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ABSTRACT

This paper describes how the Al planning language PDDL
was combined with a graph-based model checking tool
called GROOVE. Graph-based models are very intuitive
to work with, yet powerful enough to deal with a great
variety of problems. The visual representation provides a
quick insight in the workings of a model and the available
tools allows the user to explore the system with great ease.
The built-in state space generator of GROOVE comes in
handy during the analysis of a problem and its solution.

Traditional PDDL planners on the other hand are special-
ized in finding a solution without exploring the complete
state space. This approach can be necessary for problems
which state space is just too big to fully explore. Both ap-
proaches have shown to be useful, and the translator we
built combines the forces of both: it makes for an easy in-
terpretation of traditional planning problems formulated
in PDDL, and exploration process for graph transforma-
tion systems with a big state space can be accelerated with
an export to PDDL.
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1. INTRODUCTION
1.1 Motivation

Graph transformations have shown to be a successful tech-
nique for modeling software and hardware systems, and
they have a rich formal foundation for reasoning about
them. To model changes in systems, graphs can be trans-
formed by deleting existing nodes and edges, or creating
new ones. Many types of transformations are formal-
ized [3], and are flexible enough to deal with a great variety
of models [8]. The visual representation of graphs makes
it easy to gain a quick insight into the essence of a model.
See section 5.2 for more details about graphs and graph
transformation.

Al planners are tools, optimized to find the quickest so-
lution to problems using heuristic search algorithms. For
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these planners to work properly, the problem must be de-
scribed in a machine-readable language, including the ac-
tions that can be taken to lead to a solution. One language
for doing this is PDDL [7], which describes both the prob-
lem and the domain in a formal way. See section 5.1 for
more details about PDDL.

Edelkamp and Rensink [2] suggested that these two fields
are more related than one would think, and graph transfor-
mation systems could be used to solve planning problems.
Edelkamp [1] already explored the possibilities of using
PDDL for model checking software and measured some
promising performance results. Although he did the trans-
lations between graphs and PDDL manually, a translation
has been proven possible and useful. Several examples of
PDDL were translated to graphs and several models (rep-
resented as graphs) were translated into PDDL descrip-
tions. In this paper, we describe a tool to do this auto-
matically. Building an automated translation will combine
the intuitive workings of graph-based modeling and solv-
ing with the heuristic exploration algorithms of traditional
planners that rely on PDDL input.

1.2 Paper outline

In section 2, we will introduce the basic concepts of PDDL
and graph transformations. In section 3, we will elaborate
on the problem and what we want to achieve with this
paper, followed by a survey of related work in section 4.
In section 5, we will zoom in on the details of both PDDL
and grapsh, followed by the description of the translation
from PDDL to graphs in section 6. Section 7 will describe
the translation the other way around. To conclude, the
conclusion in section 8 contains a reflection: what do this
research and translator contribute, and what is still left to
do? The appendices consist of a list of definitions (A) that
might help while reading, the graphs generated during the
tests (B), the graphs used as input for the tests (C) and
the generated PDDL output (D).

2. BACKGROUND
2.1 PDDL

PDDL is an acronym for Planning Domain Definition Lan-
guage [7], and was an attempt to standardize Al planning
languages. It was inspired by several forebears such as
STRIPS [5] and ADL [13], and developed in 1998. By de-
fault, PDDL uses STRIPS syntax to describe both the do-
main and the problem (discussed in section 5.1). STRIPS
uses preconditions and effects to describe possible actions.
Some planners support more features, called requirements,
like typing or quantified preconditions. This paper is lim-
ited to the basic STRIPS functionality. A piece of example
code can be found in section 5.1, where we will discuss the



syntax. Using the PDDL description as input, planners
can try to find a solution for the described problem. The
format of the output is not specified, but it is usually a
fully or partially ordered plan: a sequence of events (the
application of an action, indicating which parameters are
used) which will lead from the initial state to the goal.

