widgets events are not in any way
dependent on the removed widgets' events. The NFA then is
updated to be able to simulate this new hierarchy. In the last case,
the widget is in the hierarchy, and nothing has to be changed.
Afterwards, it adds input symbols mapped event to the event
history and checks if the sequence is valid. One case is not shown

in this algorithm: the handling of the DRAG_DETECTED event.
This can be thrown at any moment after a drag has been detected.
This can be dealt with by keeping two flags, one when a drag has
started and one whenever a DRAG_DETECTED event has
occurred. Whenever either the first flag is false or both are true,
additional DRAG_DETECTED the word represents an invalid
sequence.

6. LEARNING SETUP GENERATOR
FRAMEWORK
A learning setup generator framework needs to know six things
to generate a working learning setup: how the SUL can be
instantiated, how methods can be invoked on the SUL, the
alphabet (i.e. the set of methods that are to be invoked) of the
SUL, method data values, output functions and how it can
guarantee membership query independence. The key to efficient
automated creation of learners is a method to easily define this
information. We have found that through nine annotations we
could mark the necessary information to automatically generate
all components of the setup:

@SystemUnderLearning: class annotation which marks the
JavaFX application class of the SUL.

@Start: method annotation to indicate a wrapper for the target
system’s application initialization and start methods. Methods
annotated with @Start need to have a Stage parameter and can
only be defined in the SUL’s application class. In case of JavaFX,
these are the init() and start(JavaFX.stage.Stage)
methods.

@Initialize(int order): method annotation which marks
methods which have to be called after the application is
instantiated but before an learning experiment can be initiated.

@Model: class annotation to indicate a singleton acting as a
model in the context of the MVC pattern.

@ViewController: class annotation to indicate a class is
acting as a controller of the JavaFX application. In the context of
the MVC pattern, a JavaFX controller is also the view as well as
the controller.

@InputWidget(String[] eventHandlers): variable
annotation which marks widgets and which event handlers from
their complete event space should be added to the learner’s
alphabet, together with which output function should be used.
The corresponding data values are automatically generated. The
eventHandlers array contains Strings of the format
“[onEvent,outputID”] in which onEvent is the name of
the event handler and outputID the id of an output function, i.e.
a method annotated with @Output.

@InputSymbol: method annotation to mark an input symbol
which can directly be added to the learner’s alphabet. Methods
annotated with @InputSymbol should have no parameters and
String as return type.

@Output(String id): method annotation to indicate a
output function.

@Pre(int order): method annotation to mark which
methods have to be called before a membership query can be
posed so as to ensure query independence. The order variable sets
the position of this function when the teacher prepares the SUL.

@Post(int order): method annotation to mark which
methods have to be called after a membership query has been
posed so as to ensure query independence. The order variable sets
the position of this function when the teacher resets the SUL.

Through annotation processing all annotated methods and classes
are collected, analysed and then the learning setup is generated.

8

We generate a single event for each event handler with basic
predetermined values. The generation does not take any meta-
data of the event handler into account except for its accepting
event type. The code generation is done with JavaPoet.

7. VALIDATION
Our learner generator framework is difficult to verify. Inherently,
since we are approximating equivalence queries through
membership queries the possibility of not having tested
extensively enough will always remain and thus there is always
a risk of generating wrong models. Furthermore, large
behavioural models are almost impossible to verify by hand.
Testing them automatically provides us with the same problem
as before: there is always the risk of not having tested extensively
enough. Therefore, we have decided to verify our framework
through small use-cases of which we know how the behavioural
model should look and which can be checked manually.

We consider our framework correct for a gives use-case if it can
generate a behavioural model which matches the expected
behaviour within one minute.

All tests were executed on an Intel i7-6700HQ based laptop with
8 GB of memory and Learnlib version 0.12.0. The random seed
used for the oracles was 42.

For the membership oracle, the learners used an
ExtensibleLStarMealyOracle with a Classic LStar
ObservationTableCEXHandlers and a CloseFirst
closing strategy. For the equivalence oracle, all except the last of
the learners used an RandomWordsEQOracle with a minimum
of 20,a maximum of 30 input symbols per generated membership
query, a maximum number of tests of 100 and a batch size of 10.
In the last learner, the maximum number of tests was 1000. The
batch size is the number of queries the oracle will process at the
same time. Since our Teacher is not forkable, this has no
influence on the results. We use a RandomWordsEQOracle
instead of a RandomWalkEQOracle because the NFA-ε
introduces many paths and branches which are easier to find
when the oracles searches in breath instead of going in depth.

