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ABSTRACT 
The main challenge for widespread adaptation of active automata 
learning is the effort required to design and implement 
application specific learning setups. In this paper, we propose an 
abstraction of GUI elements by dividing them into three 
categories: widgets, containers and windows. We analyse at how 
events are handled in Java, JavaFX and how the MVC pattern is 
structured. With this information in hand we propose a Mealy 
machine based behaviour model. Learning GUI-based programs 
has a few challenges: Event handler accessibility, event space 
transmutations and the order of events. We solve the event 
handler accessibility by performing checks, event space 
transmutations by storing the event handlers dynamically and the 
order of events by analysing the validity of queries through an 
NFA-ε with as language all possible event sequences at that 
given moment. With our research, we have paved the way for 
active automata learning of GUI-based programs. 
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Learning setup generation, Active automata learning, GUI, GUI 
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1. INTRODUCTION 
As Isberner, Howar and Steffen [12] have stated: “The wealth of 
model-based techniques developed in Software Engineer- such 
as model checking or model-based testing – is starkly contrasted 
with a frequent lack of formal models”. In an ideal world, a 
model would be created before a system is deployed. 
Unfortunately, this often is not the case. Design-time behavioural 
models are typically hard and time-intensive to construct, 
especially if they should be complete, and they are almost 
guaranteed to get out of sync with the actual code. This hampers 
the application of formal validation techniques such as model-
based testing or model checking, and thus most mistakes are most 
often found only after deployment. Automata learning has been 
proposed as a technique to solve this by automatically generating 
automata based behavioural models of systems where models are 
otherwise unavailable, incomplete or erroneous.  

Active automata learning for DFA’s with membership queries 
and equivalence queries was first presented by Angluin in 1987 
[4]. It was adapted to Mealy machines by Niese in 2003 [17]. 
Since then other active automata learning algorithms have been 
created for learning DFA’s and Mealy Machines; Steffen et al. 
contains a survey [21]. Recently efforts to learn other types of 

automata have been made, such as nominal automata [16], 
register automata [11] and I/O automata [3].   

As Hower, Isberner and Steffen have shown in practice active 
automata learning has been applied create behavioural models 
for a plenitude of systems such as: CTI systems [9], web-
applications [19], communication protocol entities [1], the new 
biometric European passport [2], botnets [6] and a network of 
integrated controllers in car doors [20]. As far as we know, only 
once has it been used in combinations with GUI’s, namely to 
automate black-box GUI testing for android apps [8].  

The main challenge for widespread adaptation of active automata 
learning is the effort required to design and implement 
application specific learning setups. This requires determining a 
suitable abstraction and finding ways to manage concrete 
runtime data that influences the behaviour of the target system.  
In [20], this process of finding a fitting abstraction and creating 
correct test drivers has been estimated to have taken around 27% 
of the total effort of analysing the network of integrated 
controllers in car doors [15].  

Active automat learning aims at constructing an abstract model 
of a target system, better known as an SUL (System Under 
Learning). Communication with the SUL is often dependent on 
actions previously taken and data values previously transferred. 
M. Merten et al., in an effort to reduce test driver setup time 
proposed a reconfigurable and reusable test driver using interface 
analysis, mainly targeted at web applications. However, this 
reconfigurable test driver is not adequate for generating models 
of GUI-based programs because some of the intricate challenges 
this domain poses.  

In this paper, we will answer the following research question: 
“How can a behavioural model of a GUI-based Java program be 
generated through active automata learning in LearnLib?” 
While doing this, we will answer the following sub questions: 
“What is a suitable abstraction to understand and capture the 
behaviour of GUI-based programs?”, “How could we model this 
in an automaton?”, “What challenges does the GUI domain 
pose?” and “how could we generate learning setups for GUI-
based programs?”.  

Outline: In section 2, we will shortly summarise the how 
automata learning works and how it can learn a target system. 
Section 3 presents an abstraction of GUI-based programs, 
analyse how they work in the context of Java and JavaFX and 
propose an automaton which captures this behaviour. In section 
4 we introduce the challenges of GUI-based program learning 
through a running example. Section 5 presents a learning setup 
and solutions to the challenges introduced in section 4 while 
section 6 introduces a framework for automatically generating 
these setups. In section 7, we will discuss the correctness and 
efficacy of the framework by applying it to a few use cases. The 
final sections contain the conclusion, future work, 
acknowledgements and references. 
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2. BACKGROUND 
2.1 Automata 
In this section, we briefly give the definitions of a deterministic 
finite automaton (DFA) and a Mealy machine. 

 
Figure 1: Example behavioural model of a simple program 

based on a DFA (left) and a Mealy Machine (right)  

Let Σ be a finite set of input symbols a1,…,ak. Sequences of input 
symbols are called words. The empty word (of length zero) is 
denoted by ɛ. We write uv when concatenating two words u and 
v. Finally, a language ࣦ ∈  Σ∗ is a set of words.  

Definition 1 (Deterministic finite state machine). A 
deterministic finite state machine or deterministic finite 
automaton (DFA) is defined as a tuple 〈ܳ, ,ݍ Σ , ,ߜ   where ,〈ܨ

- Q is the finite set of states, 

∋ ݍ - ܳ is the dedicated initial state, 

- Σ is the finite input alphabet, 

ߜ - ∶ ܳ ൈ Σ → ܳ is the transition function and, 

ܨ - ∈ ܳ is the set of final states. 