2.2 Graphs
a b [¢
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Figure 1. An example graph

A graph G can be defined as a 3-tuple: G = (V,E, L),
with V being a set of nodes (sometimes called vertices)
and E being a set of edges, represented as a 3-tuple with a
source node, a label and a destination node: (vsre,l, Vdst)-
Finally, L is the complete set of labels that the edges have.
Labels of nodes are represented by a self-edge of that node.
All this can easily be represented visually by drawing the
nodes as boxes, and the edges as arrows from node to
node. The following formal description corresponds to the
example graph in figure 1.

V =1{0,1,2,3}

E ={(0,4,0),(1,B,1),(2,C,2),(3,D,3),
(0,a,2),(0,b,3),(1,¢,3)}

L={A B,C,D,a,b,c}

The set of labels could be split up into a set of node-labels
and a set of edge-labels. In the example figure however,
node labels are just syntactic sugar for self-edges.

2.2.1 Graph transformation

To model changes in a non-static environment, it is neces-
sary to change the graph accordingly. Changes in graphs
using formal rules are called transformations. Transforma-
tions are used in modeling software and hardware systems.
The formal rules to change a graph consist of nodes and
edges, labeled as one of these four types:

Readers Edges and nodes that must be present to make
a rule applicable, shown as a plain black (continuous
thin) edge.

Embargoes Edges and nodes which presence prevents
the rule from being applied, shown red (dashed fat).

Creators Edges and nodes that will be created when the
rule is applied, shown green (continuous fat).

Erasers Edges and nodes that will be deleted when the
rule is applied, shown as a blue (dashed thin) edge.

These terms and colors are specific to GROOVE, the tool
we use to model graph transformation systems (discussed
later), but all graph transformations systems work with
the same principle. An example rule is shown in figure 2a.
a is a reader, b an eraser, c an embargo and r a creator.

In figure 2 the rule is applied to the example graph (fig-
ure 1). This is a valid action because the start graph
satisfies the reader but not the embargo. By applying the
rule, edge b is deleted and edge r is created, resulting in
the graph in figure 2b.

3. PROBLEM STATEMENT

FreenennD
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Figure 2. An example graph rule and transforma-
tion, starting with the graph in figure 1

To design and build a translator that combines the best
of the two worlds, we address the following questions:

1. How can problem descriptions in PDDL and graph
transformation systems be translated correctly?

e How can problem descriptions in PDDL be trans-
lated correctly into graph transformation sys-
tems?

e How can graph transformation systems be trans-
lated correctly into a domain and problem de-
scriptions in PDDL?

2. When can a translation be called ‘correct’?
3. How can a translation be implemented in GROOVE?

We define the relation between PDDL and graph trans-
formation systems: what do they haven in common, what
are the differences? We show how we use that common
ground and work around some of the differences, and list
the limitations of the translations.

Products.

As part of the research, we have produced a translator
that uses all the results of these questions. By incorpo-
rating this translator into GROOVE, the tool will be able
to handle PDDL descriptions as input. A graph transfor-
mation system will automatically be generated from the
description and the user can work with it as if it were a
graph system he built himself. This way, existing PDDL
descriptions can be visualized, edited and improved.

As for the other way around, graph transformation sys-
tems (both generated and hand-made) can be exported to
a PDDL description. Traditional planners can use their
heuristic search algorithms to quickly explore the state
space, so larger and more complex problems can be solved
within reasonable time.

4. RELATED WORK

Not much research has been done in the relation between
graphs and planning, but the following works are some-
what related:

e Edelkamp [1] already explored the possibilities of us-
ing PDDL for model checking software and measured
some promising performance results. His transla-
tions were done manually.

e Hegedus et. al. [10] described a framework to explore
the state space of graph transformation systems us-
ing heuristic search. They also measured great per-
formance increase compared to ‘normal’ state space
exploration.

e Hegedus et. al. [11] also developed a guided trajec-
tory exploration algorithm based on the results of
petri net [12] analysis. This again shows the poten-
tial of heuristic algorithms to explore a state space
of graph transformation systems.



e Estler et. al. [4] have build a planning framework
that uses heuristic search algorithms to direct the
search in a state space of graph-based systems.

e Gerevini and Long [6] described the PDDL language
with a BNF grammar, which is one of the first steps
towards building the translator.

e Snippe [14] researched the possibility of using A*
search to find a path to the end state in GROOVE.
This algorithm was not implemented, but the rele-
vance of a heuristic search to explore the state space
was shown once again.

