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ABSTRACT
This paper presents CFSL+, which is based on CFSL,
a visual language for the specification of control flow in
programming languages. In contrast to CFSL, the nota-
tion of CFSL+ was designed specifically with readability in
mind. To achieve this, a set of design principles called the
“Physics of Notations” was used. These principles, based
on theory and empirical evidence, provide a framework
that can aid visual language designers in developing nota-
tions that are cognitively effective. A preliminary evalu-
ation using these principles shows that CFSL+ is more
effective at communicating information than CFSL, al-
though a user evaluation is still required to confirm this.
A mapping from CFSL+ to CFSL is also presented.

Keywords
CFSL, Control Flow Semantics, Visual Language, Pro-
gramming Language, Cognitive Effectiveness, “Physics” of
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1. INTRODUCTION
Like any language, a programming language has a gram-
mar. The grammar defines the syntactical structure of
the language, and is usually formally specified using a lan-
guage such as Extended Backus-Naur Form (EBNF). Be-
sides syntax, a language also has semantics, which defines
the actual meaning of language constructs.

Unlike EBNF for syntax, no standard language exists to
express the semantics of a programming language. In-
stead, the semantics of programming languages is usually
described with natural language. This is problematic for
several reasons: because natural language is inherently
ambiguous, it can be hard to give a non-ambiguous expla-
nation of more complex elements. But more importantly,
it makes automated reasoning or correctness proving more
difficult.

A part of the semantics of many programming languages
is the control flow semantics. This defines in what order
statements are executed, which is an important aspect of
any imperative language. A first attempt to define a lan-
guage for the specification of the control flow semantics
of a programming language was presented by [7]. This
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language is called Control Flow Specification Language
(CFSL). In CFSL every statement of a programming lan-
guage is modelled by a control flow specification graph
(CFSG). When all statements in a programming language
have been modelled, flow graphs for programs written in
that language can be automatically generated. Both the
specification of CFSGs and the generation of flow graphs
are implemented using a graph transformation tool called
GROOVE.

CFSL is successful in that it can be used to specify the
control flow semantics of a real programming language [8].
However, like most other visual DSLs, little attention has
been paid to the visual syntax of the language [5]. As a
result, graphs for non-trivial statements quickly become
hard to read. Because of this, CFSL in its current state
is not suited for explaining the control flow of statements
to a human developer. But more significantly, specifying
control flow semantics using CFSL is cumbersome, mak-
ing it unattractive to use for language designers. This
still leaves us without a commonly agreed language for
the specification of control flow semantics.

This paper presents a visual language, CFSL+, that aims
to solve this problem. CFSL+ can be used to specify con-
trol flow in the same way as CFSL. Unlike CFSL however,
the language was designed specifically with readability in
mind. To achieve this, a set of design principles called the
“Physics of Notations” [5] was used. These principles are
based on theory and empirical evidence rather than com-
mon sense. Surprisingly, most software engineering (SE)
notations are designed using only the latter [5]. Using
them should result in notations that are more cognitively
effective. The principles are also used to evaluate CFSL+.

CFSL+ is used only to specify control flow of statements,
it cannot generate flow graphs of programs. However, con-
trol flow specifications made in CFSL+ can be compiled to
CFSGs, after which GROOVE can generate flow graphs in
the CFSL format. By specifying a new language that com-
piles to CFSL, rather than improving CFSL itself, we hope
to increase the usability of CFSL, without compromising
its correctness. A tool was made for both the specification
of control flow in CFSL+, and for the compilation of those
specifications to CFSL.

The remainder of the paper is structured as follows: sec-
tion 2 gives a brief overview of how CFSL works, and the
elements that are required to specify control flow in CFSL.
Section 3 gives an insight in previous research on cogni-
tive effectiveness of visual languages. Section 4 presents
CFSL+ and the design rationale behind each visual ele-
ment, as well as a preliminary evaluation of the language.
Section 5 shows how CFSL+ diagrams are compiled to
CFSGs, and section 6 concludes this paper.
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2. CFSL
This section will provide a quick overview of how CFSL
works, and the various elements the language consists of.
The basis of a control flow specification for a program-
ming language is the abstract syntax graph (ASG) of that
language, which is derived from the syntax grammar. For
every rule in the abstract grammar, control flow has to
be specified, which is done using control flow specification
graphs (CFSGs). From these CFSGs graph transforma-
tion rules are generated, which can be used to transform
any ASG into a flow graph. Thus, when CFSGs have
been specified for every grammar rule in a programming
language, flow graphs for any program in that language
can be generated from the ASG of that program.

