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ABSTRACT
Today most recursive descent parsers are generated by providing
grammars and generating parsers according to these grammars.
An alternative approach to constructing parsers consists of parser
combinators, which do not need a separate step to generate the
parser, and furthermore claim to be clear and simple in use. De-
spite these claimed advantages, parser combinators have not been
widely adopted and are rarely actually compared to parser gener-
ators.

This paper introduces two of the contemporary implementations,
ANTLR and Parsec, along with a novel implementation, called
Tinadic Parsing, based on the combination of the techniques used
in parser generators and parser combinators. The three imple-
mentations are compared and evaluated by the implementation of
increasingly extended examples.
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1. INTRODUCTION
A common activity within computer science is the analyzing of
tokens, called parsing. Contemporary parsers are constructed by
means of parser generators, and to a lesser extent by parser com-
binators. Although parser generators are the standard approach
to constructing parsers, they are not always the easiest method.
Parser combinators have long claimed to be more intuitive and
easier in use than their generating counterpart [12, 11, 21].

There are numerous existing parser generator and combinator li-
braries, including recent and industry strength libraries [26, 40,
22, 35]. The comparative advantages of each library, or even
the advantages of the different techniques are still quite unclear.
Comparisons between libraries are rarely made, and if made they
are between the same techniques, and the comparisons are based
on benchmarks [21], not on the ease of use or other criteria. This
raises the question:

How do parser generators and parser combinators
compare concerning usability and readability?

This paper will compare three instances of the previously men-
tioned parsing techniques. Namely ANTLR [26, 27], a popu-
lar representative of parser generators, Parsec [21, 22], a popu-
lar parser combinator library written in Haskell [28], and finally
Tinadic Parsing, a novel approach combining features of both
parser generators and combinators. Therefore:
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What are the comparative advantages and disadvan-
tages of ANTLR, Parsec and Tinadic Parsing con-
cerning usability and readability?

By answering this question we will be able to give exploratory
results for the main research question. The method of research
used in this paper for comparison is to program similar parsers
in the three parser construction instances and to compare these
parsers on readability and usability. The similar parsers will im-
plement increasingly complex examples containing (arithmetic)
expressions. The parser sets will be evaluated after the imple-
mentations. All the implementations along with driver classes
and test files can be found online [7].

In this section parser generators, parser combinators and a hy-
brid approach are introduced. In Section 2 we will discuss recent
research and some problems. In Section 3 ANTLR, Parsec and
Tinadic Parsing are introduced by a simple parsing example. In
Section 4 this example will be extended to more advanced ex-
pressions containing different operator associativities and prece-
dences. In Section 5 the expressions example is extended with
lexing and a possible implementation of the off-side rule is given
for each parser implementation. In Section 6 we will answer our
research questions and draw conclusions. Finally in Section 7
possible future work and research is laid out.

1.1 Parser Generators
The standard approach for constructing parsers is to use a parser
generator. Parser generators such as ANTLR and JavaCC [40],
are tools that generate parser code based on a grammar used as
input, where the most common format used for describing gram-
mars is EBNF (Extended Backus–Naur Form) [32]. Parser gen-
erators can generate parsers that work on pre-processed streams
of tokens, which can be generated by a separate lexer, or can in-
tegrate a lexer in the input grammar.

1.2 Parser Combinators
A flexible approach, mostly used in functional programming, is
to produce parsers by defining primitive parsers and parser com-
binators [21, 13, 3, 17, 34], and using these to construct more
complex parsers.

A primitive parser (for example, a parser that parses only one let-
ter) is modeled as a function that takes a sequence of symbols
and returns a list of successes [41]. A parser combinator is then
modeled as a higher-order function (a function that can take func-
tions as argument(s)). Some examples of common combinators,
similar to the EBNF operators, are sequencing, choice and repeti-
tion. A parser that takes two letters in sequence is then produced
by combining the one letter parser with a sequencing combina-
tor and another one letter parser. This approach of combining
primitive parsers by means of parser combinators makes it pos-
sible to easily construct more complex parsers in an intendedly
EBNF-like notation.



1.3 A Hybrid Approach
In this section a novel approach of constructing parsers is consid-
ered. An implementation using this approach is Tinadic Parsing,
which has been developed at the University of Twente by Jan
Kuper [18]. The implementation is written in Amanda [1], a pro-
gramming language with syntax very similar to Miranda [37] and
Haskell.

