
Introducing RAS: A Domain Specific Language For
Trading Card Games

Victor Lap
University of Twente

P.O. Box 217, 7500AE Enschede
The Netherlands

v.t.lap@student.utwente.nl

ABSTRACT
Currently, there is no good way to prototype trading card
games and then be able to test the workings and the im-
plications of rules in these games. To be able to prototype
new trading card games quickly, and have a uniform rule
language for making these games a digital game, a Domain
Specific Language needs to be developed. During this re-
search a new Domain Specific Language called RAS (Rule
Automation System) has been developed to describe trad-
ing card games and their rules and constraints. This DSL
comes with an interpreter to evaluate the rules and con-
straints of the game. This allows for non-programmers to
prototype a new trading card game and quickly see what
dynamics the game has.

Keywords
domain specific language, trading card games, rule check-
ing, prototyping

1. INTRODUCTION
At the current time, if non-programmers would like to pro-
totype games, they often resort to prototyping these games
without a computer. This is called playtesting. However,
when building a complex game, it saves time and thinking
power to leverage a computer for evaluating all the rules
and constraints. If a program can take over this job, there
is more room left for creativity and changes can be made
quicker.

To let a computer have a basic understanding of rules of
trading card games, a prototype can be programmed in a
general-purpose language. However, to let people program
a game, without having knowledge of programming but
with knowledge of the game, a simpler language needs to
be created.

This research will aim in creating such language. This new
language is called a Domain Specific Language (abbrevi-
ated as DSL). From now on the language that has been
developed will be called RAS (Rule Automation System).
DSLs tend to favour expressiveness in a domain over gener-
ality [8] as opposed to a general-purpose language (GPL).
By providing this expressiveness in the trading card game
domain, people without programming skills can now pro-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy oth-
erwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.
28th Twente Student Conference on IT February 2nd, 2018, Enschede,
The Netherlands.
Copyright 2018, University of Twente, Faculty of Electrical Engineer-
ing, Mathematics and Computer Science.

gram trading card games, and the time spent program-
ming decreases. In an empirical study about DSLs, a
conclusion was found that DSLs are superior to general
purpose languages in all cognitive dimensions [4]. These
gains in expressiveness and ease of use correspond with
gains in productivity and reduced maintenance costs [8].

To be able to interpret the statements made in the lan-
guage, an interpreter has been written using Java that
reads the abstract syntax tree provided by Xtext. This
program will be able to hold a game state and process
moves. The program then responds saying if the move is
valid or not. To test both RAS and the interpreter, Magic:
The Gathering [5] and Crazy Eights (Dutch: Pesten) will
be programmed in RAS. After they have a RAS imple-
mentation, the games can be used to test the interpreter.

The following research question will be answered at the
end of this paper:

”How can trading card games be abstracted to create a Do-
main Specific Language?”

To answer this question, the following sub-questions will
be answered:

• What are the similarities in card games and where
do they differ?

To fully grasp the concepts that need to be defined, a
good understanding of the differences and similarities of
the games needs to be formed.

• How can a metamodel be defined to easily model a
card game?

From the differences and similarities found, a number of
domain concepts can be defined.

• How can this metamodel be provided with a concrete
syntax?

After the metamodel has been defined, the abstract syntax
needs a concrete syntax to be used.

• How to program a rule engine for validating moves?

After the abstract and concrete syntax are clear, the re-
search focuses on implementing the rule engine to execute
the constraints defined in the game and test them against
moves that are being made.

The rest of this paper is organised as follows: in Section 2,
background information on relevant topics is given, Sec-
tion 3 mentions related work in the trading card game

1

domain and domain specific language domain, Section 4.1
shows the domain concepts that are found analysing the
domain. Section 4.2 provides the domain concepts with a
visualisation in the meta model and Section 4.3 turns this
abstract syntax into a concrete syntax. Section 5 proceeds
with a description of how the tooling around RAS can be
used. Section 6 follows with the validation of this research
and Section 7 provides a conclusion. Finally, Section 8
discusses the potential future work after this research.

2. BACKGROUND
For this research it is relevant to have knowledge on trad-
ing card games, domain specific languages in general, and
Xtext in particular. In the upcoming section these sub-
jects will be briefly introduced.

2.1 Trading Card Games
Crazy Eights is a card game that is being played since the
1600s [13] and knows many variations like Uno, Spoons,
Swedish Rummy and President [7].

Regular card games have been around since the 13th cen-
tury. But in 1993 a new kind of card game entered the
premise with the release of Magic: The Gathering (short:
Magic). The reason this game was different, was because
the players could not buy all the cards at once. Players
needed to start by buying starter decks, after which they
are encouraged to expand their deck with so called booster
packs [9]. This resulted in a card game where people col-
lected and treasured the cards, but also played with them.