Figure 1. An abstract syntax graph of the while

statement [7]

The actual value of CFSL is its ability to generate flow
graphs (FG) after CFSGs have been specified for the state-
ments in a programming language. Note however that this
research does not aim to improve the readability of those
FGs. Instead, the goal is to make it easier to specify and
read CFSGs.

2.1 Control Flow Specification Graphs
Figure 2 shows the meta-model to which every CFSG
should adhere. The remaining section will cover each of
the elements defined in this model, and give examples for
them using the CFSG for the while statement shown in
figure 3.

Figure 3. A control flow specification graph of the
while statement [8]

2.1.1 Abstract Syntax Graph
At the core of every CFSG is the ASG of its grammar
rule. The root of such an ASG is the left hand side of
the rule, whereas its children are the non-terminals on the
right hand side of the rule. For example, the grammar
rule for Java’s while-statement is as follows:

WhileStatement = while ( Expression ) Statement.

The corresponding ASG can be seen in figure 1. Note that
the edges are labeled to denote the relation between the
non-terminals. This label is optional. By default, this

label is simply child. The same ASG can be found in
figure 3

2.1.2 Entry and exit
To specify where control flow starts, an edge labeled en-

try is used, pointing towards the syntax element where
control flow starts. Similarly, an edge labeled exit may
point towards a node indicating that this node is the exit
of a syntax element. No flow can originate from an exit
node. These entry and exit nodes are used by CFSL to
connect all the CFSGs for a single programming language.
A CFSG can define only one entry, but multiple exits.

The entry edge in figure 3 indicates that control flow starts
by evaluating the condition. There is only one exit for a
while statement.

2.1.3 Sequential control flow
CFSL identifies three different kinds of control flow: se-
quential control flow, conditional branching control flow
and abrupt completion control flow. Sequential control
flow is specified by an edge labeled flow from one syn-
tax element to another. Sequential flow does not branch,
and as such a syntax element can not have more than one
outgoing flow edge.

For example, the flow edge from Statement to Expres-

sion indicates that after the body of the while statement
finished, control the condition is evaluated again.

2.1.4 Conditional branching control flow
Conditional branching is more complex, and requires ad-
ditional nodes and edges. Each possible branch is denoted
by an auxiliary node labeled Branch. This node has an
incoming edge labeled branch which indicates the origin
of the conditional branching, an outgoing flow edge to-
wards the element where control flow is to be transferred
to, and an outgoing edge labeled condition towards the
element that results in the value that is to be evaluated
for the branching operation. Furthermore, it may have
an edge labeled branchOn towards a node that indicates
the literal value the condition has to evaluate to for this
branch to be taken, or a self-edge labeled branchDefault

to indicate that this branch is taken when no other options
are available.

Figure 3 shows the two branches that can be taken by
WhileStatement after Expression has been evaluated. If
it evaluates to True, control flows to the body of the while
statement. If it evaluates to False, control flows to the
exit.

2.1.5 Abrupt completion control flow
To specify abrupt completion an auxiliary node labeled
Abort is required. This node has an edge labeled reason

towards a syntax element that indicates the reason for the
abrupt completion. CFSL identifies four different kinds
of abrupt completion, each with different edges that are
added to the Abort node:

• Introduction: an incoming edge labeled abort, and
no outgoing flow edge. An example for this would
be a throw or return statement in Java.

• Resolution: an incoming edge labeled abortFrom,
and an outgoing flow edge. One example for this is
a catch statement in Java.

• Immediate resolution: an incoming edge labeled
abort, and an outgoing flow edge. An example for
this is the GoTo statement in Visual Basic.
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Figure 2. CFSL meta-model [7]

• Resumption: an incoming edge labeled resume-

Abort. An example for this is when a finally block
in Java resumes abrupt control flow after it has com-
pleted execution.

The while statement has two cases of control flow resolu-
tion, both originating in the body of the while statement.
It resolves a break statement by passing control flow to the
exit of WhileStatement. Abrupt control flow introduced
by a continue statement is resolved by passing control
flow to Expression.

2.1.6 KeyElement
CFSL defines a label KeyElement that can be set on an
abstract syntax element to indicate that the CFSG speci-
fies control flow for that element. Every CFSG must have
1 key element. A CFSG can contain more syntax elements
than just the ones in the grammar rule corresponding to
the key element. This can be useful to indicate a relation
between control flow for the key element and other syntax
elements.

Because figure 3 denotes control flow for the while state-
ment, the WhileStatement syntax element is labeled KeyEle-

ment.