This alternative approach is a combination of the techniques used
in parser generators and parser combinators. A grammar is con-
sidered a function that maps a non-terminal to a list of possible
terminals/non-terminals. Presenting this function in a lambda
notation (a notation for defining anonymous functions) resem-
bles the standard EBNF form of a grammar to a large extent, as
can be seen in Listing 4. Hence, a parser generator is a higher-
order function that takes a grammar as an argument and delivers
a parser for that grammar. While parsing, the functional char-
acter of this grammar is exploited. Operators used in describing
the grammar are similar to those used in EBNF operators. The
definition of these operators resembles parser combinators.

2. RELATED WORK
Recent research on parser generators has seen an increased inter-
est in extensible syntax, namely in the research of Parsing Ex-
pressions Grammars (PEGs) [5, 6, 9]. PEGs use an alternative
approach inspired by the parser combinator paradigm [5] to de-
scribe context-free grammars. Interestingly this use of syntac-
tic predicates and longest-match disambiguation has been imple-
mented in the newer versions of ANTLR [25].

The shortcomings of early parser combinators [11, 2, 41] have
been mentioned in several papers [17, 33, 36, 30]. The speed and
memory consumption of these libraries were often super-linear
in complexity and thus unsuitable for large inputs. Error mes-
sages were sometimes absent or only conveyed limited informa-
tion. The more recent libraries are better suited for larger inputs
and resulting error messages have improved. A benchmark has
been made by Ljunglöf [23], his thesis contains a thorough com-
parison of parsing techniques within functional programming on
an algorithmic level. No existing libraries are used for this com-
parison however.

Despite the earlier research on parser combinators, few compar-
isons have been made between the newer generation of parser
combinators and parser generators. Tinadic Parsing is an ap-
proach that takes a combination of both parsing techniques and
therefore makes it quite suitable for comparison.

3. SIMPLE PARSING
In the following subsections the parser construction implementa-
tions will be demonstrated and then explained by implementation
of the EBNF grammar in Listing 1.

Listing 1: EBNF grammar for simple expressions
expr ::= factor (op factor)*
op ::= ’+’ | ’-’
factor ::= number | ’(’ expr ’)’
number ::= (’0’ | ’1’ | ... | ’9’)+

The | stands for choice, * and + are the familiar EBNF operators
meaning zero or more and one or more repetitions.

3.1 ANTLR
ANTLR is a parser generator that can generate recursive descent
parsers from an EBNF like grammar description. Interpretation

and code generation is mostly done by generating intermediate
output, namely an abstract syntax tree (AST), and processing that
output by using a tree walker. A small example of a (partial)
ANTLR lexer/parser grammar implementing the simple expres-
sions is given in Listing 2.

Listing 2: Simple expressions in ANTLR
gram : expr EOF;

expr : factor (op factor)*;
op : ’+’ | ’-’;
factor : NUMBER | ’(’ expr ’)’;

NUMBER : (’0’..’9’)+;

This grammar contains both lexer tokens (NUMBER) and non-
terminals (gram, expr, op and factor). The ’0’..’9’ is just a short
hand for the similar EBNF expression. * and + are the standard
EBNF operators that denote repetition and EOF is the end of file
token. After ANTLR processes this grammar it will generate a
separate lexer and parser.

3.2 Parsec
As a parser combinator library, Parsec uses a set of primitive
parsers which can be made into more complex parsers by com-
bining these primitive parsers with parser combinators. Parsers
constructed in Parsec always return a value (a string, a number,
etc.), and parsers can thus easily be built as a combined parser/in-
terpreter. The intermediate values or possible error messages are
passed through the parsers by use of monadic constructs [21, 42].

The previous expression example is partially worked out in List-
ing 3. The example purposefully does not return a useful value to
mimic the previous example. Only an error message or the value
() is returned as final parse result.

Listing 3: Simple expressions in Parsec
gram = expr >> eof

expr = factor >> many (op >> factor)

op = string "+" <|> string "-"

factor = many1 digit <|>
string "(" >> expr >> string ")"

Non-terminals (gram, expr, op and factor) are parsers defined as
combinations of parsers. Many and many1 are equivalent to the
* and + operators, <|> is (predictive) choice, string, digit and
eof are predefined parsers, the first being able to parse a given
string, the second capable of parsing a digit, and the final one
tries to parse the end of the file. The results are combined with a
monadic>> operator [42], which intuitively reads like this: throw
away the return value of the previous parser and try to parse the
remaining symbols.

