
Autonomous Exploitation of System Binaries using

Symbolic Analysis

Joran Honig
University of Twente

P.O. Box 217, 7500AE Enschede
The Netherlands

j.j.honig@student.utwente.nl

ABSTRACT
At the moment many software systems have bugs, and de-
velopers can be overwhelmed with bug reports describing
crashes or unexpected behavior. Finding the critical bugs
to focus on can be time consuming, and might lead to se-
curity critical bugs remaining unresolved for an extended
period, which in turn can lead to data leaks or improper
functioning of important systems.
Current state of the art autonomous methods are still un-
able to find all bugs, and are often unable to determine if
they are security critical. Therefore it is important that
methods are developed and improvements are made with
automatically finding and validating security vulnerabili-
ties.
In this paper, the application of concolic analysis and con-
straint solving are applied to this problem. Three algo-
rithms, used to determine exploitable constraints, will be
proposed and evaluated. Furthermore, these algorithms
will be compared to the current state of the art, providing
an overview of the field.

Keywords
Proof Of Concept, Automatic, Exploit, Concolic Testing,
Symbolic analysis

1. INTRODUCTION
Many systems have the problem that they have bugs, re-
sulting in undefined and possibly unwanted behavior. Some
of these bugs might even turn out to be exploitable. This
means that it is possible to craft an input for the software,
or a series of inputs, that cause the program to execute
code provided by the attacker, or allows the attacker to
control key features in a system. An example use of an
exploit could be, to install a virus on the machine that is
currently hosting the software. Moreover, an attacker can
use an exploit to cause an application to grant him or her
higher system privileges.

It is therefore important that bugs, and more specifically
security critical bugs are discovered and patched, ensuring
that systems remain uncompromized. Moreover, automat-
ing this process would be even more advantageous, since
it would allow for more frequent and thorough analysis of
software.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies

are not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy oth-

erwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee.

27th Twente Student Conference on IT July 7

st

, 2017, Enschede, The

Netherlands.

Copyright 2017, University of Twente, Faculty of Electrical Engineer-

ing, Mathematics and Computer Science.

Nowadays the development of exploits for binaries requires
a human, knowledgeable in modern exploitation techniques.
There are methods to automatically generate exploits [4,
2, 6]. Although the Cyber Grand Challenge organized
by DARPA led to several published papers [12, 4], most
exploit generation techniques have only been applied to
stack based vulnerabilities[7] and are therefore unable to
validate all vulnerabilities. In this paper, a method will be
developed which will attempt to generate exploits for soft-
ware based on existing analysis tools described in section
3.1.

The process of exploit development can be divided in roughly
three steps. Namely:

1. Bug or vulnerability discovery
Where researchers try to find bugs in existing code.

2. Rudimentary Proof of Concept exploit creation, hi-
jacking control-flow
In this part of exploit development researchers con-

struct an example value that, when provided as an

input to the program, takes over the execution of the

program.

3. Exploit hardening against exploit mitigation tech-
niques
There are some defenses against exploitation, to en-

sure that an exploit works it will need to be adjusted

accordingly. Exploit mitigation techniques will be dis-

cussed in section 3.3.

Some steps of the process can be sped up with the use of
tools. For example, fuzzers and dynamic analysis can be
used to speed up the process of finding bugs. There are
also tools that help researchers with hardening exploits,
like rop chain [8] generators, which are discussed in sec-
tion 3.2.2, or methods proposed in Q[10]. These meth-
ods still require researchers to manually validate exploits
and compose large parts of an exploit themselves, slowing
down the process of validating vulnerabilities.

Although progress has been made on automating the en-
tire process of exploit development, research has been fo-
cused on finding vulnerabilities instead of specifically cre-
ating exploits [4, 2, 12].

In this research we will focus on developing a method that
is able to automatically generate an exploit, based on a
crashing input. This research can be applied and used to
speed up and automate the second step of the described
exploit development steps.

2. RESEARCH QUESTION
The research question of this research is:
To what extend can concolic execution be used to create

1

exploits for binaries?

The sub questions for this research are:

1. How can constraints determined by concolic execu-
tion be used to generate exploits for heap overflows?

2. How does using symbolic execution and constraint
solving to generate exploits compare to existing meth-
ods proposed in [2]?

3. BACKGROUND
In this section the relevant topics from exploit develop-
ment and formal analysis methods will be explored to pro-
vide a basis for the other sections. In subsection 3.1 the
topics conserning software analysis will be explored. While
in the other two subsections will explore attack techniques,
subsection 3.2, and exploit hardening methods, subsection
3.3.