Definition 2 (Mealy machine). A Mealy machine is defined as a 
tuple 〈ܵ, ,ݏ Σ, Ω, ,ߜ   where ,〈ߣ

- S is the finite set of states, 

∋ ݏ - ܵ is the dedicated initial state, 

- Σ is the finite input alphabet, 

- Ω is the finite output alphabet, 

ߜ - ∶ ܵ ൈ Σ → ܵ is the transition function and, 

ߣ - ∶ ܵ ൈ Σ → Ω is the output  function. 

Let’s consider a very simple GUI-based program with one button 
which changes colour when a user clicks on it. Here above, the 
reader can find this example simulated as DFA and a Mealy 
machine. Here Q = ሼݍ,  ଵሽ,  (which represent that the button isݍ
red and blue respectively), S = ሼݏ, ଵሽ, Σݏ = ሼܲ݊ݐݐݑܾ ݏݏ݁ݎሽ, 
Ω = ሼܾ݈݁ݑ,  are determined by what happens when ߣ ሽ, δ and݀݁ݎ
you “Press the button” and F = ሼݍଵሽ. The language ࣦ ∈  Σ∗  of 
the automatons are all valid sequences of interactions which can 
be performed with the program. In this case it’s (Press button)* 

The difference between a Mealy machine and a DFA is that a 
Mealy machine has an output function and has defined behaviour 
for each input in each state while a DFA has a set of accepting 
states. Additionally, states in the DFA can represent pre-defined 
states of the program while in a mealy machine states are 
abstracted representations of conditions which lead to a given 
output.  

2.2 Active Automata Learning 
In this section, we present active automata learning and how it 
works in practice when used to learn a target system, better 
known as an SUL (System Under Learning). We only summarise 
the basic concepts; a more detailed explanation and discussion 
can be found in [21]. 

As M.Merten et al. summarised: In active automata learning, 
“models of an SUL are created by active interaction and by 
reasoning on the observed output behaviour. This is done by 

constructing queries, which are sequences of input symbols from 
an alphabet that represents actions executable on the SUL, and 
answering these queries using actual execution.” [19].  

 

Figure 2: High-level overview of a Learning Setup 

A learning setup generally consists of a learner and a teacher. 
The leaner implements the learning algorithm that interrogates 
the teacher and reasons about the observed output. The teacher 
answers the learner. The teacher is either the SUL itself or more 
often an adapter to the SUL. This is because generally the SUL 
has no interface to apply test cases for realising queries. 

In more detail, the learning is done by the learner asking 
membership queries and equivalence queries to a teacher as to 
extract behavioural information and by successively refining its 
hypothesis automaton (the automaton which the learner believes 
models the SUL’s behaviour), such as a DFA or a mealy 
machine, based on the answers. A membership query tests 
whether a word is accepted by the target system, that is the word 
is in the target system’s automaton’s language. Membership 
queries have to be independent: two queries with the same word 
should always lead to the same state. An equivalence query 
checks the hypothesis automaton for language equivalence with 
respect to the system (i.e. the constructed automaton correctly 
represents the behaviour of the SUL) and provides a counter-
example if they are not equal. When they are equal, the learning 
procedure is successfully completed, and the generated model 
correctly describes the SUL’s behaviour. 

2.3 Challenges in Practical Applications 
As Steffen, Howar and Merten have shown, there are five main 
challenges which one faces when using automata learning to 
learn real-world systems [10] [21].  

1. Interacting with real systems: Interaction with real-world 
systems poses two problems: establishing an interface to apply 
test cases for realising membership queries and bridging the gap 
between abstract queries and actions executable on the SUL.  

2. Membership queries: “Whereas small learning experiments 
generally require only a few hundred membership queries, 
learning realistic systems often requires several orders of 
magnitude more” [10]. Also, the speed of which the experimental 
simulation test environments can process membership queries is 
much faster than that of realistic test environments, in which a 
query could cost as much as a second or a minute.  

3. Resets: Membership queries have to be independent. This is 
typically no problem for simulated systems but it may be quite a 
problem when dealing with realistic systems. This might require 
resets. which can be a very time expensive task, especially for 
server-based systems or systems interacting with databases.  

4. Parameters and value domains: Automata learning is based 
on abstract communication alphabets. The parameters and 
interpreted values used in a system have to be expressed in the 
abstract alphabet. However, applications can have very complex 
or infinite alphabets.  

5. Equivalence queries: Realising equivalence queries through 
testing is typically unrealistic, in particular when learning a 
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black-box system. In practice, equivalence queries will have to 
be approximated using membership queries.  

Due to equivalence queries having to be approximated through 
membership queries, black-box active learning in practice is 
inherently neither correct nor complete. Without assuming extra 
knowledge, e.g. about the number of states of the system under 
learning the possibility of not having tested extensively enough 
will always remain and the model could have incorrect or 
missing states and transitions. 

3. GUI-BASED PROGRAM 
ABSTRACTION 
The chosen abstraction has a great influence on the 
expressiveness and usefulness of the final learned model. In this 
section, we propose an abstraction of GUI-based programs 
through abstracting the GUI and the design pattern used to create 
this program. We will then analyse how this abstraction is 
connected practically to Java and JavaFX (the new GUI library 
which is intended to replace Swing as the new standard) and 
propose an automaton which captures this behaviour.  

3.1 GUI Abstraction 
The abstraction presented in this section is inspired by [13] [14] 
but modified to better suit the level of abstraction we necessary. 

