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ABSTRACT
Scientific interest has recently picked up graph databases:
a type of database that store data in a graph-like man-
ner. Usage of these databases rather than conventional
relational databases may yield more intuitive data mod-
elling, more intuitive querying and improved performance
of query evaluation. In contrast to relational databases,
however, there has not yet been set a standard for what
querying language to use. Because a multitude of querying
languages is used for the same goal, research considering
graph database querying is slowed down, and people in
this field have to learn additional languages when trans-
ferring to a new database in their field. This problem gives
rise to the search for a querying language that is simple
yet complete. Pokorný proposes a typed lambda calculus
syntax as graph database querying language, but does not
define it accurately or give an indication of its complete-
ness. This paper aims to do that.
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1. INTRODUCTION
Research into graph databases has been performed ever
since the mid-eighties as a cousin of the more widely used
relational database. Some examples of graph database
models studied are LDM, GOOD, O2, and GraphDB. Re-
search interest had however faded away in favour of XML,
semi-structured data and the semantic web. In the mean-
time, relational databases remained in widespread use. In
the past decade, an interest in graph databases has risen
again, partially due to a higher demand as result of the
tremendous increase of data resulting from the rise of the
Internet. As such, some of the most popular Database
Management Systems (DBMS) have only recently been
developed, such as Neo4J, Titan and Microsoft Azure Cos-
mos DB. The arguments in favour of graph databases
compared to relational databases are compelling: graph
databases offer intuitive conceptualisation for domains with
network-like data and may even reduce computational com-
plexity [8, 13, 20]. Applications include social networks
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[9], information networks [5, 14] including the semantic
web [3, 15], transportation networks [4], biological net-
works [6, 7], program analysis [12] and criminal investi-
gation [18].

The languages used to query from graph databases differ
significantly from query languages for relational databases:
not only do they allow usage of basic set operations in
queries, but also for navigational ones: they approach data
from a network view rather than from a table view to fol-
low the model they represent. It is however just as vital for
graph database query language to be intuitive to the users
of that database since interaction with databases by their
users is mainly done using queries in those languages. The
effectiveness of database interactions is after all dependent
on the usability of the language for the type of user for
whom the database is designed. Most users choose for a
declarative language to query with. Imperative querying is
currently possible in other types of databases with Data-
trieve [1], with Java using JReq [10] or with Odysseus
using IQL [2]; there are currently no imperative query-
ing languages for graph databases: this falls under future
work (Section 4). Declarative query languages allow users
to describe the requested query result without having to
describe the operations the DBMS takes to get that result.

There exist some declarative graph database query lan-
guages that have added functional deatures, two of which
are ProGQL [19] and Gremlin. ProGQL is a functional
graph query language that is suited for statically typed
graphs. Gremlin is also functional: it is path-oriented and
forms query-like expressions by sequencing traversal oper-
ations and does not require static typing.

Pokorný [17] suggests applying the HIT data model’s [21]
idea of using typed lambda calculus syntax as a querying
language to graph databases. A single lambda function is
then used as a query, containing other (possibly lambda)
functions inside. Doing so may open up possibilities for
graph database users with a functional mindset (e.g. with
experience in the lambda calculus field) and fields where
queries are less path-oriented. The prospect of a complete
language that is consistent with its semantics and syntax
based on a few simple rules is one to look forward to- es-
pecially considering a standard for querying languages has
not been set for graph databases yet. Pokorný, however,
fails to demonstrate to what degree this language is com-
plete as one for querying. This paper aims to clarify the
semantics of this language and indicate its completeness
with the following research questions:

• What is the current completeness of Language of Terms
(LT)?

• What changes to LT can be made to improve its com-
pleteness?
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The rest of the paper is structured as follows: Section 2
gives a background on graph databases and LT as pro-
posed by Pokorný. Section 3 shows the deconstruction
of the Language of Terms and how it handles the fun-
damental building blocks of graph querying. We discuss
completeness and efficiency in Section 4 and lay out future
work. Finally, Section 5 shows resulting conclusions.