3.1 Analysis Methods
Several methods have been developed to test and analyze
programs, some of these methods provide an excellent in-
sight in the execution state and logic of a program and can
be applied to vulnerability research and development. In
the following section we will discuss some of these meth-
ods.

Algorithm 1

1: function Main(X) . Where X is a string
2: if X[0..4]! = ”abcd” then
3: return false
4: Let A[0..20] be a new array
5: for i = 0 to len(X) do
6: A[i] = X[i]

7: return true

3.1.1 Concrete Execution
Concrete execution or analysis is the execution of a pro-
gram using concrete values. Take algorithm 1, in this case
all strings are possible inputs to the program. It is possi-
ble to determine the program context and memory state
at any moment during the execution. For example, using a
debugger an program could be executed and paused on in-
dividual instructions, allowing for analysis of the program
state.

3.1.2 Taint analysis
Another form of dynamic analysis is taint analysis. Us-
ing taint analysis means that some inputs are marked as
tainted. While stepping though a program, we can look at
which computations are a↵ected by the tainted values[9].
Using this information, it is possible to determine which
parts of the input cause the current control flow. Take
program 1, taint analysis methods are able to determine
that character zero up to four of the input are used to de-
termine which path to take. Note that this method does
not provide enough insight to determine the value required
to take another path in the program, because it is unable
to reason why and how a change in the input causes a
di↵erent path to be taken.

3.1.3 Symbolic Execution
Instead of executing programs in the concrete domain,
during symbolic execution programs are executed in the
symbolic domain. This means that instead of supplying

the program with concrete existing values we give it sym-
bols. Moving through the program we adjust the expres-
sions for memory locations accordingly.

Take for example array A at line 7 in algorithm 1. The
expression for this variable can be described by A = X if
the first letters of X are “abcd”, otherwise A would be non
existent. In this case X is a symbol that represents the
user input.

If the execution engine encounters a branch, for example
an if statement, it follows each path and maintains the
constraints and expressions for each. This type of analysis
su↵ers from some problems. The first problem is that it
does not execute as fast as concrete execution. Secondly, it
su↵ers from the phenomena called state explosion, which
happens if there exists a program structure with many or
possibly infinite states. In this case it is impossible to
symbolically execute the entire program. Mitigations to
this problem have been proposed in [4, 2, 12, 6] among
others. While these mitigations might delay the problem
of state explosion, they are not yet able to mitigate it.

3.1.4 Concolic testing
Concolic analyisis is a combination of symbolic execution
and concrete execution. While executing a program with
a concrete input, the constraints that make the program
follow the path that it takes, will also be collected. Take
algorithm 1, if we use input “hello”, the execution path
follows lines one, two and three and then returns false. At
line three the following constraint is collected, the input X
can not start with ”abcd”. The collected constraints can
then be used to determine other inputs that follow the
same path or other inputs that do not.

This method has two advantages. The first being that it
is faster or at least as fast as analyzing an entire program,
while still having a thorough understanding of why the
program went through certain states. In addition to being
faster than symbolic execution, this method also does not
su↵er from state explosion. The downside of this method is
that the understanding of the program is limited compared
to symbolic execution, since we only follow one path.

3.1.5 Fuzzing
Fuzzing is a concrete analysis method that is used to find
bugs in software. A fuzzer works by creating inputs for
a program and executing the program with this input.
Simple fuzzers use random values to generate new inputs,
while more sophisticated fuzzers use methods like taint
analysis to reason about new inputs that might cause the
program to take alternate paths. The fuzzer then checks if
the program has crashed and tries another input, storing
all crashing inputs. These crashing inputs can then be
used by developers or researchers to determine the cause
of the crash. In addition to that, other analysis methods
can be used to further explore the cause of the crash.

3.2 Attack Techniques
There are several techniques that can be used while build-
ing an exploit, in this subsection some of these exploitation
techniques will be discussed. The first subsection describes
shellcode, which is the technique used by the algorithms
described in section 5. The other subsections show rele-
vant alternatives for this exploitation method.

3.2.1 Shellcode
Shellcode is a set of instructions often with the purpose
of taking over the functionality of a program. Shellcode is
often the target of the instruction pointer after the control
flow of an application has been hijacked.

