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ABSTRACT
In an ideal world, systems never fail. Since we do not live
in an ideal world it is necessary to maintain systems to re-
pair failures. A maintenance strategy is used to determine
how often a system is inspected and when components
need to be repaired or replaced.
A Fault Maintenance Tree (FMT) is a model used to com-
pare maintenance strategies. FMTs are used to find an
optimal maintenance strategy. A maintenance strategy is
meant to decrease the number of failures that cause down-
time. Maintenance itself also incurs costs and planned
downtime for repairs. An optimal maintenance strategy
needs to find a balance between both costs.
To be able to give reliable predictions for maintenance
strategies, the model has to be as realistic as possible.
If the model predicts a certain failure rate, this needs to
match the failure rate seen in the actual system.
This paper studies the way degradation of electrically in-
sulated railway joints is modelled. This is done using the
model developed in a previous study. This resulted in the
discovery of several anomalies in the model, as well as the
previously hidden effect of repairs on the system.

Keywords
Fault Maintenance Tree, Degradation, Maintenance strat-
egy

1. INTRODUCTION
Two important factors for the performance of any physi-
cal system are the reliability of the system and the num-
ber of failures of the system. To improve the reliability
of a system and decrease the number of failures, main-
tenance strategies are created and implemented. For a
maintenance strategy to be successful it is important to
first know how and when a system will fail, and then to
know how maintenance will affect such failures.
Fault Tree Analysis (FTA)[7] is widely used to analyse
physical systems. If the failure rates of the components
of the system are known, the odds that the entire system
will fail can be calculated. However, it is not possible to
include the effects of maintenance on such a model. As
such, FTA is not a suitable tool to find the effects of dif-
ferent maintenance strategies.
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Figure 1. An electrically insulated joint with the
visible components indicated.[6]

Fault Maintenance Trees (FMTs)[5] are being developed
to simulate different maintenance strategies. An FMT ex-
tends fault trees to include component degradation, in-
spections and repairs.
Previous work by Ruijters et al.[6] focused on modelling
Electrically Insulated joints (EI-joints, see Figure 1) using
FMTs. EI-joints separate railway tracks into segments
and detect if a train is located on the segment. EI-joints
contain components that fail without warning and compo-
nents that gradually decrease in functionality.
The model developed by Ruijters et al. was reported to
be created with data, originally obtained from ProRail, as
well as data obtained by interviewing experts. The model
created realistic predictions for the failure of the electrical
components but the predictions for the physical compo-
nents showed some deviation from reality.
This paper will focus on analysing this model using the
Uppaal tool[3]. First, the results of the previous study
will be reproduced. Then, we identify several avenues for
improvements to the model.

1.1 Research Question
The research will focus on the main research question.

Research Question: Can the model for EI-joints from
[6], using Fault Maintenance Trees, be improved?

To answer this question, the following subquestions have
been formulated.

Question 1: Can the results obtained in the study by
Ruijters et al.[6] be reproduced?
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Question 2: What is the effect of maintenance on the
predicted failures?

1.2 Research method
To answer the subquestions and subsequently the main re-
search question, the following steps were followed:
First, a literature study was performed to study FTA and
FMTs and other possible modelling solutions. Further-
more, the behaviour of metal degradation was researched.
The Uppaal tool was also studied.
After the literature study, the results presented in [6] were
reproduced. Then, attempts were made to model contin-
uous degradation. To complete this step, a rate of degra-
dation was needed. This was calculated using the MTBFs
stated in [6]. Based on these calculations the number of
repairs performed by the model was studied. Furthermore,
the number of performed inspections was studied to find
the reason for the repairs. This required running several
simulations with the current model.

1.3 Motivation
Although the failures predicted in the previous study mostly
matched the failures observed in actual joints, a few failure
types showed significant deviations. A hypothesis to ex-
plain the deviation was that the way the degradation was
modelled in the FMT and Uppaal, using a set of discrete
phases, did not do justice to the degradation taking place
in the real world. The proposed solution to this problem
was to change the model for the objects showing large de-
viations to incorporate continuous degradation instead of
using discrete phases.
The discrete phases of an object could be seen as different
states of an object. An example of an object with four
phases would be: New, used but no visible faults, visible
faults but no failure, and failed. While these are all rea-
sonable qualifiers for the phase of an object, if these are
used as discrete phases, this implies a clear, concrete mo-
ment where an object moves from one phase to another.
If an object is associated with a continuous degradation,
such an object would not have such clear phase changes.

