
Using Heuristic Search to Solve Planning Problems in
GROOVE

Erik Snippe
University of Twente

P.O. Box 217, 7500AE Enschede
The Netherlands

e.snippe@student.utwente.nl

ABSTRACT
Planning is a part of artificial intelligence that concerns
strategies for solving difficult problems that have no clear
algorithmic path to a desired goal. For computer models
that generate a big search space it is often difficult to find a
path to a specific state because of all the different options
given. Planning can help here by handing the strategies
to find a path easier and faster. GROOVE is a graph
transformation tool which can be used to model problems
and then generate the search space for these problems.
However, GROOVE currently does not support the func-
tionality of a planning algorithm. In this research we will
investigate the impact of a famous state space exploration
algorithm on certain problems in GROOVE.

Keywords
Planning, graph transitions, GROOVE, heuristic search,
A* algorithm

1. INTRODUCTION
Planning tries to find a path from a given initial state
toward a desired goal state using a series of possible given
actions. This can be difficult because often the path is
not very clear and the amount of options can be quite
big. This results in a large search space and requires a
strategic approach to find the easiest path toward the goal.
Consider the Rubik’s Cube for example. You can twist
it all day randomly and never get it back in its solved
position. For each twist you have 18 possibilities (6 sides
and 3 possible new positions for that edge) and it is not
very clear which twist will most likely lead to the solved
state. A lot of possibilities will only shuffle the colors
even further instead of bringing you closer to the desired
solved state. There has been some preliminary work in
this direction, see Edelkamp and Rensink [1].

1.1 GROOVE
GROOVE [3] is a Graph Transformation tool developed at
the University of Twente for modeling graph transitions.
By modelling the start situation and the possible transi-
tions, GROOVE can be used to model planning problems.
Using this model GROOVE can explore the entire search
space in order to find a desired result. To do this it either

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy oth-
erwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.
14th Twente Student Conference on IT Januari 21st, 2011, Enschede,
The Netherlands.
Copyright 2011, University of Twente, Faculty of Electrical Engineer-
ing, Mathematics and Computer Science.

uses a Depth First Search (DFS) approach or a Breadth-
First-Search (BFS)approach. Only BFS guarantees to find
the optimal solution.

1.2 Background: GROOVE
Here we will explain the basic functionality of GROOVE
using the Ferryman problem. In this problem we have a
ferryman who has to transport a cabbage, a goat and a
wolf from one bank of the river to the other bank. The
problem is that he can only transport them one at a time.
Also, should the ferryman leave the goat and the cabbage
alone on one riverbank, then the goat will eat the cabbage.
In the same way the wolf will eat the goat, if given the
chance.

Host Graph
In Figure 1 you can see the initial state of this problem
which is represented as a model. The two banks at the
center represent the two river banks. It also shows the
boat of the ferryman which is “moored” at the left bank.
The cabbage, the goat and the wolf are also “on” the left
bank. Lastly you can see that the goat likes the cabbage
and that the wolf likes the goat.

Figure 1. The Graph model for the Initial state of
the Ferryman Problem

Graph Rules
Figure 2 shows an example of a Graph Rule for this prob-
lem. This transition was called “Transport” and it moves
both the boat and one other object from one of the banks
to another. The empty block means it can be anything as
long as it has an “On” relation with the bank. The dotted
line shows a connection that is required for this transition
to take place but is also to be removed by this transition.
In this case the boat needs to be moored at a bank and the
object needs to be on the same bank. The bold lines show
a connection that is to be created by this transition. In
this case both the boat and the object are to be connected
to the other bank with the same relationship. Both banks
are connected by a “!=” relation, which basically means it
can’t be the same bank. The end result of this transition is
that the boat and the object are placed on the other bank.



The rest of the rules are designed in a similar fashion.