We have not included the test results for event space
transmutation, as this was a trivial test. Furthermore, please note
that in our examples, the OnAction event handlers are triggered
whenever they are clicked. They are thus treated as click events.

7.1 Use case tests and results
Use case 1: Screen 1: orange, blue and change button.
 Σ = {<BlueButton.OnMouseClicked, MouseEvent event>,
<OrangeButton.OnMouseClicked, MouseEvent event>, <
OrangeButton.OnMouseClicked., MouseEvent event>}

Figure 9. Behavioural model of use case 1

This behavioural model correctly captures the expected
behaviour. When the blue button is pushed, the figure becomes
blue, when the orange button is pushed; the button becomes
orange and when the change button is pressed the figure’s shape
changes.

Use case 2: Screen 2: minus, equals and plus button.
 Σ = {“pairs of onclicked event handler references and mouse
events for the minus, equals and plus buttons”}

This behavioural model correctly captures the expected
behaviour. In this test, we have made the program show screen 2
when started. When the plus button is pressed, the colour changes
from red to green to yellow to red, the minus button does the
inverse, and the equals button does not change the colour. It was
created within 2 seconds.

Figure 10. Behavioural model of use case 2

Use case 3: Screen 1 and 2: equal and blue button and the two
menu items. Σ = {“pairs of onClicked event handler references
and mouse events for the blue and equal buttons, pairs of
onAction event handler references and action events for the menu
items”}

Figure 11. Behavioural model of use case 3

This behavioural model correctly captures the expected
behaviour. When the program starts, Screen 1 is shown and the
color of the shape is green. Going to screen 2 and pressing the
equal button while it is green has no effect, the button stays green.
Equals does not change the color of the shape except when it is
not the shape is not green, yellow or red, in this case it makes the
shape to yellow. It was created within 2 seconds.

Use case 4: Screen 2: White square. Σ = {“pairs of all mouse
event handler references and corresponding mouse events”}

Figure 12. Behavioural model of use case 4

9

This behavioural model correctly captures the expected
behaviour. The DFA is isomorph with the MouseEvent DFA
presented in figure E. It was created within 2 seconds. We have
tested the correctness of the Mouse Event DFA itself by
connecting it to an example program and manually trying out if
we can find a sequence which the DFA does not accept. We did
not find one.

Use case 5: use case 4 but the exited, moved and pressed events
are ignored by the event handler. Σ = {“pairs of all mouse event
handler references and corresponding mouse events except for
the exited, moved and mouse pressed event handlers”}

.

Figure 13. Behavioral model of use case 5

Figure 14. MouseEvent NFA of use case 5

This behavioral model correctly captures the expected behavior.
It was created within 2 seconds. It accepts the same language as
the MouseEvent NFA with the exited, moved and pressed event
transitions being removed and replaced by ε-transitions. It was
created within 2 seconds. We have tested the correctness of the
MouseEvent NFA in a similar fashion as the DFA in use case 4.

Use case 6: Screen 1: change button and its container.
Σ = {“pairs of all mouse entered and exited event handlers with
their corresponding events for the change button and its
container as well as pair containing a reference to the change
buttons onAction event handler and an action event”}

Figure 15. Behavioural model of use case 6

This behavioural model correctly captures the expected
behaviour. It was created within 4 seconds. All the states where
the onAction of the button can be triggered lead to states in

which the onAction of the button can also be triggered.
Furthermore, When the underlying pane is excited it has to be re-
entered first before other events can be handled and whenever the
button is not entered, expect from the beginning in the case was
on the button from the start, the buttons onAction event handler
cannot be triggered. The generated underlying NFA was tested
in a similar fashion as use case 4 and use case 5.

7.2 Discussion
Although these tests do not prove that our framework and our
developed techniques will work for all programs, we can
conclude that the framework is able to generate correct learning
setups for these basic use cases and the teacher correctly takes
into account event handler accessibility, event space
transmutation and the order of events for these use cases.