 

 

Figure 3. GUI Class Diagram 

A Graphical User Interface (GUI) is a hierarchical, graphical 
front-end to a program that accepts user-generated and system-
generated events as input, from a fixed set of events and produces 
deterministic output. A GUI contains windows that contain 
widgets (e.g. buttons, labels).  Widgets have a fixed set of 
properties. At any time during the execution, these properties 
have discrete values, the set of which constitutes the state of the 
GUI. [13] Containers are a subclass of widgets. The difference 
between containers and widgets is that a container can contain 
other widgets. Examples of containers are grids, tables and menu 
bars. 

At all times during interaction with the GUI, the user interacts 
with events within a dialog window also called a dialog. [14] This 
dialog window contains a container, called the root container, 
which can contain other containers. The difference between a 
dialog window and a regular window, whether is modal or 
modeless, is that a dialog window contains a container and has 
window decorations, typically consisting of a title bar along the 
top of the window and a minimal border around the other sides. 
The most dominant paradigm used in GUI’s is event-driven 
programming. This means that interactions with windows and 
widgets, such as clicking or dragging them generate events which 
are captures and processed by the windows’ and widgets’ event 
handlers.  

3.2 MVC Pattern Abstraction 
The Model-View-Controller Pattern, better known as the MVC 
pattern, is a software architectural pattern for implementing user 

interfaces. The pattern consists of three components: The model, 
which manages the data and logic of the application, the view 
which manages the output representation of the information in 
the model and the controller, which accepts user inputs and 
modifies the model and the view presentation of the information 
in the model. 

 

Figure 4. Structure of the MVC pattern, inspired by [22] 

In GUI-based programs created with the MVC pattern we can 
observe two different kinds of events:  user gestures and change 
notifications. These events are processed by event handlers. 
There are thus two different kinds of event handlers: user gesture 
handlers and change notification handlers. The set of user 
gesture handlers which can trigger at a given moment is called 
the event space. We call the union of all possible event spaces 
the complete event space. User gestures handlers can invoke view 
modifications and state changes. A view modification in the 
context of the MVC pattern is a change in the view while a state 
change is a modification of the model. Change notification 
handlers can invoke state queries. A state query is a query of 
information in the model. 

During our research, we will consider that the GUI is the only 
means of interaction with the program. This means that change 
notifications can only be caused by user gestures.  

There are four different kinds of view modifications: widget 
property modifications, event space expansions, event space 
contractions and event space transmutations. Widget property 
modifications are when the controller directly modifies 
properties of widgets, for example when a controller disables a 
button after it has been clicked. Event space expansions expand 
the set of currently triggerable event handlers. This would for 
example happen when a pop-up or a menu is opened or when a 
controller adds a new event handler to an already existing widget. 
Event space contractions is when event handlers are removed 
from the event space. This could, for example, occur whenever a 
window is closed. 

3.3 Abstractions in Practice 
3.3.1 GUI’s in JavaFX 
The proposed abstraction in section 3.1 and 3.2 map very well 
with how JavaFX works in practice. In JavaFX, widgets are 
classes which implement the EventTarget interface (more 
about this in section 3.3.2). Examples of widgets in JavaFX are 
buttons, labels and menu items.  

The containers in JavaFX are the classes which extend the 
 class. Examples of containers, which we will also use in 

our running example in section 4, are AnchorPanes (anchoring 
their children based on an offset from the pane’s edges) and 
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SplitPanes (containing two AnchorPanes separated by a 
Divider). From this point on, whenever we talk in JavaFX 
about classes which implement the EventTarget interface we 
will call them widgets. If they also extend the Parent class we 
will call them containers. 

In JavaFX, a class designated to act as a controller is both the 
controller and the view when we look at it through the MVC 
pattern. The controller is instantiated by the FXMLLoader when 
an FXML file, a file providing the structure of a screen of the 
user interface, is loaded and has it has specified this particular 
class to be a controller of this screen.  

3.3.2 User gesture events & event handlers in 
JavaFX 
In JavaFX, there are eight classes of events which can be 
triggered by user gestures: ContextMenuEvents, 
DragEvents  GestureEvents, InputMethodEvents, 
KeyEvents, MouseEvents, TouchEvents and 
Windowevents.  

Every event has a type. Event types are used to further classify 
the event classes. For example, the KeyEvent class contains 
KEY_PRESSED, KEY_RELEASED and KEY_TYPED event types. 
These types are hierarchical, and all have a super type. For 
example, the name of the event for a key being pressed is 
KEY_PRESSED, and the supertype is KeyEvent.ANY. This 
means that whenever a KeyEvent.ANY is propagated, event 
handlers of KeyEvent.KEY_PRESSED will also respond. From 
this point on, we will refer to events combined with their types, 
such as KeyEvent.KEY_PRESSED as KEY_PRESSED events.  

Summarising the official JavaFX Oracle documentation: “The 
event delivery process consists of four steps: Target selection, 
route construction, event capturing and event bubbling. […] In 
the target selection phase, the system determines when the action 
occurs which [widget] is the target, based on internal rules. […] 
For key events, the target is the [widget] that has focus. For 
mouse events, the target is the [widget] at the location of the 
cursor. […] During the route construction phase, the event 
dispatch chain which the event should follow is created. […] The 
route can be modified when event handlers and event filters 
process the event. […] If an event handler or a filter consumes 
the event at any point, some [widgets] on the route may not 
receive the event ” [18]. We will consider for our research that 
no route modifications or event consumptions are made by any 
of the widgets along the dispatch chain. “In the event capturing 
phase, the event is dispatched by the root [container] of the 
application and passed down the event dispatch chain to the 
target widget. […] [Afterwards,] in the event bubbling phase, the 
event returns along the dispatch chain from the target [widget] to 
the [root container]. […] Event handling is provided by event 
filters and event handlers. […] An event filter is executed during 
the event capturing phase […] [,] an event handler is executed 
during the event bubbling phase” [18]. During our research, we 
will not look at event filters, we will only take into account event 
handling done by event handlers.  