This research uses Crazy Eights and Magic, because these
games are very different from each other in terms of com-
plexity and game dynamic. By choosing extremes in the
domain, this DSL aims to support a wide range of games.
Crazy Eights is not a trading card game, however, the
same concepts as trading card games have laid at the ba-
sis for Crazy Eights (it is turn based, cards have actions,
cards have properties and cards have rules).

2.2 DSLs and Xtext
Domain Specific Languages are computer languages de-
signed for a specific domain. Since DSLs result in pro-
grams that are smaller and easier to understand, they al-
low even non-programmers to read, write and understand
the language [2].

DSLs for games often appear together with Model Driven
Development (also known as Model Driven Engineering
(abbreviated as MDE) or Model-Driven Software Devel-
opment (abbreviated as MDSD)). Model Driven Develop-
ment speeds up the process of developing, because it gen-
erates source code for the developer based on the models
that are defined.

A metamodel of a domain is formed by the relations be-
tween the concepts of a domain. Kleppe (2008) defines
metamodel as follows: ”A metamodel is a model used to
specify a language” [3]. This metamodel gives a quick view
into the specifications of a language and is often used as a
basis for the concrete syntax.

Xtext [16] is a framework for the development of DSLs and
other textual programming languages. For the generation
of RAS, Xtext has been used to generate an IDE for the
new language. Xtext is tightly integrated with the Eclipse
Modelling Framework (EMF) and Xtext based editors of-
fer a lot of features which are derived from the grammar
such as syntax colouring, validation, model navigation and
code completion. Because of all this extra features Xtext
offers for free, this paper uses Xtext to generate the IDE

Table 1. Similarities and differences between
Magic and Crazy Eights

Magic Crazy Eights
Properties 3 3

Properties with values 3 7

Rules per card 3 3

Complex rules 3 7

Actions 3 7

Turnphases 3 7

Card costs 3 7

Possible actions Many 2
Scorekeeping Lives None

and models for RAS.

3. RELATED WORK
Not a lot of research has been done on card games and
trading card games in combination with Domain Specific
Languages. However, there are a few studies in this do-
main of which three are highlighted here.

Altunbay, Cetinkaya, and Metin [1] introduce a board
game metamodel and a number of related concepts to the
board game domain and later specify a DSL to express
the board game domain. There is no follow-up research
available. This metamodel can be taken as a basis for the
metamodel that is needed for RAS. Sánchez, Garcés, and
Casallas [14] developed a DSL for tower defence games.
Tower defence games are a genre of games where the user
needs to build towers in a 2D grid, to avoid the enemies to
reach the exit point of a level [12]. This paper focuses on
generating code to build mobile games. Its way to utilize
Xtext forms a basis for the concrete syntax of RAS. Vi-
jayakumar, Abhishek, and Chandrasekaran [15] also pro-
pose a DSL but this is for all sorts of computer games. The
DSL that is proposed focuses on separating the concerns
of the Domain Expert and the Programming Expert, to
let programmers create games with the models that are
generated according to the DSL that the Domain Export
wrote. They prove that is better to utilise a DSL than us-
ing manual generation of games. This legitimises the time
needed to learn a DSL because this time is saved later on.

Trading card games differ from board games or computer
games in a way that trading card games have a very dif-
ferent structure of themselves where for each card in the
game, the game (or the rules) change.

4. DSL
In this section the results of this research will be explained.
First the domain concepts will be introduced, then the
abstract syntax is defined. After that the concrete syntax
is explained.

The first step to defining RAS is to conceptualise the do-
main. This can be done by finding differences and simi-
larities in the card games. To find these differences and
similarities the games are analysed based on the differ-
ent elements of the game, e.g. possible actions in a turn,
player hands, visibility of cards, amount of card types and
scorekeeping. A brief overview is given in Table 1.

4.1 Domain Concepts
Trading card games are a subset in the card game domain
which is in its turn a subset of the game domain. The
first thing to do is find the domain concepts of the parent
domains before the concepts of the trading card game do-
main can be found. According to the Oxford Dictionary,

2

Figure 1. Metamodel

game is defined as follows: ’A form of competitive activity
or sport played according to rules.’ [11]. This leads to three
main concepts of a game:

• Game: Global metaclass which contains all elements
in a game.

• Player: Players who are participating in a game.

• Rule: Rules define the constraints of a game. Rules
are either game-wide, or specific to one card. Rules
should have a requirement and optionally specify a
constraint in time for which this rule is valid (a du-
ration). If a card has a rule, then the player that
makes a move should adhere to that rule. If a game
has a rule, than all moves should adhere to that rule.