8. CONCLUSION
The main challenge for widespread adaptation of active automata
learning is the effort required to design and implement
application specific learning setups.

To achieve this, we have created an abstraction for GUI-based
programs. All GUI elements fall within one of three categories:
windows, widgets and containers. Widgets and containers have
event handlers which handle user gesture events. We defined the
set of user gesture handlers which can triggered at a given
moment to be the event space. This information together with
how the MVC architectural pattern is organized and how GUI’s
and the MVC pattern works in practice in Java and JavaFX has
allowed us to define a Mealy machine based behavioural modal
able to capture the behaviour of a GUI-program.

A learning setup which could learn GUI programs would have to
consist of 5 parts: an InputSymbol class which wraps concrete
methods and use these as alphabet symbols for the learning
algorithm, a Proxy which contains all created controllers, a
Mapper which contains all the actions executable on the SUL
and which output function it should use given the input symbol,
an Teacher which executes the queries, deals with the
aforementioned challenges and ensures their independence and
a Learner which performs the experiment. Nine annotations
could provide an automatic learner generator with all information
necessary to create this learning setup.

Learning GUI-based programs provide three challenges: Event
handler accessibility (not all event handlers are accessible at any
given time), event space transmutations (the event space can
change during runtime) and the order of events (not all events
can occur at any given moment). We solved these challenges in
the teacher component by checking for event handler
accessibility, event space transmutations and the order of events
whenever we process an input symbol. We check if the order of
events is valid by running the input symbol’s mapped event
together with those of the input symbols before through as a word
through an NFA-ε with as language all valid sequences of mouse
events given the set of containers and widgets involved and
which could grow and shrink to accommodate a varying number
and type of widgets and containers.

With our research, we have paved the way for a new area of
automata learning. Now not only can we infer behavioural
models of GUI-based programs but also creating learning setups
is now a much less time-intensive and complicated endeavour,
making practical adaptations much more feasible.

9. FUTURE WORK
There are a few more concepts which could be explored for better
automated test driver generation. Three of which could be
particularly interesting are advanced event generation, focus

10

handling and dealing with multiple windows. At the moment, we
only generate basic events and do not take into account their
parameters. However, these parameters can influence runtime
behaviour. A future research could be in how to deal with this
added complexity. We think this could be done through static
code analysis to determine a finite approximation of the alphabet
and deriving a symbolic model, as done by Berg, Jonsson and
Raffelt to deal with infinite alphabets [5]. Additionally, at the
moment we do not deal with focus and multiple windows. These
concepts are closely related to the order of events. For example,
to move focus from one screen to another screen we can move
the mouse from one window to the other and when we click on it
we switch focus between the screens. Future research could be to
integrate this with/into the NFA-ε which checks the order of
events.

10. ACKNOWLEDGEMENTS
Firstly, I would like to express my sincere gratitude to my advisor
Prof. Arend Rensink for introducing me to this topic, his support
and his critical view. I would like to thank Pim van Leeuwen for
his support and the numerous mornings reviewing and discussing
ideas. Furthermore, I would like to thanks Max Kerkers for
taking his time to explain and help me with Learnlib. Last, I
would thank my grandmother, Lenie Budde for her moral support
and the good coffee.

11. REFERENCES
[1] Aarts, Fides, Jonsson, Bengt, and Uijen, Johan. Generating

models of infinite-state communication protocols using
regular inference with abstraction. In IFIP International
Conference on Testing Software and Systems (2010), 188-
204.

[2] Aarts, Fides, Schmaltz, Julien, and Vaandrager, Frits.
Inference and abstraction of the biometric passport.
Leveraging Applications of Formal Methods, Verification,
and Validation (2010), 673-686.

[3] Aarts, Fides and Vaandrager, Frits. Learning I/O
Automata. In Gastin, Paul and Laroussinie, François, eds.,
CONCUR 2010 - Concurrency Theory: 21th International
Conference, CONCUR 2010, Paris, France, August 31-
September 3, 2010. Proceedings. Springer Berlin
Heidelberg, Berlin, 2010.

[4] Angluin, Dana. Learning regular sets from queries and
counterexamples. Information and Computation, 75
(1987), 87-106.

