
Improving Symbolic Confluence Detection
Djurre van der Wal
University of Twente

P.O. Box 217, 7500AE Enschede
The Netherlands

djurrevanderwal@gmail.com

ABSTRACT
This paper shows that methods for symbolic confluence
detection can be improved on three separate fronts. First,
it is demonstrated that the degree of success of symbolic
confluence detection can depend on the utilization of

∑
operator support. Second, a small amount of evidence is
added to the notion of improving symbolic confluence de-
tection by using an SMT prover instead of a BDD prover.
Third, the paper presents a new confluence type called
triangular confluence that seems to occur more frequently
than commutative confluence. The conclusions of this pa-
per are based on benchmarks of the symbolic confluence
detection functionality of the mCRL2 toolset in which the
improvements have been newly incorporated.

Keywords
Symbolic confluence detection, confluence conditions, state
space reduction, formal specification language, mCRL2
toolset, process specifications, labeled transition systems,
CVC4, theorem proving

1. INTRODUCTION
Validating and verifying a system can be achieved by ex-
ploring its state space: the collection of all possible states
of that system and the transitions between those states.
A common problem with state spaces is that they can be-
come unmanageably large. This problem is called state
space explosion.

One way to limit the size of a state space is by searching
it for confluence. Confluence is a phenomenon where all
paths within a state space that start at a certain state
consist of the same visible transitions in the same order
and can therefore be considered equivalent (see Figure 1).
After the removal of duplicate paths from a state space,
the state space is branching bisimilar to the original state
space and therefore maintains most of its properties1.

There are two main methods to accomplish state space re-
duction based on confluence: static confluence reduction,

1All properties that can be expressed in action-based
CTL*-X (computation tree logic without next-time) or in
Hennessy-Milner logic.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy oth-
erwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.
22th Twente Student Conference on IT Jan 23st, 2015, Enschede, The
Netherlands.
Copyright 2015, University of Twente, Faculty of Electrical Engineer-
ing, Mathematics and Computer Science.

a

a
τ

τ

τ τ
a

τ

Figure 1. Equivalent paths

where a state space is analyzed that has already been gen-
erated; and on-the-fly confluence reduction, where conflu-
ence is removed during state space generation. In particu-
lar, when two paths within the state space are equivalent
and one of them starts with a number of invisible τ tran-
sitions, these transitions can be prioritized during state
space generation, meaning that they would be chosen over
any alternative non-τ transitions. The states that follow
after the non-τ transitions would disappear from the state
space automatically [11].

On-the-fly confluence reduction requires confluence infor-
mation of a state space that can be acquired beforehand by
analyzing the process from which the state space is gen-
erated. This is called symbolic confluence detection. In
2002, Blom and Van De Pol presented a symbolic conflu-
ence detection method based on the presence of strongly
commutative transitions in a state space [3]. This method
was implemented in the context of the µCRL (micro Com-
mon Representation Language) toolset for modelling, val-
idating and verifying concurrent systems [6], but it has
also been implemented in the context of µCRL’s succes-
sor, mCRL2 [4] [7] [8] [9] [12] [13].

A peculiar shortcoming of the mCRL2 implementation is
the inability to handle

∑
operators within process specifi-

cations. This shortcoming is peculiar because the feature
was supported by µCRL. As a work-around, mCRL2 can
be forced not to cluster summands with a

∑
operator

during the compilation of a process specification and to
rewrite a linear process that already contains

∑
opera-

tors. However, although this does not change the behav-
ior of the process in question, it may very well affect the
degree of success when applying confluence detection.

Another topic of this research is the method by which con-
fluence within a state space is formally proved. mCRL2
achieves this by verifying the conditions for commutative
confluence with a binary decision diagram (BDD) pro-

1

ver [10] [14]. In line with a paper about mCRL2 from
2013, which states that satisfiability modulo theory (SMT)
provers are playing an increasingly important role in the
mCRL2 toolset [4], this research investigates the effects of
using an SMT prover instead. Because SMT provers are
generally more suitable for evaluating expressions that in-
volve arithmetics and induction-based types [5], it is ex-
pected that the SMT prover can confirm confluence where
the BDD prover cannot. The chosen SMT prover is CVC4,
a relatively new SMT prover with a good reputation [1].

Finally, the symbolic confluence detection method of Blom
and Van De Pol is based on strong commutation, but there
exist other confluence conditions that can be exploited
[11]. This paper introduces and defines a new confluence
type called triangular confluence and presents findings on
how it performs relative to commutative confluence. Tri-
angular and commutative confluence are also compared to
trivial confluence, which reveals to what extent the de-
scribed conditions actually occur within process specifi-
cations. The new confluence conditions have been added
to mCRL2’s functionality for symbolic confluence detec-
tion. In the future, even more confluence conditions may
be discovered and made available in a similar fashion.

2. PRELIMINARIES
2.1 Commutative confluence detection
The method that Blom and Van De Pol presented in 2002
is based on the presence of strongly commutative transi-
tions in a state space [3]. The method is applied to process
specifications of the form

P (d) =
∑
i∈I

∑
ei

ci(d, ei)→ ai(d, ei).P (gi(d, ei)) (1)

where

d is a vector of state variables;
I is the set of transition labels of process P ;
ei is the vector of local variables for transitions labeled i;
ci is the enabling condition for transitions labeled i;
ai is the action corresponding with transitions labeled i;
gi is the next-state function for transitions labeled i.

As can be seen, a process specification consists of sum-
mands for all occuring transition labels. In turn, those
summands are further organized by the local variables in
ei into smaller summands that each contain an enabling
condition ci which determines whether the process can go
from its current state d to some state gi via a specific tran-
sition ai. Thus, summands can be identified by a transi-
tion label i and a vector of local variables ei.