2. BACKGROUND
In this section, we will first provide context for the posed
problem by explaining what graph databases are, and how
they use graphs to model data. We will then mention a
variety of query types users may want to use and provide
examples. Finally, we will provide a short background on
the LT as described by Pokorný; we will continue with LT
in section 3.

2.1 Graph databases
A graph database is a type of NoSQL1 database that uses
graph theory for creation and manipulation. Data about
entities are stored in the nodes of a graph in the form of a
set of labels and a set of key-value properties (attributes).
Relationships between these objects are stored as labeled
edges between those nodes. Labels depict the type of ob-
ject or relationship nodes and edges have, and can be com-
pared to a table name of a relational database or a class of
an object-oriented database. For example, Figure 1 shows
a graph database with node labels Person, Company, Coun-
try and Branch and with edge labels friend, works_for,
lives_in, located_in and in_branch. Any information
about an object that does not take shape as an object it-
self is stored as a key-value pair (e.g. "name" in Figure 1).
This way, following the example graph, a node with label
Person and name "Anne" represents a person named Anne.
Similarly, an edge with label friend means the connected
nodes represent people who are friends with each other.2

One should be aware that there exist some graph databases
that only support edge-labeled graphs. These do not al-
low nodes or edges to have additional key-value properties.
In such databases, such data could be stored as separate
nodes and connections instead.

A graph database management system (GDBMS) is a sys-
tem that interacts with such a database and allows other
programs or users to request, add, modify or remove data
from it using a supported query language. A GDBMS is
usually inseperable from the database with which it inter-
actions. Neo4j is an example of a GDBMS.

2.2 Query types
In graph databases, two ways of querying can be distin-
guished. Firstly, you can treat the graph database as a
relational database and perform relational queries as you
would do on a relational database (using relational alge-
bra). That is, queries using set theoretic operations. You
can request all entries (nodes) that comply with some
specified first order requirement, and use set operations
to combine specific results. We call these set queries. Sec-
ondly, you can use the distinctive structure of graphs to re-
quest information about the topology of data in the graph
database; such queries would in SQL look like an unde-
fined number of consecutive JOIN-statements. In the fol-
lowing two subsections, we will further elaborate on the
possibilities of each type of query.

1Database that do not require any schema
2The example graph database shows use of both directed
and undirected edges. Not all databases support such a
distinction between edges (e.g. Neo4j).

2.2.1 Set queries3
We define a set query as a query that describes a re-
quest for node data or patterns of node data stored in
the graph database. These queries first define sets of
nodes based on invariable requirements, and then per-
form set operations (union, intersection and complement)
including universal and existential quantifiers to finally
yield the result list. Consider for example the pseudo-code
set query Give all friends of Charlie that are born

after Charlie or work at Codus. It describes a set of
nodes with the requirements that they have a friend-
connection with Charlie and of which the birthday prop-
erty has a higher value than that of Charlie, and the set
of nodes with the requirements that they have a friend-
connection with Charlie and have a works_for-connection
to a Company with the name Codus. Combined with the
OR set operation, this yields a result list. Note that even
though this is a set query that describes a request for node
data, we may still use edges to phrase requirements for se-
lected nodes. A simple query within the constraints of set
queries is the k -hop query: a query that requests data from
a fixed number (k) of hops away from some starting point.
Other types of queries that fall under set queries are sub-
graph matching queries, clique finding queries (given some
node within the clique) and connected component finding
(given some node within the component). We also con-
sider aggregation and grouping to fall under set queries.

2.2.2 Path queries4
Contrary to set queries, path queries are defined as re-
quests for information about the topology of a graph, in-
cluding reachability and finding shortest paths between
nodes. For example, using Figure 1, we may want to query
all pairs of people that are connected in a path consisting
of friend-relations without specifying the length of that
path. We might even query those paths as a second out-
put. Being able to do this requires that the query lan-
guage falls under the Kleene star closure property which
states that arbitrarily long repetition should be possible
as output given a word (in our case, query) in a starting
language.