The approach to incorporate continuous degradation was
to move from the phases to a continuous value, indicat-
ing the degree of degradation for an object. This can be
compared to the system of using a number of hitpoints to
indicate the health of a player in many video games. If the
variable recording the degradation was to be implemented
using an integer, this would not create the desired effect.
Since an integer variable can only contain a discrete set of
values, this would effectively just be increasing the number
of phases. This is not necessarily an impossible approach.
When looking at mathematics, using a limit to decrease
the step size and increasing the number of steps can be
used to approximate a continuous function. This is not
the chosen approach since increasing the number of steps
taken will improve the complexity of the model and very
likely increase the time taken to run simulations.
Since the clocks in Uppaal are continuous values, these
lend themselves very well to recording a continuous vari-
able. To correctly model degradation using a clock, the
clock needs to be set to an appropriate rate. This rate
should be based on the time it takes for a component to
fail. Calculations to find such a rate led to the discovery
of the results presented in this paper.

2. BACKGROUND
In this section, background information will be provided
to give a context to the concepts used in the paper. We
first introduce degradation of components in Section 2.1.

In Section 2.2 we introduce the terms used for expected
failure values. We then explain fault tree analysis in Sec-
tion 2.3.
Lastly we explain Uppaal and the Monte Carlo technique
used by Uppaal in Section 2.4 and Section 2.5.

2.1 Degradation
Physical degradation can be split into two categories: ob-
jects with a sudden point of failure and objects with a
gradual loss of function.
An example of an object with a sudden point of failure is a
light bulb. A light bulb produces light when turned on up
to a moment when it stops. Some light bulbs start flicker-
ing before losing total functionality, but there is no main-
tenance strategy to influence the lifetime of a light bulb.
Sometimes light bulbs have production errors. Therefore
it was customary to test your light bulb in the shop before
payment. This pattern, with early failure and end-of-life
failure, is often referred to as a bathtub pattern[8][9].
An example of an object with a gradual loss of function is
the brake system on a bicycle. The brake pads are slowly
worn down until the brakes no longer influence the speed
of the bike significantly. The settings for the brakes can
be changed so that the brake pads are closer to the wheel.
The brakes will thus regain some of their functionality.
Eventually, the brakes will be worn down too much and
will have to be replaced. There is often an indicator on
the brake pads to show when this point has been reached.
This indicator is based on the average lifetime for brake
pads.
It is necessary to account for the consequences of a fail-
ure when deciding on a maintenance strategy. Where a
broken light bulb leaves you in the dark until the bulb is
replaced, if the brakes on a bicycle do not work you could
end up on the bonnet of a car. The failure of an object
can also have different consequences based on the location
of the object. A light bulb responsible for illuminating a
staircase should be replaced as soon as possible, while a
light bulb in a room with multiple sources of light can be
replaced with less priority.
For an object with a sudden point of failure, the moment
to repair the object is clear. For an object with a grad-
ual loss of function, there might be an indication when it
should be replaced. To decide the repair moment based on
such an indicator it is important to know the standard de-
viation. A large standard deviation could lead to a large
under- or over-estimation for the repair moment and as
such an increase in the cost of the maintenance strategy.
A replacement based on such an indicator can be seen as
a preventive replacement meant to prevent total failure.
Based on the consequences of a failure it can be decided
if it is necessary to perform a preventive replacement or
a replacement after the object has failed. The costs of a
failure and the costs of repairing or replacing an object
are important factors to consider when deciding whether
to use preventive or reactive measures.
For a maintenance strategy, one can assume that replacing
an object with a sudden point of failure is a simple oper-
ation. Objects with a gradual loss of function often have
a simple method to repair the functionality. However, if
the object needs to be replaced this often requires a more
complicated action.
A simple operation to replace an object would appear to
conclude with low downtime. If it takes a long time for a
mechanic to reach the location of the object or there is a
limited amount of time available to replace the object it
could still lead to a long downtime.
Another important factor for modelling degradation is how
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Figure 2. A fault tree for the brakes on a bicycle. 1
indicates worn brake pads, 2 indicates a stretched
brake line and 3 indicates a broken brake line