Card game is defined as follows: ’A game in which playing
cards are used.’ [10]. This introduces another component
in the domain:

• Card: Cards that are used in a game. Cards can
have a cost, can have multiple properties, define ad-
ditional rules, have actions that can be played and
have sideeffects that happen when they are being
played.

In this research there are several other domain-specific
concepts defined. These concepts are:

• Action: Cards can have actions on them. For exam-
ple an ability of a card that can be activated.

• Cost: Trading card games often require paying some
sort of price in the form of other cards or lives before
a card can be played.

• Duration: Actions, Rules and SideEffects can have a
duration. This means that those actions or rules are
not active for the remainder of the game, but instead
only last the specified amount of turn(phase)(s).

• Location: The locations where the cards can live.
Locations can be shared amongst players or are in-
dividual. If a location is shared, that means that
there is only one of those locations in the game. If
a location is individual, then for each player there
will be a separate location of that type. A location
can also be visible or hidden. This defines whether
or not the cards can be seen while playing the game.

• Property: Cards can have properties describing the
abilities of a card. Properties can have a value or act
as flags.

• SideEffect: Cards can have side effects defined. These
effects appear when being played, or when the re-
quirement is first met.

• Turnphase: A turn can have multiple phases where
players have different abilities in the game. This is
particularly useful if a game has rules where there
is a need of a certain order in the actions a player
takes. For example a game where the player needs
to draw a card first, and then play a card, can define
two phases: Draw and Play. These phases can be
referenced in rules. For example prohibiting a player
from playing a card in the Draw phase and vice
versa.

3

4.2 Abstract Syntax
Figure 1 represents the abstract syntax which is formed
by the relations between the concepts in the domain. All
the domain concepts of the previous section are mentioned
here, along with its relations to other domain concepts.
Setup and InitialLocationState are not necessarily do-
main concepts, but they are needed to setup the game in
order for the interpreter to work correctly.

{
name PlayFromDeckToTableOnly
requirement Play from matches Location

Deck or Play from matches Location
Deck2

requirement Play to matches Location
Table

}

Listing 1. Defining a play rule

4.3 Concrete Syntax
4.3.1 Considerations

A number of assumptions are made regarding the games to
ease the process of creating RAS and the interpreter. The
first assumption that has been made is that all the games
that are programmed in RAS should be turn based mean-
ing only one action can be played at any time. However,
players are allowed to play actions during other people’s
turn.

Another assumption is that all moves players could po-
tentially play during a turn, are allowed. This means that
if there are no rules against a certain move, this move is
allowed. See example in Listing 1. Assuming there are
three locations defined: Deck, Deck2 and Table, then in
the rule there is defined that the person can only play from
Deck -> Table or Deck2 -> Table. This means that
any other direction of play is prohibited.

{
name SameSuitOrNumberOrJackOrJoker
requirement Card property Suit matches

LocationCard Table property Suit
or

Card property Number matches
LocationCard Table property
Number or

Card property Number matches 11 or
// Jack

Card property Suit matches 4 //
Joker

}

Listing 2. Defining a rule with ’or’

Another assumption is the one about turn direction. Turns
in RAS always move from Player n to Player n+1 looping
back to player 1. The turn direction can be changed in-
game by playing a card with associated side effects. See
also Listing 6.

Assumptions about draw and play moves are also made.
For example draw moves are always getting the top card
of the draw location, whereas play moves can choose a
random card from a location. To further restrict these
moves, rules can be used.

Rules can be defined with several requirements. However,
if a rule needs an ’or’ expression, this needs to happen in
a single requirement. See for example Listing 2.

Game ...
Locations { ... }
Turnphases { ... }
Properties { ... }
Rules { ... }

Card { ... }
Card { ... }

Setup { ... }

Listing 3. Outline of a game

4.3.2 Grammar
For an example of the concrete syntax of a .ras file see
Listing 3 and Appendix A. A game defined in RAS should
start with the Game keyword followed by the name of the
game. After this, the locations can be defined where cards
can live. See also Listing 1. Next, the different phases
in a turn can be defined, followed by the possible prop-
erties a card can have. Hereafter are the global rules for
the game. Every move a player makes has to adhere to
this set of global rules. There is one exception, and that
is ”drawrules”. Drawrules start with the Draw keyword
(see for an example Listing 4).

{
name DrawFromDrawingPileToDeckOnly
requirement Draw from matches Location

DrawingPile
requirement Draw to matches Location

Deck
}

Listing 4. Defining a draw rule

After the rules, cards can be defined. Cards don’t have
an enclosure like the previous keywords, but are defined
as ”root” elements (See Listing 5). Cards can have costs,
properties, rules, actions and sideeffects. At last, the setup
of the game can be defined. Here one can define how many
players there are, and which cards are living at which lo-
cation at the start of the game. This is necessary for the
interpreter to know at which point a game it needs to start.