A type of query that falls under path queries is the Regular
Path Query (RPQ). Such a query selects nodes of a path
that belongs to a regular language over the label alphabet,
including the Kleene star. RPQs are defined in Definition
1.

Definition 1. Let L be the vocabulary of edge labels and
R be a regular path expression in the form of:
R = l | R+R | R.R | R|R | R ∗ | R? | (R) where l ∈ L
where + denotes ordered concatenation, . denotes unordered
concatenation (that is, ∀S, T S.T = (S + T )|(T + S)), |
denotes union, ∗ denotes Kleene star, ? denotes optional
and () denotes grouping.
Then an RPQ is defined as a query that incorporates R
and returns a two-columned result with nodes that are con-
nected by R.

RPQs can be expressed as an LT query in Pokorný’s defi-
nition. [17]

Most path queries can be expressed as RPQs, although
it has some limitations: reverse traversal along edges and
compliance to multiple RPQs is not supported (but are

3 These category names are chosen by the author of this
paper. However, the distinction itself is not new. [11]
4See footnote 3.
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Person

name "Charlie"

birthday 17-02-1988

personality ESTJ

Person

name "Alice"

birthday 12-04-1987

personality ENFP Person

name "Bob"

birthday 07-09-1991

personality ENFJ

Company

name "IT Solutions"

founded 01-12-2004

logo "it_sol_logo.jpg"

Company

name "Codus"

founded 19-03-2011

logo "codus_big.png"

Branch

name "Software"

Country

name "Denmark"

population 5743263

ruler "Margaretha II"

friendfriend

works forworks for in branchin branch

located in located in

lives in

lives in

lives in
friend

Figure 1. Example of a Graph Database that stores people, companies and countries.

supported in respectively 2RPQs5 and CRPQs6 or both
in 2CRPQs7).

2.3 Language of Terms
The Language of Terms is a language defined by Pokorný
as a variant of typed lambda calculus that can be used to
query from (graph) databases. It is first mentioned in 1988
[16] and was recently mentioned again as possible graph
query language in 2017 [17]. We will provide a formal
definition in Section 3.

3. LANGUAGE OF TERMS
Pokorný defines the Language of Terms as given in Func-
tional Querying in Graph Databases [17]. We would like
to propose a new definition as given by Definition 3. The
definition considers the scope of lambda variables and in-
cludes functions need for Kleene star and aggregation (fur-
ther discussed in Section 3.2) previously unavailable. It
uses types as defined in Definition 2. The set of functions
defined in LT is not minimal here (some functions can be
modelled with other LT functions as shown in Section 3.1).
These additional functions have been added with the goal
of shorter and more intuitive queries. We will not go into
the types of edges or assume edges are to be returned in
this paper.

Definition 2.

1. Let TB be the set {BOOL,NUM,STRING}*.

2. Then the set of all types T is defined as:

{(t1 × · · · × tn)|∀i ∈ {1, . . . , n} ti ∈ T}∪
{tx → ty|tx, ty ∈ T} ∪ TB ∪ {node}

Nothing else is a type.

(* We will ignore typecase when referring to types in TB.)

Definition 3. Given an edge label vocabulary E, the node
property keys and their respective types N and a scope
of variables and their types S, we say that x is a term

5RPQs that allow for traversal in both directions of a di-
rected graph
6RPQs that are the result of conjunction of RPQs
72RPQs that are also CRPQs

with type y in scope S if and only if (x, y) ∈ Term(S).
Term(S) is defined as the least set such that:

(Terms of primitive types)

(s,NUM) ∈ Term(S) for s ∈ R
(TRUE,BOOL) ∈ Term(S)

(FALSE,BOOL) ∈ Term(S)

(s, STRING) ∈ Term(S) for s an ASCII String

All real numbers, boolean values and strings are terms of
the appropriate types.