Figure 2. A Graph Rule for the Ferryman Problem

State space
Finally Figure 3 shows the state space for this problem as
it is explored by GROOVE. First of all, it shows the initial
state as seen in Figure 1 as state S0 at the top of the state
space. It also shows the applications of the graph rules
as transitions between the several states. The transitions
are named after the rule that was applied. The dark states
are final states in which GROOVE cannot apply any other
rule. Should the state be called “Eat” then that means
that one of the objects was eaten, while the “Finished”
state means that a solution to the problem was found.

Figure 3. The State space for the Ferryman Prob-
lem

2. PROBLEM STATEMENT
As seen in the Ferryman problem GROOVE needs to ex-
plore the entire search space in order to solve the problem.
In other words there is no intelligent exploration strategy
implemented in GROOVE. With planning problems the
amount of possible states that need to be explored can
grow exponentially to the point where GROOVE cannot
handle it. To solve this problem a heuristic search method
is required. A heuristic search method will always explore
the option that will most likely result in a desired result
and will ignore options that will probably not lead to a
desired state.

2.1 Research Questions
We aim at answering the following research question:

What heuristic search method is most suited for GROOVE
and how do we use it as part of the GROOVE exploration
strategy?

In the literature [4] the A* algorithm [2] is often used to
tackle planning problems. Using heuristics it estimates

the distance between any state and the desired goal state.
From the open and unexplored states it will choose the
state with the lowest estimated distance and explore that
node. Any child state from that state are added to the list
of open and unexplored states. This process is repeated
until eventually either the goal state is reached or there
are no open and unexplored state left. In the latter case
this means that the goal cannot be reached. The main
problem with this algorithm is writing a good estimation
formula for the distance between a given state and a goal
state. We intend to implement this algorithm into the
GROOVE functionality and then test this impact of this
algorithm on GROOVE searches.

3. A* ALGORITHM
The A* algorithm is a heuristic search algorithm that tries
to find the shortest path between a start situation and a
desired goal situation. It does this by keeping track of
two variables for each found sub-state. The first is the
shortest distance between the current state and the start
state and the second is an estimated distance between the
current state and the desired goal state. For as long as
the algorithm has not found the goal-state the algorithm
will keep on exploring the states preferring the states with
the lowest total distance to both the start and the goal
state. The pseudocode for the algorithm can be found in
the appendix.

The A* algorithm uses a heuristic function to estimate
the distance between a given state and the goal-state. For
the algorithm to work properly two restrictions have to
be placed on this distance function. First of all the dis-
tance function needs to be admissible. This means that it
should never overestimate the distance towards the goal.
It does not matter if the distance is underestimated, which
will be the case most of the time, but in order for the
A* algorithm to find the shortest path towards the goal
this distance should not be over estimated. The second
restriction is that the heuristic function should be consis-
tent. This means that the estimated distance of a parent
state should always be equal or smaller than the distance
between the parent and a child state and the estimated
distance of the child. As a result no child node will ever
have a smaller total distance (distance from the start and
estimated distance to the goal) then its parent. Because
of this the start state will always have the lowest total
distance and the nodes are always explored in increasing
total distance. Should a shortcut be found and the dis-
tance from the start be updated for a node then we can
know for certain that that node is not yet explored and
we should not have to update all the child nodes of the
given node. This is because if the node has already been
explored then that would mean that the previous total
distance is smaller than the total distance of the parent,
which should not happen because of the consistency re-
striction.

4. ADJUSTING A* TO GROOVE
GROOVE uses several exploration strategies to search a
the state space. The basic strategies are DFS and BFS.
However these strategies only decide in which order the
nodes of the search tree are explored. The goal of the
search, which can be either exploring the entire state space
or halting when a specific goal is reached, is not part of
the exploration strategy. When implementing the A* algo-
rithm as a GROOVE strategy we decided to give the user
the option to enter a goal as the target for the A* search
but the user will have to give the command to GROOVE to



stop searching after finding the same state. The goal of the
A* search can be chosen from the rules of the GROOVE
model and is considered reached if the rule has been ap-
plied on the model.