Card HeartsAce {
property Suit: 0 // Hearts
property Number: 1 // Ace
property Pest
sideeffects {

{
action Turn reverse

}
}

}

Listing 5. Defining a card

5. PLAYING A GAME
For playing and drawing cards in the interpreted .ras file,
an interactive console is provided. See for an example
of playing and drawing a card Listing 6. The example
demonstrates the playing of Crazy Eights. Crazy eights
is a game in which the object is to get rid of the cards in
your hand onto a discard pile by matching the number or
suit of the previous discarded card [6].

The interpreter starts with a list of all the players partic-
ipating in a game. In this case there are three players. It
then prints out the current positions of all the cards in the

4

game. These cards are defined in the Setup instruction
in the .ras file. Player 1 is the first one to take an ac-
tion, and the player chooses to play a card from its deck.
When choosing the [ToLocation] the player tries playing
to the wrong card location and the rule engine blocks this
play. The player then proceeds by playing the card to the
correct location and the rule engine processes the side ef-
fects of playing this card. According to the rules defined
in the .ras file it skips one turn and Player 3 is the one to
play next. Player 3 tries to play the Ace of Spades, but
the current top card on the table is the recently played
Eight of Clubs and not the suit nor the numberof the card
match, so again, the rule engine steps in and blocks the
move. Player 3 then decides to draw a card and gets the
Ten of Spades. Because all players have played, it is player
1’s turn again. Player 1 decides to play a Joker and the
rule engine processes the side effects and notifies the next
player to draw some cards.

Player 1 vs Player 2 vs Player 3
Player 1 (Deck 7 cards { ClubsEight

HeartsQueen JokerOne SpadesSeven
DiamondsTwo HeartsFive SpadesFive }
)

Player 2 (Deck 7 cards { DiamondsKing
SpadesQueen DiamondsFour ClubsFour
HeartsJack SpadesThree ClubsAce })

Player 3 (Deck 7 cards { SpadesAce
SpadesEight DiamondsJack DiamondsFive
ClubsSix HeartsKing DiamondsNine }
)

DrawingPile 32 cards
Table 1 cards { ClubsKing }
Player 1’s turn:
Possible commands: display , list , help ,

exit , play [FromLocation] [ToLocation
] [Card], draw [FromLocation] [
ToLocation], action [Player] [
FromLocation] [ToLocation] [Card]

>play Deck DrawingPile ClubsEight
You cannot play ClubsEight from Deck to

DrawingPile!
Player 1’s turn:
>play Deck Table ClubsEight
Skipping 1 player(s)
Player 3’s turn:
>play Deck Table SpadesAce
You cannot play SpadesAce from Deck to

Table!
Player 3’s turn:
>draw DrawingPile Deck
You got a SpadesTen
Player 1’s turn:
>play Deck Table JokerOne
Player 2’s turn:
You need to draw 5 cards

Listing 6. Playing and drawing a card

6. VALIDATION
In order to test whether or not the research has provided
a valid solution to the research question it should at least
incorporate the following three requirements:

”The language should be able to describe a prede-
fined set of card games”
RAS has tried to comprise the whole domain by choosing
two games at different ends of the domain. On the one end
there is a game like Magic, representing a complex game,
and on the other end there is a game like Crazy Eights,
representing a simple game. Both of these games have
been given an implementation in RAS. See for source code
of the interpreter, as well as the grammar definition and

the example games https://github.com/victorlap/RAS.
While Crazy Eights has been implemented completely,
Magic has not received a complete implementation. For
Magic, a set of 15 cards have been chosen and imple-
mented, because Magic is too large of a game to be imple-
mented during the duration of this research.

”The language should be flexible in a way that it
can handle similar games without needing to be
altered”
This statement cannot be validated completely, because
for this to be validated, other games should be given an
implementation in RAS. However, due to the way RAS was
constructed, it can be assumed that implementing other
games is possible without having to alter RAS.

”The language should have an implementation which
should facilitate rule checking against the constraints
defined in the language”
As seen in Section 5 it is clear that rules are being inter-
preted. And moves are being checked against these rules.

7. CONCLUSION
The question that needs to be answered is ”How can trad-
ing card games be abstracted to create a Domain Specific
Language?”. This question can be answered by finding the
answers to the sub-questions.