2

3.2.2 Return Oriented Programming
In this case the attacker uses instructions already in the
code, he does this by changing the instruction pointer to
the address at the start of a chain of instructions. These
are executed by the program until a return instruction is
executed. The attacker will have set the stack to then
contain an address of the next instruction chain that he
wants executed, repeating this process. This allows an at-
tacker to execute his code. This attack is more thoroughly
discussed by Roemer et al.[8].

3.2.3 Ret2libc
This attack is similar to the previous one in that it reuses
code readily available instead of running its own. Using
this attack, an attacker fills the stack with the arguments
necessary for a call in libc and then overwrites the instruc-
tion pointer to point to a method in libc, which would then
get executed using the provided arguments.

3.3 Exploit hardening
To prevent attackers from successfully exploiting a binary
several exploit mitigation techniques have been developed.
Although they are e↵ective at mitigating non sophisticated
attacks, they are imperfect and there exist techniques to
circumnavigate the mitigation techniques.

3.3.1 W xor X
This exploit mitigation technique has been implemented
to ensure that arbitrary code, that has been injected into
the memory can not be executed. It does so by ensuring
that memory is not writable and executable at the same
time.

However by reusing existing instructions in the target bi-
nary, also called rop gadgets, an attacker could change the
status of memory from writable to executable. In addition
to that, the existing rop gadgets might also provide the at-
tacker with enough versatility to create an exploit without
using shellcode.

3.3.2 Address Space Layout Randomization
To prevent the use of the previous circumvention, the ad-
dress space layout is randomized in programs with ASLR.
This ensures that the attacker is not able to determine
what the address of certain key parts of memory will be
[11]. However, this technique has also been compromised.
In the case of 32 bit binaries the entropy of the random ad-
dress locations is too low and an attacker is able to brute
force it. In addition to that, the “information disclosure”
class of vulnerabilities allows attackers to gain informa-
tion about the layout of the memory, thus negating this
mitigation technique.

4. RELATED WORKS
There have been several papers published in the field of
automatic exploit generation [12, 4, 2, 6]. Most of these
researches develop methods that can be used to automate
the entire process of vulnerability detection and exploit
generation, focusing on the development of an e�cient,
scalable method to find bugs and exploit them. And,
although exploit generation is still an important aspect,
thorough research into the creation of exploits has not
been done.

The CRAX paper [6] proposes a method that is very sim-
ilar to the method in this paper, as they also look into
generating exploits based on concolic analysis of crashing
inputs. The di↵erence is that we will provide thorough de-
scription of the algorithms used to generate exploits and
look at modern heap exploitation techniques.

AEG[2] and Mechanical Shellphish[12] have focused on
optimizing the bug discovery process, and have therefore
not thoroughly researched exploit generation algorithms.
They use a method that uses the stack and memory lay-
out information when a crash occurs, to create an exploit.
The algorithm used by AEG and Mechanical Shellphish
can be found in the AEG[2].

As pointed out in CRAX[6], this algorithm is flawed and
fails to generate working exploits in certain situations. It
fails to generate a working exploit because it is not able to
reason about the instructions that happen after a bu↵er
overflow has occurred[6]. The methods in this paper and
the ones described in CRAX are able to correctly generate
an exploit in these situations, because it has a complete
understanding of all mutations on the memory until the
crash happens.

5. ALGORITHMS
We looked at three target vulnerability categories, namely
pointer overwrites, return address overwrites and vulner-
abilities with an arbitrary write. As both stack and heap
overflows can fall in to each of those categories and the al-
gorithm for exploiting these categories might di↵er, these
categories are used instead of just distinguishing between
heap and bu↵er overflows.

In the following sections the internals of these vulnerability
classes will be discussed in addition to the algorithm used
to generate exploit constraints. The exploits are built up
by first finding a location in memory to store the shellcode,
subsection 5.1 describes the algorithm to do this. The
algorithms for specific vulnerabilities will then be used to
determine the constraints necessary to redirect execution
to the shellcode.

5.1 Shellcode
To make the program run shellcode, it needs to be placed
in memory. Algorithm 2 does this by returning a list of
constraints that constrain the memory to contain the shell-
code.