GROOVE has a general template for search strategies
which uses two basic functions. First of all there is the
next function. This function does the basic exploration of
the next node that is to be explored. Should this function
find any new child states then it will try to add this node
to the search list using the putInPool function. The next
function will use the updateAtState function to prepare
the next state for exploration. This function will use an-
other function, by the name of getFromPool, to retrieve
the next state to be explored. The putInPool and get-
FromPool functions are the functions from the template
that need to be overridden in order to create our own
search list for the nodes. Both functions use the GROOVE
structure class PoolElement to store the information of a
node. Because these PoolElements cannot store the dis-
tances we wanted we first created a structure of our own
build around the PoolElements so we can store our own
information. After that we created a Comparator for our
own structures so we could use these two to store them in
a Java PriorityQueue.

Next, for updating the distances to the start, which A*
does in the later part of the algorithm, we created the up-
dateState function. At first it may seem that this function
will recursively visit all the children of all the children of
the current node but because of the check at the base of the
function it will only check nodes that have already been
found and entered into the PriorityQueue. Also because of
the consistency requirement discussed earlier we know for
certain that the node has not yet been explored. A child
node is required to have a bigger total distance than its
parent and a node that has already been explored should
have a smaller total distance. At this point we left the
heuristic to the specific testcases. The pseudocode of the
GROOVE implementation can be found in the appendix.

Another point to keep in mind when adjusting the A* algo-
rithm for GROOVE is that the search tree that GROOVE
produces is non-weighted. It can take several steps to-
wards the goal but these steps do not have a value added
to it. Therefor we decided to count the amount of steps
GROOVE has to take to reach the node and weighing
them all steps as one.

5. GENERIC HEURISTIC TEMPLATE
Should a programmer want to create his own heuristic
to match a problem he wants to solve, then the current
framework is suitably adaptable to fill this need. After
entering the problem in GROOVE one would have to cre-
ate a new subclass of the AStarStrategy class which is in
the groove.explore.strategy package. There are only two
functions that one needs to override for their own heuris-
tic function. The first function is the createGoal func-
tion. This function is used to get all the information that
is needed from the goal rule, which is given as an argu-
ment to the function, and store this information for later
use. Different problems may need different information
from the goal and this function is meant to extract every
that information so it can be used later for calculating the
heuristic distances.

The second function that one needs to override is the
heuristicDistance function. This function gets a Graph as
an argument and is used to evaluate the distance towards
the goal for the given graph. Here the information previ-

ously stored about the goal state is used. When writing
this heuristic function it is advised to keep the admissible
and consistency requirements in mind, this to ensure the
efficiency of the A* search.

Should the given heuristic not be admissible then it may
happen that the goal state is overshot and a less efficient
path can be found towards the goal. Should the heuristic
function not be consistent then the risk is that a shorter
path is found towards a state that has already been ex-
plored. This will result in the update of all the children
of the node and also its children until potentially half the
search tree is updated. This could possibly be very time
consuming, especially when it happens often during the
search.

It is worth noting that A* will keep on searching for the
goal state, independent of how good or bad the heuristic
function is written. It will always continue exploring new
states until either all the states are explored or the desired
goal state has been found. There are just no more guar-
antees over the efficiency of the search and the path that
will be found.

The final thing that must be done when writing a A* strat-
egy is adding the strategy to the GROOVE StrategyEnu-
merator. This class can be found in the groove.explore
package. The strategy can be added to the list similarly
to the other existing strategies.

6. EVALUATION
For testing the impact of the A* algorithm we wanted to
test it on two different heuristic function. First of all we
wanted a heuristic function that was general and could be
used on many different problems without the need for ex-
tra programming. Next we wanted to create a specialised
heuristic function dedicated on a single problem. For the
problem that we wanted to test it on we decided on the
BoxWorld problem. This is a famous planning problem in
which we have a factory hall filled with several stacks of
named boxes. We want to re-order these boxes in a prede-
fined order. To do this we have a machine which can take
the top box from any one given stack and place it either
on another stack or on the floor.