What are the similarities in card games and where do they
differ? In Section 4 similarities and differences have been
discussed of Magic and Crazy Eights. The fundamental
differences lays in the complexity of the two games. This
complexity expressed itself mainly in the rules and the
amount of locations and actions a game has. These simi-
larities and differences led to the the domain concepts as
discussed in Section 4.1 which in turn led to the answer of
the following question: How can a metamodel be defined
to easily model a card game?. The metamodel is defined
using the domain concepts discovered in the previous sub-
question and by adding relations between these concepts.

The next sub-question to be answered is: How can this
metamodel be provided with a concrete syntax?. This ques-
tion is answered in Section 4.3. The syntax is defined by
making the metamodel and the relationships concrete in a
grammar (see Appendix B). After the grammar is defined
and several games have been implemented the next sub-
question can be answered: How to program a rule engine
for validating moves?. This rule engine is able to validate
the constraints defined in the .ras files. See for an example
of a game being played Section 5.

7.1 Limitations
There are certain limitations to the current state of RAS
and the interpreter. While RAS allows games such as
Magic and Crazy Eights to be implemented, RAS does not
have the most flexible solution when it comes to defining
rules and constraints for a game. RAS has got the power
to define and interpret a range of games in the trading card
game domain. However, it is to be seen whether RAS can
fit all games in its domain. For very demanding use cases
it could be better to use a GPL instead. There is a thin
line between a DSL and a GPL. If people are free to write
complete java programs in a DSL, the specificness of the
DSL gets lost and one might ask oneself if a DSL has an
advantage over a GPL.

8. FUTURE WORK
This section discusses potential future work. There are
five possible future researches discussed: expansion of ex-

5

pressions, expansion of the domain, better graphical rep-
resentation, a client library and user testing.

Expansion of possible requirement and action ex-
pressions:
As mentioned in Section 7.1, there are certain limitations
to the way RAS defines rules and constraints. For future
work it would be interesting to see how these expressions
can be made more flexible to allow for a more complete
way of writing these expressions.

Expansion of the domain to allow for other types
of card games:
It would be interesting to see if, without losing the expres-
siveness of the domain, RAS can be adjusted to accommo-
date for other types of card games.

Better graphical representation of the game:
To have a better representation of the game, it would be
interesting to see if instead of the command line, a graph-
ical user interface can be provided with RAS. This user
interface can simplify the representation of the game on
the screen and better visualise the different spots of cards
and movements that they can and cannot make.

Client library:
The DSL can be used to generate a client library so a game
can base their game implementation on the rules set in the
DSL. Currently there is no client library generated from
the DSL, but this is a possibility.

User testing:
To fully understand if RAS is successful at letting people
without a programming background program games, it is
useful to actually test whether or not they can utilise RAS
to define such games. One example of a test that can be
held is without giving a person any documentations or
introduction to RAS, but with an example game, have
them explain some of the details of this game. Another
example could be a person in the same scenario as stated
above, but instead of explaining what the rules do, have
them add a card to the game.

9. NOTES
Source code of the interpreter as well as the grammar defi-
nition and the implementation of Magic and Crazy Eights,
will be made public on the following location: https:

//github.com/victorlap/RAS

10. REFERENCES
[1] D. Altunbay, E. Cetinkaya, and M. Metin. Model

driven development of board games. In the First

Turkish Symposium on Model-Driven Software
Development (TMODELS), 2009.

[2] M. Fowler. Domain-specific languages. Pearson
Education, 2010.

[3] A. Kleppe. Software language engineering: creating
domain-specific languages using metamodels.
Pearson Education, 2008.

[4] T. Kosar, N. Oliveira, M. Mernik, V. J. M. Pereira,
M. Črepinšek, C. D. Da, and R. P. Henriques.
Comparing general-purpose and domain-specific
languages: An empirical study. Computer Science
and Information Systems, 7(2):247–264, 2010.

[5] Magic: The gathering.
https://magic.wizards.com. Accessed: 2017-12-02.

[6] J. McLeod. Rules of card games: Crazy eights.
https://www.pagat.com/eights/crazy8s.html.
Accessed 2018-01-27.

[7] J. McLeod. Rules of card games: Crazy eights
variations. https:
//www.pagat.com/invented/eights_vars.html.
Accessed 2018-01-21.

[8] M. Mernik, J. Heering, and A. M. Sloane. When and
how to develop domain-specific languages. ACM
Comput. Surv., 37(4):316–344, Dec. 2005.

[9] T. Owens and D. S. Helmer. Inside collectible card
games. Millbrook Press, 1996.

[10] Definition of game in english. https://en.
oxforddictionaries.com/definition/card_game.
Accessed: 2018-01-18.

[11] Definition of card game in english. https:
//en.oxforddictionaries.com/definition/game.
Accessed: 2018-01-18.

[12] F. Palero, A. Gonzalez-Pardo, and D. Camacho.
Simple Gamer Interaction Analysis through Tower
Defence Games, pages 185–194. Springer
International Publishing, Cham, 2015.

