
Solving Parity Games on the Playstation 3
Freark van der Berg

University of Twente, The Netherlands

f.i.vanderberg@student.utwente.nl

ABSTRACT
Parity games are a type of game in which two players
’play’ on a directed graph. Solving parity games is equiv-
alent to model checking for µ-calculus. Thus, parity game
solvers can be used for model checking. This requires a
lot of computational power. Many-core CPUs generally
have much more computational power than other CPUs.
The Playstation 3 contains an advanced, modern many-
core CPU, the IBM Cell Broadband Engine Architecture
(CBEA). It is a low-cost option to investigate developing
efficient algorithms for many-core CPUs. However, de-
veloping efficient algorithms for The Cell remains largely
uncharted territory. The Small Progress Measures par-
ity games algorithm, developed by Marcin Jurdziński, is
poised for running on the IBM Cell Broadband Architec-
ture, in particular for the Playstation 3. Here we show
there are six important aspects regarding optimizing this
algorithm for the Playstation 3: graph subdivision, lifting
order, cluster issuing order, capturing cycles, the lifting
heuristic and preprocessing the graph. Various optimiza-
tions are proposed, e.g.: cluster regeneration, altivec in-
struction set implementation, and the cluster dependency
heuristic. Some of these were implemented and bench-
marked. The benchmarks indicate the Playstation 3 seems
a viable architecture for the Small Progress Measures al-
gorithm.

Keywords
Playstation 3, IBM Cell Broadband Engine Architecture,
Small Progress Measures, Parity Game, Model Checking,
Algorithm Optimization, Benchmarking

1. INTRODUCTION
Parity games are a type of game in which two players ’play’
on a directed graph. Solving parity games is equivalent
to model checking for µ-calculus [14]. Thus, algorithms
for solving parity games can be used for model checking,
which makes parity games an interesting subject. One
of the algorithms for solving parity games is the Small
Progress Measures algorithm, developed by Marcin Jur-
dziński [8]. A parallelized version of this algorithm was
implemented by Jaco van de Pol and Michael Weber, for
the x86 architecture [12]. Jorne Kandziora made an im-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy oth-
erwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.
13th Twente Student Conference on IT June 21st, 2010, Enschede, The
Netherlands.
Copyright 2010, University of Twente, Faculty of Electrical Engineer-
ing, Mathematics and Computer Science.

2 1

3 0

v
1

v
2

v
4

v
3

Figure 1. Parity Game

plementation for the Cell Broadband Engine Architecture,
based on the x86 version [6]. This implementation was not
complete, unoptimized and unbenchmarked.

This research continued with the implementation made
by Kandziora. The reason for this follow-up research lies
with the architecture the algorithm is aimed for. Many-
core CPUs provide a lot of computational power, reaching
even 1 TFLOPS [7]. The Cell CPU in the Playstation 3
is a good example of a modern multi-core CPU, since it
contains a single general-purpose processor and eight co-
processors [6]. This is similar to many-core CPUs. A big
difference is the price. The Playstation 3 is a lot cheaper1

and therefore a low-cost solution. Moreover, there is a
proper Software Development Kit available [4], aiding the
development. The CBEA is still relatively young and de-
veloping efficient algorithms for it has not yet been widely
researched. This paper indirectly also investigates the pos-
sibilities of the Cell CPU as a target architecture for other
algorithms.

This section introduces parity games in general, the Small
progress Measures algorithm, and the Cell Broadband En-
gine Architecture. Section 2 describes the goal of this re-
search. Section 3 lists work related to this research. Sec-
tion 4 describes possible optimizations. Section 5 discusses
an implementation of a few optimizations. Section 6 shows
benchmarks of these optimizations. Section 7 contains the
conclusions of this research. Section 8 suggests possible fu-
ture research.

1.1 Parity Games
A parity game is played on a directed graph. Each vertex
has a number, called a priority. Starting from the starting
vertex, player Even and player Odd take turns moving a
token along the edged of the graph. The result is a path,
called the play. Winning is different for finite plays and
infinite plays. In a finite play, a player wins when the
opponent cannot make a move. In an infinite play, the
winning player is determined using the priorities of the

1Today a PS3 costs around $300, while for example the
Ambric Am2045 chip cost $325.000 per thousand units [2]
in 2006.

Table 1. Plays in the example
Path Play Winner
v1, v2, v1, v2, ... 2,3,2,3,... Even (�)
v1, v2, v3, v3, ... 2,3,1,1,... Odd (�)
v1, v2, v3, v4, v2, v3, v4, ... 2,3,1,0,3,1,0,... Even

vertices. Player Even wins if the smallest priority that
occurs infinitely often in the play is even. Player Odd
wins if it is odd. For this research only infinite plays are
regarded.

Consider the graph pictured in Figure 1. This is a very
small example, as parity games in general can easily con-
tain millions of vertices.

It will be player Even’s turn when the token is on a dia-
mond and player Odd’s turn when the token is on a square.
The possible plays in this simple example are listed in Ta-
ble 1. Note that there is a path where Player Odd can
win. However, this depends on the choice of Player Even.
So if Player Even uses a proper strategy, Player Odd will
never win.