(Terms of comparator function types)

∀A ∈ (TB\BOOL) (=A, (A×A)→ BOOL)) ∈ Term(S)

∀A,B ∈ (TB \BOOL) (>A, (A×A)→ BOOL))∀A,B ∈
(TB \BOOL),∈ Term(S)

∀A,B ∈ (TB \ BOOL) (<A, (A × A) → BOOL)) ∈
Term(S)

∀A,B ∈ (TB \ BOOL) (≥A, (A × A) → BOOL)) ∈
Term(S)

∀A,B ∈ (TB \ BOOL) (≤A, (A × A) → BOOL)) ∈
Term(S)

Terms of base types can be compared to one another (if
they are the same type) using equality, or inequality (if
the base type is ordened, that is, NUM or STRING).

(Terms of logical function types)

(∃, (node→ BOOL)→ BOOL) ∈ Term(S)

(and, (BOOL×BOOL)→ BOOL)) ∈ Term(S)

(or, (BOOL×BOOL)→ BOOL)) ∈ Term(S)

(!, BOOL→ BOOL) ∈ Term(S)

Basic boolean operators and, or and the inverse (!) are
available in LT. The existential quantifier returns TRUE
if and only if there exist a node that satisfies its function
argument.8
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(Terms of arithmetic function types)
(+, (NUM ×NUM)→ NUM) ∈ Term(S)
(−, (NUM ×NUM)→ NUM) ∈ Term(S)
(/, (NUM ×NUM)→ NUM) ∈ Term(S)
(∗, (NUM ×NUM)→ NUM) ∈ Term(S)

LT supports basic arithmetic functions.

(Terms of lambda function types)

∀(f, tf ) ∈ Term(S∪{(x1, t1), . . . , (xn, tn)}) ∀i ∈ {1, . . . , n},
¬∃y ∈ T (xi, y) ∈ S (λx1:t1, . . . xn:tn(f), (t1×· · ·×tn)→
tf ) ∈ Term(S)

You may define a function in LT using lambda syntax. If
this function is, along with its type, in Term(∅), its
application is a query.

(Application of terms of function types)

∀(f, (t1×· · ·×tn)→ s) ∈ Term(S) ∀i ∈ {1, . . . , n}, (x1, t1) ∈
Term(S) (f(x1, . . . , xn), s) ∈ Term(S)

This denotes that a function of type T → S that is
applied to appropriate argument(s) T are of type S.

(Terms of tuple types)

∀{(x1, t1), . . . , (xn, tn)} ⊆ Term(S) ((x1, . . . , xn), (t1 ×
· · · × tn)) ∈ Term(S)

You may ‘embed’ multiple terms into a single tuple term.

(Tuple extraction)

∀((x1, . . . , xn), (t1×· · ·×tn)) ∈ Term(S) ∀i ∈ {1, . . . , n}
(x[i− 1], ti) ∈ Term(S)

Using bracket notation, items may be extracted from
tuple terms.

(Functions based on edge connections)

∀e ∈ E (e, (node, node)→ BOOL) ∈ Term(S)

Edge labels may be used as functions to test whether
nodes are connected by such an edge.

(Retrieval of node properties)

∀(p, t) ∈ N ∀(n, node) ∈ Term(S) (n.p, t) ∈ Term(S)

Node properties may be retrieved from terms of type node
via dot notation.

(Terms of other functional types)

∀A,B ∈ T (foldA,B , (B×A→ B)×B×(A→ BOOL)→
B)) ∈ Term(S) where the term of type (A → BOOL)
is a query.

Fold is a function used for aggregation of a result set;
application of fold always results in a query. Its third
argument is the query to be aggregated and its second
argument is some value res. The first argument is a
function that is repeatedly performed on the res value
and each elements from the query. res is then returned.