Many widgets define event handler properties, which provide a 
way to register event handlers. Setting an event handler property 
to a user-defined event handler automatically registers the 
handler to receive the corresponding event type. Examples of 
such properties are onKeyPressed, onKeyReleased and 
onKeyTyped. We will focus on event handlers registered by 
event handler properties because it is the most common way of 
registering event handlers. It gives us a denumerable set of event 
handlers and it ensures each widget has no or one unique event 
handlers for each event. In JavaFX, no new event in response to 

a user gesture is thrown before the event before is fully 
processed. However, this means that whenever event handlers 
are badly designed and too much stress is put on the applications 
it could happen that events are not captured and skipped. 

3.3.3 Change notification events & event handlers 
in Java 
With the MVC pattern the most common way of dealing with 
change notifications is through the observer pattern. In this 
pattern, one defines a one-to-many dependency between objects 
so that when one object changes state, all its dependents are 
notified and updated automatically.  

In our simple Java implementation of the MVC pattern, we use a 
Singleton which extends the Observable class as a Model. 
The views implement the Observer interface. This interface 
contains the update method which is invoked whenever one of 
the models’ observables changes and will then notify its 
observers about its change. The update method of an observer 
will not be executed on a new thread, it will be executed on the 
thread which notified the observers.   

3.4 Abstract Model 
Learnlib currently supports two types of state machines: DFAs 
and Mealy Machines. In 2013 plans have been made to also 
include Register Automata in the open-source version. In 2015 
Cassel, Howar and Jonsson have created an extension for 
Learnlib named RALib that supports register automata [7]. Since 
the development of this addition seems to have stalled and 
RALib is not part of the official Learnlib ecosystem we have 
focused on DFAs and Mealy machines.   

In general, it is desirable to use a DFA if the output sought after 
is a single boolean value that denotes whether the input sequence 
leads to a desired result and a Mealy machine to display the 
results itself.  

Which kind of automaton is used as behavioural model impacts 
the way in which it reflects the GUI-based program as follows: 

A model based on a DFA would show whether a sequence of user 
interactions would lead to the desired state of the system, 
effectively making it a test oracle on itself. Given for example a 
program with a few buttons which can influence the color of a 
shape, a DFA could find all button sequences which result in the 
shape being red or find all button sequences which lead to a bug, 
for instance the color of the shape not being the same as the color 
of the shape stored in the model. 

A model based on a Mealy machine could show the state of the 
system by reporting it through its output function. Going back to 
our last example, a Mealy machine can be used to show which 
button sequences result in which colour. A Mealy machine could 
also show if a sequence of user interactions would lead to a 
desired state of the system by making the output true if this is the 
case. We could for example find all button sequences that result 
in the shape being red by making the mealy machine output true 
whenever the shape has become red. 

Since a Mealy machine can do everything a DFA can and more 
in the context of representing GUI’s, a Mealy machine is the best 
automaton for representing GUI-program behavior. 

As defined before, a Mealy machine consists of a finite set of In 
the context based on the definition of a GUI we made in the 
section before, this would mean that in our behavioral model, S 
is the finite set of states the GUI-based program can be in during 
execution (the combination of the state of the model, view and 
the controllers). and the alphabet Σ the set of pairs of events with 
their respective event handlers. 
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The alphabet seems counterintuitive. Since the only way of 
interacting with the program is through user gestures at first 
glance the most logical thing would seem that the symbols of our 
input alphabet would solely consist of the user gestures. 
However, a user gesture in itself does not cause behaviour. The 
handling of the user gesture by a user gesture handler causes 
behaviour. We also cannot take the complete event space of a 
program as our input alphabet because event handlers behave 
differently given the same event with different parameters. For 
example, an event handler of a MOUSE_CLICKED event could 
behave differently given that the event represents a left mouse, 
right mouse or middle mouse click. Our input symbols are thus 
pairs of user gestures and the event handlers from the complete 
event space of the program which are triggered by these events. 

Because we are generating the behavioural model through 
automata learning, they are state minimal. This means that a state 
∋ ݏ ܵ can represent multiple complete states of the program. 
Two complete states 1ݏ,  are represented by the same set  2ݏ
∋ ݏ ܵ  if the intersection of the properties of the states used in the 
transition and output functions are equivalent in regards to these 
functions, i.e. they give the same transition and output for the 
transition and output functions. 

4. A RUNNING EXAMPLE 
In this paper, we will discuss the generation of learning setups 
along the example of a simple GUI program in which users can 
interact with a shape.   

  
Figure 5. Screen 1 

 

Figure 6. Screen 2 

On each of the screens, the following interactions are exposed: 

On the first screen, shown in figure 5, the user can change the 
shape of the figure, change the colour to a pre-determined colour 
and change screens through the screen menu. 