3.3 Tinadic Parsing
Tinadic Parsing is a hybrid approach of parser generators and
combinators, the technique uses combinators written in the un-
derlying implementation language Amanda while still retaining
an EBNF like notation. In Listing 4 the simple expression exam-
ple is implemented in the lambda notation explained in section
1.3.



Listing 4: Simple expressions in Tinadic Parsing
exprgrammar =
Expr -> [[Factor, <*>[ Op, Factor]]]

| Op -> [[Check (member "+-")]]

| Factor -> [[<+>[digit]]
,[Token ’(’, Expr, Token ’)’]]

digit = Check (member "0123456789")

Exprgrammar is just the name of the function the grammar repre-
sents, the non-terminals (Expr, Op, Factor, Digit) and terminals
(op and digit) are just data constructors. The EBNF-like operators
(<+> and <*>) and Check and Token are also data constructors
of the same type, but they are reserved constructors used to direct
the parse function. Choice is implicitly implemented by the use
of a list of lists as can be seen in the definition of Factor.

3.4 Conclusions
The simple expressions example already illustrates the differences
in syntax of the three implementations; ANTLR has a notation
closest to EBNF, Parsec uses a functional notation and Tinadic
Parsing uses lambda notation with a large amount of square brack-
ets and therefore loses a bit of clarity. An unintuitive necessary
addition for ANTLR and Parsec is the explicit matching on the
end of the file. Finally, the Parsec example is a bit contrived due
to the explicit throwing away of the parse results; a combined
parser/interpreter would result in a clearer and shorter implemen-
tation.

4. ARITHMETIC EXPRESSIONS
A recurring problem in parsing, is the parsing of expressions with
different precedence levels and associativities. For example, mul-
tiplication has precedence over addition, and ˆ is a right associa-
tive operator. This information can be encoded in (at least) two
different ways, as described in the next subsections. After that
we will show the benefits of both approaches by showing parser
implementations in the aforementioned parser techniques.

The parsers constructed all have different types of results. The
default output of ANTLR is an abstract syntax tree, Tinadic Pars-
ing returns a concrete syntax tree and Parsec’s default output is
direct interpretation of the parse result. Again we will demon-
strate the three approaches by providing interpreters for all three
techniques.

Implicit Associativity
Although expressions with priorities are quite common, they are
not naturally described through the standard formalism, EBNF.
To describe n different precedence levels in EBNF, we would
need to add n+1 non-terminals to the grammar. Furthermore, as-
sociativity of operators has to be encoded through left recursion
for left associative operators (left recursion has to be rewritten in
most parser generators), and right recursion for right associative
operators [10]. An EBNF formalizing arithmetic expressions can
be seen in Listing 5.

Listing 5: EBNF of Expressions
expr ::= expr addop term | term
term ::= term multop pow | pow
pow ::= factor (expop pow)?
factor ::= number | ’(’ expr ’)’

addop ::= ’+’ | ’-’
multop ::= ’*’ | ’/’

expop ::= ’^’

number ::= (’0’ | ’1’ | ... | ’9’)+

For illustration, + and * are assumed to be left associative.

Explicit Associativity
Instead of only using an EBNF like formalism, we can use a ta-
ble or list to ease the encoding of associativities and precedences
of operators. An example of this approach can be seen in List-
ing 6. Although these techniques for describing precedence and
associativity since long existed and used in the past [29, 10, 15],
they are rarely implemented in modern conventional approaches
to parsing, not even in popular parser construction software such
as ANTLR [25]. This partly due to the easier translation into cor-
responding parsers in dynamical and functional languages [20].

Listing 6: EBNF with precedences and associativities
Left associative: +, -, *, /
Right associative: ^
Priority 1: +,-
Priority 2: *, /
Priority 3: ^

expr ::= factor (op factor)*
factor ::= number | ’(’ expr ’)’

op ::= ’+’ | ’-’ | ’*’ | ’/’ | ’^’

number ::= (’0’ | ’1’ | ... | ’9’)+

As shown, Listing 6 encodes associativity and precedence by ex-
plicitly stating them (instead of implicit encoding in the gram-
mar). A higher number corresponds to a higher priority.

4.1 ANTLR
ANTLR defines operator precedence and right associativity sim-
ilar to the standard EBNF constructs. Left associativity has to
be encoded differently because of the lack of support of left re-
cursion. ANTLR partially solves this problem by defaulting as-
sociative operators to left associative. Thus if an EBNF with al-
ready implicitly encoded operator associativity and precedence is
available, left recursion has to be removed, but after that further
translation to an ANTLR parser grammar is trivial [25].