S. DETAILS

To explain the translation, we need to zoom in on the
details of PDDL and graph transformation systems. For
both, we will use ‘wumpus world’ as an example, a com-
monly used problem to get used to planning systems and
their terminology. Wumpus is a generic ‘bad guy’ that
guards a treasure. The purpose of this problem is to move
an agent through a simple maze, defeat the wumpus with
a spear, gather the treasure and move back to the starting
point. A visual representation of this problem is shown
in figure 3. The PDDL code used for these examples is
derived from the examples of Patrik Haslum®.

Figure 3. Visual representation of the wumpus
world. The agent, carrying a spear, is in the top
left corner, the wumpus in the bottom right, and
the treasure in the top right.

A possible plan to solve this problem is to move the agent
down and right, shoot his spear at the wumpus (killing
it), move right and up, take the treasure and walk back
(down, left, left, up).

5.1 PDDL

PDDL uses a strict separation between the domain des-
cription and the problem description, both of which will
be discussed separately. An important principle in both
is predicates. Predicates can assign properties to objects,
and define relations between objects; for example the pred-
icate dead, which puts a label on an object indicating it
is considered dead, or have, which states that one object
is in possession of another.

5.1.1 Domain description

The domain description describes the possible actions and
their effects. It consists of the following parts:

Domain name The definition of the domain name; used
to refer to the domain.

List of requirements Some Al planners might support
more features than basic STRIPS (e.g. typing of
objects) and to indicate whether the description uses

http://users.cecs.anu.edu.au/~patrik/
pddlman/wumpus.html
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these extra features, a list of ‘requirements’ is added
to the domain description. If no requirements are
given, STRIPS is implied.

List of predicates with each predicate denoting the pos-
sible properties of, and relations between objects in
the domain.

List of actions The possible actions are described with
their names, parameters, preconditions and effects.
Both the preconditions and the effects are optional:
an action without preconditions can always be ap-
plied, an action without effects doesn’t change any-
thing but only checks whether some conditions are
true. Both the preconditions and the effects are de-
scribed in terms of predicates, applied to the para-
meters of the action. These predicates can be negated
(not), and multiple predicates are possible using
and.

(define (domain wumpus)
(:requirements :strips)
(:predicates

(at ?what ?square)
(adj ?square-1 ?square-2)
(pit 7?square)

(wumpus—-in ?square)

(have ?who ?what)

(is—agent ?who) (is-wumpus ?who)

(is—gold ?what) (is—-arrow ?what)

(dead ?who)

(:action move-agent

:parameters (?who ?from ?to)
:precondition (and (is-agent ?who)
(at ?who ?from)
(adj ?from ?to)
(not (pit ?to))
(not (wumpus—-in ?to))
)
:effect (and (not (at ?who ?from))

(at ?who ?to))
)

;more actions:

)

take, shoot, move-wumpus

Listing 1. Domain description in PDDL

Listing 1 shows an example domain description, where
predicates are defined on lines 3-11, and one possible ac-
tion on lines 13-23. The predicates with one parame-
ter can assign a property to an object (e.g. is-agent),
predicates with two or more parameters give a relation
between objects (e.g. at). The actions are described
by the required parameters, the preconditions and effects
(both expressed in terms of predicates). In the example,
move—-agent can only be applied to three objects if one of
them is an agent (?who) on a tile (?from), ?from must
be adjacent to another tile (?to) and that tile cannot be a
pit and there may be no wumpus on it. When this action
is applied, the agent is no longer on the first tile, but on
the second.

Note that in the domain description, no assignments are
made. The domain only indicates the possibilities and the
consequences of actions when they are applied. The ac-
tual assignments of objects and predicates are done in the
problem description:

5.1.2  Problem description
The problem description states which objects exist (e.g.
puzzle pieces), which predicates each object satisfies (e.g.
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shape and initial position of the pieces) and the goal of
the problem (e.g. a solved puzzle). An example problem
description can be found in listing 2.