On the second screen, shown in figure 6, the user can change the 
colour of the figure, which is different depending on the current 

colour stored in the model, with the minus, equal and plus buttons 
in a traffic light fashion. With the buttons, one can either reverse 
the traffic light (turning it from red to yellow, yellow to green, or 
green to red), keep it as it is or advances the traffic light (turning 
it from green to yellow, yellow to red and red to green). In 
addition to this, the number next to the can be changed through 
mouse interactions with the coloured figure and the Pane (a 
container in JavaFX) it is in. To lock this number, the user can 
click the white square around the number to remove the coloured 
figures event handlers.  

When the program is started, screen 1 is presented to the user. 
Initially the figure is a green square. 

When interacting with this example system, the following 
challenges have to be addressed, and we will refer to these 
challenges when elaborating on our learning generator: 

Event handler accessibility: If a widget is not shown on a screen, 
is disabled, is not able to get focus or is a window while another 
modal window is active the event handler should not be 
triggered. For instance, none of the minus button’s event handlers 
can be triggered while screen 2 is not displayed. In this case, the 
teacher should not invoke the event handlers referenced in input 
symbols and return the result of the corresponding output 
function but do nothing and return an error instead. If we do 
process the input symbol we create sequences of events handler 
invocations which would not be possible in practice. 

Widget event space transmutations: A widget’s set of event 
handlers can change. Event handlers can be added, removed or 
replaced during runtime. In the example of our program, event 
handlers can be removed from the shape by clicking the white 
square. 

Order of events: Not all user interactions can be performed at any 
given moment. For example, users cannot click on a button 
before he moved their mouse to the button. Certain events can 
only be dispatched after other events, meaning that certain event 
handlers can only be triggered before or after other event 
handlers in certain situations. For instance, the figure’s event 
handler on screen 2 of events with the type MOUSE_CLICKED or 
MOUSE_DRAGGED will always be triggered after one of the type 
MOUSE_PRESSED, while after an MOUSE_EXITED no event 
handler other than that of the MOUSE_ENTERED event can be 
triggered. For instance, in our program, the number mapped to 
the MOUSE_CLICKED event can never be displayed directly after 
the number mapped to the MOUSE_EXITED event. 

With containers and widgets, we have the case that if a widget is 
contained in a container, a MOUSE_MOVED targeting the container 
will always be dispatched before a MOUSE_MOVED targeting the 
widget is dispatched. This also means that the event handler 
listening for the MOUSE_MOVED of the container is always 
triggered before the one of the widget. This means that for 
example the number mapped to the MOUSE_MOVED event of the 
widget can never be displayed after the MOUSE_EXITED event of 
the container. 

5. LEARNING GUI-BASED PROGRAMS  
In this section, we introduce our learning setup architecture and 
explain how we have solved the challenges presented above. 

5.1 Learning Setup 
InputSymbol: We use the InputSymbol class to wrap 
concrete methods and use these as alphabet symbols for the 
learning algorithm. 

Proxy: The Proxy is the class which contains all controllers 
created during runtime. When they are created, they have to be 
added to the Learner through the generated setters in this class. 
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The Proxy also contains the information which input symbol 
corresponds to which widget, which widget listens to which 
events as well as which query corresponds to which event.  

Mapper: The Mapper is the component which contains all the 
actions executable on the SUL and which output function it 
should use given the input symbol. When the query has been 
executed, it returns the output of the input symbols 
corresponding output function. 

Teacher: This is the component which executes the queries. In 
our implementation, it is as an adapter funnelling learning 
queries to the SUL. Before an input symbol is mapped and 
invoked, the Teacher checks whether input symbols event 
handler should be accessible in normal running conditions and 
whether the next event can be dispatched given the inputs 
symbols before in the query and the order of events. It also 
ensures the independence of the queries.  

Leaner: This is the component which performs the learning 
experiment. It creates the alphabet of the SUL, consisting of all 
but the constructor methods in the Proxy, the membership oracle 
based on the Teacher, the equivalence oracle based on the 
membership oracle and performs the learning experiment. When 
a final hypothesis behavioural model has been reached, it reports 
it back to the user. 

5.2 Dealing with the challenges 
5.2.1 Event handler accessibility 
There are five things which can influence event handler 
accessibility concerning mouse and keyboard events: whether the 
widget is disabled, whether a widget/window can get input focus, 
whether events are consumed when passing through the event 
dispatch chain, whether it is visible and its location in the 
rendered scene, e.g. a widget cannot receive certain mouse events 
if it is hidden behind another widget. Event handler accessibility 
can be guaranteed by the teacher by checking these conditions 
individually. 

For our research, we have not taken into account the graphical 
hierarchy of the rendered scene, event consumptions in the event 
dispatch chain and focus. Furthermore, we have focused on 
programs with one window. 

5.2.2 Event space changes 
The event space of a given program can change during runtime. 
We have solved the problem of event space changes by instead 
of storing a the event handler or an direct reference to the 
instantiated event handler, storing an indirect reference which 
widget variable it belongs and in which view this instance 
variable is defined. When an event handler is called, the view is 
obtained through the proxy. This frees us from specific instances 
of controllers, views, widgets and event handlers and allows 
them to be added, removed and changed during runtime. Before 
the event is passed to the event handler, the teacher also verifies 
that the controller, widget and event handler are instantiated as 
to prevent null pointers. 

5.2.3 Order of events 
As introduced in section four, not all user interactions can be 
performed at any given moment. In term of automata learning, 
this means that the language of the SUL cannot accept certain 
words and we want to prevent them from being processed by the 
SUL. However, the teacher has no knowledge about this, and we 
have to give it this information. Going back to our example, a 
user cannot click on a button before they have moved their mouse 
to the button. This introduces a hierarchy of events and a 
constraint when each event can happen. In the case of JavaFX, 
this hierarchy is ensured by the event delivery process, which is 
deterministic by design.  