To interpret the ANTLR parse results, the grammar is extended
with tree annotations which will make the parser output an AST.
The ANTLR grammar with tree annotations is shown in Listing 7.

Listing 7: Parsing Expressions in ANTLR
gram : expr EOF!;

expr : term (addop^ term)*;
term : pow (multop^ pow)*;
pow : factor (expop^ pow)?;
factor : NUMBER | ’(’! expr ’)’!;

addop : ’+’ | ’-’;
multop : ’*’ | ’\’;
expop : ’^’;

NUMBER : (’0’..’9’)+;

The bang (!) operator indicates tokens that can be left out as
an AST node, ˆ results in a parent node with the other nodes as
children.



After processing arithmetic expressions with the above parser
grammar, an AST is generated. This AST can subsequently be
processed by using a tree walker, generated from an ANTLR tree
grammar. A tree walker walks the AST by following defined pat-
terns of nodes, and executes corresponding actions. Actions can
be in any language supported by ANTLR.

In Listing 8, the default ANTLR action programming language,
Java [8], is used.

Listing 8: Interpreting Expressions in ANTLR
gram returns [int value]
: expr {$value=$expr.value;};

expr returns [int value]
: ^(’+’ a=expr b=expr)

{$value = a + b;}

| ^(’-’ a=expr b=expr)
{$value = a - b;}

| ^(’*’ a=expr b=expr)
{$value = a * b;}

| ^(’/’ a=expr b=expr)
{$value = a / b;}

| ^(’^’ a=expr b=expr)
{$value = (int)Math.pow(a,b);}

| NUMBER
{$value =
Integer.parseInt($NUMBER.text);};

As can be seen the tree grammar imports the NUMBER token
from the parser grammar. Furthermore the ˆ followed by one or
more nodes is a pattern match on a tree structure, which after
matching executes the actions within the curly braces. The non-
terminals gram and expr are parameterised by an integer value.
This value is accessed by a dollar sign ($) and is returned after
each pattern match. This propagates back to the root of the tree
and is used as final result of the tree walker.

4.2 Parsec
Parsec has multiple possibilities for the encoding of precedence
and associativity of operators. One being a rewrite from an EBNF
with implicit operator information to a corresponding combina-
tion of parsers, analogous to what we did in the ANTLR example.
Another being a predefined structure called a buildExpression-
Parser which uses a table driven approach for explicitly defining
operator information. We will demonstrate the second approach
by building a combined lexer/parser/interpreter which again pro-
cesses arithmetic expressions. Furthermore, Parsec can directly
manipulate results from parsers and therefore the implementation
in Listing 9 combines the lexing, parsing and interpreting in one
step.

Listing 9: Expressions in Parsec
gram = do x <- expr

eof
return x

expr :: Parser Integer
expr = buildExpressionParser table factor

table = [[op "^" (^) AssocRight]

,[op "*" (*) AssocLeft ,
op "/" div AssocLeft]

,[op "+" (+) AssocLeft ,
op "-" (-) AssocLeft]]

where op s f assoc = Infix
(do{ string s; return f}) assoc

factor = (do i <- many1 digit
return (read i))

<|>
(do string "("

y <- expr
string ")"
return y)

Again gram, expr and factor are parser combinations correspond-
ing to the non-terminals used in Listing 6. The do notation can
be seen as a sequencing of parsers, for example gram first applies
the expr parser, stores the result in x, applies the eof (end of file)
parser, and finally returns a parser which will result in x. build-
ExpressionParser is a predefined function in Parsec which takes
a table table containing operators and precedence information,
and a basic expression term factor. The table of operators defines
precedence by position in the list; the higher in the list the higher
the priority. Associations AssocLeft and AssocRight are prede-
fined data constructors. Finally factor tries to parse a sequence
of digits (which is returned as a string) and tries to convert it to
an Int by using read. If that fails it tries to parse a parenthesized
expression and returns the result of that expression.

4.3 Tinadic Parsing
Here we will demonstrate Tinadic Parsing by again implementing
the arithmetic expressions example. Similar to Parsec, because of
the lack of a generation step, Tinadic Parsing can define new con-
structs in the underlying implementation language without having
to change the underlying parsing framework. Thus Tinadic Pars-
ing could add support for a buildExpressionParser like used in
the Parsec example, or still use an EBNF like syntax like used in
the implementation given in Listing 10.