the data about the degradation is obtained. If a log is
kept detailing the use of the object, this could be used
to improve the failure predictions. However, registering
this data will probably introduce errors if this is not done
properly. Furthermore, a new cost is created, namely the
cost of maintaining the data about the use of an object.
Lastly, a maintenance strategy can be influenced by the
number of objects that are maintained. For example,
a housing corporation needs to maintain a considerable
number of light bulbs in the general areas of their build-
ings. If these light bulbs are installed at the same time,
they will all have the same average lifetime. If a light bulb
fails far before the expected lifetime it will lead to the sin-
gle light bulb being replaced when the corporation is noti-
fied by a tenant. Once the average lifetime has elapsed, it
will be cheaper to replace all the light bulbs in one large
operation than to wait for every light bulb to fail. Every
failure would then lead to a single replacement bringing a
substantial amount of overhead costs compared to replac-
ing all the light bulbs at once.
In case the brake line fails on the bicycle, a replacement
of the brake line will also include replacing the brake pads
and re-adjusting their position. If the brake line is of low
quality, the likelihood of the brake pads reaching their end
of life decreases.
It is difficult to decide on a maintenance strategy when a
new object is introduced without an expected lifetime. At
first, it is unknown whether a failure is a single occurrence
or the precursor for the end of the lifetime.

2.1.1 Metal degradation
Metal objects that are subjected to cyclic loading suffer
from metal fatigue. The repeated stress placed on an ob-
ject causes progressive and structural damage. To calcu-
late the effect of metal fatigue on degradation rates, very
specific data is required. It became clear that this data
was not available within the scope of this project.
Ahktar et al.[1] performed a study where such calculations
were made.

2.2 MTTF
Failure rates of mechanical systems are often quantified
using a Mean Time To Failure (MTTF)1 for nonrepairable
systems or a Mean Time Between Failures (MTBF) for

1Sometimes Estimated Time To Failure (ETTF) is used.

repairable systems. These are associated with the time
that is expected to elapse before a failure will occur. The
Mean Time To Repair (MTTR) is often used to indicate
the mean time between failure and repair. These values
are often calculated as an arithmetic mean, to account
for the variance that is inherent in such values. These
calculations use historical data and knowledge about the
materials used in creating the object.

2.3 FTA/FMT
A Fault Tree models the behaviour of a system by com-
bining the failure rates of the components using Boolean
gates. An example of a simple Fault Tree (FT) modelling
the brakes on a bicycle can be found in Figure 2. All gates
in this figure represent logical disjunctions (OR-gates).
In this FT it can be seen that the brakes can fail because
either the pads are worn out, the distance between the
pads and the wheel has become too large or the line con-
necting the pads to the handle has failed.
In this model, all the basic events are either functioning
or broken. It is clear that this is not an accurate repre-
sentation of the phase the brake pads are in. This model
also can not show the effects of changing the settings of
the brakes. As such, Fault Tree Analysis is a very useful
tool to find the most likely cause for failures, but it is less
suitable to test different repair strategies.
FMTs are an extension for FTA to allow degradation and
maintenance to be modelled. The basic events are rede-
fined for degradation. This is achieved by splitting a basic
event into multiple states. Every state corresponds to a
pre-defined degradation phase of the component. Further-
more, a maintenance model is introduced and thresholds
are set on the degradation states to specify when an action
needs to be performed. If a component can be repaired
this is modelled by setting a basic event back to a previ-
ous phase.
FMTs also introduce a new gate to the fault tree: the
RDEP (rate dependency). When a component fails, it
can sometimes influence the failure rate for related com-
ponents. This is modelled using the RDEP gate.