3. PHYSICS OF NOTATIONS
Although the use of visual notations is widespread in the
field of software engineering (SE), little research is done on
what makes them cognitively effective. When designing
notations, most effort is generally spent on the constructs
of the language, and only little on the visual representa-
tion of those constructs [5]. Even UML [6], the de facto
industry standard for modeling in SE, does not provide
any rationale for the design of the language. Instead, the
language elements appear to be designed using best prac-
tices and common sense, rather than theory and empirical
evidence. This is surprising, seeing that the manner in
which information is represented highly affects the human
ability to recognize that information [1].

In a reaction to the lack of theory on notation design,
Moody presents a framework called “The Physics of No-
tations” in [5]. The framework comprises nine principles
based on theory and empirical evidence that can aid with
the design and evaluation of visual languages. This pa-
per uses that framework to identify the shortcomings in
CFSL, and to evaluate whether CFSL+ has reached its
goal of being cognitive effective. This section will give a
short explanation of each principle, as well as an evalu-
ation of CFSL using that principle. It is important to
note that some principles conflict with others. Therefore,

the goal is not to get a maximum score on each princi-
ple (which would not be possible), but rather to find an
optimal balance between the principles.

3.1 Semiotic Clarity
This principle states that there must be a one-to-one rela-
tion between semantic constructs and graphical symbols.
This prevents ambiguity and unnecessary complexity.

CFSL scores poorly on this principle. Although there are
many semantical constructs that CFSL visualises (such as
sequential control flow, conditional branching, four types
of abrupt completion, and so on), there are only two sym-
bols: nodes and edges. This is called symbol overload:
the same symbol is used to express multiple different con-
structs. Symbol overload is problematic because it can
cause ambiguity. An example of ambiguity in CFSL is
that a child edge between two nodes may be interpreted
as control flow between two nodes.

3.2 Perceptual Discriminability
This principle states that different symbols should be eas-
ily distinguishable from one another. The extent to which
symbols are different from each other is called the visual
distance. This is defined as the amount of visual variables
in which two symbols differ, and the extent to which these
variables are different. Moody identifies eight visual vari-
ables: horizontal position, vertical position, shape, bright-
ness, size, orientation, colour and texture. Symbols that
have a unique value for one of the variables are discrimi-
nated more effectively than symbols that are only unique
in a combination of variables [9]. For example, in a dia-
gram where all symbols are black, a red symbol will appear
to “pop out” of the diagram, quickly drawing the attention
of the reader.

In principle, CFSL scores well on this principle. Despite
the fact that the symbols only differ in shape, the two
symbols (nodes and edges), are easily distinguished. How-
ever, two symbols are by no means sufficient, and if more
symbols are to be added, the use of more visual variables
may be required.

3.3 Semantic Transparency
This principle states that visual representations should be
designed in such a way that, when possible, their repre-
sentation suggests their meaning.

The only symbol that adheres to this principle in CFSL is
the arrow when used for expressing control flow. Arrows
are a very common symbol for expressing direction and
as such even novices are likely to understand the meaning
behind the symbol. However, when used for expressing
parent-child relations in the syntax graph, it actually sug-
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gests a meaning that it does not have, which is even worse
than simply not knowing what it means. The latter is the
case for syntax elements, which is expressed using rectan-
gles. However, due to the highly abstract nature of the
concept of syntax trees, there may not be a better repre-
sentation for them.

3.4 Complexity Management
This principle states that visual notations should include
explicit mechanisms to support complexity. This means
that if a diagram becomes too complex to easily under-
stand, it should be possible to decompose it into smaller
parts.

CFSL supports complexity management by its very na-
ture: rather than specify control flow for the entire pro-
gramming language or even statements, control flow is
specified for each grammar rule. This is however enforced,
and not just optional. For statements that are defined by
a large number of grammar rules this can in fact make
matters more complex. Furthermore, it is not possible to
decompose a CFSG of a grammar rule into smaller CFSGs
in the case it becomes too complex.

3.5 Cognitive Integration
This principle states that explicit mechanisms should be
included to support integration of information from differ-
ent diagrams. It only applies when multiple diagrams are
used to represent a system.

CFSL provides no visual clues to indicate a relation be-
tween graphs.

3.6 Visual Expressiveness
This principle states that symbols should use the full range
of visual variables. One of the most effective of these vari-
ables is colour, because the human visual system is highly
effective at discriminating between a limited number of
colours [2]. However, colour is challenging for certain per-
sons (the color blind) and printing in black and white only
is still very common.