[13] B. H. Rome and C. Hussey. Games’ Most Wanted:
The Top 10 Book of Players, Pawns, and
Power-Ups. Potomac Books, Inc., 2013.

[14] K. Sánchez, K. Garcés, and R. Casallas. A dsl for
rapid prototyping of cross-platform tower defense
games. In 2015 10th Computing Colombian
Conference (10CCC), pages 93–99, Sept 2015.

[15] A. Vijayakumar, D. Abhishek, and
K. Chandrasekaran. DSL Approach for Development
of Gaming Applications, pages 199–211. Springer
India, New Delhi, 2016.

[16] Xtext. http://www.eclipse.org/xtext. Accessed:
2017-12-02.

6

APPENDIX
A. PESTEN.RAS
Game nl.pesten

Locations {
Deck: Individual Visible ,
DrawingPile: Shared Hidden ,
Table: Shared Visible

}

Properties {
Suit ,
Number ,
Pest

}

Rules {
{

name SameSuitOrNumberOrJackOrJoker
requirement Card property Suit

matches LocationCard Table
property Suit or

Card property Number matches
LocationCard Table property
Number or

Card property Number matches
11 or // Jack

Card property Suit matches 4
// Joker

},
{

name DrawFromDrawingPileToDeckOnly
requirement Draw from matches

Location DrawingPile
requirement Draw to matches Location

Deck
},
{

name PlayFromDeckToTableOnly
requirement Play from matches

Location Deck
requirement Play to matches Location

Table
}

}

Card HeartsKing {
property Suit: 0
property Number: 13

}

Card HeartsQueen {
property Suit: 0
property Number: 12

}

Card HeartsJack {
property Suit: 0
property Number: 11
property Pest
sideeffects {

{
action Turn next Rule remove

SameSuitOrNumberOrJackOrJoker
}

}
}

Card HeartsTen {
property Suit: 0
property Number: 10

}

Card HeartsNine {
property Suit: 0
property Number: 9

}

Card HeartsEight {

property Suit: 0
property Number: 8
property Pest
sideeffects {

{
action Turn skip

}
}

}

Card HeartsSeven {
property Suit: 0
property Number: 7
property Pest
sideeffects {

{
action Turn repeat

}
}

}

Card HeartsSix {
property Suit: 0
property Number: 6

}

Card HeartsFive {
property Suit: 0
property Number: 5

}

Card HeartsFour {
property Suit: 0
property Number: 4

}

Card HeartsThree {
property Suit: 0
property Number: 3

}

Card HeartsTwo {
property Suit: 0
property Number: 2
property Pest
sideeffects {

{
action Turn next Player take 2

}
}

}

Card HeartsAce {
property Suit: 0
property Number: 1
property Pest
sideeffects {

{
action Turn reverse

}
}

}

Card SpadesKing {
property Suit: 1
property Number: 13

}

Card SpadesQueen {
property Suit: 1
property Number: 12

}

Card SpadesJack {
property Suit: 1
property Number: 11
property Pest
sideeffects {

{

7

action Turn next Rule remove
SameSuitOrNumberOrJackOrJoker

}
}

}

Card SpadesTen {
property Suit: 1
property Number: 10

}

Card SpadesNine {
property Suit: 1
property Number: 9

}

Card SpadesEight {
property Suit: 1
property Number: 8
property Pest
sideeffects {

{
action Turn skip

}
}

}

Card SpadesSeven {
property Suit: 1
property Number: 7
property Pest
sideeffects {

{
action Turn repeat

}
}

}

Card SpadesSix {
property Suit: 1
property Number: 6

}

Card SpadesFive {
property Suit: 1
property Number: 5

}

Card SpadesFour {
property Suit: 1
property Number: 4

}

Card SpadesThree {
property Suit: 1
property Number: 3

}

Card SpadesTwo {
property Suit: 1
property Number: 2
property Pest
sideeffects {

{
action Turn next Player take 2

}
}

}

Card SpadesAce {
property Suit: 1
property Number: 1
property Pest
sideeffects {

{
action Turn reverse

}
}

}

Card DiamondsKing {
property Suit: 2
property Number: 13

}

Card DiamondsQueen {
property Suit: 2
property Number: 12

}

Card DiamondsJack {
property Suit: 2
property Number: 11
property Pest
sideeffects {

{
action Turn next Rule remove

SameSuitOrNumberOrJackOrJoker
}

}
}

Card DiamondsTen {
property Suit: 2
property Number: 10

}

Card DiamondsNine {
property Suit: 2
property Number: 9

}

Card DiamondsEight {
property Suit: 2
property Number: 8
property Pest
sideeffects {