6.1 Generic Heuristic Solution
For the first part of the tests we wanted to create a generic
heuristic function that could be used on a variety of prob-
lems. For this function we decided to compare the start
graph of the goal rule and the current graph and count the
similarities between these two graphs. Using the create-
Goal function we made a list of all the nodes in the goal
graph and a list of all the edges the graph has. This infor-
mation is used in the heuristic function where it counts all
the nodes and edges which are in this list but not present
in the graph from which the user wants the heuristic dis-
tance. We assumed that for every node and/or edge that
is not present at least one step has to be made before the
edge or goal is present. The heuristic distance would then
be the amount of nodes and edges of the goal state that
are not yet present.

Should two graphs have the same amount of similar nodes
and/or edges we decided that we wanted to favour the
node with the most options left. Because of this we de-
cided to count the amount of child nodes the node has and
deduct a tenth (0.1) step from the estimated distance for
every child node.

It should be noted that this is, most likely, not a proper
A* heuristic. We can give no guaranties that this heuristic



is admissible and consistent because we can not say how
much a single rule of a given problem might do and how
much closer it may bring the problem towards its solution.
Also there is no guaranty that the goal state is very com-
patible with this solution. For example, should the goal
be that Box C is on the ground in the Boxworld problem
then this will either hold true or not and the heuristic does
nothing but state whether this truth holds.

Because one can say next to nothing about the problem
that the generic heuristic needs to solve we concluded that
a proper heuristic is not possible and that we should opt
for the next best thing. We wanted to create a heuristic
solution that should be on par with BFS ad DFS in most
generic cases and preferably better in some.

6.2 Customised Heuristic Function
For the customised heuristic function of this problem we
decided to count the amount of boxes that are currently
not in the right place. A box is in the right place if and
only if the box is on the proper box and that box is also
on it’s proper place. Boxes that are supposed to be on
the ground are considered on their proper place if they
are on the ground. For all the boxes which are not on
their proper place we will add 1 to the total distance if
the box is somewhere in the middle of the stack and 0.9 if
the box is on the top. This will make top boxes a bit more
favourable and should GROOVE not know exactly what
to do then it will start placing more boxes on the ground.

6.3 Experimental Results
For testing the two different implementations, as well as
comparing them to DFS and BFS we let GROOVE rear-
range a factory hall with varying amounts of boxes using
all four algorithms. We tested with 6, 9 and 16 boxes.
These are stored in stacks of maximum size 3 for the
first two and 4 for the last. For the goal we picked 3
semi-random hall arrangements for the goal per hall size.
The criteria we tested the algorithms on are the amount
of nodes that GROOVE needs before finding the desired
goal, the time it takes to do this and the path length of the
found path. The last one is omitted the DFS tests because
it will, most likely not produce a very efficient path.

The time of all of the tests is measured in milliseconds and
was taken from an average of 5 runs. For these testruns
the testcase was tested 6 times in total and the first result
was always discarded. We did this because there were sev-
eral testcases, but not all, which produced a significantly
higher time on the first run. We assume that this is be-
cause JAVA has to load the settings of the new testcase
on the first run and uses this on the later tests.

The biggest problem with large testcases is that GROOVE
cannot properly handle very big search spaces. After a cer-
tain amount of explored nodes GROOVE will slow down
drastically until it almost seems to halt. When the test is
aborted at this point GROOVE will report an OutOfMem-
oryError in the Java Heap space. Because of this problem
all tests are aborted after 40.000 nodes have been explored
and marked with “Heap Overflow” should the error indeed
appear.

Next we decided to test the time efficiency of both new
heuristic functions. The best way to do this is by exploring
the exact amount of nodes as BFS and DFS. We decided
to do this by making a GROOVE exploration without set-
ting a goal state. In this way GROOVE has to explore the
entire state space and with that every node. This test is
done in a small BoxWorld of 6 boxes in order to minimise
the chances of a heap overflow. Because A* needs a goal

state to find we enabled a goal rule in all tree tests but be-
cause we didn’t set the end point GROOVE will continue
exploring after that until the entire statespace is explored.