Formally, a parity game is described as G = (V�, V�, E, p),
where

• V� is the finite set containing the vertices on which
player Even moves;

• V� is the finite set containing the vertices on which
player Odd moves;

• vertices V := V�] V�;

• edges E ⊆ V × V ;

• priority function p : V → {i | 0 ≤ i < d}, d the
number of priorities

1.2 Small Progress Measures
The Small Progress Measures algorithm was devised by
Marcin Jurdziński [8]. A short summary of the algorithm
is as follows. The Small Progress Measures algorithm as-
signs a vector to each vertex, assigning n vectors in total.
These vectors have length d and initially they are ~0. The
following is assumed:

priority function p : V → {i | 0 ≤ i < d}

If it does not hold, the priorities can be rearranged so it
does. Let mi be the number of vertices with priority i:

mi := |{v ∈ V |p(v) = i}|, 0 ≤ i < d

Define Mi as:

Mi :=

{
{0} , i even

{0, ...,mi} , i odd
, 0 ≤ i < d

Then measures MG contains all possible vector configura-
tions:

MG := M0 ×M1× ...×Md−1

M>G := MG ∪ {>}

Note that all the even components are always equal to 0.
The top element > is defined as:

∀α ∈MG : α < >

Lexicographical ordering of vectors α, β ∈ MG is denoted
by:

α, β ∈MG : α < β

Ordering using up to the ith component is denoted by:

<i,=i, >i: compare up to the ithcomponent

For the algorithm, we leave out the priorities in even com-
ponents, e.g.:

〈x, y〉 = (0, x, 0, y, 0)

Furthermore, we define the successors of vector α as:

succi(α) : minimal β ∈M>G , such that
α = β = > or
α ≤i β even i
α <i β odd i.

The goal of the algorithm is to compute the assignment
% : V →M>G , such that ∀v ∈ V :

• v ∈ V� : ∃(v, w) ∈ E : %(v) ≥p(v) succp(v)(%(w))

• v ∈ V� : ∀(v, w) ∈ E : %(v) ≥p(v) succp(v)(%(w))

The complete algorithm is as follows:

% := λv ∈ V.(0, ..., 0)
while ∃U ⊆ V · % < Lift(%, U) do % := Lift(%, U)

Lift(%, U)(v) =

 %(v) , v /∈ U
min(v,w)∈E succp(v)(%(w)) , v ∈ U ∩ V�
max(v,w)∈E succp(v)(%(w)) , v ∈ U ∩ V�

From this can be seen that the lifting of a vertex depends
on its children. So changes always propagate backwards
through the graph. If a vertex changes, its parents need
updating.

The result is then given by Jurdziński:

Theorem(Jurdziński [8]) 1. The winning set W� =
{w | %(w) 6= >}. The strategy %̃(v : V�) := min(v,w)∈E(%(w))
is a winning strategy for player Even.

The algorithm has time complexity O(m × nbd/2c) and
needs O(d× n) space [8].

1.3 SPM algorithm applied
The Small Progress Measures algorithm can be applied to
the parity game graph shown in Figure 1. As d = 4 and
mi = 1, 0 ≤ i < d:

M0 = {0}
M1 = {0, 1}
M2 = {0}
M3 = {0, 1}

This results in:

MG = {0} × {0, 1} × {0} × {0, 1}
M>G = MG ∪ {>}

We then start lifting until a fix point is reached. Lifting
can be done on any vertex, so we start at v4:

v4 → v2 : succ0〈0, 0〉 = 〈0, 0〉

This lift yielded no change. We continue with v3, v2 and
v1.

v3 → v3 : succ1〈0, 0〉 = 〈1, 0〉
v3 → v4 : succ1〈0, 0〉 = 〈1, 0〉

So we update the measure of v3 with min{〈1, 0〉, 〈1, 0〉} =
〈1, 0〉.

v2 → v1 : succ3〈0, 0〉 = 〈0, 1〉
v2 → v3 : succ3〈1, 0〉 = 〈1, 1〉

So we update the measure of v2 with max{〈0, 1〉, 〈1, 1〉} =
〈1, 1〉.

v1 → v2 : succ2〈1, 1〉 = 〈1, 0〉

So we update the measure of v1 with 〈1, 0〉.
All the steps are listed in the following table. Note that
the last iteration over all the vertices (the last four steps)
does not yield any change, which means we have reached
the fix point.

Step v1 v2 v3 v4 Comment
0 〈0, 0〉 〈0, 0〉 〈0, 0〉 〈0, 0〉 Initial
1 〈0, 0〉 〈0, 0〉 〈0, 0〉 〈0, 0〉 Lifting v4
2 〈0, 0〉 〈0, 0〉 〈1, 0〉 〈0, 0〉 Lifting v3
3 〈0, 0〉 〈1, 1〉 〈1, 0〉 〈0, 0〉 Lifting v2
4 〈1, 0〉 〈1, 1〉 〈1, 0〉 〈0, 0〉 Lifting v1
5 〈1, 0〉 〈1, 1〉 〈1, 0〉 〈0, 0〉 Lifting v4
6 〈1, 0〉 〈1, 1〉 〈1, 0〉 〈0, 0〉 Lifting v3
7 〈1, 0〉 〈1, 1〉 〈1, 0〉 〈0, 0〉 Lifting v2
8 〈1, 0〉 〈1, 1〉 〈1, 0〉 〈0, 0〉 Lifting v1

Now we use Theorem 1 to obtain the winning set:

W� = {w|%(w) 6= >} = V

This means player Even (�) has a winning strategy starting
from any vertex.

1.4 Cell
The Cell Broadband Engine Architecture features a wide
range of combinations of various processing elements, but
for this research only the configuration in the Playstation 3
is regarded. This configuration contains a main processor
called the “PowerPC processor element” (PPE), eight co-
processors called “Synergistic Processor Element”s (SPE),
a memory flow controller (MFC), and the interrupt con-
troller (IIC). An SPE contains a “Synergistic Processor
Unit” (SPU) with dedicated local storage of 256kB, a ded-
icated MFC with a memory management unit (MMU) and
a replacement management table (RMT). Communication
between elements is done via an element interconnect bus
(EIB). Figure 2 shows this graphically, also showing mem-
ory and I/O units [6].

The Cell is not the only possible architecture to consider.
Graphics cards are also powerful. However, they have two
important limitations. First, the local storage of the GPU
cores is much too small. Second, the GPU itself usually
lacks the possibility of branching and if it does support
branching, it comes with a severe performance penalty.
However, modern graphics cards have improved on this.
The local storage has increased [11], but still is not up to
par with the Cell. Branching has also been improved [11].