2.4 Uppaal
Uppaal is a tool developed by Upsalla University, Sweden
and Aalborg University, Denmark since 1995[2]. This tool
can be used to analyse, validate and verify real-time sys-
tems modelled as networks of timed automata. For the
analysis of FMTs, the extended version of Uppaal, Up-
paal SMC[3][4] is used. This extends regular Uppaal with
statistical model checking.
In order to analyse an FMT with Uppaal, the tree needs
to be reinterpreted into a set of priced timed automata
(PTA). Every leaf of the tree is changed into a PTA that
models the failure behaviour of that leaf. These individual
PTAs are then combined to form a network that models
the behaviour of the tree.
A PTA is an automaton made up of states and transitions.
It is possible to include clocks, which makes the automa-
ton timed. Such clocks can be used in invariants to limit
the time that can be spent in a certain state. It is also
possible to use the value of clocks in guards of transitions.
The value of a clock will then influence which transition is
taken out of a state.
When an invariant with a clock is used to limit the time
spent in a state, the actual time-delay that occurs in a
simulation follows a uniform distribution. If such an in-
variant is not present, the state has an unbounded delay.
The state can then be given an exponential rate. The
time-delays will then follow the exponential distribution
specified by such an exponential rate.
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States can also be made urgent or committed. In both
urgent and committed states, no time can elapse. The dif-
ference is that while it is possible to take other transitions
when there is an urgent state active in one of the PTAs,
if a committed state becomes active the only permissible
action is to take a transition out of that state.
To model interaction between PTAs, it is possible to use
synchronisation channels. To use a synchronisation chan-
nel, a transition in one PTA is marked as the sender, while
a transition in one or more other PTAs is marked as a
receiver. When a sending transition is taken in a PTA,
all other PTAs that use the same synchronisation channel
must take a transition marked as a receiver.
Uppaal can analyse the set of PTAs with statistical model
checking, a Monte Carlo simulation technique. It is pos-
sible to define queries using a simplified version of Timed
Computational Tree Logic (TCTL). These queries can be
used to define reachability properties, safety properties
and liveness properties. Furthermore, it is possible to de-
fine queries that can answer questions about probabilities.
Reachability properties are used to determine if it is pos-
sible to satisfy a given property. This does not guarantee
that the property is satisfied in every simulation. A pos-
itive result means that there is a path possible that sat-
isfies the property while a negative result indicates that
the property can never be satisfied. This can be used to
verify that the model can show the behaviour that you are
trying to simulate.
Safety properties are used to determine if a certain prop-
erty will never be satisfied. It is also possible to use safety
properties to test if a property will possibly never be sat-
isfied. To test if a property will never be satisfied, the
universal quantifier is used. If the existential quantifier
is used, it tests if there exists a maximal path where the
property will never be satisfied.
Liveness properties are used to test if something eventually
happens. It can be used to test if a property is eventually
satisfied, but more often it is used to test the link between
two properties. Such a link is often a leads to or response
property, where, if A becomes true, then eventually B will
become true.
These three properties can be used to verify the correct-
ness of a model or to check if possibly unwanted behaviour
is possible in the model, or perhaps the system it is based
upon.
Of particular interest for FTA and FMT analysis are the
probability queries. These can be used to find the proba-
bility of a certain property, to compare the probability of
a property to a threshold or to compare the probability of
one property to the probability of another. Uppaal SMC
also supports the evaluation of expected values. Given an
expression that evaluates to a clock or an integer prop-
erty, it will calculate the average minimum or maximum
value of a set of simulations. For example, it might be
relevant to find the average value of a counter in a PTA.
The maximum value of the counter will then be the value
of the counter at the end of the simulation, given that it
is not reset. The average of the maximum values of a set
of simulations is thus the average value of the counter.
These queries can also include a quantifier for how long
a simulation should last. Queries that evaluate expected
values also need to indicate how many simulations should
be run. For probability queries, Uppaal will run simula-
tions until it has obtained a statistically relevant result
based on parameters such as a Confidence-Interval or the
probability of false negatives.

2.5 Monte Carlo

Monte Carlo simulations can be used when a model con-
tains unknown variables. A Monte Carlo simulation in-
volves drawing a large number of pseudo-random uniform
values from an interval, such as a [0, 1] interval. These
values are assigned meaning based on a stationary proba-
bility distribution. For example, if flipping a coin was to
be simulated in such a way, any value less than or equal to
0.50 would be heads and values greater than 0.50 would
be tails. By the law of large numbers, drawing many ran-
dom values will lead to the simulation of the behaviour of
repeatedly flipping a coin. If a model contains unknown
inputs, but a probability distribution for these values, the
Monte Carlo technique can be used to approximate these
variables.
Because of the pseudo-random values used in Monte Carlo
simulations, the results show slight variances. If a larger
number of simulations is used to obtain average values,
this variance can be reduced. Of course, running more
simulations takes more time.

Monte Carlo calculations often involve Markov chains. In
a Markov chain, the probability of possible events depends
only on the current state. This is sometimes characterized
as memorylessness, where information about the history
prior to the current state has no influence on the proba-
bility of future states or events.

3. RESEARCH
In this section, the research will be explained. First, we
present our outcomes when attempting to reproduce the
results in Section 3.1. Then, the expected failures are
explained in Section 3.2. Then the difference between ex-
pected and observed failures is explained in Section 3.3.
Finally, the changes made to the model are explained in
Section 3.4.

3.1 Reproducing results from the previous
study

To be able to verify if changes made to the model from the
previous study[6] are improvements or deteriorations, it is
necessary to first reproduce the results from the previous
study.
The model managed to reproduce the results from the pre-
vious study2.