 
Figure 7. DFA of valid MouseEvent sequences given a single 

widget 

Based on Oracle’s JavaFX MouseEvent documentation, we 
have constructed a DFA representing the language of all valid 
MouseEvent sequences on a given widget. With this DFA the 
teacher can know if given an input symbol and the sequence of 
input symbols before this one in the query the action executable 
on the SUL represented by the input symbol could happen at that 
moment. If this is not the case, he should not execute the action 
but instead return an error. 

However, when dealing with input sequences, we often do not 
deal with the complete MouseEvent alphabet but with a subset 
of the alphabet. For instance, if a widget only reacts when we 
drag or when we click on it, it means that the widgets have only 
an MOUSE_PRESSED and MOUSE_CLICKED event handlers in its 
complete event space. When we thus try to learn a system with 
this widget, only the MOUSE_PRESSED and with its event handler 
and the MOUSE_CLICKED event with its event handler will be 
added to the learner’s alphabet as input symbols. When we thus 
test if sequences are valid or not, we only have sequences with 
these two input symbols. From the DFA we can conclude that 
MOUSE_PRESSED events should always come before a mouse 
MOUSE_CLICKED event, but an MOUSE_PRESSED event can 
occur without being, directly or indirectly, followed by an 
MOUSE_CLICKED event. This means that we need something 
which accepts words of the form MOUSE_PRESSED* 
(MOUSE_PRESSED, MOUSE_PRESSED* MOUSE_CLICKED)* 
MOUSE_PRESSED*. Otherwise said, given that we remove event 
types from the alphabet we will need to be able to reason about 
the validity of the sequences with words still left in the alphabet. 
We have resolved this issue by transforming the DFA into an 
NFA-ε, with ε-transitions replacing transitions of MouseEvent 
types not in the subset. 

This leaves us with the problem that widget sequence validity can 
also depend on the widget hierarchy of a given scene. For 
instance, in our example in screen two the figure in the top part 
of the split pane is itself in an anchor pane. Because the figure is 
contained in a split pane, an MOUSE_MOVED event targeting the 
split pane is always dispatched before an MOUSE_MOVED event 
targeting the figure. Furthermore, when an MOUSE_EXITED 
event has been captured by the container, the widget could not 
receive any new events before the container captures an 
MOUSE_ENTERED event. This means that, to correctly validate 
the behaviour of containers and widgets we have to combine their 
NFA’s and adjust them based on the widget’s order in the 
hierarchy of the widgets. For our proof of concept, we have 
implemented the growing of the NFA in regards to all events 
except the MOUSE_DRAGGED event. This dramatically increased 
the size and complexity of the NFA without introducing any new 
theoretical challenges. In the case of the Mouse Event NFA, this 
is done by taking the current NFA, creating an NFA which 
describes all valid behaviour when the mouse is within the 
bounds of the new widget and connecting the new NFA to the 



7 

 

old NFA with the appropriate MOUSE_ENTERED, 
MOUSE_ENTERED_TARGET, MOUSE_EXITED and 
MOUSE_EXITED_TARGET events.  MOUSE_ENTERED_TARGET 
and MOUSE_EXITED_TARGET events occurs when mouse enters 
a widget. It's the bubbling variant, which is delivered also to all 
parents of the entered widget. 

5.2.4 Step algorithm 
In this section, we show how the solutions presented above could 
be implemented into the teacher. 

 

Figure 8. Alg. for processing input symbols in the Teacher 

In the algorithm, his stands for history, e.g. the input symbols 
processed before the current one of this query.  

The algorithm checks whether the event handler is accessible and 
whether the input symbol’s mapped event handler can be invoked 
given the event history. 

Intuitively, what this algorithm does is that after checking if the 
event handler is in the widget’s event space and the event handler 
is accessible it handles 4 different cases: In the case when it is 
the first input symbol of the query or the widget of the input 
symbols event handler is not structurally related (i.e.,.is, not a 
child) to any of the containers of input symbols event handlers 
before, the NFA is updated to be able to simulate the widget. In 
the case the widget is not structurally related, we can just update 
the NFA to only simulate the new widget and clear the history 
because the new widget’s events are not in any way dependent 
on/for the widgets in the old hierarchy. In the case where the new 
widget is a child of a widget somewhere in the hierarchy, all the 
widgets not structurally related to the new widget are removed 
from the hierarchy, and their events from the observable events 
because as before the new widgets events are not in any way 
dependent on the removed widgets' events. The NFA then is 
updated to be able to simulate this new hierarchy. In the last case, 
the widget is in the hierarchy, and nothing has to be changed. 
Afterwards, it adds input symbols mapped event to the event 
history and checks if the sequence is valid. One case is not shown 

in this algorithm: the handling of the DRAG_DETECTED event. 
This can be thrown at any moment after a drag has been detected. 
This can be dealt with by keeping two flags, one when a drag has 
started and one whenever a DRAG_DETECTED event has 
occurred. Whenever either the first flag is false or both are true, 
additional DRAG_DETECTED the word represents an invalid 
sequence. 