The amount of local storage of each processing unit in a
graphics card is very low. This means access to the main
memory will be done a lot more frequent, reading sub-
graphs and writing results. This makes memory band-
width a major bottleneck. The memory bandwidth of
the latest graphics cards even surpasses2 the Cell, but not
enough to compensate. So until graphics cards have more
local storage per processing unit, they are not an option.
This applies to the Small Progress Measures algorithm,
but other model checking techniques could benefit from
graphics cards [1].

2The Cell’s memory bandwidth when clocked at 3.2GHz is
204.8GB/s [6]. The nVidia GTX 295’s memory bandwidth
is 223.8GB/s [10].

Figure 2. Cell CPU architecture in the PS3

2. PROBLEM STATEMENT
This paper investigates i) where the performance bottle-
necks lie when running this algorithm on The Cell CPU; ii)
what optimizations are possible under which constraints;
iii) and how much is gained from these optimizations. The
primary targets for optimization are i) the heuristics to di-
vide the load into pieces; ii) the so-called lifting operation;
iii) and platform specific instructions. Dividing the load
makes parallel processing possible. The lifting operation is
a key element of the Small Progress Measures algorithm.
Platform specific instructions are for example the altivec
instructions [5]. These instructions provide an improve-
ment over regular instructions for vector operations.

2.1 Memory Access
In the x86 version of the algorithm, the implementation
is based on uniformly accessible shared memory. In the
Cell CPU, this assumption cannot be made. SPEs each
have their own fast local storage, only 256kB, and slower
access to the main memory has to go via the EIB. Since
the Small Progress Measures algorithm runs in O(n × d)
space and a parity game graph can easily contain millions
of vertices, the main memory is certainly needed. Slow
memory access can be minimized by subdividing the large
graph into smaller graphs, called clusters. A cluster can
then be loaded into the small storage of an SPU. After
performing the algorithm on the cluster, the result will
be written back to the combined result in the main mem-
ory. Jurdziński shows that this yields the same result as
performing the algorithm on the entire graph [8]. This
way, access to the cluster can be done locally. However,
access to measures of vertices outside the cluster is not
local, so the problem is not resolved entirely. The graph
subdivision should take this issue into account.

2.2 Graph Subdivision
Subdividing a large graph into clusters is an important
part of the algorithm. For the Cell implementation it may
even be the most important. A cluster cannot be too large,
because of the local storage limit of 256kB. Too small clus-
ters will result in relatively more overhead because of the
memory transfers. The goal is a maximally sized cluster,
a so-called full cluster, when no more can be fitted in the
local storage of an SPU.

Moreover, the number of SPUs in use is also important.
Intuitively, we say that the more enabled SPUs, the faster
the algorithm. However, more SPUs causes more memory
access, taxing the EIB even more. So the exact influence
of the number of SPUs is not so obvious.

The method used to select clusters is a key element of
subdivision. It is essential to minimize the memory access
from an SPU to the main memory. Selecting clusters in
such a way that they have no outgoing edges is not feasible,
because many of these clusters will be much too large for
the 256kB of local storage. Selecting clusters that have
outgoing edges results in obtaining data from the slower
main memory.

An important issue is the handling of cycles. In parity
games, cycles tend to cost a lot of calculation, because
changes propagate over and over within a cycle. To this
end, the ideal solution would be to capture the cycle in
a single cluster. This would mean the many lifts will be
performed as fast as possible on a single SPU. If a cycle
is in multiple clusters, the changes propagate much slower
on cluster boundaries, because multiple SPUs need to wait
for each other.

2.3 Lifting Order
The choice of vertices to perform the lift operation on is
important. On the same graph, a bad choice of sequence
could result in much worse performance [12]. Because ver-
tices can be lifted in any order, strategies may be devised
optimizing the order of lifting.

3. RELATED WORK
To subdivide the parity game graph into smaller graphs,
Kandziora described a k-bounded depth-first search algo-
rithm [9]. This algorithm starts at a vertex and defines a
new cluster by adding all vertices up to a maximum depth
of k or until the cluster is full. If the maximum depth is
reached and the cluster is not full, the DFS search will
resume at a new starting node. This algorithm is used for
the clustering.

A heuristic to choose which vertices to perform the lifting
on is the focus list, described by van de Pol and Weber [12].
This heuristic basically entails that lifted vertices will have
priority over other vertices, when choosing which vertices
to lift. They mention other heuristics, but these do not
seem feasible on the Cell CPU, due to the small local stor-
age of each SPE. One is the swiping heuristic. Due to its
simplicity, the swiping heuristic is used.

Other model-checking techniques have also been explored,
for example using graphics cards with general purpose
graphic processing units (GPGPUs). Bošnački, Edelkamp
and Sulewski used probabilistic model checking, because
this relies on matrix vector multiplication [1]. A GPU
can perform this kind of calculations very fast, making
the graphics card an ideal architecture. They confirmed
this with case studies, observing a significant speedup over
standard CPU implementations. While they have investi-
gated model-checking using a GPU, this research investi-
gates the possibility of model-checking on the PS3, using
the Small Progress Measures algorithm.

4. OPTIMIZATIONS
Optimizing the Small Progress Measures algorithm for the
Cell CPU is separated into multiple parts. Capturing cy-
cles is a part of the graph division, but because of its
importance it has its own section.

1. The heuristic for dividing the graph into clusters;

2. The heuristic for selecting the order of lifting the
vertices inside a cluster;

3. The heuristic for selecting the order of issuing clus-
ters to SPUs;

4. Capturing cycles in a single cluster;

5. The lifting of individual vertices;

6. Preprocessing the graph.

Some of the proposed optimizations are not tested and are
only listed as possible optimizations. Future research may
benefit from these ideas or inspire new ideas.

An issue that is important when optimizing an algorithm
is keeping track of the validity of the results. To this end,
the results will be compared with an implementation for
the x86 architecture made by Verver. This implementation
has gone through and passed extensive testing [13] and is
therefore assumed to be correct.