CFSL scores poorly on visual expressiveness, with only
shape being used. Although arguably sufficient for a lan-
guage with only two symbols, there is much room for im-
provement here.

3.7 Dual Coding
This principle states that text should be used to support
graphics. Research has shown that the combination of
graphics and text is more powerful than only text or graph-
ics [3].

CFSL makes no use of dual coding, despite the abundance
of text. Text does not support graphics, but is used as the
only way to distinguish between different symbols.

3.8 Graphic Economy
This principle states that the number of different symbols
should be cognitively manageable. When a diagram uses
too many different symbols, it becomes hard for a reader
to understand and remember all of them. According to
[4], humans are able to discriminate between up to seven
different symbols, plus or minus two.

With only two different symbols, CFSL passes this prin-
ciple. This is a good example of a principle that conflicts
with other principles (in this case Semiotic Clarity).

3.9 Cognitive Fit
The last principle states that a language should have dif-
ferent “dialects” for different audiences and media. For in-

stance, novices may need a simplified version of the same
language. There could be a dialect that uses simple shapes
and little colour for hand drawn diagrams, and a more
complex dialect that uses the full spectrum of colours for
use on screen.

CFSL does not have different dialects.

4. CFSL+
This section will present CFSL+, the visual language that
is the result of this research. First, the overall design ratio-
nale behind CFSL+ will be explained. Then, each of the
elements in the language will be presented, along with the
design rationale behind them. The section will conclude
with an evaluation of CFSL+ using Moody’s principles.

4.1 Design philosophy
CFSL+ has been specifically designed with cognitive ef-
fectiveness in mind. The main idea behind CFSL+ is that
the user should first and foremost be able to identify the
general control flow as fast as possible. All other infor-
mation, such as the syntactic relation between elements,
is secondary. This is perhaps where CFSL is lacking the
most. All relations between elements are expressed by ar-
rows, and all elements (be they abstract syntax elements
or auxiliary branch nodes) are expressed by the same rect-
angles. Because of this, the reader has to put a relatively
great deal of effort in identifying which edges are for con-
trol flow, and which are not. This makes CFSGs hard to
read.

To aid the reader in identifying control flow, elements that
denote control flow are designed in such a manner that
they will appear to be more in the ‘foreground’, whereas
secondary information will be placed in the ‘background’.
This is achieved by the use of color saturation and size.
Smaller objects are generally perceived to be further in
the background than bigger objects. Similarly, low color
saturation has the effect of an object to appear in the
background, whereas high color saturation will make an
object appear to be in the foreground.

Another important aspect of CFSL+ is that it does not
try to capture every semantical construct in a visual sym-
bol. An example for this is the absence of a reason edge
for abrupt control flow. Instead, the reason for abrupt
control flow is only expressed using text. The reasoning
behind this is that trying to express everything visually
can make diagrams so complex that this becomes counter
productive. Again, important aspects of control flow are
all expressed visually, while the details are expressed using
text only.

4.2 Language elements
This section will give an overview of all elements that are
defined by CFSL+, as well as a design rationale for them.

4.2.1 Abstract Syntax Graph
Just like CFSL, the core of a specification diagram in
CFSL+ is the abstract syntax graph. The syntax ele-
ments are, like in CFSL, expressed by rectangles with a
black border, labeled with the name of the non-terminal.
The key element of the graph is represented by a much
bolder border, rather than by another label, as well as
an underlined label. This should allow the reader to in-
stantly identify that this element is more ‘important’ than
the other elements. A syntax element may have a circle in
the right top corner with a single letter, which is used to
uniquely identify the syntax element. This identifier can
be used for branching and abort flow, as will be explained
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further on.

The relation between non-terminals in their ASG is ex-
pressed using a child edge. A child edge has a thin light
grey stroke, and dark grey rectangles at each side. Grey
was chosen because this way the edge appears to be far-
ther in the background than the solid black flow edges.The
rectangle at the parent side is larger than at the child side.
This is a metaphor for the fact that parents are larger than
children. The rectangles are also deliberately placed inside
the syntax element, to indicate that a child is a part of a
parent. A child edge is labeled ‘child’ by default, but may
have a custom label like in CFSL. An example of the ASG
for the while statement in CFSL+ is shown in figure 4.
Note that WhileStatement is they key element, and the
custom labels for the child edges.

Figure 4. An abstract syntax graph of the while

statement in CFSL+

4.2.2 Sequential control flow
A flow edge between two syntax elements indicates regu-
lar control flow between them. A flow edge is a bold, blue
arrow, pointing in the direction of the flow. Arrows intu-
itively represent direction making the shape of the symbol
an obvious choice. The thickness and colour of the symbol
help it appear in the foreground. Flow edges are labeled
‘flow’.