All tests were performed on the personal laptop computer
of the author. Results may vary depending on the com-
puter used for testing and tests performed on computers
with more memory may be able to tackle bigger problems
without the OutOfMemory error seen in these tests. Nev-
ertheless we believe that for comparison these tests suffice.

6.4 Test Results
The results of the first testcases can be found in Tables 1
through 9 in the Appendix. As can be seen in the test-
cases with only six boxes the A* Algorithm is significantly
faster then both DFS and BFS and does this by finding
and exploring significantly less nodes then the other two
algorithms. Though it should be noted that all three tests
were performed within 3 seconds on average and therefore
any human testing it will most likely not care much for
the difference.

When the scale is increased to 9 boxes a more significant
detail comes up. Both BFS and DFS will have to explore
more states then the heap could hold on. This while A*
still finds results within half a second. When increasing
the size to 16 we find that the specialised A* algorithm still
has no problems finding a solution whereas DFS, BFS and
the generic A* algorithm have their heaps overflown.

From this test we can conclude the following. First of all
both the generic and the specialised A* were faster and
more efficient then BFS and DFS. Secondly, and more
importantly, because of the heap overflows the efficiency of
A* is one of its better strengths. Because A* has to explore
a lot less states it can tackle bigger problems before it will,
most likely, overflow the heap.

During the second testcase we let GROOVE explore the
exact same amount of nodes using BFS, DFS and both
A* algorithms. The testresults can be found in table 10
in the Appendix. In this test case we can see that when
exploring a fixed amount of nodes we can clearly see that
A* as a lot slower then the previous methods. This was
to be expected but is not much of a problem when A*
is the more efficient algorithm. However on this point it
should be noted that is a time inefficiency problem with
the generic A* algorithm. During the 16 boxes testcases
from the previous tests, which caused a heap overflow, did
take significantly longer to overflow then BFS and DFS
tests. Because time measuring is highly inaccurate when
testcases are cut short arbitrarily it should be said that the
BFS and DFS were usually cut short after about 40.000
nodes explore which takes about a minute of runtime. The
generic A* algorithm was also cut off at around this same
amount but took at least 6 minutes to reach this point.

7. CONCLUSIONS
We set out to find and measure the impact of a famous
heuristic search algorithm, namely the A* algorithm, on a
graph transformation tool like GROOVE by testing it on
the famous planning problem BoxWorld. All of our test
results proved that the A* search approaches were a lot
faster and more efficient than the existing Breadth-First-
Search approach and the Depth-First-Search approach.
Because of this the A* approach could tackle bigger prob-
lems than BFS and DFS before it faced the slowdown
problem which GROOVE has.

We also set out to create a good template on which pro-
grammers could build their own search strategies. By



mapping out the goal state of the search and comparing
it with a given graph we managed to create a decent base
that was already better at solving the BoxWorld problem
than BFS and DFS. Given a different problem a program-
mer should be able to easily adjust this structure to fit his
own needs.

.

8. REFERENCES
[1] S. Edelkamp and A. Rensink. Graph transformation

and ai planning. In Knowledge Engineering
Competition (ICKEPS), Sep 2007.

[2] P. Hart, N. Nilsson, and B. Raphael. A formal basis
for the heuristic determination of minimum cost
paths. IEEE Transactions on Systems Science and
Cybernetics, 4(2):100–107, February 1968.

[3] A. Rensink. Isomorphism checking in groove.
ECEASST, 1, 2006.

[4] S. J. Russell and P. Norvig. Artificial Intelligence: A
Modern Approach. Pearson Education, 2003.