{
action Turn skip

}
}

}

Card DiamondsSeven {
property Suit: 2
property Number: 7
property Pest
sideeffects {

{
action Turn repeat

}
}

}

Card DiamondsSix {
property Suit: 2
property Number: 6

}

Card DiamondsFive {
property Suit: 2
property Number: 5

}

Card DiamondsFour {
property Suit: 2
property Number: 4

}

Card DiamondsThree {
property Suit: 2
property Number: 3

}

Card DiamondsTwo {
property Suit: 2
property Number: 2
property Pest
sideeffects {

{

8

action Turn next Player take 2
}

}
}

Card DiamondsAce {
property Suit: 2
property Number: 1
property Pest
sideeffects {

{
action Turn reverse

}
}

}

Card ClubsKing {
property Suit: 3
property Number: 13

}

Card ClubsQueen {
property Suit: 3
property Number: 12

}

Card ClubsJack {
property Suit: 3
property Number: 11
property Pest
sideeffects {

{
action Turn next Rule remove

SameSuitOrNumberOrJackOrJoker
}

}
}

Card ClubsTen {
property Suit: 3
property Number: 10

}

Card ClubsNine {
property Suit: 3
property Number: 9

}

Card ClubsEight {
property Suit: 3
property Number: 8
property Pest
sideeffects {

{
action Turn skip

}
}

}

Card ClubsSeven {
property Suit: 3
property Number: 7
property Pest
sideeffects {

{
action Turn repeat

}
}

}

Card ClubsSix {
property Suit: 3
property Number: 6

}

Card ClubsFive {
property Suit: 3
property Number: 5

}

Card ClubsFour {
property Suit: 3
property Number: 4

}

Card ClubsThree {
property Suit: 3
property Number: 3

}

Card ClubsTwo {
property Suit: 3
property Number: 2
property Pest
sideeffects {

{
action Turn next Player take 2

}
}

}

Card ClubsAce {
property Suit: 3
property Number: 1
property Pest
sideeffects {

{
action Turn reverse

}
}

}

Card JokerOne {
property Suit: 4 // Joker Suit
property Pest
sideeffects {

{
action Turn next Player take 5

}
}

}

Card JokerTwo {
property Suit: 4 // Joker Suit
property Pest
sideeffects {

{
action Turn next Player take 5

}
}

}

Setup {
Player "Alice"

Deck { HeartsFive , HeartsQueen ,
JokerOne , SpadesSeven , ClubsEight
, DiamondsTwo , SpadesFive }

Player "Bob"
Deck { ClubsFour , SpadesThree ,

ClubsAce , SpadesQueen ,
DiamondsFour , HeartsJack ,
DiamondsKing }

Player "Carol"
Deck { HeartsKing , SpadesEight ,

DiamondsJack , SpadesAce ,
DiamondsFive , ClubsSix ,
DiamondsNine }

cards {
Table { ClubsKing },
DrawingPile {

HeartsTen , HeartsNine , HeartsEight
, HeartsSeven , HeartsSix ,
HeartsFour , HeartsThree ,
HeartsTwo , HeartsAce ,

SpadesKing , SpadesJack , SpadesTen ,
SpadesNine , SpadesSix ,

SpadesFour , SpadesTwo ,
DiamondsQueen , DiamondsTen ,

DiamondsEight , DiamondsSeven ,
DiamondsSix , DiamondsThree ,

9

DiamondsAce ,
ClubsQueen , ClubsJack , ClubsTen ,

ClubsNine , ClubsSeven ,
ClubsFive , ClubsThree , ClubsTwo
,

JokerTwo
}

}
}

B. RAS.XTEXT
grammar nl.utwente.fmt.ras.Ras with org.

eclipse.xtext.xbase.Xbase

generate ras "http ://fmt.cs.utwente.nl/
ras"

Game hidden(WS, ML_COMMENT , SL_COMMENT):
’Game’ name=QualifiedName
(’Locations ’ ’{’ locations +=

CardLocation (’,’ locations +=
CardLocation)* ’}’)?

(’Turnphases ’ ’{’ turnphases +=
TurnPhase (’,’ turnphases +=
TurnPhase)* ’}’)?

(’Properties ’ ’{’ cardpropertytypes
+= CardPropertyType (’,’
cardpropertytypes +=
CardPropertyType)* ’}’)?