3.2 Expected failures
The previous study[6] presented a table with MTBFs for
every component.
When looking at the MTBF of the first component, poor
geometry, this has an estimated failure time of 5 years.
The previous study used a simulation time of 50 years. On
average, the first component would thus fail 10 times. The
previous study also used a population of 50.000 joints. Be-
cause only 10% of the joints can experience the first failure
type, this would mean 5.000 joints experience this failure.
5.000 joints experiencing 10 failures in 50 years would
mean 50.000 failures.
However, the previous study stated that 110 failures were
predicted by the model and only 48 failures were observed.
When this is calculated for all the failure types, the results
in Table 1 are obtained.
For BE11 to BE14, the predicted number of failures is
comparable to the calculated number of failures. How-
ever, the expected number of failures based on the MTBFs
showed a large discrepancy for BE1 to BE10. These val-
ues differed from the reported failures with a magnitude of

2For all the basic events except for BE8, no explanation
has been found yet for this anomaly.
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Table 1. Comparison of the number of failures based on MTBF calculation and the number of failures
reported in [6].

BE Failure ETTF Failure #Failures #Failures Predicted Actual
nr. mode (yrs) Prob. in 50 yr per year

1 Poor geometry 5 10% 50.000 1.000 110 48
2 Broken fishplate 8 33% 103.125 2.062 129 83
3 Broken bolts 15 33% 55.000 1.100 2.3 2.1
4 Rail head broken out 10 33% 82.500 1.650 68 30
5 Glue connection broken 10 33% 82.500 1.650 70 37
6 Battered head 20 5% 6.250 125 3.4 5.5
7 Arc damage 5 0.2% 1.000 20 7 3.4
8 End post broken out 7 33% 117.857 2.357 12 9.4
9 Joint bypassed: overhang 7 100% 500.000 10.000 212 200

10 Joint shorted: shavings (normal) 1 12% 300.000 6.000 156 150
11 Joint shorted: splinters 200 3% 12.500 250 254 261
12 Joint shorted: foreign object 250 100% 10.000 200 199 200
13 Joint shorted: shavings (grinding) 5000 100% 500 10 10 10
14 Sleeper shifted 5000 100% 500 10 10 18
15 Internal insulation failure 5000 100% 500 10 n.a. n.a.

10× – 100×, a much more significant difference than the
difference between predicted and actual failures, at most
2×.

3.3 Failure prevention
The number of failures calculated with the MTBFs is com-
pared to the number of failures reported by the previous
study in Table 1.
The previous study also notes that ProRail reported ap-
proximately 3000 joints are replaced every year.
The number of failures obtained from the calculations us-
ing the MTBF is the number of failures that will occur if
no maintenance is performed.
The failures reported in the previous study are the fail-
ures that occurred while maintenance to prevent failures
was performed.
The model includes periodic inspections that can detect
degradation and repair this degradation before a failure
occurs. The number of failures reported is obtained by
counting the number of times an object actually fails, de-
spite inspections taking place. A maintenance action can
increase the lifetime of an object when a repair is done,
or replace the entire joint, effectively resetting the MTBF
for all components.
A repair or replacement action is performed in the model
by setting the phase of the component back to the first
phase. This means that the expected number of failures
based on the MTBF is reduced every time a maintenance
action is performed. This makes it harder to draw con-
clusions about the accuracy of the degradation modelling.
To be able to determine if a model accurately represents
the degradation of an object, it could be useful to obtain
accurate data about the failure of joints without mainte-
nance. Furthermore, a different model could be created
that models the degradation of the object. This can then
be combined to verify that the model accurately models
the degradation. When an accurate degradation model is
achieved, this can then be incorporated into a model which
includes maintenance.
Special cases are the components modelled using a single
phase. The expected number of failures closely matches
the observed number of failures for these components. In
the model, these components cannot trigger a maintenance
action before they have failed. The MTBF for these com-
ponents is still reset by replacing the entire joint, but the
MTBF is so much longer than the simulation duration, a

reset will have a negligible effect.
Questions could also be asked about the origin of the
MTBF values for these components. If these are calcu-
lated based on the observed number of failures, it is logical
that the expected number of failures matches the observed
number of failures.

3.4 Hidden repairs
The previous study only reported the number of failures
and analysed the cost of the inspections and repairs. It
has become clear that a lot of repairs are executed that
prevent failures. As such, it is interesting to find out how
many repairs were actually executed, how many replace-
ments were executed and which component triggered these
repairs.
To achieve this, several counters were added to the model:

1. In the inspection model, to find how often inspec-
tions triggered repairs.

2. In the repair model, to find how often a repair was
performed.

3. In the models for the components, to find how often
they were repaired before they failed.

4. In the models for the components, to find how often
they reached the threshold where an inspection will
lead to a repair.