4.1 Graph Subdivision
Dividing a graph can be done in various ways. The ques-
tion is what subdivision is beneficial to the Small Progress
Measure algorithm. We know that the lifting of vertices
depend on their children. Therefore, a depth-first search
would be an idea, since children will be lifted before their
parents, providing a free, convenient lifting order. Because
the SPUs can contain only so many vertices, the depth-
first search will have to be bounded by a certain depth.

Clustering the graph is done on the main processor, the
PPU. This means not all computational power is used for
the clustering. Thus, this part is a bottleneck in the cur-
rent implementation, because the cluster issuing starts af-
ter the whole graphs is clustered. An obvious optimization
would be to start issuing clusters as soon as they are ready.

4.2 Lifting order
By optimizing the lifting order, unnecessary lifting of ver-
tices can be avoided. A vertex is lifted unnecessarily if the
vertex is lifted without yielding any change. This comes
into play on the SPU when a cluster has been issued. Var-
ious heuristics can be used for this:

1. Swiping [12] is a heuristic that lazily iterates through
the list of vertices, front to back or back to front.
This is not a very good heuristic, because a lot of
vertices are unnecessary lifted.

2. Focus List [12] is a heuristic that prioritizes lifting
vertices which were lifted the most. This way the
focus shifts towards the vertices needing the most
attention. A lot of unnecessary lifts are avoided us-
ing this heuristic.

3. MaxMeasures [13] is a heuristic that prioritizes lift-
ing vertices with the highest measures. Research has
shown this is a good heuristic.

For this research, only the swiping heuristic was imple-
mented, because of its simplicity.

4.3 Cluster order
Like lifting of vertices, clusters can also be lifted unnec-
essarily. This is the case when lifting a cluster yields no
change. The same sort of heuristics can be applied as well:

1. Swiping isn’t a good heuristic in this situation either.
A lot of clusters are lifted unnecessarily.

2. Focus List is a better option here as well. A lot
of unnecessary lifts are avoided by focusing on the
clusters that are lifted the most.

3. Cluster dependency is a technique using the depen-
dency clusters have on each other. A cluster depends
on another cluster if there’s a vertex in the first clus-
ter depending on a vertex from the second cluster.
Because change propagates backwards at the vertex
level, change also propagates backwards at the clus-
ter level. This means that if lifting a cluster yielded
change, its parent clusters need updating. Similarly,

if lifting children clusters of a certain vertex yields
no change, the vertex does not need updating. This
can be used to avoid unnecessary lifting of clusters.
It is questionable whether this would yield better re-
sults than the focus list, because both try to empha-
size issuing clusters needing the most lifts. However,
the focus list doesn’t require the overhead of keeping
track of dependencies.

For this research, only the swiping heuristic was imple-
mented, because of its simplicity.

4.4 Capturing cycles
To capture a cycle so that it ends up on a single SPU is a
task faced by two problems. First, a cycle can be too big
for a single SPU for which there is no solution. Secondly it
can take a lot of time to localize the cycles and make use
of this information. Because the best known algorithm [3]
is not distributive, only the PPU would be used. The
algorithm is O(n), however the n can be in the millions.

To capture a cycle in a single cluster, we can use an op-
timistic approach. If after the clustering the cycle was
caught in a single cluster, then the cycle will be lifted op-
timally with regard to the cycle. If it was not caught,
it will take many iterations of issuing clusters before the
cycle is lifted. To avoid this, after a certain number of
iterations, say 20 or so, we can partially regenerate the
clusters for the vertices that still need lifting. This could
capture the cycle. Then we continue the iterations of is-
suing clusters to the SPUs. If the cycle was caught, the
cycle will be lifted optimally with regard to the cycle on
a single SPU, else we try regenerating the clusters again
after a certain number of iterations.

The result depends on how we regenerate the clusters. If
we use the same technique as the last clustering, we can
possibly get the same clusters. To avoid this, various dif-
ferentiations can be made:

1. Clustering technique can be changed, but this re-
search only regards the k-bounded depth-first search.

2. The k-bounded depth-first search can be differenti-
ated on the value of k and the starting vertex. To
differentiate the starting vertex, there are various
possibilities. For example:

(a) Go through the list of vertices front to back;

(b) Go through the list of vertices back to front;

(c) Pick a random vertex from the list of vertices.

Though detecting every cycle beforehand can be costly, it
is another option. This is only in the case that all cycles
are small enough to fit in the clusters or only small enough
cycles are considered. Note that one can also consider only
bipartite graphs, where these cycles do not play a role.
This is because on these graphs, players move in a strictly
alternating manner.

4.5 Lifting vertices
This part is where hardware-specific optimizations come
into play. The algorithm doesn’t allow much optimization
in this part, because of its apparent simplicity. Lifting a
vertex entails finding a maximum or a minimum of a vec-
tor and finding a successor of this vector. The SPU has
a partly implemented altivec instruction set [5], aimed at
speeding up vector operations. The measures in the algo-
rithm are implemented as a single vector of four integers,
limiting the maximum priority to 8. This enables the pos-
sibility of using the altivec instruction set.

4.6 Graph Preprocessing
This preprocessing functionality was partly borrowed from
Weber and Van de Pol [12] and Verver [13]. Their im-
plementation was adapted to the implementation for the
Playstation 3. This preprocessing removes self-loops, be-
cause they take a lot of unnecessary time. For these kind
of self-loops, the resulting measure is known beforehand:
it is either the 0-vector or the >-vector. If the self-loop re-
sulting in the >-vector is not removed, the number of lifts
needed would be about the product of the components of
the >-vector. The benchmarks illustrate this further.

A further improvement on this is to consider cycles of more
than one vertex. These cycles are detected as part of the
k-bounded clustering, so currently only cycles within a
single cluster are considered.

5. IMPLEMENTATION
Some of the optimizations proposed in section 4 were im-
plemented and benchmarked. This section provides the
means to replicate the majority of the implementation.