Figure 5. A flow edge.

4.2.3 Branching control flow
Conditional branching is indicated by a diamond shaped
node. This branch node, has an incoming flow edge labeled
‘branch’ to indicate the point of branching. The syntax el-
ement that results in the actual value that is evaluated for
the branching operation is referred to by the label of the
branch node. This label has the format [id] = ? where
[id] identifies a syntax element as explained in the previ-
ous section.

The actual branches that can be taken are expressed with
outgoing flow edges from the branch node. The label of
the edge indicates the value that the condition will have
to evaluate to for that branch to be taken. There are three
kind of labels:

• A label can be the name of the literal value that
the condition should evaluate to, such as ‘True’ or
‘False’.

• A label can be the identifier of another syntax ele-
ment defined in the diagram. If the condition evalu-
ates to the same value as that syntax element, this
branch will be taken.

• A label can be ‘default’. This indicates that this
branch is taken if no other branches can be taken.

Figure 6. Conditional branching.

Using only text to indicate the condition and values for
the branching prevents the diagram from becoming overly
complex. The diamond shape for the branch node has
been chosen because it is a common shape for branching
operations in SE notations, with the most well known ex-
ample being UML flow diagrams. It also looks sufficiently
different from the rectangular syntax elements so that the
two are easily distinguished.

4.2.4 Abrupt control flow
All kinds of abrupt control flow are indicated by a red ar-
row, with a red thunderbolt icon at the start of the edge.
The thunderbolt icon and the red colour were chosen be-
cause in many cultures this is interpreted as something
going wrong. Of course, abrupt control flow does not al-
ways imply error handling, but because it often does it may
still be a useful metaphor. It is also sufficiently different
from sequential and branching control flow, to emphasize
the fact that abrupt control flow describe alternate routes
of flow. Finally, red makes the symbol pop out, as blue
makes the other flow edges pop out.

Figure 7. From top to bottom: abrupt control flow
introduction, resolution, immediate resolution and
resumption.

Like in CFSL, there are four kinds of abrupt control flow.
Abrupt control flow introduction is specified by an edge
labeled ‘abort’ flowing from a syntax element to an abort
state (which will be introduced in the next section). Res-
olution is specified by a ‘resolve abort’ edge flowing to a
syntax element where control is transferred to. Similar to
CFSL, immediate resolution is an ‘abort’ edge flowing to
a syntax element rather than an abort state. Lastly, re-
sumption is modelled by an edge labeled ‘resume abort’
flowing to an abort state.

It is possible to give multiple reasons for control flow, in
which case the reasons are to be separated by comma’s. It
is even possible to specify an entire abstract syntax tree as
the reason, rather than just one element. The downside of
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this is that labels can become quite complex. However, the
majority of the times only one syntax element is the reason
for abrupt control flow, and expressing it visually may
pollute the diagram to such an extent that the diagram as
a whole becomes harder to read.

4.2.5 Start, stop and abort nodes
The start, stop and abort nodes are used to specify where
the control flow starts and ends. Only one start node can
appear in the diagram. This node has a single flow edge
leading to an abstract syntax element. Multiple stop and
abort nodes are possible in a diagram. Stop nodes can
have any number of any kind of control flow incoming. No
control flow can originate from a stop node. Abort nodes
can have any number of incoming abort and resume abort
edges. No control flow can originate from the abort node.
Control flow that ends in an abort node indicates that
control flow will not pass to the next statement, but will
have to be resolved by another statement.

The start, stop and abort nodes are all circles contain-
ing an icon. A circle was chosen to make it sufficiently
different from other nodes in the graph. The start and
stop nodes have play and stop icons as commonly used in
media players. This is a metaphor for the start and end
of control flow. The icons are black, because they denote
regular control flow. The abort node has a red cross. Red
was chosen to link it to the abort edges.

Figure 8. From left to right: start, stop and abort
nodes

4.2.6 Syntax element exit
When flow enters a stop node, it is by default assumed to
take the exit of the key element. In some cases it can be
desirable to change this behavior. The exit edge connects
a stop node and a syntax element to indicate that any
flow going to that stop node takes the exit of that syntax
element.

Like the child edge, the exit edge has a light grey stroke,
because it is considered secondary information. To empha-
size the fact that the relation between a syntax element
and a stop node is more abstract than a parent-child rela-
tion, the line is also dashed rather than solid.