The problem needs to have a name and a domain to which
it applies, followed by a list of objects that exist. Next,
predicates are assigned to to objects in the begin state.
Finally, the goal is described with predicates. Not all ob-
jects need to be mentioned in the goal, the subset that
describes the desired end state is enough.

Both the list of objects and the assignment of predicates
are optional. A problem without objects is hardly think-
able, but a problem with no initial predicates is: the pre-
dicates could be built up with rules, making it part of the
plan. However, in most cases, both will be given.

(define (problem wumpus-1)
(:domain wumpus)
(:objects s-1-1 s-1-

s=2-1 s-2-
gold arrow
agent wumpus

2 s-1-3
2 s-2-3

(:init (adj s-1-1 s-1-2) (adj s-1-2 s-1-1)
(adj s-1-2 s-1-3) (adj s—-1-3 s-1-2)
(adj s-2-1 s-2-2) (adj s—-2-2 s-2-1)
(adj s-2-2 s-2-3) (adj s-2-3 s-2-2)
(adj s-1-1 s-2-1) (adj s—-2-1 s-1-1)
(adj s-1-2 s-2-2) (adj s—-2-2 s-1-2)
(adj s-1-3 s-2-3) (adj s-2-3 s-1-3)
(is—gold gold) (at gold s-1-3)
(is—agent agent) (at agent s-1-1)
(is—arrow arrow) (have agent arrow)
(is—-wumpus wumpus) (at wumpus s-2-3)
(wumpus—-in s-2-3) (pit s-1-2)

)

(:goal (and (have agent gold)

(at agent s—-1-1))
)
)

Listing 2. Problem description in PDDL

5.2 Graphs in GROOVE

To model all graphs and graph rules, a tool is needed. Sev-
eral options are available, such as GROOVE?, AGG? and
AUGUR*. We chose to use GROOVE because this tool
is being developed and used at the University of Twente,
so there is a lot of knowledge about the internal workings
of the tool. A great advantage is the built-in state space
generator, which can be used to see if the model is correct
and to find a plan that leads to (one of the) end state(s).
The usage of the tool is very intuitive, immediately show-
ing one of the powers of graph models.

The tool divides the case into a start graph and graph
rules. The rules can be prioritized, so that certain rules
will never be applied if other rules can be. For example,
the pattern of the desired end state can be formulated as
a rule with the highest priority, so no more rules will be
applied if the graph matches this state.

Figure 4 shows a graph representation of the problem des-
cribed in listing 2. All objects are represented as nodes,
the predicates are shown as edges between them. The
object names are shown inside the nodes, as node labels.
Properties of the nodes are shown as proper self-edges,

2qroove .cs.utwente.nl
Suser.cs.tu-berlin. de/~gragra/agg
4ywww.fmi.uni-stuttgart.de/szs/tools/augur

just for clarity. This has no influence on the working of
the system.

isjag\ent‘
adj\
sq—2-1 adjﬂsq—l—l]eat%agent}
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at — the—gold
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~

is—gold

is—wumpus

Figure 4. Graph representation of the wumpus
problem in GROOVE. Object names are pictured
as node labels, predicates as (self) edges

Similarly, figure 5 shows the graph representation of the
action move-agent (in graphs, an action is called a rule),
described in listing 1.

is—agent
at” /s \
/) at at\
1
H
K N plt

wumpus—in

Figure 5. Graph representation of the move-agent
action in GROOVE

A closer look learns that there is only one possible match
of the rule to the start graph: the agent could move from
sg-1-1 to sg-2-1.

State Space.

One of the biggest advantages of GROOVE is the built-in
state space generator. This view represents each possible
graph of the system as a node, and each transition (rule
application) as an edge. A rule application r on graph go
which leads to graph g; is displayed as go — g1. There
are several methods to explore the state space, like man-
ually, depth-first, breadth-first and some (semi-)random
algorithms. The complete state space can give a quick in-
sight into the correctness of the model by looking for the
presence of deadlock-states (no more possible actions), or
the solution of the problem by finding (a) final state(s).
The path toward such states can easily be followed to see
where the real problem is. Each node can be clicked to see
the corresponding graph.
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6. TRANSLATION PDDL TO GRAPHS

We will now describe the translation from PDDL to a
graph transformation system in GROOVE. First we will
explain the theoretical background for reasoning about its
correctness (section 6.1), followed by a test plan and the
results (section 6.2 and 6.2).