[5] Berg, Therese, Jonsson, Bengt, and Raffelt, Harald.
Regular inference for state machines using domains with
equality tests. Fundamental Approaches to Software
Engineering (2008), 317-331.

[6] Bossert, Georges, Hiet, Guillaume, and Henin, Thibaut.
Modelling to simulate botnet command and control
protocols for the evaluation of network intrusion detection
systems. In Network and Information Systems Security
(SAR-SSI), 2011 Conference on (2011), 1-8.

[7] Cassel, Sofia, Howar, Falk, and Jonsson, Bengt. RALib: A
LearnLib extension for inferring EFSMs. DIFTS.
hp://www. faculty. ece. vt. edu/chaowang/di
s2015/papers/paper, 5 (2015).

[8] Choi, Wontae, Necula, George, and Sen, Koushik. Guided
gui testing of android apps with minimal restart and
approximate learning. In ACM SIGPLAN Notices (2013),
623-640.

[9] Hagerer, Andreas, Margaria, Tiziana, Niese, Oliver,
Steffen, Bernhard, Brune, Georg, and Ide, Hans-Dieter.
Efficient regression testing of CTI-systems: Testing a
complex call-center solution. Annual review of
communication, 55 (2001), 1033-1040.

[10] Howar, Falk, Isberner, Malte, and Steffen, Bernhard.
Tutorial: automata learning in practice. In International
Symposium On Leveraging Applications of Formal
Methods, Verification and Validation (2014), 499-513.

[11] Isberner, Malte, Howar, Falk, and Steffen, Bernhard.
Learning register automata: from languages to program
structures. Machine Learning, 96 (2014), 65-98.

[12] Isberner, Malte, Howar, Falk, and Steffen, Bernhard. The
TTT Algorithm: A Redundancy-Free Approach to Active
Automata Learning. In RV (2014), 307-322.

[13] Memon, Atif M. An event-flow model of GUI-based
applications for testing. Software testing, verification and
reliability, 17 (2007), 137-157.

[14] Memon, Atif M., Banerjee, Ishan, and Nagarajan, Adithya.
GUI Ripping: Reverse Engineering of Graphical User
Interfaces for Testing. In WCRE (2003), 260.

[15] Merten, Maik, Isberner, Malte, Howar, Falk, Steffen,
Bernhard, and Margaria, Tiziana. Automated learning
setups in automata learning. In International Symposium
On Leveraging Applications of Formal Methods,
Verification and Validation (2012), 591-607.

[16] Moerman, Joshua, Sammartino, Matteo, Silva, Alexandra,
Klin, Bartek, and Szynwelski, Michał. Learning Nominal
Automata. In Proceedings of the 44th ACM SIGPLAN
Symposium on Principles of Programming Languages
(New York, NY, USA 2017), ACM, 613-625.

[17] Niese, Oliver. An integrated approach to testing complex
systems. 2003.

[18] Oracle Java Documentation JavaFX: Handling Events.
Accessed: 2017-06-27. http://docs.oracle.com/javafx/2
/events/processing.htm#CEGJAAFD

[19] Raffelt, Harald, Merten, Maik, Steffen, Bernhard, and
Margaria, Tiziana. Dynamic testing via automata learning.
International journal on software tools for technology
transfer, 11 (2009), 307.

[20] Shahbaz, Muzammil, Shashidhar, K. C., and Eschbach,
Robert. Iterative refinement of specification for
component based embedded systems. In Proceedings of
the 2011 International Symposium on Software Testing
and Analysis (2011), 276-286.

[21] Steffen, Bernhard, Howar, Falk, and Merten, Maik.
Introduction to Active Automata Learning from a Practical
Perspective. In Bernardo, Marco and Issarny, Valérie, eds.,
Formal Methods for Eternal Networked Software Systems:
11th International School on Formal Methods for the
Design of Computer, Communication and Software
Systems, SFM 2011, Bertinoro, Italy, June 13-18, 2011.
Advanced Lectures. Springer Berlin Heidelberg, Berlin,
2011.

[22] The NetBeans E-commerce Tutorial - Designing the
Application. Accessed: 2017-06-27. https://netbeans.org
/kb/docs/javaee/ecommerce/design.html