∀A,B ∈ T (foldgroupA,B,C , (((B×A)→ B)×B×(A→
BOOL) × (B → C)) → (B → BOOL))) ∈ Term(S)
where the term of type (A→ BOOL) is a query.

Foldgroup performs the same operations as fold but yields
a collection of values rather than a single one. Its fourth
argument is performed on each element from the query
result set, and entries with the same result are grouped
together in the foldgroup result set.

∀(f, (node×node)→ BOOL) ∈ Term(S) (repeat, ((node×
node)→ BOOL)→ ((node×node)→ BOOL)) ∈ Term(S)

Repeat is a higher level function that transforms a
function that selects two nodes based on some
relationship to a function that selects two nodes that are
Kleene star connected via that relationship.

A query q is a term of type (T1 × · · · × Tn)→ BOOL for
which (q, (T1 × · · · × Tn)→ BOOL) ∈ Term(∅)
The Language of Terms is defined as the set of all queries.

3.1 Semantics
We will now cover the semantics of LT by giving the mean-
ing of valid terms according to Definition 3.

(constants)

c, (c,NUM) ∈ Term(S) The numeric value of c.

c, (c,BOOL) ∈ Term(S) The true/false value of c.

c, (c, STRING) ∈ Term(S) The string value of c.

(functions)

fold (Given in Section 3.2.2)

foldgroup (Given in Section 3.2.2)

=A

Function that returns a BOOL value indicating
whether the given terms have equal types and
values.

and
Function that returns TRUE if both its
arguments are TRUE.

! !FALSE = TRUE / !TRUE = FALSE

or(A.B) !(and(!(A), !(B)))

>NUM

Function that returns a BOOL value indicating
whether the first term has a greater value than
the second term.

>STRING

Function that returns a BOOL value indicating
whether the the value of the first term is
alphabetically before the value of the second
term.

<NUM (A,B) >NUM (B,A)

<STRING (A,B) >STRING (B,A)

<STRING (A,B) >STRING (B,A)

≥NUM (A,B) or(>NUM (A,B),=NUM (A,B))

≥STRING (A,B) or(>STRING (A,B),=STRING (A,B))

≤NUM (A,B) or(>NUM (B,A),=NUM (A,B))

≤STRING (A,B) or(>STRING (b, a),=STRING (A,B))

+,−, ∗, / (Same meaning as in arithmetic syntax)
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λx1:t1, . . . , xn:tn(f(. . . ))

Function that accepts n
arguments of types t1, tn
and returns the result of
f(. . . ).

repeat(F )(A,B)

or(f(A,B),
∃(λx:node(TRUE),
λx:node(and(F (A, x),
repeat(F )(x,B))))

∃
This function takes a
function and returns wether
there exists a node input
such that it returns TRUE.

3.2 Insights
In this section we will consider a variety of insights risen
by examination of LT that are worthy of discussion.

3.2.1 Types of lambda variables
While the Language of Terms is based on typed lambda
calculus, it was originally not defined what the type of
a query should be when the language is used to query.
Rather, a query would always be in the form of a lambda
function application without indication of the types of the
lambda variables. For example, the current version of LT
uses λx, y(f(x, y)) rather than λx:node, y:num(f(x, y)).
Since each function used in lambda queries has a static
type (typically a function type that yields a BOOL), it
would be a good idea to also statically type the lambda
variables on which these functions are performed.

In most querying cases, a user wishes for a selection of
nodes to be returned. It is however possible that elements
from another type (with functions that use aggregation)
are requested. Lambda functions that are not queries but
embedded in one may also need to use lambda variables of
different types. It is therefore not an option to always
assume the type of lambda variables to be node. We
herewith suggest that lambdas should always be statically
typed by the user. This yields a language in which queries
may be longer, but any mismatch of user intention and
query functionality is found quickly and in which exist no
ambiguity. We will therefore not write:

λ x,y,z(. . . )

We will instead use static typing as so:

λ x:node,y:node,z:int(. . . )

This second notation is used throughout this paper.