6. LEARNING SETUP GENERATOR 
FRAMEWORK 
A learning setup generator framework needs to know six things 
to generate a working learning setup: how the SUL can be 
instantiated, how methods can be invoked on the SUL, the 
alphabet (i.e. the set of methods that are to be invoked) of the 
SUL, method data values, output functions and how it can 
guarantee membership query independence.  The key to efficient 
automated creation of learners is a method to easily define this 
information. We have found that through nine annotations we 
could mark the necessary information to automatically generate 
all components of the setup: 

@SystemUnderLearning: class annotation which marks the 
JavaFX application class of the SUL. 

@Start: method annotation to indicate a wrapper for the target 
system’s application initialization and start methods. Methods 
annotated with @Start need to have a Stage parameter and can 
only be defined in the SUL’s application class. In case of JavaFX, 
these are the init() and start(JavaFX.stage.Stage) 
methods. 

@Initialize(int order): method annotation which marks 
methods which have to be called after the application is 
instantiated but before an learning experiment can be initiated. 

@Model: class annotation to indicate a singleton acting as a 
model in the context of the MVC pattern.  

@ViewController: class annotation to indicate a class is 
acting as a controller of the JavaFX application. In the context of 
the MVC pattern, a JavaFX controller is also the view as well as 
the controller.  

@InputWidget(String[] eventHandlers): variable 
annotation which marks widgets and which event handlers from 
their complete event space should be added to the learner’s 
alphabet, together with which output function should be used.  
The corresponding data values are automatically generated. The 
eventHandlers array contains Strings of the format 
“[onEvent,outputID”] in which onEvent is the name of 
the event handler and outputID the id of an output function, i.e. 
a method annotated with @Output.  

@InputSymbol: method annotation to mark an input symbol 
which can directly be added to the learner’s alphabet. Methods 
annotated with @InputSymbol should have no parameters and 
String as return type. 

@Output(String id): method annotation to indicate a 
output function. 

@Pre(int order): method annotation to mark which 
methods have to be called before a membership query can be 
posed so as to ensure query independence. The order variable sets 
the position of this function when the teacher prepares the SUL. 

@Post(int order): method annotation to mark which 
methods have to be called after a membership query has been 
posed so as to ensure query independence. The order variable sets 
the position of this function when the teacher resets the SUL. 

Through annotation processing all annotated methods and classes 
are collected, analysed and then the learning setup is generated. 
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We generate a single event for each event handler with basic 
predetermined values. The generation does not take any meta-
data of the event handler into account except for its accepting 
event type. The code generation is done with JavaPoet. 

7. VALIDATION 
Our learner generator framework is difficult to verify. Inherently, 
since we are approximating equivalence queries through 
membership queries the possibility of not having tested 
extensively enough will always remain and thus there is always 
a risk of generating wrong models. Furthermore, large 
behavioural models are almost impossible to verify by hand. 
Testing them automatically provides us with the same problem 
as before: there is always the risk of not having tested extensively 
enough. Therefore, we have decided to verify our framework 
through small use-cases of which we know how the behavioural 
model should look and which can be checked manually.  

We consider our framework correct for a gives use-case if it can 
generate a behavioural model which matches the expected 
behaviour within one minute. 

All tests were executed on an Intel i7-6700HQ based laptop with 
8 GB of memory and Learnlib version 0.12.0. The random seed 
used for the oracles was 42. 

For the membership oracle, the learners used an 
ExtensibleLStarMealyOracle with a Classic LStar 
ObservationTableCEXHandlers and a CloseFirst 
closing strategy. For the equivalence oracle, all except the last of 
the learners used an RandomWordsEQOracle with a minimum 
of 20,a maximum of 30 input symbols per generated membership 
query, a maximum number of tests of 100 and a batch size of 10. 
In the last learner, the maximum number of tests was 1000. The 
batch size is the number of queries the oracle will process at the 
same time. Since our Teacher is not forkable, this has no 
influence on the results. We use a RandomWordsEQOracle 
instead of a RandomWalkEQOracle because the NFA-ε 
introduces many paths and branches which are easier to find 
when the oracles searches in breath instead of going in depth.  

We have not included the test results for event space 
transmutation, as this was a trivial test. Furthermore, please note 
that in our examples, the OnAction event handlers are triggered 
whenever they are clicked. They are thus treated as click events.  
 

7.1 Use case tests and results 
Use case 1: Screen 1: orange, blue and change button.                
 Σ = {<BlueButton.OnMouseClicked, MouseEvent event>, 
<OrangeButton.OnMouseClicked, MouseEvent event>, < 
OrangeButton.OnMouseClicked., MouseEvent event>} 

 

Figure 9. Behavioural model of use case 1 

This behavioural model correctly captures the expected 
behaviour. When the blue button is pushed, the figure becomes 
blue, when the orange button is pushed; the button becomes 
orange and when the change button is pressed the figure’s shape 
changes.  

Use case 2: Screen 2: minus, equals and plus button.                   
 Σ = {“pairs of onclicked event handler references and mouse 
events for the minus, equals and plus buttons”} 

This behavioural model correctly captures the expected 
behaviour. In this test, we have made the program show screen 2 
when started. When the plus button is pressed, the colour changes 
from red to green to yellow to red, the minus button does the 
inverse, and the equals button does not change the colour. It was 
created within 2 seconds. 

 

 

Figure 10. Behavioural model of use case 2 

Use case 3: Screen 1 and 2: equal and blue button and the two 
menu items. Σ = {“pairs of onClicked event handler references 
and mouse events for the blue and equal buttons, pairs of 
onAction event handler references and action events for the menu 
items”} 

 

Figure 11. Behavioural model of use case 3 

This behavioural model correctly captures the expected 
behaviour. When the program starts, Screen 1 is shown and the 
color of the shape is green. Going to screen 2 and pressing the 
equal button while it is green has no effect, the button stays green. 
Equals does not change the color of the shape except when it is 
not the shape is not green, yellow or red, in this case it makes the 
shape to yellow. It was created within 2 seconds. 