Algorithm 2

Input: ⇧
bug

: Constraints found using concolic execution
Input: S: Crashing state, contains expressions for mem-

ory and registers
Input: ST: Shellcode string that the exploit should exe-

cute
Output: SC: a list of tuples where the first element is a

set of constraints that ensure the shellcode is in mem-
ory in state S and the second element is the middle of
the constrained nopsled

1: function ShellcodeConstraints(⇧
bug

, S, ST)
2: SC = []
3: for MA in S ! memory do
4: len = length of symbolic writes from MA

5: for i = 0 to len - ST.length do
6: ⇧

shellcode

= memory at MA is i ⇤
nopinstruction+ ST

7: if ⇧
shellcode

^⇧
bug

is satisfiable then
8: SC+ = (⇧

shellcode

,MA+ i/2)

9: return SC

5.2 Exploit reliability
Because the analyzed memory addresses may not match
the addresses found during the analysis, exploits may not
always work. Therefore it is important that the reliabil-
ity of the exploits is increased. A method to increase the

3

reliability of an exploit is an exception handler overwrite,
where an attacker overwrites the address of an exception
handler. Another is a jump to register exploit, where the
ip is constrained to an instruction that jumps to the ad-
dress in a register, and finally the use of a nopsled can
increase the reliability of an exploit. The last method has
been implemented in the tool and algorithm 2 used to val-
idate this research. Using a nopsled means that the shell-
code is prepended with a series of valid instructions that
do nothing but increment the program counter. Instead
of trying to jump to the start address of the shellcode,
the exploitation algorithms will constrain the address to
be in the middle of the nopsled, which allows for some
inaccuracy of the analyzed memory addresses. Line 6 in
algorithm 2 adds the nop instructions to the shellcode.

5.3 Pointer overwrites
In some programs, pointers to methods or functions are
stored in memory, these pointers can then later be used
to execute the function that they reference. Some vulner-
abilities allow an attacker to overwrite a function pointer.
Later when the program calls the function pointer, it will
execute the code at the new address. An attacker can craft
his input in such a way that the function pointer points to
a section of memory where he has placed shellcode, thus
exploiting the target binary. The algorithm explaining the
steps to exploit such a vulnerability is algorithm 3.

Algorithm 3

Input: ⇧
bug

: Constraints found using concolic execution
Input: S: Crashing state, contains expressions for mem-

ory and registers
Input: ST: Shellcode string that the exploit should exe-

cute
Output: ⇧

expl

: A set of constraints that, if satisfied ex-
ploit the analyzed program

1: function Buildexploit(⇧
bug

, S, ST)
2: SC = ShellcodeConstraints(⇧

bug

, S, ST)
3: for (⇧

shellcode

,MA) in SC do
4: # ⇧(S ! ip == MA) is the constraint which
5: # constrains the program counter to the shell-

code address
6: ⇧

expl

= ⇧(S ! ip == MA) ^⇧
shellcode

7: if ⇧
expl

satisfiable then
8: return ⇧

expl

5.4 Return address overwrites
When a method is executed some variables are put on
the stack, one of these variables is the return address of
the method. The return address is the address of the in-
struction that the program should return to after it has
finished executing the method. Some vulnerabilities, pos-
sibly resulting from out of bounds memory writes, allow
an attacker to overwrite this return address. The same
method as discussed in the previous section can then be
used to exploit the binary. The attacker can change the
return address to the address of shellcode and in that way
exploit the program. This is similar to the previously dis-
cussed method, therefore algorithm 3 is also applicable for
this vulnerability class.

5.5 Arbitrary writes
Some programs allow for a, possibly unintended, symbolic
write, which means that an attacker can overwrite an ar-
bitrary piece of memory. This can be used to leak infor-
mation from the target program and also to take over the
execution. The latter option will be discussed in this sec-

tion. To exploit this kind of vulnerability, we constrain the
target address of a symbolic write to a function pointer or
return address. After the symbolic write, the same ap-
proach used for the previous vulnerability classes can be
used.

One way that an arbitrary write can be exploited is an
overwrite of the General O↵set Table, GOT for short. The
GOT is used by the program to find the locations of meth-
ods in libraries. Every time a library method is called the
program finds the address of this method by looking in
the GOT. By overwriting an entry in the GOT an at-
tacker can redirect the execution flow of the program to
shellcode. After having constrained the target address to a
GOT entry, the approach will be the same as for algorithm
3.

It is also possible to overwrite values on the stack. How-
ever, since the addresses on the stack are unpredictable
only GOT entry overwrites will be discussed in this pa-
per.