3.2.2 Aggregation using fold
Aggregation and aggregation with grouping cannot be done
in the original LT. We therefore propose to add the fol-
lowing two functions to the original definition of LT:

(foldA,B , (((B × A) → B) × B × (A → BOOL)) → B)) ∈
Term(S)

(foldgroupA,B,C , (((B → BOOL)×A)→ (B → BOOL))×
(B → BOOL) × (A → BOOL) × (B → C)) → (B →
BOOL)) ∈ Term(S)

for any A,B,C ∈ T where (A→ BOOL) is a query.

Fold is a function used for aggregation without grouping.
The definition of fold is: foldA,B(F,X,Q) =

Let u = ∃(c, A) ∈ Term(S), Q(c) = TRUE

for u and some p where (p,A) ∈ Term(S) and Q(p) =
TRUE let foldA,B(F,X,Q) = foldA,B(F, F (X, p), λx:A(
and(Q(x), ! = (x, p)).

otherwise foldA,B(F,X,Q) = X

Careful observers may notice that if F is not commuta-
tive, the result of foldA,B depends on which p is picked.
This is also the case for foldgroupA,B,C . We therefore
always advise commutativity for these functions to avoid
ambiguous results.

let u′ = ∃(c, A) ∈ Term(S), Q(c) = TRUE∧¬∃c′, X(c′)∧
S(c′) = S(c) and let u = ¬u′ ∧∃(c, A) ∈ Term(S), Q(c) =
TRUE and

for u′ let foldgroupA,B,C(F,X,Q, S) =
foldgroupA,B,C(F, λx(or(X(x),= (x, P ))), λx(and(Q(x), ! =
(x, P )), S), (P,A) ∈ Term(S), Q(c) = TRUE∧¬∃c′, X(c′)∧
S(c′) = S(c)

for u let foldgroupA,B,C(F,X,Q, S) =
foldgroupA,B,C(F, λx(or(and(X(x), ! = (x, c′), x =
F (c′, P ))), λx(and(Q(x), ! = (x, P )), S), (P,A) ∈ Term(S),
Q(c) = TRUE ∧ S(c′) = S(P )

otherwise foldgroupA,B,C(F,X,Q, S) = X

An informal description of the functionality of these func-
tions can be found in Definition 3.

3.3 Deconstruction
In this section, we will give a set of building blocks (read:
capabilities) that are necessary for specific queries and de-
termine whether these building blocks are in LT.

3.3.1 Node access
One of the most trivial building blocks is access to the
graph by the query language; it is essential for graph
database query languages. LT supports graph access. See
Translation 1.

Translation 1 (Node access in LT).
Let q = λx1:node, x2:t1, . . . , xn:tn(F (x1, . . . , xn))
This LT query is defined as the query of which the result
is the cross product of all lambda variable possiblities for
which F yields true. If the user defines F to be TRUE
for some x1, . . . , xn, then the result set’s first column will
contain nodes. This way, LT supports node access.

3.3.2 Edge access
Besides nodes, the database graph also stores relation-
ships. These can be accessed by LT to select nodes as
a different form of selection. See Translation 2.

Translation 2 (Edge access in LT).
Let e be some edge label (so e ∈ E).
Then (e, (node×node)→ BOOL) ∈ Term(S) can be used
to test whether two nodes are connected by an edge with
that label.

3.3.3 Set difference
Set difference can usually be expressed as a combination
of set union and negation. However, in querying, negation
is a form of set difference (e.g. ¬s = G \ s). Set differ-
ence cannot be modeled with other found building blocks.
Translation 3 shows how to use set difference in LT.

Translation 3 (Set difference in LT).

Let q1 and q2 be queries with type (T1×· · ·×Tn)→ BOOL.