Use case 4: Screen 2: White square. Σ = {“pairs of all mouse 
event handler references and corresponding mouse events”} 

 

Figure 12. Behavioural model of use case 4 
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This behavioural model correctly captures the expected 
behaviour. The DFA is isomorph with the MouseEvent DFA 
presented in figure E. It was created within 2 seconds. We have 
tested the correctness of the Mouse Event DFA itself by 
connecting it to an example program and manually trying out if 
we can find a sequence which the DFA does not accept. We did 
not find one. 

Use case 5: use case 4 but the exited, moved and pressed events 
are ignored by the event handler. Σ = {“pairs of all mouse event 
handler references and corresponding mouse events except for 
the exited, moved and mouse pressed event handlers”} 

.  

Figure 13. Behavioral model of use case 5 

 

Figure 14. MouseEvent NFA of use case 5 

This behavioral model correctly captures the expected behavior. 
It was created within 2 seconds. It accepts the same language as 
the MouseEvent NFA with the exited, moved and pressed event 
transitions being removed and replaced by ε-transitions. It was 
created within 2 seconds. We have tested the correctness of the 
MouseEvent NFA in a similar fashion as the DFA in use case 4. 
 
Use case 6: Screen 1: change button and its container. 
Σ = {“pairs of all mouse entered and exited event handlers with 
their corresponding events for the change button and its 
container as well as pair containing a reference to the change 
buttons onAction event handler and an action event”} 

 
Figure 15. Behavioural model of use case 6 

This behavioural model correctly captures the expected 
behaviour. It was created within 4 seconds. All the states where 
the onAction of the button can be triggered lead to states in 

which the onAction of the button can also be triggered. 
Furthermore, When the underlying pane is excited it has to be re-
entered first before other events can be handled and whenever the 
button is not entered, expect from the beginning in the case was 
on the button from the start, the buttons onAction event handler 
cannot be triggered. The generated underlying NFA was tested 
in a similar fashion as use case 4 and use case 5. 

7.2 Discussion 
Although these tests do not prove that our framework and our 
developed techniques will work for all programs, we can 
conclude that the framework is able to generate correct learning 
setups for these basic use cases and the teacher correctly takes 
into account event handler accessibility, event space 
transmutation and the order of events for these use cases.  

8. CONCLUSION 
The main challenge for widespread adaptation of active automata 
learning is the effort required to design and implement 
application specific learning setups.  

To achieve this, we have created an abstraction for GUI-based 
programs. All GUI elements fall within one of three categories: 
windows, widgets and containers. Widgets and containers have 
event handlers which handle user gesture events.  We defined the 
set of user gesture handlers which can triggered at a given 
moment to be the event space. This information together with 
how the MVC architectural pattern is organized and how GUI’s 
and the MVC pattern works in practice in Java and JavaFX has 
allowed us to define a Mealy machine based behavioural modal 
able to capture the behaviour of a GUI-program.  

A learning setup which could learn GUI programs would have to 
consist of 5 parts: an InputSymbol class which wraps concrete 
methods and use these as alphabet symbols for the learning 
algorithm, a Proxy which contains all created controllers, a 
Mapper which contains all the actions executable on the SUL 
and which output function it should use given the input symbol, 
an Teacher which executes the queries, deals with the 
aforementioned challenges and ensures their  independence and 
a Learner which performs  the experiment. Nine annotations 
could provide an automatic learner generator with all information 
necessary to create this learning setup. 

Learning GUI-based programs provide three challenges:  Event 
handler accessibility (not all event handlers are accessible at any 
given time), event space transmutations (the event space can 
change during runtime) and the order of events (not all events 
can occur at any given moment). We solved these challenges in 
the teacher component by checking for event handler 
accessibility, event space transmutations and the order of events 
whenever we process an input symbol. We check if the order of 
events is valid by running the input symbol’s mapped event 
together with those of the input symbols before through as a word 
through an NFA-ε with as language all valid sequences of mouse 
events given the set of containers and widgets involved and 
which could grow and shrink to accommodate a varying number 
and type of widgets and containers. 

With our research, we have paved the way for a new area of 
automata learning. Now not only can we infer behavioural 
models of GUI-based programs but also creating learning setups 
is now a much less time-intensive and complicated endeavour, 
making practical adaptations much more feasible. 

9. FUTURE WORK 
There are a few more concepts which could be explored for better 
automated test driver generation. Three of which could be 
particularly interesting are advanced event generation, focus 
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handling and dealing with multiple windows. At the moment, we 
only generate basic events and do not take into account their 
parameters. However, these parameters can influence runtime 
behaviour. A future research could be in how to deal with this 
added complexity. We think this could be done through static 
code analysis to determine a finite approximation of the alphabet 
and deriving a symbolic model, as done by Berg, Jonsson and 
Raffelt to deal with infinite alphabets [5]. Additionally, at the 
moment we do not deal with focus and multiple windows. These 
concepts are closely related to the order of events. For example, 
to move focus from one screen to another screen we can move 
the mouse from one window to the other and when we click on it 
we switch focus between the screens. Future research could be to 
integrate this with/into the NFA-ε which checks the order of 
events. 
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