Algorithm 4

Input: ⇧
bug

: Constraints found using concolic execution
Input: S: Crashing state, contains expressions for mem-

ory and registers
Input: ST: Shellcode string that the exploit should exe-

cute
Output: ⇧

expl

: A set of constraints that, if satisfied ex-
ploit the analyzed program

1: function HeapExploit(⇧
bug

, S, ST)
2: CS = []
3: if S ! symbolic writes.length > 0 then
4: for SW in S ! symbolic writes do
5: for each methodCall after SW do
6: CS += (⇧(WriteAddress==

MethodAddress),methodCallState)

7: for C,MS in CS do
8: if C ^⇧

bug

is satisfiable then
9: ⇧

expl

= BuildExploit(MS,C ^⇧
bug

, ST)
10: if ⇧

expl

is not Null then
11: return ⇧

expl

6. VALIDATION
In this section the performance of the algorithms will be
discussed. In order to use these algorithms on vulnerable
binaries an implementation was made using the framework
angr [1]. The development process will be briefly discussed
in section 6.1. In section 6.2 the experiments ran using the
tool will be discussed. Finally arbitrary write vulnerabili-
ties will be discussed in section 6.3.

6.1 Implementation
The implementation of the algorithms in section 5 has
been built using the symbolic analysis framework angr [1].
The developers of this library have also implemented au-
tonomous exploit generating software[12]. Some of the
code which organizes the data found during symbolic ex-
ecution has been used in our implementation to validate
the algorithms used in this research.

The first part of the implementation is a module which
simulates a concolic trace on a binary using a crashing
input. It does so by constraining the input variables,
namely the command line arguments and the standard in-
put datastream, to the given crashing input. It then steps
through the program, ignoring any path with unsatisfiable
constraints, and often following only one path.

4

The constraints and memory expressions found using the
analysis module are used by the tool to determine if the
path taken is exploitable and it finds the constraints for
an exploit using the algorithms in section 5.

Angr is at this moment unable to symbolically execute
the methods that manage the memory on the heap in libc
malloc, it is therefore unfortunately impossible to prop-
erly analyze these methods, using this framework. How-
ever, in section 6.3 we will show that exploitation using
these methods falls in the categories described in section
5, and therefore should be exploitable by the algorithms
described in the same section. This means that the imple-
mentation is not yet able to generate exploits for vulnera-
bilities caused by methods managing the heap. Once angr

supports analysis of these methods, our implementation
should work on these vulnerabilities.

Another problem encountered during the implementation
was a bug in angr, which meant that it was impossible to
record method calls during analysis. This is required for
the algorithm described in 5.1 to determine the target of a
symbolic write. Unfortunately the tool is therefore unable
to exploit this vulnerability class.

6.2 Experiments
In order to validate the correctness of the algorithms, we
used the implementation to analyze and generate exploits
for some example simple vulnerable programs. For the
first vulnerability class defined in section 5 a stack and
heap based vulnerable program was constructed and tested.
Two programs, each with a stack based return address
overwrite, have been constructed and tested using this
methodology. One where the overflowed array was re-
versed before the return statement and one where it was
not. Finally, the arbitrary write vulnerabilities will be
discussed in section 6.3.

All the vulnerable programs are built with the same struc-
ture which is displayed as algorithm 5.

Algorithm 5

1: function Vulnerable(INPUT)
2: Allocate memory which will contain user input
3: Setup requirements for a vulnerability
4: Vulnerable statement
5: Possible memory mutations
6: Trigger vulnerability

The vulnerable programs were then analyzed using the
GNU debugger [5] and the exploit generated by the tool.
In most cases the tool generated an exploit that would cor-
rectly generate an input which would allocate the shellcode
to memory and it would constrain the program counter to
move to the address of the shellcode. In some cases the ex-
pected address of the shellcode was too inaccurate and the
exploit would not work. Because of the reasons discussed
in 6.1 we can not correctly perform analysis on programs
that use the heap, therefore the exploit generated for a
pointer overwrite on the heap did not work correctly.

Although the exploit did not manage to cause every pro-
gram to execute arbitrary code, it did allocate shellcode
and managed to constrain the program counter to the es-
timated address of the shellcode. The only problem be-
ing the inaccuracy of the memory addresses. Methods to
improve the reliability of exploits have been discussed in
section 5.2.

6.2.1 Pointer overwrites

The experiment concerning a pointer overwrite was un-
successful for the vulnerable heap program, since angr did
not account for the chunk metadata and therefore had
mistaken the location of the function pointer. This minor
di↵erence was not caused by the algorithm in section 5.3.
This should behave correctly once the angr library is able
to correctly symbolically execute the methods in malloc.

In the case of a stack based pointer overwrite, the imple-
mentation was able to generate an exploit for the vulner-
able program.