Listing 10: Parsing Expressions in Tinadic Parsing
exprgrammar =
Expr -> [[Term, <*>[Addop, Term]]]

| Term -> [[Pow, <*>[Multop, Pow]]]

| Pow -> [[Factor, <?>[Expop, Pow]]]

| Factor -> [[Number]
,[Token ’(’, Expr, Token ’)’]]

| Number -> [[<+>[digit]]]

| Addop -> [[Check (member "+-")]]

| Multop -> [[Check (member "*/")]]

| Expop -> [[Check (member "^")]]

digit = Check (member "0123456789")

Similar to the ANTLR parser the above parser uses implicit en-
coding of operator precedences and associativities. The opera-
tor <?> denotes optional tokens or non-terminals, similar to the
EBNF operator ?. After applying this grammar function and a
token stream to the parser a parse tree is returned. In Listing 11
an interpreter is built by defining an evaluation function in the
underlying implementation language of the parser, Amanda. The
evaluation function uses helper functions defined in Appendix A.



Listing 11: Interpreting Expressions in Tinadic Parsing
eval :: parseTree -> num
eval (ParseNode Expr xs) = chainl xs lst
eval (ParseNode Term xs) = chainl xs lst
eval (ParseNode Pow xs) = chainl xs lst
eval (ParseNode Factor [x]) = eval x
eval (ParseNode Number xs) = digits xs

lst = [("+", +), ("-", minus),
("*", *), ("/", /), ("^", ^)]

parseTree is an algebraic datatype with one or more ParseLeaf s
containing the spelling (char) for a token, or a non-terminal in a
ParseNode. chainl is a function that folds a list containing at least
one term, followed by zero or more times an operator and a term.
This corresponds to the same structure used in the parser gram-
mar. Furthermore, digits converts the spelling of all the tokens
hanging below the ParseNode Number into a number.

4.4 Conclusions
Arithmetic Operators
The encoding of arithmetic operators in ANTLR takes quite some
effort due to the necessary rewriting of left recursion and the ex-
tra non-terminals needed to add precedence levels for operators.
This can make subsequent additions to the grammar, such as an
operator with a new precedence level, hard to oversee and er-
ror prone. For Parsec the encoding of operators is easier imple-
mented by means of a buildExpressionParser, as shown in the
previous code example. Left recursion is still a problem, although
this is partially solved by predefined parsers and combinators
such as chainl and buildExpressionParser. Tinadic Parsing can
use both the approach of ANTLR by defining a grammar func-
tion alike to the EBNF, or it can use the approach of Parsec and
define your own buildExpressionParser for further use.

Interpretation
In ANTLR, the separation in a parsing and interpreting phase by
using intermediate output such as an AST makes it easier to rea-
son about it. Subsequent changes in the parser or tree structure
can still however affect the interpreting phase. In Parsec parsers
do not return parse trees or AST’s but immediate values; this can
be used to immediately interpret the result. Although this short-
ens the code it can be quite hard to change afterwards. Tinadic
Parsing uses parse trees instead of AST’s, this means the inter-
preter is more based on the actual structure of the parser instead of
a generated tree. Changes made in the parser, therefore severely
affect the interpreter.

5. LEXING AND THE OFF-SIDE RULE
This section will extend the previous expressions example by al-
lowing whitespace between tokens. We will use this opportunity
to first demonstrate some simple lexing capabilities of the parser
construction techniques. Lexing is quite easy when constrained
to the grouping and discarding of symbols; however when con-
fronted with meaningful whitespace as used for the lexing of the
off-side rule [19] this changes severely. The off-side rule is used
to avoid curly braces and other explicit sectioning of code. An
example of the off-side rule as used in Amanda can be seen in the
Appendix in Listing 16. A function is defined by a left hand side
containing the function name (compare) and zero or more argu-
ments (x and y). A function containing guards (the if statements
at the end), should equally indent all equals tokens. Another good
example is the use of indentation blocks in Python [31]. We will
suggest possible solutions for the implementation of the off-side
rule in this section.

5.1 ANTLR
ANTLR can use a separate grammar for the lexer and parser or
use a combined grammar as shown previously. The most natural
approach, if the problem permits, is to use a combined grammar
as used below.

5.1.1 Lexing
Below in Listing 12 is an extension of the arithmetical expres-
sions example, where whitespace between tokens is allowed. For
illustration purposes the operators are defined as separate lexer
tokens to demonstrate features of the lexer.