6.1 Theory

The way PDDL splits up problems into a domain defini-
tion and a problem definition very much resembles the
way graph transformation systems are represented. In
GROOVE in particular, there is a clear division between
the rules (domain) and the start graph (problem). This
similarity makes the translation fairly simple.

The predicates are easy to translate into edges: a self-edge
for predicates with only one argument, an edge between
two nodes for two arguments and an extra node with mul-
tiple edges to multiple existing nodes for predicates with
three or more arguments. An example of these transla-
tions can be seen in figure 6.

(a)

one parameter (a A)

A
( (

two parameters (a A B) more parameters (a A B C)

Figure 6. Example basic translations

The actions can all be translated to graph transformation
rules by interpreting the preconditions as readers and em-
bargoes, and the effects as creators and erasers, except for
one difference: An eraser in GROOVE acts as a reader
at the same time, allowing the rule application only when
that edge is present. PDDL however, applies the action
regardless of the presence of the predicate that is to be
deleted. This might seem to cause no problems, as the
result is the same. The resulting plan would differ be-
tween the systems however, and if the action/rule would
include another effect, this action would produce another
state than the corresponding rule. The desired behavior
of the rule would be to erase the relation if present, but
also apply the rule if it is not, as this is how PDDL is spec-
ified. GROOVE supports a feature that does this, using
existential quantifiers. This feature is well-documented for
nodes, but not so much for edges. The solution is to intro-
duce a new quantifier node with a certain level indicator.
The eraser rule should reference to that level indicator,
resulting in the desired behavior. Each eraser needs its
own, unique quantifier node to ensure they are matched
independently. Figure 7a shows the ‘simple’ approach, fig-
ure 7b shows the rule with an existential quantifier. The
extra node is shown as 3%, the label of the eraser edge
reads b@z.

Another solution for this phenomenon would be to create
two rules for each action: one with eraser and one with-
out. This way, it is always possible to apply either one

:precondition (
(a ?A ?B)
)
:effect (
not (b ?A ?B)
)

Listing 3. PDDL code of a negative effect

a \ a \

‘ //‘b ‘ /,B@z
G

(a) (b) solution
simple approach

Figure 7. Graph rules of an eraser

of these rules, and by giving them the same transition la-
bel, the resulting plan makes no difference between them,
making both rules appear as one and the same. We chose
not to use this method, because the system could become
quite cluttered with two or more rules per action. More-
over, constructions like this are more difficult to detect
when one would want to translate the graph transforma-
tion system back to PDDL.

Another difference between PDDL and graphs is ‘injective
matching’ of objects. PDDL matches the parameters of an
actions distinctively, i.e. all the used objects are unique.
By default, GROOVE does not do this and one node in a
graph can be used multiple times in a single rule. Fortu-
nately, GROOVE has a setting to prevent this: injective
matching should be turned on in the resulting graphs for
the rules to behave the same as the PDDL actions.

6.2 Testing

To validate this approach, we made PDDL descriptions of
a state, and for every atomic action the state that followed
after applying each action. We translated these states
and actions to graphs and graph rules using the suggested
translation method. To put this in a formal way:

Given translation 7', from planner states to
graphs and actions to graph rules. 7'(.S) is the
graph corresponding to state S, T'(A) is the
rule corresponding to action A.

To test translation 7', an action a is chosen
and applied to a state so, resulting in a state
S1: So ﬁ) S1.

These states and action are translated using T',
resulting in graphs T'(so) and T'(s1), and graph
rule T'(a).

If T is to be called correct for this action a, the
rule application of T'(a) on graph T'(so) should

result in graph T'(s1): T'(so) Q) T(s1)
T is considered correct if this holds for every
action a.

See figure 8 for a visual representation of the test plan.