6.2.2 Return address
The algorithm in 5.3 was able to generate an exploit for
stack based return adress overwrites.

To show that this implementation is able to generate ex-
ploits for vulnerabilities where a bu↵er containing the shell-
code is mutated after the write of the shellcode, we also
tested a vulnerable program that showed this vulnerabil-
ity class. The analysis of this program did however fail
due to an unknown bug during the analysis step in angr.

6.3 Arbitrary write exploitation
As discussed in section 6.1 some parts of the algorithms
described in section 5 were impossible to implement using
angr. In this section we will discuss some of the known
exploitation strategies used to build exploits for vulnera-
bilities in the heap and we will show that they often lead to
an arbitrary write or other vulnerability class as described
in section 5. Once angr supports the required features, it
can be shown that the algorithms in section 5 are applica-
ble in realistic situations. A full description and discussion
on these attacks can be found in Malloc Des-Maleficarum
[3].

6.3.1 House of Force
The House of Force exploitation method requires a mem-
ory allocation where the size of the allocated memory is
determined based upon user input. The next memory allo-
cation will then allocate a section of memory with a sym-
bolic address. If other conditions discussed in [3] are met
then this symbolic address can be almost any address in
the programs memory. Therefore, if a crashing input sat-
isfies these conditions it should be exploitable using the
algorithm described in section 5.5.

6.3.2 House of Mind
This attack is also described in [3]. It, just as the previous
method, requires a range of conditions to be met. If these
conditions are met an arbitrary address gets overwritten
with the address of a chunk of the heap. The exploited
code can be found in figure 1. If we can control the first
bytes of this chunk and its content, then an exploit can be
made. This is however not exploitable with the method
proposed in this research. This will further be discussed
in section 8. In addition to that, mitigations have been
implemented in the current version of glibc.

6.3.3 House of Spirit
This attack requires a bu↵er overflow which causes an
overwrite of an heap pointer, if all the requirements dis-
cussed in [3] are met and a malloc statement is made fur-
ther down in the program then it will return an chunk
with an arbitrary address. Which should, like the House
of Force attack, be exploitable by using the algorithm dis-
cussed in section 5.5 since this essentially is a symbolic
write.

5

1: void int free(mstate av, Void t mem) {
2:
3: bck = unsorted chunks(av); . This value can be

controlled by user input
4: fwd = bck->fd;
5: p->bk = bck;
6: p->fd = fwd; . At this point the address of the freed

chunk gets written to the arbitrary address
7: bck->fd = p;
8: fwd->bk = p;
9: }
Figure 1: Code in glibc that leads to arbitrary write

6.3.4 Unlink
There was a vulnerability in the unlink macro used by the
free method in glibc. CRAX[6] has shown that this kind
of vulnerability is exploitable by determining exploitable
constraints. However, like the House of Mind attack the
current version of glibc is not vulnerable to this attack
anymore.

7. DISCUSSION
In this section the results will be discussed in addition to
some considerations about the performance and applica-
bility of the tool.

7.1 Performance
It should be noted that although the algorithms in section
5 create correct constraints, a constraint solver might not
always be able to solve the constraints because of the com-
plexity that some symbolic states have. This means that
although the implementation used to verify the correctness
of the algorithms worked on the example programs, that
it could hang on more complex and real life applications.

7.2 Arbitrary write
Due to a bug in angr we were unable to register the meth-
ods called during the symbolic execution of a program.
This leads to the inability to find which entry in the gen-
eral o↵set table needs to be symbolic to generate an ex-
ploit. Therefore, section 5.5 contains a theoretical discus-
sion on whether the algorithm can exploit arbitrary writes.

7.3 Heap exploitation
Unfortunately, at the moment of writing this document,
using the tool angr we were unable to construct an ap-
plication that performed analysis on the methods from
malloc in glibc. Therefore, it was impossible to validate
the algorithms on vulnerabilities that needed key elements
from the malloc implementation in glibc to be exploitable.
However, there is a discussion in section 6.3 on whether
modern exploitation techniques, and whether they resem-
ble an arbitrary write vulnerability.

7.4 Applicability to modern software
Modern systems and software have exploit mitigation sys-
tems in place, which prevent some vulnerabilities from be-
ing exploitable. This means that to exploit these pro-
grams, the exploits need to be more complex to mitigate
the mitigation techniques. Exploit mitigation techniques
are discussed in section 3.3. This results in the fact that
the exploits generated using the algorithms from this re-
search often will often not work. This does not mean that
these vulnerabilities are not exploitable by automatic ex-
ploitation methods, and is a good point for future research
discussed in section 8.2.