Then q1 \ q2 can be queried with:

λx1:T1, . . . , xn:Tn(q1(x1, . . . , xn) and !q2(x1, . . . , xn))

3.3.4 Set carthesian product
In the context of graph querying, a carthesian product
is modeled by returning a result list with the columns of
each part added. A set containing two elements can be
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returned in a single query result entry. Ccontrary to set
union, difference and intersection, the carthesian product
non-strictly increases the number of columns in a result
set. Since no other buidling block can do that, it cannot be
modeled by them. Translation can be found in Translation
4.

Translation 4 (Carthesian product in LT).
Let q1 and q2 be queries with respective types (T1 × · · · ×
Tn)→ BOOL and (T ′1 × · · · × T ′m)→ BOOL.

Then the carthesian product of q1 and q2 is:

λx1:T1, . . . , xn:Tn, y1:T ′1, . . . , ym:T ′m(and(q1(x1, . . . , xn),
q2(y1, . . . , ym))

3.3.5 Selection
In relational algebra and here, selection denotes selection
of a subset from a query result where an (in)equality holds
for one of the columns of the result list entries. Reducing
the size of a query result is not only an effect of selection,
but also of aggregration (with grouping and arithmetic).
Selection can however not be modeled with aggregation.
Translation 5 shows how to use selection in LT.

Translation 5 (Selection in LT).
Let q be some query with arguments x1, . . . , xn of types
t1, . . . , tn respectively. Then a selection with xi > c can be
written as:

λx1:t1, . . . , xn:tn(and(q(x1, . . . , xn), > (xi, c)))

Similarly other inequalities and equalities can be modeled
in LT.

3.3.6 Arithmetic
Arithmetic can be seen as an extension of aggregation and
selection that introduces functions to manipulate num-
bers. No other building block allows for number manipu-
lation. Translation follows from Definition 3.

3.3.7 Existential quantifier
The existential quantifier ∃ is a method of testing whether
a function results in true for a single element in a set.
In the context of graph databases, this means its type is
((A → BOOL) × (A → BOOL)) → BOOL. The func-
tion can be interpreted as: Return whether there is an
element from the set of elements for which the first argu-
ment returns true. The existential quantifier cannot be
modeled using other building blocks. Translation is ele-
mentary since ∃ is a function in LT.

3.3.8 Aggregation
Aggregation is an operation that reduces the size of the
result set of a query, like selection; it can however not
be modeled by selection. Since no other building block
reduces the result set size of a query, we consider aggre-
gation to be a fundamental building block. Translation 6
shows how to use aggregation in LT.

Translation 6 (Aggregation in LT).
Let us consider an example query q = λx2:node, x1:int(f).
Let us say the user wants to have the sum of all entries in
the second column of the result of this query. This is given
by:

q′ = fold(node×INT ),BOOL(λx:int, y:(node×int)(x+y[1]),
0, λx2:node, x1:int(f))

If the user wants to count the number of elements in q
intead, this is given by:

q′ = fold(node×INT ),BOOL(λx:int, y:(node× int)(x+ 1),
0, λx2:node, x1:int(f))

Similarly, any other type of aggregation can be done my
changing the aggregating function or the starting value.

3.3.9 Grouping
Grouping is an extension of aggregation that allows aggre-
gation over specific sets of rows from the query result list.
Aggregation with grouping cannot be modeled using us-
ing other building blocks (except in multiple consecutive
queries, which we do not consider valid). Translation 7
shows how to use grouping in LT.

Translation 7 (Grouping in LT).
The definition of the LT function used for grouping
(foldgroupA,B,C) is given in Section 3.2.2. We can use
this for example to sum the salaries of each department of
a company for a database containing such data. The query
would look like this:

foldgroup(λx:num, y:num(x+
y), 0, λ hidden p:node, d:string, s:num(and
(=STRING (p.department, d),=STRING

(p.salary, s))), λx:string, s:string(x))

The aggregating function, starting value or grouping in-
dentifier can all be adapted to suit the needs of the aggre-
gation.