Listing 12: Lexing/Parsing Expressions in ANTLR
tokens {
PLUS = ’+’;
MINUS = ’-’;
MULT = ’*’;
DIV = ’/’;
EXP = ’^’;
}

gram : expr EOF!;

expr : term (addop^ term)*;
term : pow (multop^ pow)*;
pow : factor (expop^ pow)?;
factor : NUMBER | ’(’! expr ’)’!;

addop : PLUS | MINUS;
multop : MULT | DIV;
expop : EXP;

NUMBER : (’0’..’9’)+;

WS : ( ’ ’ | ’\t’ | ’\r’ | ’\n’ )+
{ skip(); } ;

Whitespace is discarded in the lexer by using the skip command
whenever whitespace is encountered. Tokens such as the arith-
metical operators and NUMBER will be tokenized by the lexer
before the parser phase.

5.1.2 The Off-Side Rule
A common way to deal with the off-side rule is to add explicit
INDENT and DEDENT tokens (such as curly braces) while pro-
cessing (or before processing) the token stream [25]. If the lexer
matches whitespace that is further off the side than the previous
statement an INDENT token should possibly be emitted. The
emitting of DEDENT tokens is similar, but harder due to the pos-
sibility of multiple dedentations, which would force the emitting
of multiple DEDENT tokens. Beside the extra tokens to be added
in the token stream, a lot of bookkeeping such as column numbers
for each token and current indentations should be stored. Some
of the problems of this approach in ANTLR will be discussed in
the conclusion.

5.2 Parsec
Parsec has multiple approaches for lexing: the first is the usage
of a seperate scanner, the second is the usage of lexeme parsers.
A separate (handwritten) scanner should be used when the token
stream has to be pre-processed. The second approach is quite dif-
ferent; instead of defining separate scanner functions and a parser,
the lexing and parsing is combined in one phase by using lexeme
parsers.



5.2.1 Lexing
In Listing 13 the extended arithmetic expression example is im-
plemented using these lexeme parsers. The lexeme parsers are de-
fined using a language definition (which is a record), containing
information such as commenting rules, whitespace and operator
names. A lexeme parser always consumes trailing whitespace (as
defined in the record) guaranteeing the next parser starts at the
correct input [20].

Listing 13: Lexing/Parsing Expressions in Parsec
lexer :: P.TokenParser ()
lexer = P.makeTokenParser

(emptyDef
{ reservedOpNames =
["*","/","+","-", "^"]
})

whiteSpace = P.whiteSpace lexer
natural = P.natural lexer
parens = P.parens lexer
reservedOp = P.reservedOp lexer

gram = do whiteSpace
x <- expr
eof
return x

expr :: Parser Integer
expr = buildExpressionParser table factor

table = [[op "^" (^) AssocRight]

,[op "*" (*) AssocLeft ,
op "/" div AssocLeft]

,[op "+" (+) AssocLeft ,
op "-" (-) AssocLeft]]

where op s f assoc = Infix
(do{ reservedOp s; return f}) assoc

factor = natural <|> parens expr

lexer is defined using an empty language definition as a start
record and updating the reservedOpNames field. The lexeme
parsers whiteSpace, natural, parens and reservedOp are then ex-
tracted from the resulting lexer record and defined at toplevel
for clarity and efficiency. whitespace is used to consume lead-
ing whitespace to start expr at the correct input, natural parses
a natural number, parens parses a parenthesized expression and
reservedOp parses reserved operators.

5.2.2 The Off-Side Rule
Parsec can use a similar approach to ANTLR, by preprocessing
the token stream and adding INDENT and DEDENT tokens. But
an approach better suited for use in parser combinators would
be to define so called block parsers. Parsec passes position and
possibly user defined state information along through the parse
process by using monads. Thereby making it possible to direct
the parse process based on state information. A block parser
would be defined as a parser depending on passed state informa-
tion and could be reused as a building block in other combinations
of parsers. Examples of this approach can be found in a paper by
Hutton and Meijer [12], in parser libraries such as uulib [39] and
in Listing 17.

5.3 Tinadic Parsing
Tinadic Parsing uses an approach to lexing similar to ANTLR.
As seen in the previous Tinadic Parsing examples, lexing can be

integrated in the parsing phase or it can be used in a separate
phase as will demonstrate below.

5.3.1 Lexing
Analogous to ANTLR, we will do lexing in a separate phase to
demonstrate capabilities of the lexer. The arithmetic expression
example is worked out in Listing 14. The Tinadic Parsing lexer
grammar is again described as function in lambda notation. This
grammar and the character stream are applied as arguments to the
lexer which will deliver a tokenized stream.