APPENDIX
A. A* ALGORITHM PSEUDOCODE
Function A*(start , goal)

closedset := new Empty Set

open set := new Set containing start

node

start.distToStart := 0

start.distToFinish :=

heuristicDistance(start , goal)

start.distTotal := start.distToFinish

While (openset is not empty)

{

x := node from openset with

lowest distTotal

if x == goal

finish

remove x from openset

add x to closedset

foreach y in neigbours(x)

tenativeDistToStart =

x.distToStart +

distance(x,y)

if y is not in openset or

closedset

add y to openset

betterTenative := true

elseif tenativeDistToStart <

y.distToStart

betterTenative := true

else betterTenative := false

if betterTenative == true

y.cameFrom := x

y.distToStart :=

tenativeDistToStart

y.distToFinish :=

heuristicDistance(y, goal)

y.distTotal := y.distToStart +

y.distToFinish

}

return pathNotFound

B. A* GROOVE PSEUDOCODE
class AStarStrategy extends

ClosingStrategy

{

HashMap startingDistances =

Hashmap <Node , int >

PriorityQueue queue =

PriorityQueue <AStarStruct >

// Overriden functions

void prepare(startstate) {

super.prepare(startstate);

startingDistances.add(startState ,

1);

}

void next() {

currstate = updateAtState ();

// global function that give

the current state

super.next();

updateChildren(currstate ,

startingDistances.get(currState)+1);

}

putInPool(PoolElement) {

state = PoolElement.getState ();

queue.offer(new

AStarStruct(PoolElement ,

HDist(state));

startingDistances.add(state , 0);

}

getFromPool () {

return queue.first();

}

//new functions

updateChildren(state , tentDist){

for (all children from state)

if (startingDistances(child) =

0 or > tentDist) {

UpdateChild in queue

startingDistances.add(child ,

tentDist);

updateChildren(child ,

tentDist +1);

}

}

void SetGoal(Rule) {

//sets Goal according to heuristic

}

int heuristicDistance(state) {

// calculate heuristic distance

for state

}

}

C. TEST RESULTS

Table 1. Test Results: 6 boxes, Case A
Algorithm Explored States Time Path
Generic A* 112 states 93 6

Specialised A* 46 states 15 6
DFS 4032 states 2917 -
BFS 2282 states 1089 6

Table 2. Test Results: 6 boxes Case B
Test Explored States Time Path

Generic A* 117 states 143 6
Specialised A* 41 states 31 6

DFS 3940 states 2409 -
BFS 2491 states 1264 6

Table 3. Test Results: 6 boxes, Case C
Test Explored States Time Path

Generic A* 120 states 103 10
Specialised A* 55 states 28 8

DFS 4038 states 2880 -
BFS 3890 states 2900 8



Table 4. Test Results: 9 boxes, Case A
Test Explored States Time Path

Generic A* 168 states 181 8
Specialised A* 111 states 25 8

DFS Heap Overflow - -
BFS Heap Overflow - -

Table 5. Test Results: 9 boxes, Case B
Test Explored States Time Path

Generic A* 951 states 1229 12
Specialised A* 117 states 41 10

DFS Heap Overflow - -
BFS Heap Overflow - -

Table 6. Test Results: 9 boxes, Case C
Test Explored States Time Path

Generic A* 1147 states 1588 13
Specialised A* 170 states 47 12

DFS Heap Overflow - -
BFS Heap Overflow - -

Table 7. Test Results: 16 boxes, Case A
Test Explored States Time Path

Generic A* Heap Overflow - -
Specialised A* 1320 states 421 26

DFS Heap Overflow - -
BFS Heap Overflow - -

Table 8. Test Results: 16 boxes, Case B
Test Explored States Time Path

Generic A* Heap Overflow - -
Specialised A* 1308 states 381 25

DFS Heap Overflow - -
BFS Heap Overflow - -

Table 9. Test Results: 16 boxes, Case C
Test Explored States Time Path

Generic A* Heap Overflow - -
Specialised A* 862 states 212 21

DFS Heap Overflow - -
BFS Heap Overflow - -

Table 10. Test Results: 6 Boxes, No Goal
Test Explored States Time

A* Generic 4051 states 5360
A* Specialised 4051 states 4958

DFS 4051 states 4537
BFS 4051 states 4592