The confluence detection method of Blom and Van De
Pol checks all summand pairs in the process specification
that contain at least one τ summand for strong confluence
(including summand pairs where both pairs are the same
τ summand). If a τ summand only occurs in summand
pairs that pass the check, that τ summand is marked as
confluent and can be prioritized during subsequent state
space exploration.

The check itself is performed by evaluating a commuta-
tion formula, the confluence condition for strong commu-
tation. In this context, strong commutation entails that
every outgoing transition pair (τ, a) of a state converges
via the paths τ, a and a, τ (see Figure 2); if this is the
case, the τ transitions are confluent. In order to deter-
mine whether a summand pair is strongly commutative,
one can evaluate the commutation formula

a τ

aτ

Figure 2. Strong commutation

P(0, 0) P(1, 0)

P(0, 1) P(1, 1)

aa b

Figure 3. State space of Example 1

∀d, ea, eτ • ca(d, ea) ∧ cτ (d, eτ) (2)

→∃ea′, eτ ′ • cτ (ga(d, ea), eτ
′) ∧ ca(gτ (d, eτ), ea

′)

∧ aa(d, ea) = aa(gτ (d, eτ), ea
′)

∧ aτ (d, eτ) = aτ (ga(d, ea), eτ
′)

∧ ga(gτ (d, eτ), ea
′) = gτ (ga(d, ea), eτ

′)

Note that aτ (d, eτ) = aτ (ga(d, ea), e′τ) is trivially true and
can be removed from the expression. However, the com-
plexity of this remaining expression is still considerable.
Blom and Van De Pol therefore strengthen the commuta-
tion formula by assuming that ea

′ = ea ∧ eτ ′ = eτ to

∀d, ea, eτ • ca(d, ea) ∧ cτ (d, eτ) (3)

→ cτ (ga(d, ea), ea) ∧ ca(gτ (d, eτ), ea)

∧ aa(d, ea) = aa(gτ (d, eτ), ea)

∧ ga(gτ (d, eτ), ea) = gτ (ga(d, ea), eτ)

The assumption implies that both τ transitions must be
generated by the same summand, and similar for both
a transitions. Using the reduced commutation formula,
which forms the basis for the confluence detection method
of Blom and Van De Pol, a stricter type of confluence that
frequently occurs in practice can be detected.

2.2 Examples
The very basic situation of Example 1 is shown in Fig-
ure 3. It shows a labeled transition system with 4 states
and 4 transitions: 2 a transitions and 2 invisible τ transi-
tions. The labeled transition system is generated from the
following process specification:

P (x, y) = (y = 0)→ a.P (x, 1) (4)

+ (x = 0)→ τ.P (1, y)

+ (x = 1 ∧ y = 1)→ b.P (0, 0)

2

P(0, 0) P(1, 1)

a

b

Figure 4. Reduced state space of Example 1

P(0) P(1)

P(2) P(3)

aa b

Figure 5. State space of Example 2

Given the process specification and the generic commuta-
tion formula for summand pairs, it is now possible to eval-
uate the commutation formula for the τ summand and the
a summand:

∀x, y • x = 0 ∧ y = 0 (5)

→x = 0 ∧ y = 0 ∧ a = a ∧ (1, 1) = (1, 1)

Since this expression is a tautology, it follows that the two
summands are strongly commutative, and therefore all τ
transitions that are generated by the τ summand must
be confluent. By prioritizing those transitions, a new, re-
duced state space can be generated. The labeled transition
system of this state space is displayed in Figure 4.

Instead of the linear process of Example 1, Example 2 uses
the following linear process:

P (x) = (x = 0)→ a.P (2) (6)

+ (x = 0)→ τ.P (1)

+ (x = 1)→ a.P (3)

+ (x = 2)→ τ.P (3)

+ (x = 3)→ b.P (0)

This process specification results in an equivalent labeled
transition system, with the only difference being the vari-
able vectors of the state (see Figure 5). However, now the
commutation formula for the τ summand and the a sum-
mand is no longer a tautology, and for this reason the τ
transitions can no longer be recognized as confluent:

∀x • x = 0 ∧ x = 0 (7)

→ 2 = 0 ∧ 1 = 0 ∧ a = a ∧ 2 = 1

Examples 1 and 2 demonstrate that describing the same
process in different ways can result in different degrees of
success when checking them for confluence.

2.3 Triangular confluence detection
The method of Blom and Van De Pol is based on strong
commutation, but there are other confluence types that
can be detected with algorithms of comparable complexity.
One such scenario is the scenario with confluent triangles.

τ a

a

Figure 6. Triangular confluence

τ

(τ)

Figure 7. Trivial confluence

Figure 6 shows a confluent triangle. The confluence condi-
tion that can detect triangular confluence effectively checks
if every outgoing transition pair (τ, a) of a state converges
via the paths a and τ, a. The confluence condition for
triangular confluence is

∀d, eτ , ea • cτ (d, eτ) ∧ ca(d, ea) (8)

→ ca(gτ (d, eτ), ea)

∧ ga(gτ (d, eτ), ea) = ga(d, ea)

∧ aa(d, ea) = aa(gτ (d, eτ), ea)

If a τ summand only occurs in summand pairs that sat-
isfy this condition, that τ summand is marked as conflu-
ent, precisely as prescribed by the detection method for
commutative confluence.