8. FURTHER RESEARCH

During the concolic execution of a crashing input all paths
that are unreachable with that input remain unexplored,
this is the main benefit of concolic execution, where the
analysis allows for a detailed understanding of the program
state without having the problem of state explosion. There
is a downside to this method, because the given input
might cause a crash because of a vulnerability, but the
taken path can be unexploitable.

Take for example a simple stack based bu↵er overflow
where the input is just long enough to overwrite the first
byte of the return address, this will probably not be ex-
ploitable, while a minor change in the constraints might
allow for exploitation.

In this case a method that identified the instruction that
performed the illegal memory action and could e�ciently
explore the state space to try to re execute that instruc-
tion, would allow an automatic exploitation program to
find an exploitable path.

Another example vulnerability that can cause an input to
crash without following an exploitable path. Is a vulner-
ability needs to be exploited using the code in malloc, if
the input does not satisfy the complex conditions neces-
sary for an arbitrary write then the algorithms in section
5 will not be able to generate an exploit.

It would therefore be interesting to mark some methods
like malloc and free to be executed without removing un-
satisfiable paths. A tool using this method would not have
the problem of state explosion, and should be able to cope
with the problem that a minor path change might allow
for an exploitable path.

8.1 House of Mind
As stated in section 6.3.2 the method proposed in this re-
search can not yet exploit arbitrary writes where we can
not control the expression that is being written. Further-
more, it can also not handle situations where the instruc-
tion pointer is not symbolic while the memory at the in-
struction pointer is. It should be clear that if we place
shellcode at this address, that an exploit could be made.
This adaption should allow for more vulnerabilities to be
exploited using automatic exploitation techniques and is
therefore an apt option for further research.

8.2 Hardening
Like noted in the research for Mechanical Shellphish[12]
we could use the implementation provided in Q[10] to
harden most of the exploits generated by the algorithms
in this research. However, in addition to using the meth-
ods proposed in that research more hardening methods
could be implemented. Another useful topic that could be
researched are multi stage exploits. Where the attacker
first needs to exploit an information leak before it can
build a control flow hijacking exploit. This would proba-
bly require broader analysis than concolic execution of a
crashing input.

8.3 Other exploitation methods
There are multiple ways that vulnerabilities can be ex-
ploited, one of which we have been able to automate.
However, this technique is not applicable to every vulner-
ability. Other methods, like return to libc attacks or ex-
ception handler overwrites in addition to other techniques
like jump to reg methods that can increase the reliability
of exploits can be researched.

8.4 Performance
To avoid complex pseudo code algorithms, we did not look

6

at the optimization of the exploit generation algorithms.
The example programs took about 50 seconds to complete,
90% of this time was taken up by the calculation of all the
shellcode constraints. One way that the algorithms can
be sped up, is if we immediately check if the instruction
pointer can be constrained to the address of the shellcode,
instead of when all shellcode constraints have been col-
lected. In addition to that, concurrent calculation of the
shellcode constraints should be possible, allowing the uti-
lization of more processor cores.

9. CONTRIBUTIONS
This research focused on generating actionable proof of
concept exploits, instead of focusing on the whole process,
thus providing an excellent base to compare implementa-
tions of exploit generating systems. In addition to that,
the research paper discussed the existing exploit genera-
tion techniques thoroughly, thus providing an overview of
the current state of exploit generation.

Moreover, tools that are used to discover vulnerabilities
can be enhanced to use the proposed method. These tools
will then be able to recognize security critical bugs, thus
assisting developers in prioritizing what bugs should be
handled first.

Finally, this research will provide researchers with a base
algorithm for further research in this field.

10. CONCLUSION
To guarantee the security of systems it is important to find
security vulnerabilities. Part of this is filing bug reports
with developers when you have found a bug or vulnerabil-
ity. However, since the amount of bug reports a develop-
ment team receives can be more than they are able to re-
solve, it is important to prioritize security critical bugs. By
providing researchers with a detailed analysis of a crash, in
addition to a working proof of concept exploit, developers
will be able to prioritize security bugs. In this research
we looked at methods to automatically generate Proof
of Concept exploits to help in this process. We looked
at three vulnerability classes, namely pointer overwrites,
return address overwrites, and arbitrary writes, and we
implemented a tool that could determine an exploit re-
turn address overwrite and pointer overwrite vulnerabili-
ties. We also provided theoretical discussion on arbitrary
write vulnerabilities, however due to a bug in the support-
ing framework angr, we were unable to implement this in
the tool. In section 6.3 we have shown that some heap ex-
ploitation techniques can be categorized as arbitrary write
exploits. This means that they should be exploitable using
the method in section 5.5.