Queries were formed to find average values for each of
these counters, for each component in the system, as well
as for every inspection module and repair module. These
queries were evaluated using 1.000 simulations each lasting
50 years. Some components share an inspection module.
This means that if one component indicates that a failure
will lead to a repair, the other components associated with
that inspection module will also be evaluated as needing
repair. Components that share an inspection module of-
ten also share a repair module. This means that when
one component is repaired, all other components associ-
ated with that repair module will also be repaired.
The repair model allows for scheduled repairs. This can
trigger a repair every X years, regardless of whether an in-
spection has triggered such a repair. In the current version
of the model, no scheduled repairs are executed, because
ProRail indicated they did not use scheduled repairs. This
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Table 2. The number of times the different inspec-
tion modules triggered a repair per year.

Inspection Inspecting #Repairs Repaired
id BE triggered by
I1 BE1 1.263 ±231 R1
I2 BE2, BE4, BE15 3.435 ±302 R2
I3 BE6, BE7, BE9 2.305 ±274 R3
I4 BE10, BE13 1.861 ±310 R4
I5 BE5 1.129 ±111 R5
I6 None None None
I7 None None None
I8 BE14 10 ±3 R8
I9 BE11 260 ±32 R9

I10 BE8 2.624 ±246 R11

means that all repairs made in the model are triggered ei-
ther by a component failing or by an inspection indicating
that a repair needs to be executed.

4. RESULTS
The average value for the counters introduced in the in-
spection and the repair model can be found in Table 2 and
Table 3 respectively. For I6, I7, R7 and R8, no values are
stated. These modules are defined in the model but not
used in the current version.
The average value of the counters introduced to the com-
ponent models, and their associated inspection and repair
modules can be seen in Table 4.
These numbers do not match exactly. The values marked
with ± are the error bounds reported by Uppaal. For the
large values, this is between 10−20%. For the small values,
this error bound can be as high as 100%. This could be
the result of running just a 1000 simulations. Increasing
the number of simulations used to obtain these numbers,
could decrease these error bounds.

The simulation for BE14 had to be re-run. The compo-
nent was repaired more often than it should have been
based on the inspections. This was caused by a typo in an
identifier [Ruijters, personal correspondence]. A failure
listener, responsible for noticing a component has failed
and triggering a repair for that component, was listening
to the top of the FMT, instead of to the component it was
responsible for. This typo would have had no influence on
the numbers of failures presented in the previous study.
However, it could have had an impact on the cost of re-
pairs used in the maintenance strategy analysis. It also
had a drastic impact on the new counters, 1300 repairs in
the first run compared to 20 repairs in the second run.

The most interesting value obtained from these simula-
tions is the number of repairs made by repair module 2.
Repair module 2 is responsible for replacing the entire
joint, thus has the most impact on the expected failure
number of the different components. In Table 3, it can be
seen that the entire joint is replaced approximately 3600
times. This is more or less in line with the number of
joints replaced indicated by ProRail, mentioned in 3.3:
3000. These 3600 repairs were caused by approximately
2000 inspections on BE2, approx. 1400 inspections on BE4
and approx. 10 inspections on BE15.
These 3600 repairs are also the difference between the total
times a component is repaired and the number of times an
inspection linked to the component triggers a repair, which
is visible in Table 4.
BE12 is an exception: It indicates a joint being shorted

Table 3. The number of times the different repair
modules performed a repair.

Repair Repairs #Repairs
id BE performed

R1 BE1 1.363 ±236
R2 All except BE12 3.669 ±336
R3 BE6, BE9 2.359 ±284
R4 BE10, BE13 1.826 ±325
R5 BE5 1.247 ±121
R6 None None
R7 None None
R8 BE14 20 ±12
R9 BE11 458 ±58

R10 BE12 178 ±26
R11 BE8 2.625 ±243

because of the presence of a foreign object. Then it be-
comes obvious that repairing this failure is achieved by
removing the foreign object, and nothing else3. It is also
logical that replacing the entire joint has no influence on
the number of times BE12 is repaired4.