2.4 Trivial confluence detection
Trivial confluence is another confluence type that occurs in
situations where the outgoing transitions of a state are all
τ transitions and all go to the same state (see Figure 7),
which means that those τ transitions must be confluent
by default. During this research, confluence is considered
trivial when it can be detected with the confluence condi-
tion

∀d, eτ , ea • cτ (d, eτ) ∧ ca(d, ea) (9)

→ a = τ ∧ ga(d, ea) = gτ (d, eτ)

The fact that trivial confluence detection is embedded in
mCRL2’s functionality for symbolic confluence detection
means that the frequency at which the tool detects trivial
confluence rather than other confluence types is unknown.
This uncertainty can be resolved by comparing the perfor-
mance of a confluence condition with the performance of
trivial confluence.

2.5 mCRL2
The mCRL2 toolset [4] [7] is a toolset for the modelling,
validation and verification of concurrent systems. The as-
sociated formal specification language of the same name
[8] [9] [12] [13] has been designed to restrict the expressive
freedom of users as little as possible. mCRL2 is writ-
ten in C++ and contains over 60 tools that can be used
to visualize, simulate, minimize and model check complex
systems. The toolset can be downloaded from mcrl2.org

and used freely for any purpose under version 1.0 of the
Boost Software License (boost.org).

3

Specification

Translation,
linearization

Rewriting

Confluence
checking

State space
exploration

Figure 8. Confluence reduction pipeline in mCRL2

The code snippets below demonstrate how the mCRL2
language can be used to specify the processes specifications
of Example 1 and Example 2:

% Example 1:

proc P(x, y: Int)

= (y == 0) -> a . P(x, 1)

+ (x == 0) -> tau . P(1, y)

+ (x == 1 && y == 1) -> b . P(0, 0);

init P(0, 0);

% Example 2:

proc P(x: Int)

= (x == 0) -> a . P(x = 2)

+ (x == 0) -> tau . P(x = 1)

+ (x == 1) -> a . P(x = 3)

+ (x == 2) -> tau . P(x = 3)

+ (x == 3) -> b . P(x = 0);

init P(0);

2.6 Confluence reduction in mCRL2
The pipeline for confluence reduction in mCRL2 is de-
picted in Figure 8 and can be described as follows. First,
the user creates a specification of the process in question
in the mCRL2 formal specification language. The process
specification is translated into a binary format, which is
then linearized and possibly rewritten. The output is a
linear process.

Following the method of Blom and Van De Pol, commuta-
tion formulas are generated by the confluence checker for
each summand pair in that linear process. An automated
theorem prover is used to evaluate those commutation for-
mulas. A τ transition is proved confluent if and only if all
commutation formulas generated from it hold. Confluent
τ transition are prioritized in the typical final step, namely
generating a labeled transition system through exhaustive
state space exploration.

The confluence detection functionality of the mCRL2 tool-
set is contained within the lpsconfcheck tool. When pro-
vided with a linear process, it iterates over all summand
pairs that include a τ transition. That τ transition is
marked confluent if all summand pairs are either disjoint
or have a commutation formula that is confirmed to be a

tautology. The latter is checked by mCRL2 binary deci-
sion diagram (BDD) prover [10] [14]. If both summands
of a summand pair are τ summands, lpsconfcheck also
allows either of them to be marked as confluent if they go
to the same state (or set of states).

When desired, lpsconfcheck can check if a commutation
formula that is not a tautology is, in fact, an invariant
of the linear process. This is accomplished by checking
whether

∀d, ea • f(d) ∧ ca(d, ea)→ f(ga(d, ea)) (10)

where f is the (possibly rewritten) commutation formula.
This is also checked by mCRL2’s BDD prover.

2.7 CVC4
The SMT prover selected for this research is the relatively
new CVC4 prover (cvc4.cs.nyu.edu). CVC4 is open-
source and extensible theorem prover with a good rep-
utation. ‘CVC’ stands for ‘Cooperating Validity Checker’,
which refers to the cooperative nature of implemented de-
cision procedures [1]. Compared to its predecessor, CVC3
[2], which is employed by mCRL2 for path elimination in
binary decision diagrams, CVC4 is faster and has a lower
memory usage, although it is still built around a boolean
satisfiability (SAT) solver and a decision procedure.

3. RESEARCH
3.1 Research questions
This research strives to answer the following research ques-
tions:

1. How does
∑

operator support affect the performance
of symbolic confluence detection?

2. How does replacing mCRL2’s BDD prover with a
CVC4 prover affect the performance of symbolic con-
fluence detection?

3. How do symbolic detection of commutative conflu-
ence, triangular confluence, and trivial confluence
perform relative to one another?

3.2 Approach
All research questions involve performance comparisons,
each of which is achieved empirically by running a bench-
mark. The benchmark consists of a total of 76 process
specifications that originate from the example and demon-
stration material that is part of the mCRL2 toolset. Only
a minority of those process specifications (28 test cases)
inherently contain τ transitions labels. Therefore, bench-
mark test cases instead consist of process specifications
in which all transition labels are replaced by τ . This ap-
proach is used when analyzing a certain state space prop-
erty to which the transition labels of the corresponding
process specification are irrelevant, such as the presence
of deadlocks. In case of the benchmarks, however, replac-
ing all transition labels by τ simply maximizes the num-
ber of relevant summand pairs, which provides much more
data; and since this part can make use of process specifi-
cations that do not inherently contain τ transition labels,
the amount of data increases even further.

The benchmark results are visualized through scatter plots,
whereby the performance of one method is plotted against
the performance of another method. Markers above the
y = x line indicate better performance for the setting on

4

the Y-axis, while markers below the y = x line indicate
better performance for the setting on the X-axis. The per-
formance of one method, however, cannot always be com-
pared directly against the performance of another method
because they may derive new process specifications with
different numbers of summands from the original process
specification of a benchmark test case. Therefore, ef-
fectiveness ratios are calculated by dividing the detected
number of confluent τ summands by the total number of
τ summands in the process specification. This also allows
measurements that are of different orders of magnitude to
occur in the same scatter plot without distorting the scale.