We performed this test on 12 test cases: A rule can have
positive and negative preconditions, and it can have pos-
itive and negative effects. All the possibilities to combine
are shown in table 1. All actions were applied to a state
with two objects; A and B, with the predicate a from A to
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Figure 8. Correctness of the translation. The
squares on the left are planner states, the circles
on the right are graph states. The solid vertical
arrows are action- and rule applications and the
dotted horizontal arrows are translations

Table 1. Numbers of the test cases: + for positive
preconditions/effects, — for negative, + for both

test case Preconditions
+ | -] %

" 1 2 3
S F[ 4156
%‘ — 718 9
+ [[ 10| 11| 12

B. We translated all actions to graph rules, applied those
on the graph that corresponds with the start state and
checked whether the result was similar to the result state.
For example:

Test 4a & 4b
For all tests as of number 4, we figured there are
multiple possibilities to implement the tests: When
using multiple predicates in a rule, they can apply on
the different relations between the objects (e.g. test
4a, below), or on the same (e.g. test 4b, below). The
graph rules of both 4a and 4b are shown in figure 9a

and 9b.
4a 4b
:precondition ( :precondition (
(a ?A ?B) (a ?A ?B)
) )
:effect ( :effect (
(b ?A ?B) (a ?A ?B)
) )

(a) test 4a

(b) test 4b

Figure 9. Graph rules of test 4

Test 10b
As can be seen in listing 5, this action has two con-
tradicting effects, which does not work in PDDL.
Therefor, his action cannot be translated.

6.3 Results

Except for the issue mentioned above, the tests show that
the approach appears to be correct, because the generated

:precondition (
(a ?A ?B)
)
:effect (
and( (b ?A ?B)
not (b ?A ?B))
)

Listing 4. PDDL code with two contradicting ef-
fects

graph rules for all other actions were applicable to the first
graph and resulted in the respective end graphs. To fully
test the possibilities, we have designed and built a com-
piler that reads PDDL-files into GROOVE, automatically
representing the problem with graphs and graph rules. To
test the compiler, we made GROOVE to come up with a
plan for the wumpus problem as described in listing 1 and
2. The resulting graphs are shown in appendix B.

The translator worked properly on the given example:
the resulting graph rules reflect the described actions in
PDDL, the same goes for the start graph and the goal.
The state space however, shows no less than 27 end states.
A quick analysis of those states learns that the original
PDDL description is not as complete as it appears:

e For the agent, it is forbidden to move to a square
with a wumpus on it. The wumpus however, is not
restricted in its moves and has no problem moving
onto a square with the agent on it.

e The agent can not only take the treasure, but also
the wumpus when it is on the same square. Even
if the previously mentioned problem is solved, the
agent can pick up a dead wumpus, because a wum-
pus stays on its square when dying. By taking a
wumpus alive however, the predicate wumpus—in re-
mains, causing unexpected results later as the square
has become inaccessible for the agent.

e ‘stays’ on its square is not completely true. The
move-wumpus action does not check whether the
wumpus is still alive or not, so even a dead wum-
pus is able to wander around the field.

All these factors introduce new possible states in which
the goal is satisfied, which were probably never found by
traditional planners. This is a showcase of the advantages
of graph-based problem solving, immediately showing the
potential of a good integration between the two systems.

Limitations

The translator is limited to the use of STRIPS, without
any of the additional requirements.

7. TRANSLATION GRAPHS TO PDDL

We will now describe the translation from graph transfor-
mation systems in GROOVE to PDDL descriptions. First
we will explain the theoretical background (section 7.1),
followed by a test plan and the results (section 7.2 and 7.3).

7.1 Theory

The translation as described in section 6.1 works pretty
much the same way for the other way around. A big
difference however, is that PDDL does not support the
creation and/or deletion of objects, while it is possible
to create nodes as creators and erasers in GROOVE. As



Edelkamp [1] mentioned, additional action effects that cre-
ate or delete an object would not only help for this prob-
lem, but would also be desirable for several other plan-
ning purposes. But of course altering PDDL is not feasi-
ble within the scope of this research, so we will limit the
translation to graph transformation systems without node
creations. As a result, PDDL descriptions using predicates
of 3 or more parameters can be translated to graphs, but
because such a predicate means a node creation in graphs,
the translation back to PDDL is impossible.

The fact that an eraser in GROOVE also acts as a reader,
has to be taken into account in this translation as well.
Luckily, this solution is much simpler, and an extra pre-
condition is enough to simulate the reader-behavior of an
eraser.