The results from Table 4 potentially point to an error in
the model. This error involves the components that have
their inspection threshold in the same phase as their failure
moment. When such a component fails, it first notifies the
failure listener that the component has failed, and that a
repair should be performed as soon as possible. Then,
notifies the inspection module that on the next scheduled
inspection, it can detect degradation that should trigger a
repair.
The failure listener will notify the repair module that it
needs to perform a repair The repair module requires a
period of time to perform the repair, in the current model
this is one day. After this time has elapsed, it will repair
the failed component, and any other components linked to
this repair module.
Meanwhile, the inspection module is waiting for the next
inspection, which happens once every 90 days. This means
that it will take between 1 and 89 days before the next
inspection takes place. Once this inspection takes place, it
will notify the repair module that a repair should be done.
Unless the inspection happens right after the failure, this
means that the component was already repaired, and will
be repaired again.
This could explain the difference between the number of
inspection thresholds reached and the number of repairs
made for BE11. BE11 should only require approximately
250 repairs, according to both the inspection rate and the
number of failures predicted in Table 1, but is repaired
approx. 450 times.

5. DISCUSSIONS
When comparing the number of times the components are
repaired, as seen in Table 4, column 4, to the number
of times the components are expected to fail, as seen in
Table 1, column 6, it can be seen that the repairs either ex-
ceed or match the number of times the components where
expected to fail. The only exception is BE9, but this is
caused by the fact that BE9 was reported to have a proba-

3An exception would be if this foreign object caused dam-
age when it made contact with the joint. However, such a
failure is outside of the scope of this project.
4An exception would be a foreign object being left behind
in the joint due to the maintenance. Again, this is outside
the scope of this project.
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Table 4. Comparison of the number of repairs performed on the basic events and the number of times
the basic event reached the inspection threshold.

BE Inspected Repaired by #Inspection #Maintenance #Failure #Repairs not #Repairs
nr. by repair modules threshold reached repairs repairs replacing the joint replacing the joint

1 I1 R1, R2 1.145 ±227 4.647 ±383 115 ±30 1.363 ±237 3.669 ±330
2 I2 R2 1.973 ±191 3.644 ±321 117 ±22 0 3.669 ±330
3 None R2 0 3.669 ±336 1 ±2 0 3.669 ±330
4 I2 R2 1.364 ±133 3.766 ±328 77 ±18 0 3.669 ±330
5 I5 R2, R5 1.063 ±113 4.646 ±430 53 ±14 1.247 ±122 3.669 ±330
6 I3 R2, R3 137 ±29 6.378 ±433 5 ±4 2.359 ±284 3.669 ±330
7 I3 R2 01 3.761 ±334 11 ±15 0 3.669 ±330
8 I10 R2, R11 2.665 ±250 6.861 ±571 165 ±26 2.625 ±244 3.669 ±330
9 I3 R2, R3 2.124 ±257 5.699 ±408 194 ±37 2.359 ±284 3.669 ±330

10 I4 R2, R4 1.889 ±311 5.236 ±437 154 ±38 1.826 ±325 3.669 ±330
11 I9 R2, R9 2401 ±30 4.012 ±336 238 ±31 458 ±59 3.669 ±330
12 None R10 2071 ±29 0 192 ±28 178 ±26 0
13 I4 R2, R4 41 ±3 5.822 ±482 9 ±5 1.826 ±325 3.669 ±330
14 I8 R2, R8 101 ±6 3.894 ±338 14 ±7 20 ±12 3.669 ±330
15 I2 R2 71 ±5 3.656 ±337 16 ±8 0 3.669 ±330

1This component reaches the inspection threshold at the same time that it fails

bility of 100% in Tabel 1, while BE9 only has a probability
of 20% in the model.
The fact that the number of repairs matches the number
of expected failures could indicate that the degradation is
being modelled quite accurately. It is, however, necessary
to compare the number of times the model says a compo-
nent is repaired, to the number of times the component
was actually repaired. This data was not available, unless
the actual failures listed in the previous study also includes
the repairs made due to inspection. However, this seems
unlikely as those failures would not result in 3000 joints
being replaced.
Analysing the components that share inspections and re-
pairs indicated that BE6 and BE9 share an inspection and
a repair module. This is of particular interest because no
link is visible between these components in the initial FMT
in Figure 3. of [6]. It is unclear if this was impossible to
visualise in the FMT or if it is not supposed to be linked
in the model.
Furthermore, BE7 also shares the inspection module with
BE6 and BE9, but not the repair module. This means that
the inspection module can find it is necessary to trigger
a repair based on the degradation of BE7, but the repair
module that is triggered will only repair BE6 and BE9. Of
the approximately 2300 repairs triggered by the inspection
module, approx. 2100 were triggered by BE9 and approx.
130 were triggered by BE6, while 0 inspections were trig-
gered by BE7. Although this would indicate BE7 does not
have an influence on the number of repairs, it does not in-
dicate if BE7 should also be repaired, or if it should not
be linked to this specific inspection module.
It was confirmed that BE7 should not share this inspec-
tion module, and should use the inspection module that
triggers the joint replacement instead [Ruijters, personal
correspondence].