In order to validate all newly written software, the 28 pro-
cess specifications that inherently contain τ transition la-
bels are also used for a verification benchmark. Each test
case of the verification benchmark is analyzed by generat-
ing a state space both from the original and from the mod-
ified process specification and checking if they are branch-
ing bisimilar (mCRL2 has tools for this purpose).

With the techniques described above in place, answer-
ing the research questions from Section 3.1 comes within
reach. Research question 1 is answered by adding

∑
op-

erator support to mCRL2’s lpsconfcheck and running a
benchmark where its performance is measured against the
original performance of mCRL2. When running a test case
without

∑
operator support, the related process specifi-

cation is prepared deliberately so that it does not contain∑
operators (see Appendix C.1). When running a test

case with
∑

operator support, no such action is taken.

The first step towards answering research question 2 is
to manually confirm several summand pairs for which the
CVC4 prover confirms the commutation formula as a tau-
tology where the BDD prover of mCRL2 does not. The
next step is to construct a CVC4 prover prototype that
can be used by lpsconfcheck during a benchmark. The
benchmark will determine if the updated prover capabil-
ities are sufficient to significantly boost the efficiency of
symbolic confluence detection. The benchmark is run both
with and without

∑
operator support.

Research question 3 requires further modifications to lps-

confcheck. In particular, the confluence conditions for
triangular and trivial confluence are added to the tool.
However, lpsconfcheck’s technique to check whether two
summands are disjoint before evaluating the correspond-
ing commutative confluence condition (see Section 2.6)
cannot be used for triangular and trivial confluence be-
cause they are not generally implied by this property. The
technique must therefore be disabled when searching for
those confluence types.

With even more future confluence types that could be
added in the future in mind, the lpsconfcheck is fitted
with a new parameter that allows the user to select a se-
quence of confluence conditions that must be checked by
the tool. The benchmarks for answering research question
3 are run with exactly one of the confluence conditions
enabled, and both with and without

∑
operator support.

4. RESULTS
4.1 Adding ∑ operator support
For the first part of the research,

∑
operator support was

added to mCRL2’s lpsconfcheck. It modifies the tool
such that when two summands are compared, any sum-
mation variables shared by both summands are given a
new, unique name in the second summand. For example,
before the summand

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

Without operator support

W
it
h

 o

p
e

ra
to

r
s

u
p

p
o

rt

Figure 9. Performance with
∑

operator support
relative to the performance without it

∑
i∈I, x∈X

c1(d, i, x)→ a.P (g1(d, i, x)) (11)

is compared to the summand

∑
j∈J, x∈X

c2(d, j, x)→ b.P (g2(d, j, x)) (12)

lpsconfcheck will rename the summation variable x in
the latter summand.

The benchmark that tested the effect of adding
∑

op-
erator support produced data that can be found in Ap-
pendix C.2. In 49 of 80 test cases, the effectiveness ratio
without

∑
operator support differed from the effective-

ness ratio with
∑

operator support. The benchmark data
of all 80 test cases has been used to create the scatter
plot that can be found in Figure 9. In order to repeat the
benchmark, follow the instructions in Appendix C.1.

4.2 Comparing provers
During manual comparisons of the BDD prover and the
CVC4 prover, a number of commutation formulas were
properly evaluated by the CVC4 prover as tautologies,
which the BDD prover of mCRL2 was unable to con-
firm. Therefore, the lpsconfcheck tool was extended with
an instance of the newly created Cvc_Prover class. This
class rewrites all declarations of the process specification
in question to the CVC4 language. This is a necessary step
because the commutation formula may make use of those
declarations. The commutation formula itself is also con-
verted to the CVC4 language and added to the rewritten
declarations as a query, after which the result is written
to a file. The Cvc_Prover instance calls CVC4 with the
file as an argument. After CVC4 has interpreted and eval-
uated the expression, it returns the outcome of the query
to its standard output stream. The outcome is captured
by the Cvc_Prover instance, which passes the outcome to
lpsconfcheck.

The Cvc_Prover class translates from mCRL2 to CVC4
by recursively traversing the tree-like structure in which
the binary data of a process specification is organized in
mCRL2 and converting the encountered elements to text
that is compliant with CVC4 syntax. The approach is

5

heavily based on mCRL2’s lpspp tool, which also converts
the binary data of a process specification to text.

Similarities between mCRL2 and CVC4 syntax make many
translations by the Cvc_Prover class trivial. For example,
the constants true and false in mCRL2 are represented
by TRUE and FALSE, respectively, in CVC4. Similarly, sev-
eral arithmetic and logical operators are converted to their
counterparts in the other language. Other translations re-
quire greater effort. Appendix B describes the transla-
tions for quantifiers, the conditional operator, enumera-
tion types, and list operators in brief.

Ultimately, however, the Cvc_Prover class does not pro-
vide translations to CVC4 for all features of mCRL2. Be-
low an overview of supported features is given:

• Basic integer operators
• Conditional operator
• min, max, abs, div, mod
• List operators
• Booleans, integers, reals
• Logical operators and quantifiers
• User-specified mappings and equations
• Enumeration sorts
• Structured sorts

Several features that are not supported are:

• Positive numbers, natural numbers
• exp, abs, floor, ceil, round
• Casts between numerical sorts
• Lambda abstraction
• Function updates
• Sets, bags, and the corresponding operators
• Projection functions in structured sorts
• Structured literals

The benchmark that tested the effect of the CVC4 prover
prototype produced positive results in seven cases. In two
other cases, the same results can be achieved by letting
CVC4 assist the BDD prover through path elimination.
The data of these test cases can be found in Appendix C.3.
Unsupported features were encountered in 23 cases; these
cases could therefore not be benchmarked. It should also
mentioned that the number of cases in which the bench-
mark yielded different results for different settings (seven
out of 53) was considered too small to merit a scatter plot.