5.1 Graph Subdivision
The following pseudocode describes how we can generate a
cluster using a k-bounded depth first search, while prepro-
cessing some cycles. It keeps track of the local vertex ID
of every vertex. A local vertex ID is the vertex ID a vertex
has in its cluster. It also keeps track of in which cluster
a vertex is in. This is later used to build cluster pack-
ages, ready to be issued to an SPU. The handle_cycle()

function is discussed in section 5.6. This function is called
multiple times, as long as there are vertices to be clustered.

1 vector ve r t ex InC lu s t e r ;
2 vec tor ver texIDInCluste r ;
3
4 g e n e r a t e c l u s t e r (c l u s t e r CL, int s i z e ,
5 int depth) {
6 vector wo rk l i s t ;
7 while (CL. s i z e < s i z e) {
8 v e r t e x i d V = g e t n e x t s t a r t i n g v e r t e x () ;
9 wo rk l i s t . push back (V) ;

10 CL. vertexIDs . add (V) ;
11 ve r t ex InC lu s t e r [V] = CL. id ;
12 ver texIDInCluste r [V]= CL. s i z e++;
13 V. c l u s t e r e d = true ;
14 while (! wo rk l i s t . empty () &&
15 CL. s i z e < s i z e) {
16 v e r t e x i d S = work l i s t . back () ;
17 i f (wo rk l i s t . s i z e () < depth) {
18 v e r t e x i d C = g e t n e x t f r e e c h i l d (S) ;
19 i f (! S . c l u s t e r e d) {
20 i f (C) {
21 wo rk l i s t . push back (C) ;
22 CL. vertexIDs . add (C) ;
23 ve r t ex InC lu s t e r [C] =CL. id ;
24 ver texIDInCluste r [C]=CL. s i z e++;
25 C. c l u s t e r e d = true ;
26 } else {
27 wo rk l i s t . pop back () ;
28 }
29 } else i f (ve r t ex InC lu s t e r [C]==CL. id) {
30 hand l e cyc l e (C, c l u s t e r i d , wo rk l i s t) ;
31 }
32 } else {
33 wo rk l i s t . pop back () ;
34 }
35 }
36 }
37 }

At line 9 we collect a new starting vertex for the new
cluster. Lines 10..13 are almost the same as lines 22..25:
they add the current vertex to the worklist and put it in
a cluster. In the while-loop on line 14 we perform the
depth-first search. In lines 18..30 each vertex is handled.

If the vertex is not yet in a cluster, it is added to a cluster
and to the worklist. If it is already in a cluster and even
the cluster we are now generating, there could be a cycle.
This possibility is checked by handle_cycle(), discussed
in section 5.6.

Building cluster packages is done as follows. Each vertex
has a list of outgoing edges. An outgoing edge is described
by the destination vertex ID. Before the cluster packaging,
this is the global vertex ID, but to make it a useful package,
we need to convert this to its local vertex ID. This can be
done using the vertexInCluster vector we built earlier. If
a vertex has an edge to another vertex outside the cluster,
we call the second vertex a foreign vertex. The associated
edge is a foreign edge. Foreign outgoing edges are not
converted to the local vertex ID, but are converted to the
negative of the global vertex ID. And so, an SPU knows
when an edge is local or foreign. Thus, it knows when to
fetch data from its local store or from the main memory.

1 fo r each (c l u s t e r CL) {
2 for (v e r t e x i d vid = 0 ; vid<CL. s i z e ; ++vid) {
3 g l o v i d = CL. vertexIDs [vid] ;
4 CL. v e r t i c e s [v id] = graph [g l o v i d] ;
5 f o r each (v e r t e x i d S :
6 CL. v e r t i c e s [vid] . outEdges) {
7 CL. v e r t i c e s [v id] . out =
8 ve r t ex InC lu s t e r [S]==c l u s t e r i d ?
9 ver texIDInCluste r [S] :

10 −S ;
11 }
12 }
13 }

5.2 Lifting order
For this research, only one heuristic describing the lifting
order of vertices was used: the swiping heuristic. The
following pseudocode describes this heuristic.

1 int next ve r t ex = 0 ;
2 bool v e r t i c e s l i f t e d = f a l s e ;
3 unsigned int g e t n ex t v e r t ex () {
4 int vertex = next ve r t ex++;
5 i f (vertex>=c l u s t e r . s i z e) {
6 i f (v e r t i c e s l i f t e d) {
7 ver tex = 0 ;
8 next ve r t ex = 1 ;
9 v e r t i c e s l i f t e d = f a l s e ;

10 }
11 }
12 return vertex ;
13 }

The vertices_lifted boolean is set to true in the next
pseudocode, to signal there was a vertex lifted in the last
iteration. When that happens, the swiping starts over as
per lines 7..9.

The general lifting algorithm is as follows.

1 read from main mem (c lu s t e r mea su r e s) ;
2 while ((vid = ge t n ex t v e r t ex ()) < c l u s t e r . s i z e) {
3 vertex V = c l u s t e r . v e r t i c e s [vid] ;
4 i f (c l u s t e r mea su r e s [v id]==Top) continue ;
5 measure t M = get measure (V. outEdge [0]) ;
6 for (int i =1; i<V. outEdges ; ++i) {
7 measure t T = get measure (V. outEdge [i]) ;
8 i f (V. p layer==ODD) {
9 i f (measure cmp (T,M)>0)

10 M = T;
11 } else {
12 i f (measure cmp (T,M)<0)
13 M = T;
14 }
15 }
16 measure t R = succ (M) ;
17 i f (measure cmp (R, c l u s t e r mea su r e s [vid])>0) {
18 c lu s t e r mea su r e s [vid] = R;
19 v e r t i c e s l i f t e d = true ;
20 }
21 }
22 write to main mem (c lu s t e r mea su r e s) ;

In line 1 we first copy the measures from the main memory
to the local storage of the SPU. In lines 5..16 the actual
lifting is performed, going through all the edges and cal-
culating the successor of the found edge. In the mathe-
matical algorithm, the successor of every edge measure is
calculated before the comparison in lines 9 and 12. How-
ever, calculating the successor can also be done after the
comparisons, bringing down the number of times a suc-
cessor is calculated. This increases performance. In lines
17..20 the resulting measure is compared with the current
measure. If needed, the measure is updated and it is re-
membered a lift was successfully performed. This is done
by setting vertices_lifted to true, which is used in the
get_next_vertex function. This function is described in
the previous pseudocode. Finally all the resulting mea-
sures are written back to the main memory in line 22.