In addition to that, this algorithm has an advantage over
the method described by AEG[2] in that it is able to reason
about situations where symbolic memory is mutated after
it has been written to memory.

In conclusion, we have not yet found a theoretical limit to
the use of concolic execution to generate exploits, besides
computational problems that could be caused when the
analyzed problem imposes a complex set of constraints,
and we have shown that it is applicable to the previously
described vulnerability classes.

11. REFERENCES
[1] angr. http://angr.io. Accessed: 2017-19-06.
[2] T. Avgerinos, S. K. Cha, B. L. T. Hao, and

D. Brumley. Aeg: Automatic exploit generation. In

Network and Distributed System Security

Symposium, 2011.
[3] blackngel. Malloc des-maleficarum. phrack, 2009.

Url: http://phrack.org/issues/66/10.html Accessed:
2017-19-06.

[4] S. K. Cha, T. Avgerinos, A. Rebert, and
D. Brumley. Unleashing mayhem on binary code. In
Proceedings of the 2012 IEEE Symposium on

Security and Privacy, SP ’12, pages 380–394,
Washington, DC, USA, 2012. IEEE Computer
Society.

[5] GNU. Gnu debugger.
https://www.gnu.org/software/gdb/. Accessed:
2017-19-06.

[6] S.-K. Huang, M.-H. Huang, P.-Y. Huang, C.-W. Lai,
H.-L. Lu, and W.-M. Leong. Crax: Software crash
analysis for automatic exploit generation by
modeling attacks as symbolic continuations. In
SERE, pages 78–87. IEEE, 2012.

[7] OWASP. Bu↵er overflow.
https://www.owasp.org/index.php/Bu↵er Overflow.
Accessed: 2017-19-06.

[8] R. Roemer, E. Buchanan, H. Shacham, and
S. Savage. Return-oriented programming: Systems,
languages, and applications. ACM Trans. Inf. Syst.

Secur., 15(1):2:1–2:34, Mar. 2012.
[9] E. J. Schwartz, T. Avgerinos, and D. Brumley. All

you ever wanted to know about dynamic taint
analysis and forward symbolic execution (but might
have been afraid to ask). In Proceedings of the 2010

IEEE Symposium on Security and Privacy, SP ’10,
pages 317–331, Washington, DC, USA, 2010. IEEE
Computer Society.

[10] E. J. Schwartz, T. Avgerinos, and D. Brumley. Q:
Exploit hardening made easy. In USENIX Security

Symposium. USENIX Association, 2011.
[11] H. Shacham, M. Page, B. Pfa↵, E.-J. Goh,

N. Modadugu, and D. Boneh. On the e↵ectiveness of
address-space randomization. In Proceedings of the

11th ACM Conference on Computer and

Communications Security, CCS ’04, pages 298–307,
New York, NY, USA, 2004. ACM.

[12] Y. Shoshitaishvili, R. Wang, C. Salls, N. Stephens,
M. Polino, A. Dutcher, J. Grosen, S. Feng,
C. Hauser, C. Kruegel, and G. Vigna. SoK: (State
of) The Art of War: O↵ensive Techniques in Binary
Analysis. In IEEE Symposium on Security and

Privacy, 2016.

7

	 Introduction
	 Research Question
	 Background
	 Analysis Methods
	 Concrete Execution
	 Taint analysis
	 Symbolic Execution
	 Concolic testing
	 Fuzzing

	Attack Techniques
	 Shellcode
	 Return Oriented Programming
	 Ret2libc

	 Exploit hardening
	 W xor X
	 Address Space Layout Randomization

	 Related works
	 Algorithms
	 Shellcode
	Exploit reliability
	 Pointer overwrites
	 Return address overwrites
	 Arbitrary writes

	 Validation
	 Implementation
	 Experiments
	 Pointer overwrites
	Return address

	 Arbitrary write exploitation
	 House of Force
	 House of Mind
	House of Spirit
	 Unlink

	Discussion
	 Performance
	 Arbitrary write
	 Heap exploitation
	 Applicability to modern software

	 Further research
	 House of Mind
	 Hardening
	 Other exploitation methods
	 Performance

	 Contributions
	 Conclusion
	References