4.3 Comparing confluence conditions
mCRL2’s lpsconfcheck has been modified and bench-
marked as described in Section 3.2. See Appendix A for
more information on the new usage of lpsconfcheck.

The benchmark for comparing commutative, triangular
and trivial confluence produced 40 cases in which the re-
sults for commutative and triangular confluence were dif-
ferent. The data for these cases can be found in Ap-
pendix C.4. Test cases were also included in this data set
when trivial confluence was present and yielded different
results than either commutative or triangular confluence.

The data has been visualized with three separate scatter
graphs: one for comparing commutative and trivial con-
fluence (see Figure 10), one for comparing triangular and
trivial confluence (see Figure 11), and one for comparing
commutative and triangular confluence (see Figure 12). In
Figure 10, 54 out of 152 markers (two per test case) are lo-
cated above the y = x line. This value is 72 for Figure 11.
Figure 12 contains 34 markers where triangular confluence
outperforms commutative confluence; the reverse is true in
five cases.

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

Trivial confluence

C
o

m
m

u
ta

ti
ve

 c
o

n
fl
u

e
n

c
e

Figure 10. Performance of commutative conflu-
ence detection relative to trivial confluence detec-
tion

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

Trivial confluence

T
ri

a
n

g
u

la
r

c
o

n
fl
u

e
n

c
e

Figure 11. Performance of triangular confluence
detection relative to trivial confluence detection

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

Commutative confluence

T
ri

a
n

g
u

la
r

c
o

n
fl
u

e
n

c
e

Figure 12. Performance of triangular confluence
detection relative to the performance of triangular
confluence detection

6

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

Without extensions

W
it
h

 e
xt

e
n

s
io

n
s

Figure 13. Performance with the extensions de-
veloped during this research relative to the per-
formance without them

4.4 Overall improvement
The overall improvement of symbolic confluence detection
through the extensions developed for this research has also
been measured by running an extra benchmark. The re-
sult is displayed in the scatter plot of Figure 13, in which
the performance of mCRL2 with the extensions is plotted
against the performance of mCRL2 without them. In this
scatter plot, 34 out of 152 markers are located above the
y = x line.

5. DISCUSSION
When considering the value of this research, it should be
noted that the research relies heavily on benchmarks based
on the process specifications that are part of the mCRL2
toolset as example and demonstration material and that
these are not necessarily representative. Additionally, test
cases were not tailored for symbolic confluence detection
in preparation of the benchmarks. mCRL2 provides mul-
tiple tools that, when applied individually or when applied
in sequence, may produce a wide range of different spec-
ifications that all describe the same process, and some
specifications may be more suitable for symbolic conflu-
ence detection that others. Nevertheless, all test cases
were prepared consistently in manners that were consid-
ered common. Appendix C.1 elaborates on this topic.

The fact that the scatter plots from the previous section
use effectiveness ratios (fractions of the total number of
τ summands) means that the distance of a marker to the
y = x line is generally not proportional to the number
of τ summands that was marked as confluent. For exam-
ple, if one τ summand is marked as confluent of a process
specification with only one τ summand in total, the corre-
sponding marker is located much further from the y = x
line than the marker of a process specification of which one
out of several τ summands has been marked as confluent.

Also note that lpsconfcheck’s timeout value for the eval-
uation of a single confluence condition has been set to 8
seconds for all benchmarks in order to reduce computa-
tion time. This means that mCRL2’s BDD prover and
the CVC4 prover prototype had that amount of time to
confirm whether an expression is a tautology or not, and
it is possible that this has affected the results.

The scatter plot in Figure 9 shows that
∑

operator sup-

port can contribute positively (in 31 test cases), neutrally
(in 31 other test cases) and negatively (in 18 test cases)
to symbolic confluence detection. This observation is ex-
plained by the fact that, with

∑
operator support enabled,

mCRL2 is likely to organize the summands of a process
specification differently. Most commonly, summands with
the same transition labels are clustered into a single sum-
mand. During symbolic confluence detection, this changes
the corresponding confluence conditions, and thus influ-
ences whether τ summands can be proved to be confluent
or not.

6. CONCLUSIONS
The data from the benchmarks provides answers to the
research questions from Section 3.1.

In answer to research question 1, the scatter plot in Fig-
ure 9 clearly shows that existing symbolic confluence de-
tection can benefit significantly from utilizing

∑
operator

support, and it is therefore safe to conclude that it im-
proves the symbolic confluence detection functionality of
mCRL2. However, since it can be equally beneficial to
avoid

∑
operator support, one should apply the method

only on a case-by-case basis.

With regard to the performance comparison of confluence
detection with the CVC4 prover prototype and confluence
detection with mCRL2’s BDD prover, the benchmark data
indicates that the CVC4 prover has some advantages, at
least where test cases could be translated to the CVC4
language. This is demonstrated in a small number of test
cases (seven out of 47).

Research question 3 concerned the relative performance of
commutative, triangular, and trivial confluence. Figure 10
and Figure 11 show that commutative and triangular con-
fluence are both likely to detect confluent τ summands
that are not trivially confluent. When comparing com-
mutative and triangular confluence to each other, triangu-
lar confluence has a higher frequency of success, although
there is still a significant number of cases in which detec-
tion of commutative confluence is superior (see Figure 12).
Triangular confluence is therefore considered to be a valu-
able addition to symbolic confluence detection.