This code relies on the following function. It uses the in-
formation we put in the signedness of the vertex ID earlier,
to determine if the vertex is local of foreign.

1 measure t get measure (int v e r t e x i d) {
2 i f (ve r t ex id >=0) {
3 return c l u s t e r mea su r e s [v e r t e x i d] ;
4 } else {
5 return ge t f o r e i gn mea su r e (−v e r t e x i d) ;
6 }
7 }

5.3 Cluster order
For this research, only one heuristic describing the issuing
order of clusters was used: the swiping heuristic. Its im-
plementation is very similar to the implementation of the
swiping heuristic for the lifting order of vertices.

5.4 Capturing cycles
The following pseudocode describes the regeneration of
clusters. After 20 iterations, the clusters are regenerated,
alternating between two methods of searching for a new
starting vertex. Only clusters that have been lifted in the
last iteration are regenerated. This avoids regenerating
parts of the graph that are not or hardly active. The
number of clusters regenerated can vary, but usually the
number gets smaller in time. This is because the algorithm
is closer to the solution, so nearer the fix point. This
means less vertices have to be lifted and thus, less clusters
in general.

1 vector c l s t r l i f t s ;
2 while (! a l g o r i t hm f i n i s h ed) {
3 for (int runs=20; runs−−;) {
4 for (c l u s t e r CL) {
5 c l s t r l i f t s [CL] = l i f t c l u s t e r (CL) ;
6 }
7 }
8 i f (technique==FRONTTOBACK) {
9 g e n e r a t e c l u s t e r s (BACKTOFRONT, c l s t r l i f t s) ;

10 } else {
11 g e n e r a t e c l u s t e r s (FRONTTOBACK, c l s t r l i f t s) ;
12 }
13 }

5.5 Lifting vertices
The following C code is an implementation to check if two
measures are equal using the altivec instruction set. Line
4 contains the altivec instruction used [5]. Note that this
function only checks for equality.

1 typedef vector unsigned int measure t ;
2 int measure cmpeq (const measure t& a ,
3 const measure t& b) {
4 measure t d = spu cmpeq (a , b) ;
5 return ˜(((unsigned int∗)&d) [0] &
6 ((unsigned int∗)&d) [1] &
7 ((unsigned int∗)&d) [2] &
8 ((unsigned int∗)&d) [3]) ;
9 }

A more general function also returning whether measure
a is greater than or lesser than measure b could be as
follows. Altivec instructions are on lines 3 and 4. Since
components with a lower index are more important, the
comparison starts at index 0 and goes up (lines 5..10). As
soon as a difference is found, the result can be returned.

1 int measure cmp (const measure t& a ,
2 const measure t& b) {
3 measure t dab = spu cmpgt (a , b) ;
4 measure t dba = spu cmpgt (b , a) ;
5 for (int i =0; i <4; ++i) {
6 i f (((unsigned int∗)&dab) [i])
7 return 1 ;
8 else i f (((unsigned int∗)&dba) [i])
9 return −1;

10 }
11 return 0 ;
12 }

By comparison, the second function could also be imple-
mented without using the altivec instruction set. The im-
plementation of the corresponding function is shown be-
low. In this implementation, it is easier to understand how
it works.

1 int measure cmp (const measure t& a ,
2 const measure t& b) {
3 for (int i =0; i <4; ++i) {
4 i f (((unsigned int∗)&a) [i] >
5 ((unsigned int∗)&b) [i])
6 return 1 ;
7 else i f (((unsigned int∗)&a) [i] <
8 ((unsigned int∗)&b) [i])
9 return −1;

10 }
11 return 0 ;
12 }

5.6 Graph Preprocessing
The first part of the preprocessing was borrowed from We-
ber and Van de Pol [12] and Verver [13].

1 for (ver tex V: v e r t i c e s) {
2 bool r emove s e l f edge = f a l s e ;
3 bool remove other edges = f a l s e ;
4 for (edge S : V. outEdges) {
5 i f (S==V) {
6 i f ((V. p r i o r i t y &1) &&
7 ((V. p layer==ODD) | |
8 (V. outEdges==1))) {
9 V. measure = Top ;

10 }
11 i f ((V. p r i o r i t y &1) == V. p layer) {
12 remove other edges = true ;
13 } else i f (V. outEdges > 1) {
14 r emove s e l f edge = true ;
15 continue ;
16 }
17 }
18 }
19 for (edge S : V. outEdges) {
20 i f ((S == V && remove s e l f edge) | |
21 (S != V && remove other edges)) {
22 V. outEdges . de l (S) ;
23 }
24 }

The preprocessing assigns the > measure to vertices that
are certain to become> after the algorithm (lines 6..10). It
also determines from which vertices to remove unnecessary
edges in lines 11..16. The actual deletion is done in lines
19..23.

The second part of the preprocessing is performed dur-
ing the clustering discussed in section 5.1. It detects cy-
cles within clusters and preprocesses them if a solution is
known beforehand. The pseudocode is show below. The
outer for-loop starts at the back of the worklist stack, i.e.
the deepest vertex on the stack. This for-loop stops in
two cases. In the lines 3..6 we check if the cycle is of the
kind we want. If it is not, we break out of the loop. In

lines 7..12 for the actual cycle. If it is found, we assign the
> measure to each vertex in the cycle.