4.2.7 Example diagram
Figure 9 shows an example diagram for the while state-
ment. Note that only 6 nodes are required to specify con-
trol flow for the while statement in CFSL+, as opposed to
12 nodes in CFSL. By focussing on the solid blue arrows,
one can quickly identify the looping behavior of the while

statement. This is not as easy to see in CFSL, where all
edges are visually the same.

4.3 Evaluation
To determine whether CFSL+ is cognitively effective, it
was validated using Moody’s principles. For each principle
CFSL+ is first evaluated, and then compared to CFSL.

4.3.1 Semiotic Clarity
Out of the 9 elements that CFSL+ has, there is one (11%)
case of symbol overload: all three types of abrupt control
flow (introduction, resolution and resumption) are repre-
sented by the same symbol. There are also three cases
of symbol deficit: there are no equivalent symbols for the
condition, branchOn, and reason edges in CFSL.

Figure 9. Specification diagram for the while state-
ment

Symbol deficit is considered to be desirable, to reduce com-
plexity and thus score better on the Graphic Economy
principle. Although symbol overload is generally consid-
ered less desirable, in this case it could be considered as
a special case of symbol deficit. CFSL+ simply does not
define symbols for types of abrupt control flow, but just
control flow in general. Again, this is done to reduce com-
plexity.

This is a clear improvement to CFSL, where all symbols
are overloaded.

4.3.2 Perceptual Discriminability
Attention has been paid to make sure all elements can be
easily distinguished. Nodes only differ in one or two vi-
sual variables (shape and border width), but the difference
between a circle and a rectangle or diamond is fairly big.
The difference between the rectangle and diamond shape
is a bit smaller however. Nodes (rectangles, diamonds and
circles) and edges (arrows and lines) have an even larger
visual distance. Although abort and flow edges are both
in essence arrows, their color and the extra thunderbolt
shape for abort edges make them considerably different.
To make sure the child and exit edges are not misinter-
preted as control flow information, they are simply lines
rather than arrows.

Because CFSL only has two symbols it is hard to make
a real comparison with CFSL+. However, because there
are far less cases of symbol overload, it is much easier to
distinguish between different constructs in CFSL+.

4.3.3 Semantic Transparency
Control flow in programming languages is a rather ab-
stract concept, and as such not all elements in CFSL+ are
semantically transparent. The best example is the syntax
element, which is represented by a rectangle. A rectangle
could in essence mean anything, and a total stranger to
CFSL+ would not likely understand that it represents a
non-terminal. The same can be said about the diamond
shape for the branch node, and the circle with the cross
for the abort node.

Other elements are more transparent however. Start and
stop nodes have clear start and stop icons, and control
flow is denoted by arrows, which are very common icons
to represent direction. Exit and child edges connect el-
ements to denote a relation between them, although the
exact relation between them is likely not as easily guessed
without prior knowledge.
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Again, CFSL+ scores better on this principle. Not all
symbols in CFSL+ are semantically transparent, but in
contrast to CFSL there are no symbols that suggest a dif-
ferent meaning than the intended meaning. Recall that
CFSL uses the arrow symbol to represent a parent-child
relationship.

4.3.4 Complexity Management
CFSL+ is modular, just like CFSL. Control flow is not
specified for the entire programming language in one dia-
gram, but rather one diagram for each grammar rule. In
the case that a diagram for one rule becomes too complex
there are no options to break it up in more diagrams.

Because CFSL+ uses the same kind of modularity as CFSL
there is no difference with CFSL on this principle.

4.3.5 Cognitive Integration
CFSL+ does not provide additional visual clues to inte-
grate different diagrams. Again, there is no difference with
CFSL.

4.3.6 Visual Expressiveness
A total of four visual variables are used in CFSL+: shape,
colour, brightness (colour saturation) and texture. All
nodes only use on visual variable however, which is shape.
Brightness is used to create visual precedence between dif-
ferent types of edges. The bold lines of control flow arrows
make them appear more important than the thin, grey
lines of child and exit edges. Texture is only used for the
dashed lines of the exit edges. Colour is used to distinguish
the control flow edges from the other symbols.

CFSL+ scores much better than CFSL on this princi-
ple. The only variable used by CFSL+ is shape, whereas
CFSL+ also uses colour, brightness and texture.

4.3.7 Dual Coding
Dual coding means that text is used to supplement graph-
ics. This is used in the case of flow, branch, exit and child
edges. The other texts (such as the name of a syntax ele-
ment or the reason for an abort flow) do not complement
graphics, but rather replace them. Although more dual
coding would be possible by adding text to for instance
the start and stop nodes, it could also clutter the already
text-heavy diagram too much.