7. FUTURE WORK
The results of this research suggest that there is potential
in improving symbolic confluence detection by expanding
the range of available confluence conditions even further.
Trivial and triangular confluence are confluence types with
a lower complexity than commutative confluence (mean-
ing that they involve more states and transitions), and in-
vestigating increasingly more complex confluence types is
probably the most methodical approach towards exploit-
ing this aspect of symbolic confluence detection.

Based on the answer to research question 2, it seems war-
ranted that mCRL2 makes more and more use of SMT
provers in general, and it would be sensible to include
mCRL2’s functionality for symbolic confluence detection
in this development. This also assumes that CVC4 is
representative for SMT provers in general and that us-
ing other SMT provers will have similar results. In order
to test this assumption, one could run comparative bench-
marks with other SMT provers. An efficient way to ap-
proach this is by constructing a tool that converts mCRL2
expressions to SMT-LIB (an intermediary language sup-
ported by multiple SMT provers) rather than to the lan-
guage of a specific prover. Preferably, this tool should be
more feature-complete than the CVC4 prover prototype

7

used for this research.

With regard to the CVC4 prover prototype, it should be
added that its current design is quite inefficient and can
benefit greatly from optimization. Currently, instead of
making direct use of CVC4 via the available API, the pro-
totype converts mCRL2 binary data to text, saving it to
a file, and running CVC4 as a separate process, which
creates additional overhead for the operating system and
requires CVC4 to perform a translation from the CVC4
language to CVC4 binary data. There are two reasons
for this design. First, converting mCRL2 binary data to
text allows for easier debugging and experimentation. It
was also easier to implement because mCRL2’s function-
ality for printing binary data could simply be modified.
Second, the text is saved to files because there were dif-
ficulties establishing a reliable pipeline with CVC4. It is
unknown whether these difficulties are at the side of the
prototype or at the side of CVC4.

8. ACKNOWLEDGEMENTS
Thanks to Prof. dr. J.C. van de Pol for guidance and
advice throughout this research project, to Prof. dr. ir.
J.F. Groote for information on the current developments
in the mCRL2 toolset, and to Dr. ir. J.W. Wesselink for
help with the development of new mCRL2 software.

9. REFERENCES
[1] C. Barrett, C. L. Conway, M. Deters, L. Hadarean,

D. Jovanović, T. King, A. Reynolds, and C. Tinelli.
Cvc4. In Computer aided verification, pages
171–177. Springer, 2011.

[2] C. Barrett and C. Tinelli. Cvc3. In Computer Aided
Verification, pages 298–302. Springer, 2007.

[3] S. Blom and J. van de Pol. State space reduction by
proving confluence. In Computer Aided Verification,
pages 596–609. Springer, 2002.

[4] S. Cranen, J. F. Groote, J. J. Keiren, F. P.
Stappers, E. P. de Vink, W. Wesselink, and T. A.
Willemse. An overview of the mCRL2 toolset and its
recent advances. In Tools and Algorithms for the
Construction and Analysis of Systems, pages
199–213. Springer, 2013.

[5] L. De Moura and N. Bjørner. Satisfiability modulo
theories: introduction and applications.
Communications of the ACM, 54(9):69–77, 2011.

[6] M. V. Espada and J. Van De Pol. An abstract
interpretation toolkit for µCRL. Formal Methods in
System Design, 30(3):249–273, 2007.

[7] J. F. Groote, J. Keiren, F. P. Stappers, J. Wesselink,
and T. A. Willemse. Experiences in developing the
mCRL2 toolset. Software: Practice and Experience,
41(2):143–153, 2011.

[8] J. F. Groote, A. Mathijssen, M. Reniers, Y. Usenko,
and M. Van Weerdenburg. The formal specification
language mCRL2. Internat. Begegnungs-und
Forschungszentrum für Informatik, 2007.

[9] J. F. Groote and M. Reniers. Modelling and analysis
of communicating systems. Technical University of
Eindhoven, rev, 1478:15–18, 2009.

[10] J. F. Groote and J. van de Pol. Equational binary
decision diagrams. In Mathematical Foundations of
Computer Science 2000, pages 161–178. Springer,
2000.

[11] J. F. Groote and J. van de Pol. State space
reduction using partial τ -confluence. In
Mathematical Foundations of Computer Science
2000, pages 383–393. Springer, 2000.

[12] J. J. Keiren and M. A. Reniers. Type checking
mCRL2. Computer Science Report, 11(11), 2011.

[13] A. Mathijssen. Data types for mCRL2. This article
is available in the mCRL2 Subversion repository,
2014.

[14] J. van de Pol. A prover for the µCRL toolset with
applications: Version 0.1. Report-Software
engineering, 6:1–32, 2001.