(’Rules’ ’{’ rules+= CardRule (’,’
rules+= CardRule)* ’}’)?

cards+=Card*
’Setup’ ’{’ setup=Setup ’}’;

Setup:
players += Player (players += Player)*
(’cards’ ’{’
cards+= InitialLocationState (’,’

cards+= InitialLocationState)*
’}’)?;

InitialLocationState:
loc=[CardLocation] ’{’ (cards +=[Card

])? (’,’ cards +=[Card])* ’}’;

Player:
’Player ’ name=STRING
cards+= InitialLocationState (’,’

cards+= InitialLocationState)*;

Card:
’Card’ name=ID ’{’
(’cost’ ’{’ cost+=Cost (’,’ cost+=

Cost)* ’}’)?
(’property ’ properties += CardProperty

)*
(’rules’ ’{’ rules+= CardRule (’,’

rules+= CardRule)* ’}’)?
(’actions ’ ’{’ actions += CardAction (

’,’ actions += CardAction)* ’}’)?
(’sideeffects ’ ’{’ sideeffects +=

SideEffect (’,’ sideeffects +=
SideEffect)* ’}’)?

’}’;

CardProperty:
type=[CardPropertyType] (’:’ value=

INT)?;

CardPropertyType:
name=ID;

CardRule:
{CardRule}
’{’
(’name’ name=ID)?
(’description ’ description=STRING)?
(’requirement ’ requirements +=

ExpressionBlock)*

(’duration ’ duration=Duration)?
’}’;

Cost:
’{’ ’type’ type=CostType ’,’ ’amount

’ amount=INT
(’,’ ’card’ card=[Card])?
(’,’ ’ofproperty ’ property =[

CardPropertyType])? ’}’;

SideEffect:
{SideEffect}
’{’
(’requirement ’ requirements +=

Expression)*
(’action ’ actions += Expression)+
(’duration ’ duration=Duration)?
’}’;

CardAction:
’{’ ’cost’ ’{’ cost+=Cost (’,’ cost

+=Cost)* ’}’ (’gains’ ’{’ gains+=
SideEffect (’,’ gains+= SideEffect
)* ’}’)? ’}’;

Duration:
’{’ (’amount ’ amount=INT)? ’phase’

mode=[TurnPhase] ’}’;

TurnPhase:
name=ID;

CardLocation:
name=ID ’:’ type=LocationType

visibility=LocationVisibility;

ExpressionBlock:
left=Expression keyword=

ExpressionKeyword (right=
Expression)? (’or’ or=
ExpressionBlock)?;

Expression:
TurnExpression | TurnPhaseExpression

| CardPropertyExpression |
PlayerExpression | RuleExpression
| ValueExpression |

DrawExpression | PlayExpression |
LocationExpression |
OtherCardExpression |
LocationCardExpression |
OtherCardPropertyExpression;

TurnExpression returns Expression:
{TurnExpression} ’Turn’ keyword=

TurnKeyword (expression=
Expression)?;

TurnPhaseExpression returns Expression:
{TurnPhaseExpression} ’TurnPhase ’

phase=[TurnPhase];

RuleExpression returns Expression:
{RuleExpression} ’Rule’ keyword=

RuleKeyword rule=[CardRule];

CardPropertyExpression returns
Expression:
{CardPropertyExpression} ’Card’ ’

property ’ (keyword=CardKeyword)?
property =[CardPropertyType] (
value=INT)?;

LocationCardExpression returns
Expression:
{LocationCardExpression} ’

LocationCard ’ location =[
CardLocation] ’property ’ property
=[CardPropertyType];

10

OtherCardPropertyExpression returns
Expression:
{OtherCardPropertyExpression} ’

OtherCard ’ ’property ’ (keyword=
CardKeyword)? property =[
CardPropertyType] (value=INT)?;

OtherCardExpression returns Expression:
{OtherCardExpression} ’OtherCard ’

keyword=CardKeyword (value=INT);

PlayerExpression returns Expression:
{PlayerExpression} ’Player ’ keyword=

PlayerKeyword (keyword2=
PlayerKeyword)? (value=INT)? (
costtype=CostType)?;

DrawExpression returns Expression:
{DrawExpression} ’Draw’ fromOrTo=

DrawPlayKeyword;

PlayExpression returns Expression:
{PlayExpression} ’Play’ fromOrTo=

DrawPlayKeyword;

LocationExpression returns Expression:
{LocationExpression} ’Location ’

location =[CardLocation];

ValueExpression returns Expression:

{ValueExpression} value=INT;

enum DrawPlayKeyword:
from | to;

enum RuleKeyword:
remove | add;

enum ExpressionKeyword:
remove | add | matches;

enum CardKeyword:
remove | add | is | isnot |

takecontrol | limit;

enum TurnKeyword:
prev | cur | next | skip | repeat |

reverse;

enum PlayerKeyword:
take | me | other | loses | gains;

enum LocationVisibility:
Visible | Hidden;

enum CostType:
Live | Card;

enum LocationType:
Shared | Individual;

11