1 hand l e cyc l e (C, c l u s t e r i d , wo rk l i s t) {
2 for (int vid=work l i s t . s i z e () ; vid−−;) {
3 i f ((wo rk l i s t [v id] . p layer !=PLAYERODD) | |
4 ! (wo rk l i s t [v id] . p r i o r i t y &1)) {
5 break ;
6 }
7 i f (wo rk l i s t [v id]==C) {
8 for (int vid2=vid ; vid2<work l i s t . s i z e () ;
9 ++vid2) {

10 v e r t i c e s [vid2] . measure = game−>t op vec to r ;
11 }
12 }
13 }
14 }

6. BENCHMARKS
The following benchmarks were made using k-bounded
clustering, k=8 and clusters of 400 vertices. The vertices
in all the used graphs have 4 outgoing edges. Note that the
number of vertices doesn’t say much about the complex-
ity of the graph. They are only listed to distinguish the
graphs. The real complexity is determined by the relative
position of the vertices. Cycles add much to the complex-
ity. The graphs were randomly generated, using the graph
generation procedure described by Kandziora [9].

6.1 General performance

80k 200k 300k 400k 500k 600k 700k 800k 900k

1

10

100

1000

10000

100000

1000000

1.
08

8.
05 10

.2
2

4.
51 5.

72 7.
24

17
.5

1

>1
44

00
0

15
.2

8.
73

3.
24

15
9.

13

9.
21

29
.6

2

22
5.

8

93
8.

85

37
9.

8

17
24

.8
6

14
2.

66

78
4.

1

25
21

.1
8

2.
56 3.

76 4.
02

13
70

6.
45

>1
44

00
0

11
34

8.
47

maxmeasures

PS3-linear

linear

#nodes

tim
e

(s
)

Figure 3. Solving time of various implementations
and graphs of various sizes

When we compare the total time it took to solve a graph
with the total time it took Verver’s program to solve the
same graph, we get a general impression of the perfor-
mance. Two lifting strategies of his program were used
for the comparison: a linear strategy, similar to swiping,
and the so-called MaxMeasures strategy. Figure 3 shows
the results.

Verver’s program was run on an AMD Sempron 2400+
CPU on an Asus A7V8X-X motherboard with 1GB of
PC2700 RAM. The operating system was GNU/Linux, us-
ing Linux 2.6.33.

The results show that the MaxMeasures of Verver is signif-
icantly faster than the current implementation on the PS3.
It is a lot faster, even though it’s running on a singlecore
1.7GHz CPU and the PS3 contains seven 3GHz processors.
Of course, the PS3 cores are distributed. Moreover, the
PS3 implementation uses only a linear heuristic. When we
compare to Verver’s implementation using a linear heuris-
tic, we see that the PS3 has real potential.

Especially noteworthy is the results of the game of 800k
vertices. Verver’s program, using either the MaxMeasures
or linear heuristic, was not done solving after 40 hours.
At this point the benchmark was halted. The PS3 im-
plementation took 6 minutes and 20 seconds to solve the
same game. This is a substantial difference. It can be
explained by the detection of cycles. The PS3 imple-
mentation detects cycles that would take a lot of lifting,
whereas Verver’s program does not. When running the
benchmark without the cycle detection, the PS3 imple-
mentation does not finish in 10 hours either. Even though
the MaxMeasures algorithm focuses on lifting these cy-
cles, they take a lot of time because the > measure of this
game is {113791, 112338, 113028, 113088}. The number of
lift operations required to lift each of these cycles, is about
the product of the components of the > measure.

A more usual trend is for example the game of 700k ver-
tices. Here we see that the MaxMeasures heuristic is the
fastest by far and the PS3 linear implementation the sec-
ond fastest. The slowest is the linear implementation of
Verver, taking more than 14 times as much time as the
PS3 linear implementation. The same trend can be seen
in other benchmarks, e.g. the games of 80k vertices, 300k
vertices and 900k vertices.

6.2 Graph Preprocessing
The benchmarks in Table 2 and Figure 4 show the influ-
ence of preprocessing a graph. It is clear that preprocess-
ing is vital to a fast execution of the algorithm. Even
though it is only one benchmark, the difference is huge.
Preprocessing reduced the solving time of some graphs
from 12 hours to 10 seconds. This particular parity game
is solved over a thousand times faster. The reason is the
self-loop. The algorithm needs a lot of time lifting the
vertex with the self-loop, even though beforehand it would
be known the result would be the > measure. The pre-
processing catches this and assigns the > measure to the
vertex, saving a lot of time. This particular graph had a
> measure of {1073, 1140, 1115, 786}, so without prepro-
cessing it would take about 1073 · 1140 · 1115 · 786 ≈ 1012

lift operations for this one vertex to be lifted.

Table 2. Preprocessing on a graph containing a
vertex with self-loop

No preprocessing With preprocessing
515,44s 0,14s

6.3 Number of SPUs
The benchmarks in Figure 5 show the influence of the
number of SPUs at work. The benchmarks include only
the solving time, not the preprocessing or the clustering
time. They are not included because the number of SPUs
only affect the solving time.

Our intuition was right: the more SPUs we use, the faster
the algorithm is performed. An interesting result is the
time it took to solve the game of 200,000 vertices using
one SPU. One would expect a solving time of roughly 15
seconds, extrapolating from other results, but instead it
took 137 seconds to solve this game. A possible explana-
tion might be that the cluster ordering is unlucky, causing
adjacent clusters to be lifted far apart. This would account
for more iterations. However, both solving instances take
10 iterations, so until further investigation it will remain
an anomaly.

The game of 400,000 vertices is a more general illustration
of the influence of the number of SPUs. Here we clearly

see that doubling the number of SPUs almost cuts the
solving time in half. This means the EIB is not taxed
to its maximum capacity and the bottleneck is the algo-
rithm itself. When more optimizations would be imple-
mented, this could reverse. The SPUs would demand more
of the EIB and we would see a more shallow curve near
the end, because more SPUs means more simultaneous
memory transfers.