Listing 14: Lexing/Parsing Expressions in Tinadic Parsing
|| Lexer part
tokengrammar =
Num -> [<+>[digit]]

| Addop -> [addopChar]

| Multop -> [multopChar]

| Expop -> [expopChar]

| Sep -> [<+>[separator]]

addopChar = CheckChar (member "+-")
multopChar = CheckChar (member "*/")
expopChar = CheckChar (member "^")
separator = CheckChar (member " ")

|| Parser part
expressiongrammar =
Expr -> [[Term, <*>[Addop, Term]]]

| Term -> [[Pow, <*>[Multop, Pow]]]

| Pow -> [[Factor, <?>[Expop, Pow]]]

| Factor -> [[Num]
,[lBrack, Expr, rBrack]]

| Num -> [[CheckToken ((c,s) -> c=Num)]]

| Addop -> [[CheckToken ((c,s) -> c=Addop)]]
| Multop -> [[CheckToken ((c,s) -> c=Multop)]]
| Expop -> [[CheckToken ((c,s) -> c=Expop)]]

lBrack = Token "("
rBrack = Token ")"
lSquare = Token "["
rSquare = Token "]"
comma = Token ","

tokengrammar is the grammar function that will be applied as
argument to the lexer. Num, Addop and other lexer tokens are
from the same alphabet as used in the parser grammar function.
CheckChar is a data constructor which will direct the lexer to
check for equal characters, and if equal deliver a matching token.
CheckToken works analogous to the CheckChar data constructor
but on token equality.

5.3.2 The Off-Side Rule
Tinadic Parsing has an implementation of the off-side rule com-
bining the previously mentioned state passing and parser blocks.
In the lexer phase tokens are augmented with line and column
numbers to enable the parser to depend on that information. The
parser grammar function contains parser blocks will check for
correct line and column information on the following tokens. A
snippet of an implementation of Amanda-style guarded function
definitions (Listing 16) is shown in Listing 17 in the Appendix.



For clarity and brevity, function definitions are assumed to require
guards.

As can be seen a function definition is composed of a left hand
side, Lhs, containing one or more identifiers (idf ) representing the
function name and possibly multiple arguments. This is followed
by one or multiple IfClauses, and an optional otherwise clause
(OtherClause). An IfClause starts with an equals sign, eqToken,
which should start at an indentation, followed by an expression
(Expr) and a comma, an ifToken and ending in an expression with
a dedent.

5.4 Conclusions
While ANTLR has no trouble discarding whitespace in the lexer
phase, it is much harder to direct the parse process based on
amounts of whitespace. This is a hurdle in the design for a pos-
sible implementation for the off-side rule in ANTLR. ANTLR’s
lexer is mostly designed for efficiency, the standard classes there-
fore do not provide support for multiple token emissions and
would force the user to override the standard token streams and
other classes uses by the lexer. Beside this, the use of the lexer in
a combined parser grammar is intuitively integrated and readable.

Lexeme parser can easily be created in Parsec by supplying a lan-
guage definition containing commenting rules and other language
specifics. This approach delegates a lot of subtleties of lexing
to the internal working of the lexeme parsers, thereby relieving
the user. Analogous to this approach is the definition of block
parsers, where the internal handling of the off-side rule is hidden
in indent and dedent building blocks. The lexeme bases parser
approach suffers though, when the complexity of the needed lex-
ing is higher than the capabilities of the lexeme parsers. This
would force the user to manually write a scanner or to define his
own state information to pass through the parse process. Fur-
thermore the use of lexemes is very similar to the use primitive
parsers, making it easier to combine lexeme parsers and primitive
parsers.

Lexing in Tinadic Parsing is very similar in use to the parsing; the
lexer and parser grammar are both defined in lambda notation and
data constructors can be shared. The parser grammar function
can be defined quite cleanly by using block parsers similarly to
Parsec; although the internal handling and the definition of these
block parsers is still very complex.

6. CONCLUSIONS
In this paper we have demonstrated advantages and disadvantages
of three parser construction implementations: ANTLR, Parsec
and Tinadic Parsing. Notation-wise each implementation has its
strengths; ANTLR and Tinadic Parsing are close to EBNF nota-
tion, while Parsec uses a functional approach with combinators
similar to EBNF operators. Thus, the transcribing of an EBNF
grammar to a parser would be the easiest in ANTLR and Tinadic
Parsing.