CFSL+ scores slightly better than CFSL, due to the fact
that in CFSL the only way to distinguish between sym-
bols is by text (which gives text a deciding rather than
supporting role), whereas CFSL+ has dedicated symbols
for structures.

4.3.8 Graphic Economy
Although there are significantly more symbols in CFSL+
than in CFSL, it is still relatively low with nine elements.
These nine elements can be classified into five different
categories:

• Syntax elements (syntax element)

• Branch nodes (branch node)

• State nodes (start node, stop node, abort node)

• Flow edges (flow edge, abort edge)

• Relation edges (child edge, exit edge)

CFSL+ scores lower than CFSL in this regard, since CFSL
has only two symbols to remember. This is however un-
avoidable if we are to score better on Semiotic Clarity.

4.3.9 Cognitive Fit
CFSL+ does not define different dialects for different audi-
ences or media. The reasoning behind this is that CFSL+
is not intended for a wide variety of audiences. Also,
CFSL+ diagrams are still readable when printed black and
white, and the shapes are simple enough for them to be
hand drawn. Therefore no additional dialects seem to be
relevant for other media.

CFSL+ scores the same as CFSL on this principle, as both
languages do not feature different dialects.

4.3.10 Discussion
Table 4.3.10 summarizes the results of the evaluation. Eval-
uating CFSL+ and CFSL using Moody’s principles sug-
gests that CFSL+ is cognitively more effective than CFSL.
However, because this is a strictly qualitative evaluation
there is no way to say by how much it is more effective.
To get a more decisive answer to this question, a user
evaluation is required to measure how much easier it is to
understand diagrams in CFSL+ than it is to understand
CFSGs. Still, it is safe to say that CFSL+ is at least an
improvement over CFSL with regards to readability.

Table 1. CFSL compared to CFSL+ using
Moody’s principles

Language 1 2 3 4 5 6 7 8 9
CFSL -- 0 - - - -- - ++ 0
CFSL+ + + + - - + 0 + 0

5. SUPPORT FOR CFSL+
To support the use of CFSL+, a tool was developed that
allows users to draw diagrams in CFSL+, and export them
to CFSGs in CADP automata format, which can be im-
ported by GROOVE. This section gives an overview of the
structure of the program, as well as how it was validated
that it correctly compiles CFSL+ diagrams to CFSGs.

5.1 Technology
The tool is implemented using Java, in order to make it
available for all major PC platforms. For the interface
and the binding between model and interface JavaFX is
used. JavaFX is Java’s latest framework for developing
interfaces, and allows for a separation between applica-
tion logic, layout and styling by using Java, FXML and
CSS respectively. FXML is an XML-based language in
which the structure of interfaces is defined. CSS as used
in JavaFX is similar to CSS used on the web, although
somewhat limited.

5.2 Interface
The tool follows the Model-View-Controller (MVC) pat-
tern to separate application logic from presentation logic.
This is implemented by a single abstract class Controller<T
extends Node>. This class abstracts much of the boiler-
plate code away that is needed for loading views using
FXML files. Note that Node refers to a JavaFX node, not
a node in a CFSL or CFSL+ graph. Controller has three
ways of loading and attaching to a view:

1. If no arguments are provided to the constructor, a
default FXML file is loaded, and the Controller is
specified as the controller object for that FXML file.
The FXML file that is loaded must have the same
name as the Controller implementation, minus the
word controller, and then suffixed with View.fxml.
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For example, calling the default constructor of Main-
Controller will load the FXML file named Main-

View.fxml. This method requires that the name of
the controller ends with Controller.

2. If a string is provided as argument, Controller will
load an FXML by that string instead. This can be
used to share the same FXML file with multiple con-
trollers.

3. If a JavaFX Node is provided as argument, Con-

troller will not load an FXML file, but attach to
the provided Node instead. This is useful in cases
where views are more naturally defined using Java
than FXML.

All methods of loading views require that the view is of
type T as specified by the Controller implementation. It
is up to implementations of Controller to implement the
actual binding to views and models. Generally, the model
will be injected in the constructor of the controller, which
loads the view as described above.

Controllers and views defined using Java code reside in the
gui package. Views defined using FXML reside in a sep-
arate resources folder. This folder also contains the CSS
stylesheet that defines the styling for the entire applica-
tion.

5.3 Model
The Model part of MVC is implemented by classes in the
model package. The core classes are Graph and the ab-
stract GraphElement. Graph is a collection of GraphEle-

ments. GraphElement is implemented by the abstract classes
Node and Edge. Node has methods for connecting and dis-
connecting Edges to itself. It also has an abstract method
canConnect that is used to determine whether a specific
side (start or end) of a given Edge can connect with the
given Node. This is used to maintain the model in a valid
state, as well as provide feedback to the user when at-
tempting to connect an edge to a node.