Another difference between the two systems is in the hand-
ling of the effects. GROOVE handles every eraser before it
handles all the creators, but PDDL effects are formulated
as a kind of post-condition, without any order of execu-
tion. Because of this, GROOVE can have ‘contradicting’
effects (e.g. a creator and an eraser for the same edge), but
in PDDL this would mean the predicate is both present
and absent after the application of an action. Ignoring
the questionable usefulness of such rules, the solution is
to detect these kind of structures and replace them with
a reader (again, to simulate the reader-behavior of the
eraser). The result is of course no problem for PDDL,
while graphs that are produced stay the same. Figure 10a
and 10b show two graph rules with the same behavior.
The first one results in unusable PDDL code (listing 5),
while the second one produces valid code.

b N

) E
&“ b
E __-

(a) (b) translatable
not translatable

Figure 10. Graph rules with the same behavior

:precondition (
(a ?A ?B)
)
:effect (
and ( (b ?A ?B)
not (b ?A ?B))

Listing 5. translated PDDL code

7.2 Testing

The test plan of this translation is analogous to the one de-
scribed in section 6.2, but of course the other way around
as shown in figure 11:

7.3 Results

All these tests were executed and showed no other prob-
lems than the ones mentioned in section 7.2, again indi-
cating the translation to be correct.

Additionally, we created a basic graph transformation sys-

T'(s1)

Figure 11. Correctness of the translation. The
circles on left right are graph states, The boxes
on the right are planner states. The solid vertical
arrows are action- and rule applications and the
dotted horizontal arrows are translations

tem based on the ferryman problem®, which can be found
in appendix C, and exported it to PDDL descriptions. We
chose not to use the wumpus problem again, because the
generated graphs cannot be translated back because of the
existential quantifiers for the erasers, and a new problem
enabled us to test another example on-the-fly, as the gen-
erated PDDL code could be translated back to graphs.
Parts of the generated PDDL files can be found in Ap-
pendix D.

Limitations

The translation from graph system to PDDL has some
limitations, as mentioned earlier in this paper. Addition-
ally, some extra clarifications are needed for the translator
to work properly:

e Because GROOVE saves node labels as self-edges,
the translator cannot distinguish the difference be-
tween the name of an object, and a predicate with
one parameter. Therefor, it is necessary to make
node labels stand out by adding the prefix flag:.
These self-edges will be interpreted as the names of
the objects, self-edges without this prefix are consid-
ered to be predicates.

e There can only be one start graph, and this graph

should describe the problem using labeled nodes.

One of the rules has to be named goal and must

describe the desired end state, using only nodes with

a flag label, readers and embargoes.

Existential quantifiers are needed to make the erasers

work properly, but these structures are not recog-

nized by the translator from graphs to PDDL and
will generate unforeseen results.

Object creation and deletion is not possible in PDDL,

so the graph rules cannot have any creator or eraser

nodes.

8. CONCLUSION
8.1 Reflection on problem statement

How can problem descriptions in PDDL and graph
transformation systems be translated correctly?

The translation from PDDL to graphs, as suggested in
sections 6.1 and 7.1 did not only lead to a working trans-
lator, it even showcased one of the biggest advantages of
a translator by unveiling several shortcomings in the ex-
ample PDDL code. The other translation, from graphs to
PDDL works as well, although it still has some of limita-
tions.

5Also known as the Fox, goose and bag of beans puzzle,
but in this case we use a wolf, a goat and cabbage.



When can a translation be called ‘correct’?

The extensive process of validating and testing, as de-
scribed in sections 6.2 and 7.2, indicates that the label
‘correct’ is in place.

How can a translation be implemented in GROOVE?

We used as much built-in methods of GROOVE as pos-
sible, so we didn’t have to do anything ourselves that
GROOVE already did.

8.2 Future work

This research only scratched the surface of the possibili-
ties. There is a lot of potential in the produced translators,
but there is still much left to do:

Extra requirements.

Several options (requirements) of PDDL are left unimple-
mented and untested. The translator should be extended
to handle more requirements like typing and equality.