APPENDIX
A. NEW OR EXTENDED TOOLS
In the course of the research, the following mCRL2 tools
were created or extended:

ctau_marker — This tool marks specific τ (or tau) tran-
sitions in a linear process as confluent (or ctau). It
can also be set to number ctaus, allowing ctau tran-
sitions to be traced back to their summand.

lps2cvc — This tool translates the declarative part of the
mCRL2 specification of a linear process to the CVC4
language. It also generates commutation formulas
and translates those as well. The output is a readable
file using CVC4 syntax.

lpsconfcheck — This tool has been expanded with a
number of arguments. First, -u is used to disable∑

operator support (it is enabled by default). Sec-
ond, -e forces lpsconfcheck to use the Cvc_Prover

class. For this setting to work properly, CVC4 must
be in the system path. Finally, -xCONDITIONS selects
the confluence conditions that lpsconfcheck should
use: c and C select commutative confluence with and
without checking whether a summand pair is disjoint,
respectively (see Section 2.6 and 3.2), T selects trian-
gular confluence, and Z selects trivial confluence. By
default, lpsconfcheck searches for commutative con-
fluence only (-xc).

lpsunlabel — The purpose of this tool was the creation
of more test cases for the benchmarks of this research.
This is achieved by removing all translation labels
from a linear process, effectively converting all tran-
sitions into τ transitions. It does not require transla-
tion rules such as the mCRL2 tool lpsactionrename
and can therefore be applied much easier.

B. TRANSLATIONS
This section gives an overview of several implemented trans-
lations from mCRL2 to CVC4.

B.1 Quantifiers
Quantifiers use a different syntax in CVC4:

• forall v . c becomes FORALL(v): c.
• exists v . c becomes EXISTS(v): c.

B.2 Conditional operator
The conditional operator is implemented in mCRL2 as a
mapping:

map

if: Bool # Type # Type -> Type;

eqn

if(true, a, b) = a;

if(false, a, b) = b;

However, CVC4 requires this to be converted to a hard-
coded structure of the form IF c THEN a ELSE b ENDIF.

8

B.3 Enumeration types
Enumeration types are declared differently by mCRL2 and
CVC4, and the Cvc_Prover class may be required to gen-
erate recognizer functions separately. An example of how
enumeration types are defined in mCRL2 is given below:

sort

Bit = struct bit0 | bit1;

Enum = struct e1 ? is_first | e2 | e3;

This is translated to CVC4 as

DATATYPE

Bit = bit0 | bit1,

Enum = e1 | e2 | e3

END;

is_first: (Enum) -> BOOLEAN;

ASSERT is_first(e1) = TRUE;

ASSERT is_first(e2) = FALSE;

ASSERT is_first(e3) = FALSE;

B.4 List operators
mCRL2 supports a number of container types, including
lists, and operators to manipulate these lists. In order
to be able to evaluate expressions that involve lists, these
types must be manually defined in CVC4. Preferably, this
would be accomplished through parametric data types;
however, since functions in CVC4 do not accept paramet-
ric data types as parameter types, inductive data types
must be used instead. For example, the type of a list that
contains elements of type Elem can be created as follows:

DATATYPE

List = cons (head: Elem, tail: List)

END;

List operators can subsequently be defined as functions.
For example, the size of a list of type List can be obtained
with the help of

List_get_size: (List) -> Int;

ASSERT FORALL(x: List):

List_get_size(x) =

IF x = nil THEN 0

ELSE List_get_size(tail(x)) + 1

ENDIF;

C. BENCHMARKS
This appendix contains the essential data gathered from
the benchmarks during the research. Note that, for brevity,
only data of test cases that performed differently for dif-
ferent settings is included. The first section describes how
the benchmark data can be reproduced.

C.1 Reproducing data
In order to reproduce the data with

∑
operator support

enabled, run an mCRL2 source file with

mcrl22lps file.mcrl2 file.lps

lpsunlabel file.lps file.lps

lpsconfcheck -xc -t8 file.lps file.xc.lps

Adjust the argument -xc of the lpsconfcheck command
to search for other confluence types than commutative con-
fluence. The argument -t8 forces lpsconfcheck to not

Table 1. Comparing different provers (benchmark
data)

File N B P C S
cabp.mcrl2 21 3 9 9 No
dining3 cs seq.mcrl2 21 5 8 15 Yes
dining3 schedule seq.mcrl2 21 5 5 21 Yes
dining3 schedule.mcrl2 21 5 5 21 Yes
dining3 seq.mcrl2 21 5 7 15 Yes
leader.mcrl2 29 5 5 29 No
par.mcrl2 23 5 9 9 No
queue.mcrl2 4 1 1 4 Yes
queue.mcrl2 7 1 1 7 No

N : Number of summands in the process specification.

B, P, C : Number of summands in the process specification
that were marked as confluent when using mCRL2’s BDD prover,
mCRL2’s BDD aided by the CVC4 prover prototype for path elim-
ination, and the CVC4 prover prototype on its own, respectively.

S : Indicates whether or not
∑

operator support was en-
abled (‘Yes’ means that

∑
operator support was enabled; ‘No’

means that it was disabled).

spend more than 8 seconds on the evaluation of a single
confluence condition; this setting was used in the course
of this research in order to reduce computation times.

Running the same mCRL2 source file with
∑

operator
support enabled can be achieved similarly with

mcrl22lps -n file.mcrl2 file.lps

lpssuminst file.lps file.lps

lpsunlabel file.lps file.lps

lpsconfcheck -u -xc -t8 file.lps file.xc.lps

In some cases, the lpssuminst command takes a very long
time to complete. It was disabled for the benchmarks of
this research for the following mCRL2 source files:

File
11073.mcrl2
bke.mcrl2
garage.mcrl2
gpa 10 1.mcrl2
gpa 10 2.mcrl2
gpa 10 3.mcrl2
small1.mcrl2
swp lists.mcrl2

C.2 Adding ∑ operator support
The data from the benchmarking during which the per-
formance of lpsconfcheck was compared can be found in
Table 2 on page 10.

C.3 Comparing provers
The data produced by the benchmark that compared the
performance of lpsconfcheck with the BDD prover to
its performance with the CVC4 prover prototype can be
found in Table 1 at the top of this page.