With respect to the fact that inspections might trigger a
repair when this is no longer necessary, as explained at the
end of Section 4, this could be improved by changing the
model. This can be achieved by creating an interaction
between the repair module and the inspection module. If
a repair module performs a repair, it should notify the in-
spection module that the inspection threshold is no longer
reached.

5.1 Average values
All the values used in this paper, and the previous study,
are averages. These values are obtained by modelling a
single joint. The values from this joint are then multi-
plied by the number of joints that are present, in this case
50.000. Sometimes the result of this calculation is then
divided by the duration of the simulation, to obtain the
average number of failures in a single year.
It is not self-evident that creating such an average does
justice to the different circumstances possible for joints.
A joint on a very busy railway will likely degrade faster
than a joint on a railway that is barely used. Furthermore,
the ground beneath a joint in Twente is far less likely to
deform due to subsidence than the ground beneath a joint
in the Randstad.
For circumstances that show a significant difference through-
out the population, the distribution of joints affected could
be calculated. This distribution could perhaps be mod-
elled with a separate component that influences associated
degradation using the RDEP-gate.
This model also disregards the effect of a joint failing on
the probability of joints in close proximity also failing. It
seems reasonable to assume that joints that are in close
proximity to each other were installed at about the same
time. Furthermore, they have experienced very similar
conditions, thus one joint failing could indicate that other
joints are also close to the end of their lifetime. If a joint
is replaced, the railway section will need to be closed. The
main cost of replacing the joint is probably closing the
railway section and bringing the necessary machines to
the location. It could be more cost efficient to replace
the other joints that could fail soon, instead of waiting
for them to fail and then closing the railway again. For
repairs triggered by inspections, it seems reasonable to as-
sume that this is in fact what happens. The inspection
discovers degradations in multiple joints and they are re-
paired all at once. For repairs not triggered by inspections,
it is harder to make assumptions.
Because the model works with a single joint, it is cur-
rently impossible to include such correlations. This could
be solved by extending the current model to contain multi-
ple copies of the joint. In such a model, it could be possible
to have some of the joints share inspections and repairs.
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6. CONCLUSIONS
To answer the main Research Question, it seems likely
that it is possible to improve the model, but different im-
provements than initially expected.
Further answering the subquestions, it is possible to re-
produce the results produced by the previous study, but
those results were, perhaps, incomplete. The number of
repairs was not counted. Analysing the number of re-
pairs led to the discovery of at least one mistake, a typo.
Another possible mistake involves the behaviour of com-
ponents reaching an inspection threshold after they have
already failed.
It has been shown that many repairs are performed in the
simulation. Most of these repairs prevent failures that
would have occurred. Every repair effectively removes
an expected failure. If the model performs an unrealistic
amount of repairs, this would create an unreliable predic-
tion for the number of failures.

The results obtained in this study show a substantial vari-
ance. This is likely caused by the limited number of sim-
ulations that have been run to obtain these results. A
higher number of simulations should be run to reduce this
variance.

6.1 Future work
It has become clear that there are aspects of the model
that require more verification. The number of repairs per-
formed in the simulation needs to be compared to the num-
ber of repairs performed in the real world.

It might also be interesting to analyse the difference be-
tween maintenance and repair. In the current model, both
actions bring a component to the first phase.
When maintaining an object, repairs often do not bring an
object back to their initial state, this can only be accom-
plished by replacing the object. This could be modelled
by replacements setting an object to the first phase, while
repairs set it to the second phase, when this is possible
and this also does not immediately trigger another repair.

Furthermore, to improve how degradation is modelled, it
will likely be more effective to develop a new model that
does not include maintenance. Different data would be
necessary to verify the accuracy of such a model.
It might even be useful to perform real-world tests on the
failure behaviour without maintenance. It will probably
be expensive to create completely similar circumstances in
such tests.
Ahktar et al.[1] created a test track and used artificial
degradation to obtain information about the degradation
of fishplates under different circumstances. However, the
artificial degradation reduces the reliability of the obtained
data.
A different option could be to place redundant joints in
the railway, at an easily accessible location such as a train
station. These joints would experience the same condi-
tions as other joints but would not need the same amount
of maintenance. Only degradation that endangers the in-
tegrity of the rail would need to be repaired.
If this leads to a dependable model, attempts could be
made to change the current model to incorporate the way
degradation should be modelled.
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