3.3.10 Kleene star for edges
One vital part of RPQs is the inclusion of the Kleene star
for path queries. As extension of edge access, it allows
querying for nodes connected by an undefined number of
consecutive edges of the same type. Kleene star for edges
can only be modeled by other building blocks in two con-
sective queries, which we do not count. LT allows querying
using the Kleene star with the repeat function.

3.3.11 Grouped Kleene star for edges
Grouped Kleene star is an extension of Kleene star that
allows it to cover a concatenated list of edge labels rather
than a single edge label. If we take a look at the definition
of RPQs (Definition 1), we can see that grouped Kleene
star for edges, edge access and set difference are enough
to evaluate RPQs and even CRPQs. LT allows querying
using grouped Kleene star with the repeat function.

We now consider some building blocks that follow
from this base set.

3.3.12 Set union
Set union is an operation that delivers the union result of
two queries of which the results are of the same type. Set
union can be derived from set difference. Let q1 and q2 be
queries with result sets s1 and s2 respectively, of the same
type t that has universe Ut. Then s1∪s2 = Ut\(Ut\s1\s2).

3.3.13 Set intersection
Set intersection has similarities with set difference, but is
fundamentally different in that it is symmetrical. As set
operation, it can be defined using set difference: q1 ∩ q2 =
G \ (G \ (q1 \ q2) \ (q2 \ q1)).

3.3.14 Projection
In relational algebra, projection is defined as returning
all query result entries but with a subset of all available
columns, defined by the user. Since the result of a query
is a set and removing columns may result in duplicate
entries, use of projection may not only result in fewer
columns in the result set but also in fewer entries. Projec-
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tion can be modeled using the existential quantifier func-
tion ∃ or the foldgroup function.

3.3.15 Universal quantifier
For universal quantifiers holds that ∀(f1, f2) =!∃(f1, !f2).
Therefore, the universal quantifier can be modeled using
set difference and the existential quantifier.

4. DISCUSSION AND FUTURE WORK
As we have shown, LT supports the evaluation of RPQs.
There are however variants of RPQs that have not yet
been tested for compatability with LT, such as NREs and
RQMs [11]. The inclusion of such queries could result
in much higher completeness of the language with only a
minor inclusion of syntax.

We have shown that LT supports specific building blocks,
but not how much computational power the evaluation
of queries implementing these building blocks would take.
This requirement could potentially be too high for practi-
cal use of the query language and require changes to allow
the query to be expressed such that its complexity is de-
creased.

One function that would qualify as building block but is
not considered in this paper is the power set function of
type ((A → BOOL) → ((A → BOOL) → BOOL)). Per-
haps some building blocks can be modelled using such a
function. This is however for future work.

In the background section, we mentioned the existence of
imperative query languages and that no such languages
exist for graph databases. These languages may poten-
tially yield high completeness or usability and will have to
be researched.

A feature often used in other databases is ordering results.
LT could implement an extension of queries that allow the
user to order the results; that, however, goes against the
notion that the result of a database query is a set. Future
work may include a transition from result sets to ordened
lists and the introduction of ordening functions.

5. CONCLUSION
Graph databases have been shown to improve the per-
formance of data retrieval, and are nowadays popular in
research. There exist querying languages for them, but a
standard has not been formed yet (as SQL has for rela-
tional databases). Pokorný proposed Language of Terms
as a graph querying language in Functional Querying in
Graph Databases [17]. It is a querying language based on
lambda calculus which shows potential for efficient query-
ing with few syntax rules but lacked a formal definition
or an indication of its completeness in its state. To solve
this, we have gathered a set of mutually exclusive query
language capabilities that indicate the completeness of a
graph database query language and proposed a new ver-
sion of LT that has those capabilities. A summarized re-
sult is given in Figure 2. Capabilities marked with an as-
terisk (*) are not within LT in its current state but would
be supported if the mentioned functions were added. With
this, we give a critique of the LT and suggest changes to
it such that it has the proposed capabilities.
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