This happens with the game of 500,000 vertices. Between
one and two cores the time is halved, but between one
and three cores the time is not divided by three. Moreover,
time is not divided by six when using six cores. This could
mean a taxed EIB or an unlucky circumstance, like with
the game of 200,000 vertices.

80k 200k 300k 400k 500k 600k

1

10

100

1000

10000

8.
73

3.
24

15
9.

13

9.
21

29
.6

2

22
5.

835
6.

08

3.
31

83
64

.5

9.
22

30
.7

1

22
6.

55

8.
69

20
.6

4

15
7.

74

9.
19

31
.8

5

22
5.

71

9.
61

3.
44

16
6.

61

10
.7

4

30
.6

4

24
1.

18

PS3-linear

no reclustering

no cycle detection

no altivec

#nodes

tim
e

(s
)

Figure 4. Comparison of solving times of various
optimizations

1 2 3 4 5 6

1

10

100

1000

137

7.6

4.83

3.55
2.89

2.43

37.1

18.71

12.82

9.65
7.83

6.58

63.29

36.44

26.91
22.82

19.97 18.48
200000

400000

500000

#cores

tim
e

(s
)

Figure 5. Influence of the number of cores used

6.4 Reclustering
The benchmarks in Figure 4 show the reclustering can be
beneficial when a cycle is not caught on the first cluster-
ing. The solving times of the games with 80,000 vertices
and 300,000 vertices are considerably reduced using this
technique.

6.5 Altivec instruction set
The influence of using the altivec instruction set is shown
in Figure 4. The improvement is between 5% and 6% for
the selected parity games.

7. CONCLUSIONS
We have determined that optimizing the Small Progress
Measures algorithm for the Playstation 3 has six important
aspects: graph subdivision, lifting order, cluster issuing or-
der, capturing cycles, the lifting heuristic and preprocess-
ing the graph. These six aspects are important because
they affect the performance of the algorithm significantly.

Various optimizations are proposed, e.g.: cluster regen-
eration, altivec instructions set implementation, and the
cluster dependency. Some of these were implemented and
benchmarked. The benchmarks show in its current im-
plementation the algorithm is not up to par with other
implementations, like MaxMeasures. However, much op-
timization is still possible. When comparing with x86 us-
ing similar heuristics, the implementation is significantly
faster. Because of the distributive nature of the Cell CPU,
this algorithm could be applied to a cluster of Playsta-
tion 3 units. Therefore, the Playstation 3 seems a viable
architecture for the Small Progress Measures algorithm,
but further research is needed.

8. FUTURE
Not all the optimizations proposed were implemented, but
would expectedly improve performance. For example the
focus list for the clusters issuing order is worth further
investigation. Looking into incorporating MaxMeasures
for the vertex lifting order is also interesting, seen as this
heuristic is a significant improvement over the linear heuris-
tic. When assuming all cycles can be individually fitted
on one SPU, it is interesting to look at detecting cycles
beforehand and clustering the graph accordingly.

When reusing the current implementation, the first pri-
ority should be to fix the limitation of 512 vertices per
SPU. Secondly the current implementation requires too
many DMA requests to the main memory. These should
be buffered more. Then further optimizations can be in-
vestigated. There is a preliminary implementation of a
focus list, so this can be utilized.

9. ACKNOWLEDGMENTS
I’d like to thank Michael Weber for his advice and guid-
ance, aiding me in the research. He also provided a nice
example of a parity game, which I borrowed.

Secondly I’d like to thanks Maks Verver, without his im-
plementation on the x86 I would not have a way of verify-
ing correctness nor a basis for comparison.

10. REFERENCES
[1] D. Bošnački, S. Edelkamp, and D. Sulewski.

Efficient probabilistic model checking on general
purpose graphics processors. In Proceedings of the
16th International SPIN Workshop on Model
Checking Software, pages 32–49, Berlin, Heidelberg,
2009. Springer-Verlag.

[2] T. Halfhill. Microprocessor report: Ambric’s new
parallel processor. oct 2006.

[3] D. Harel and R. E. Tarjan. Depth-first search and
linear graph algorithms. SIAM J. Comput.,
1(2):146–160, 1972.

[4] IBM. Cellsdk, http://www.ibm.com/
developerworks/power/cell/downloads.html [last
checked: March, 2010].

[5] IBM. Synergistic processor unit instruction set
architecture, https:
//www-01.ibm.com/chips/techlib/techlib.nsf/

techdocs/76CA6C7304210F3987257060006F2C44/
\$file/SPU_ISA_v1.2_27Jan2007_pub.pdf [last
checked: May, 2010].

[6] IBM. Cell broadband engine architecture. technical
report version 1.02. technical report, ibm systems
and technology group. oct 2007.

[7] Intel. Intel teraflops reasearch chips,
http://techresearch.intel.com/articles/

Tera-Scale/1449.htm [last checked: March, 2010].

[8] M. Jurdzinski. Small progress measures for solving
parity games. In In 17th Annual Symposium on
Theoretical Aspects of Computer Science, pages
290–301. Springer, 2000.

[9] J. Kandziora. Playing parity games on the
playstation 3. Master’s thesis, University of Twente,
jan 2009.

[10] nVidia. Geforce gtx 295, http://www.nvidia.com/
object/product_geforce_gtx_295_us.html [last
checked: March, 2010].

[11] nVidia. nvidia’s next generation cuda compute
architecture: Fermi v1.1. 2009.

[12] J. van de Pol and M. Weber. A multi-core solver for
parity games. Electron. Notes Theor. Comput. Sci.,
220(2):19–34, 2008.

[13] M. Verver, M. Weber, and J. van de Pol.
Maxmeasure.

[14] T. Wilke. Alternating tree automata, parity games,
and modal mu-calculus. Bull. Belg. Math. Soc.,
8(2):359–391, 2002.