For each symbol in CFSL+ an implementation of either
Node or Edge exists. Figure 10 shows these classes, as
well as the relation between them. The boxes are imple-
mentation of Node, and the arrows are implementations of
Edge. The direction of the arrows represents the direction
in which they can be connected. The name of each class
should be self-explanatory.

Figure 10. Model classes

Model classes generally use JavaFX properties to allow for
data binding between controller and model object.

5.4 Compilation
Compilation of CFSL+ diagrams to CFSGs is implemented
by the CfslPlusChecker and CfslPlusCompiler object.
CfslPlusChecker is injected with a Graph object, and is

responsible for checking whether the provided graph is in
a valid state for compilation. If any of the checks fail, an
exception is thrown. It also determines the type of each
Node and Edge and copies it to a list of Nodes and Edges
of that type, which is later used by CfslPlusCompiler.

CfslPlusCompiler performs the actual compilation oper-
ation. Because a specification diagram in CFSL is a graph,
and generally not a tree, it cannot be walked in the same
way that abstract syntax trees usually are in compilers
of programming languages. Instead, the graph is walked
in order of type. First, CFSL nodes are created for each
Node object, and the mapping between source and target
node is saved. Then, CFSL edges between those nodes are
created for each Edge object.

5.5 Validation
This section briefly describes how it was validated that
the compilation process indeed results in the intended CF-
SGs. Example CFSGs are given in [7] of most of the Java
statements. By modeling those statements in CFSL+ and
compiling them to CFSGs, the CFSGs can be compared
to see whether they are equal.

Not all CFSGs defined in [7] were selected. Instead, a set
of CFSGs was carefully selected so that each feature of
CFSL was tested at least once. These features include all
types of control flow, and features such as multiple exits
for a single CFSG, among others. The equivalent CFSL+
statements proved to generate CFSGs that are equal to
the CFSGs that were chosen for the test. Appending A
shows two of the CFSGs that were chosen for the test,
as well as the equivalent CFSL+ graph and the result of
compiling it.

6. CONCLUSION
This paper presented a new visual language, CFSL+, for
the specification of control flow in programming languages.
Although visual languages are common in SE, few of them
have been designed with cognitive effectiveness in mind.
To achieve a cognitively effective language, CFSL+ has
been designed and evaluated using Moody’s principles.
Although an evaluation using those principles alone is not
enough, it does suggest that CFSL+ is at least on the right
track of being cognitively effective, as opposed to CFSL.
We have also presented how CFSL can be compiled to
CFSL+, and validated that indeed everything that can be
modeled using CFSL can be modeled using CFSL+.

One of the most valuable lessons learned is the importance
of perceptual precedence. Like CFSL, CFSL+ contains
a relatively large number of edges that do not directly
represent control flow. If all those edges would appear to
be equally important, it would be hard for the reader to
identify the control flow in a diagram. By making control
flow edges appear to “pop out” of the diagram, attention
is automatically drawn to control flow information first,
without having to compromise on the amount of secondary
information shown. This does not just apply to control
flow diagrams, but to any notation that needs to include
a high variety of information.

As suggested earlier, there is still remaining work. A user
evaluation is required to verify whether it is indeed more
effective at communicating control flow information, as
well as to identify potential points of improvement. Also,
no work has yet been done on improving Complexity Man-
agement and Cognitive Integration. Improving on those
principles could improve readability for specifications of
statements that consist of a large number of grammar
rules.
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APPENDIX
A. COMPILATIONS FROM CFSL+ TO CFSL
This section shows two test cases that were ran for the val-
idation of the compilation process. Figure 11 shows the
LabeledStatement and figure 12 shows the TryFinally.
The first graphic in each figure shows the CFSL diagram
as presented in [7]. The second graphic shows the CFSL+
equivalent, and the last graphic shows the result of compil-
ing the CFSL+ diagram. It can be seen that both CFSL
diagrams are equivalent.

Note that the visual appearance of the CFSL+ diagrams
is slightly different than presented in the rest of the paper,
because some changes were made after validating the com-
pilation process. However, those changes did not affect the
semantics of CFSL+.

Figure 11. Compiling the LabeledStatement dia-
gram. The original CFSL diagram is erroneously
missing the KeyElement label, but is otherwise cor-
rect.
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Figure 12. Compiling the TryFinally diagram.
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