C.4 Comparing confluence conditions
Table 3 on page 10 contains the essential data from the
benchmark during which the three different confluence
conditions were compared with each other.

9

Table 2. Analyzing the influence of utilizing
∑

operator support (benchmark data)

File N1 D1 N2 D2
11073.mcrl2 290 1 25 1
1394-fin.mcrl2 1069 163 21 4
abp bw.mcrl2 33 25 12 8
abp.mcrl2 16 10 10 10
alma.mcrl2 78 38 52 26
ball game.mcrl2 1 1 3 0
bke.mcrl2 63 1 29 5
block.mcrl2 20 0 90 70
brp.mcrl2 76 13 18 9
cabp.mcrl2 21 3 12 8
chatbox.mcrl2 72 8 3 0
dining 10.mcrl2 50 30 210 190
dining3 cs seq.mcrl2 27 18 21 5
dining3 ns seq.mcrl2 15 9 21 15
dining3 ns.mcrl2 143 0 271 128
dining3 schedule seq.mcrl2 27 21 21 5
dining3 schedule.mcrl2 27 21 21 5
dining3 seq.mcrl2 27 9 21 5
dining8.mcrl2 40 24 136 120
dkr1.mcrl2 36 36 12 4
domineering.mcrl2 42 2 4 0
exists.mcrl2 4 4 1 1
food package.mcrl2 822 4 5 1
forall.mcrl2 4 4 1 1
garage-r1.mcrl2 472 4 8 6
garage.mcrl2 8 4 8 6
goback.mcrl2 1000 0 1 1
gpa 10 3.mcrl2 1 0 1 1
knights.mcrl2 329 1 2 2
lambda.mcrl2 4 4 1 1
leader.mcrl2 29 5 55 5
lift3-final.mcrl2 285 6 36 3
lift3-init.mcrl2 222 15 30 6
light.mcrl2 2 2 4 2
list.mcrl2 3 0 1 1
magic square.mcrl2 8 8 1 1
mpsu.mcrl2 23 12 14 6
numbers.mcrl2 59 59 4 4
par.mcrl2 23 5 14 8
peg solitaire.mcrl2 141 1 5 0
queue.mcrl2 7 1 4 1
rational.mcrl2 12 12 6 3
scheduler.mcrl2 13 5 7 2
simple.mcrl2 1 1 3 0
small1.mcrl2 2 1 2 2
SMS.mcrl2 54 14 31 8
snake.mcrl2 10 2 4 0
swp lists.mcrl2 11 0 8 2
trains.mcrl2 13 6 12 6
WMS.mcrl2 101 17 56 10
wolf goat cabbage.mcrl2 7 0 4 1

N1, D1 : Number of summands in the process specification
when avoiding

∑
operators, and the number of those summands

that were marked as confluent, respectively.

N2, D2 : Number of summands in the process specification
when making use of the added

∑
operator support, and the

number of those summands that were marked as confluent,
respectively.

Table 3. Comparing different confluence condi-
tions (benchmark data)

File N C T Z S
11073.mcrl2 25 1 2 1 Yes
1394-fin.mcrl2 1069 163 171 3 No
alma.mcrl2 52 26 22 0 Yes
alma.mcrl2 78 38 40 0 No
bakery.mcrl2 34 0 14 0 No
bke.mcrl2 29 5 5 4 Yes
bke.mcrl2 63 1 5 1 No
brp.mcrl2 76 13 15 0 No
cabp.mcrl2 12 8 10 0 Yes
cabp.mcrl2 21 3 7 0 No
chatbox.mcrl2 72 8 38 0 No
clobber.mcrl2 4 0 4 0 Yes
clobber.mcrl2 106 0 2 0 No
dining 10.mcrl2 210 190 190 160 Yes
dining3 ns seq.mcrl2 21 15 15 6 Yes
dining8.mcrl2 136 120 120 96 Yes
dkr1.mcrl2 36 36 4 0 No
domineering.mcrl2 4 0 4 0 Yes
domineering.mcrl2 42 0 2 0 No
fischer.mcrl2 16 0 16 0 Yes
garage-r1.mcrl2 8 6 8 6 Yes
garage-r2-error.mcrl2 466 0 1 0 No
garage-r2.mcrl2 466 0 1 0 No
garage-r3.mcrl2 466 0 1 0 No
garage-ver.mcrl2 1647 0 1 0 No
garage.mcrl2 8 6 8 6 Yes
hex.mcrl2 4 0 4 0 Yes
hex.mcrl2 34 0 2 0 No
lift3-final.mcrl2 285 6 33 0 No
lift3-init.mcrl2 222 15 36 0 No
light.mcrl2 2 2 0 0 No
mpsu.mcrl2 23 12 16 12 No
onebit.mcrl2 38 0 2 0 No
par.mcrl2 14 8 9 0 Yes
par.mcrl2 23 5 6 0 No
scheduler.mcrl2 13 5 5 1 No
SMS.mcrl2 31 8 1 0 Yes
SMS.mcrl2 54 14 1 0 No
snake.mcrl2 4 0 4 0 Yes
swp lists.mcrl2 8 2 3 0 Yes
swp lists.mcrl2 11 0 1 0 No
trains.mcrl2 12 6 10 0 Yes
trains.mcrl2 13 6 11 0 No
WMS.mcrl2 56 10 20 0 Yes
WMS.mcrl2 101 17 32 0 No

N : Total number of summands in the process specification.

C, T, Z : Number of summands in the process specification
that were marked as confluent when searching for commutative,
triangular, and trivial confluence, respectively.

S : Indicates whether or not
∑

operator support was en-
abled (‘Yes’ means that

∑
operator support was enabled; ‘No’

means that it was disabled).

10