However, when developing a language with arithmetic expres-
sions, containing operators with different precedence levels and
associativities, the encoding to EBNF, and therefore the transcrib-
ing to an ANTLR grammar or Tinadic Parsing lambda notation,
is less natural. The table based approach in Parsec solves this
problem more directly by being able to state precedence and asso-
ciativity instead of needing a series of grammar transformations.
Constructs such as a table parser are easier defined in Parsec and
Tinadic Parsing due to the lack of a generation step. Non gener-
ating parser libraries can create new primitive constructs without
having to redefine the existing parser constructs. This would for

example enable Tinadic Parsing, analogously to Parsec, to imple-
ment a table based parser by using existing parsing primitives or
the expression power of the underlying implementation language,
Amanda.

Interpretation of parse results varies greatly in the three imple-
mentations; while ANTLR uses an AST as intermediate output,
therefore making it possible to use a tree walker, Parsec often
uses direct interpretation of the parse results, giving a concise im-
plementation, and finally Tinadic Parsing uses a concrete syntax
tree, which shows the full parsing process. ANTLR’s approach
is suited well for larger grammars, although changes in the parser
grammar might affect the tree structure and therefore affect the
interpreter. Parsec’s direct interpretation works well for small
grammars, but when a separate step output step is needed, the
user would be forced to rewrite output to his/her own algebraic
data type. Finally Tinadic Parsing interpreter is even more af-
fected by changes in the parser due to the greater changes in a
concrete syntax tree, for larger grammars the parse tree can give
more information though.

Average lexer and parser usage in each implementation, does not
require a big shift in notation or thinking, thereby increasing us-
ability. Usability of the lexer for heavier use such as the imple-
mentation of the off-side rule is different though. ANTLR’s lexer
for instance, lacks standard support for the implementation of the
off-side rule. This is more naturally solved in Parsec and Tinadic
Parsing by using a block parser based approach.

Concluding, given an EBNF an implementation in ANTLR and
to lesser extent, Tinadic Parsing, would be the most straightfor-
ward. Parsec and Tinadic Parsing, due to the ability to define new
parsers and combinators from the existing building blocks and
implementation language, are best suited for constructing parsers
and interpreters that need a more flexible approach, such as a lan-
guage with an off-side rule.

7. FUTURE RESEARCH
The results delivered here are still exploratory, an obvious exten-
sion to this work would be more thorough testing based on formal
criteria and an extension of the existing testing framework [7].
Such an extension could of course benchmark speed and memory
consumption, or compare the ability to parse a certain class of
grammars.

There are also other approaches to building parsers or compilers
that can be considered, such as the use of attribute grammars [38,
4, 16] or the use of alternative parser construction interfaces. The
uu-parsinglib [35, 34] for example, uses the applicative inter-
face [24], which is a less powerful than the monadic interface
used for the Parsec examples, but possibly more intuitive. This
applicative interface can also be used as interface for construct-
ing parsers in Parsec. An interesting combination of the monadic
and applicative interfaces is demonstrated by Wallace [43] to cre-
ate a parser able to return a partial parse and therefore possibly
reducing space complexity.
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APPENDIX A: CODE
Listing 15: Interpreter Helper Functions

1 digits :: [parseTree] -> num
2 digits xs = digitsh xs 0
3 where digitsh [] n = n
4 digitsh ((ParseLeaf x):xs) n = digitsh xs (n*10 + (atoi [x]))
5
6 chars :: [parseTree] -> [char]
7 chars [] = []
8 chars ((ParseLeaf x):xs) = x : (chars xs)
9

10 chainl :: [parseTree] -> [([char], (num -> num -> num))] -> num
11 chainl [x] lst = eval x
12 chainl (x:y:zs) lst = (evalop y lst) (eval x) (chainl zs lst)
13
14 evalop :: parseTree -> [([char], (num -> num -> num))] -> (num -> num -> num)
15 evalop (ParseNode _ x) lst = lookup (chars x) lst
16 where lookup x [] = error "no existing op"
17 lookup x ((y,z):yzs) = z, if x=y
18 = lookup x yzs, otherwise
19
20 minus x y = x - y

Listing 16: Amanda-style function definitions
1 compare :: num -> num -> [char]
2 compare x y = "first argument is smaller" , if x < y
3 = "arguments are equal" , if x = y
4 = "second argument is smaller", otherwise

Listing 17: Off-Side Rule Example
1 ...
2 | Def -> [[Lhs, <+>[IfClause], <?>[OtherClause]]]
3 | Lhs -> [[idf, <*>[idf]]]
4 | IfClause -> [[eqToken<$>addIndent , Expr, comma, ifToken, Expr<$>removeIndent]]
5 | OtherClause -> [[eqToken<$>addIndent , Expr, comma, otherToken <$>removeIndent]]
6 ...