Optimization.

The translation is quite naive at some points. For exam-
ple, an existential quantifier is created regardless of the
presence of a reader which forces the edge to be present
before applying the rule. This renders the quantifier use-
less. For the translation back however, this quantifier is
quite a burden as it prevents the rule from being trans-
lated properly.

The same goes for predicates with 3 or more parameters.
These are translated into a node with numbered edges
to the object-nodes. This structure cannot be translated
back because the generation of objects is not supported in
PDDL, but the translator does not recognize this struc-
ture to interpret it as a multi-object predicate.

In short, if the translator would recognize patterns in the
graph rules, it should be able to identify them and create
the respective PDDL construction instead of giving an er-
ror. This would increase the number of graphs that are
translatable to PDDL.

8.3 Availability

The translators will be incorporated in one of the next
releases of the GROOVE tool (urlgroove.cs.utwente.nl).
As GROOVE is an open source project, the sources of the
translator will become public at the same time.

All the PDDL files and GROOVE grammars mentioned in
this paper, both as input and generated, can be found on
www.ronaldm.nl/pddl-groove.
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APPENDIX
A. DEFINITIONS

The following terms may cause confusion, so to be clear
we will briefly explain them.

Action Description of a possible action, using precondi-
tions and effects.

Creator An edge or node that will be added to the graph
by applying a graph rule.

Domain Description of the problem setting, including pos-
sible predicates and actions.

Effect Description of the effects of an action, using Pred-
icates and logical operators such as and and not.

Embargo An edge or node that cannot be present to ap-
ply a graph rule.

Eraser An edge or node that will be removed from the
graph by applying a graph rule.

Event The application of an action, indicating which 0b-
jects are used as arguments.

Goal The desired end state, to which a plan should lead.

Graph rule Description of graph transformations to be
taken when a (sub)graph matches the given readers
and embargoes.

Graph transformation Transformations to be applied
to a graph, expressed in creators and erasers.

Object Instances in the domain that can have predicates.

Plan A sequence of events that leads from the initial state
to the goal state.

Planner A tool that delivers a plan, given a domain and
a problem.

Precondition Description of a precondition of an action,
using predicates and logical operators such as and
and not.

Predicate An attribute of an object, or a relation be-
tween multiple objects.

Problem Description of the start state, using predicates

Reader An edge or node that must be present to apply
a graph rule.

State A possible configuration of objects and predicates.
State space All possible states.

Translation A (systematic) way to express a state or ac-
tion as a graph or graph rule respectively, or the other
way around.

B. GRAPH OUTPUT
B.1 Start graph
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Figure 12. Generated start graph

B.2 Goal
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Figure 13. Generated goal rule

B.3 Rules
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Figure 14. Generated rule graph: move-agent
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Figure 15. Generated rule graph: move-wumpus
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Figure 16. Generated rule graph: shoot
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Figure 17. Generated rule graph: take

C. GRAPH INPUT
C.1 Start Graph
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Figure 18. Start graph

C.2 Rule: eat
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Figure 19. graph rule: eat
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D. PDDL OUTPUT
D.1 Domain (fragment)

)

(define (domain toPDDL)

(:requirements
(:predicates

:strips)
(is-bank ?2a)
(is—-ferry ?a)
(moored ?a ?Db)
(likes 7a ?b)
(on ?a ?b))

(:action eat
:parameters( ?n0 ?nl ?n2 ?n3)
:precondition (and( (is-bank n0)
(is—-ferry nl)
(not (moored nl nO0))
(on n2 n0)
(likes n2 n3)
(on n3 n0)))
:effect ( (not (on n3 n0)))
;other actions: move, move-empty

Listing 6. Generated domain description in PDDL

D.2 Problem

(define (problem start)

Listing 7.
PDDL

(:domain toPDDL)
(:objects left right ferry
wolf goat cabbage)
(:init
(is-bank left)
(is-bank right)
(is-ferry ferry)
(moored ferry left)
(likes wolf goat)
(on wolf left)
(on goat left)
(likes goat cabbage)
(on cabbage left)
)
(:goal
(and
(on wolf right)
(on goat right)
(on cabbage right)

Generated problem description in
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