
Improving a CellFS Implementation for the x86
Architecture

Pthread Coroutine Support

P. Jorrit Tijben
p.j.tijben@student.utwente.nl

ABSTRACT
With multi-core processors becoming mainstream, programmers
are trying to take full advantage of their parallel possibilities. One
of the relatively new and powerful multi-core CPUs is the Cell
Broadband Engine Architecture, which excels at floating point
calculations. To ease development on this platform suitable for
supercomputing, frameworks have been created offering a range
of programming models. One of these frameworks is CellFS.
There has been progress on making CellFS available for the x86
architecture, providing a way to test and run code without the
need for actual Cell hardware. CellFS on x86 supports coroutines
using a straightforward implementation based on setcontext/get-
context. A different and perhaps more promising way to realize
coroutines is using pthreads; the possibility and feasibility of such
a solution is investigated.

Keywords
Coroutines, CellFS, Cell Broadband Engine Architecture, x86,
pthreads, concurrency

1. INTRODUCTION
When real hardware is not available, or already in use, build-
ing applications for the Cell processor can be done by means of
a virtualized environment, for example with IBM’s Full-system
simulator [3] as part of its Software Development Kit.

Either on the real hardware or within the virtualized machine,
CellFS [15] can make development easier. It is a framework, bor-
rowing concepts and programming models from Plan 9 [23] to
simplify I/O between individual processing units and the main
memory of the Cell CPU. Mols [21] has implemented the CellFS
part dealing with these memory transfers for x86; this implemen-
tation makes it possible to develop and test CellFS based algo-
rithms on more common hardware. A finished algorithm can then
be compiled and tested for the Cell architecture in its unmodified
form.

Part of CellFS is its coroutine model. Coroutines provide a con-
venient way to implement cooperative tasks and will be explained
in the background section of this paper. The current implemen-
tation of this model for CellFS x86 is based on setcontext/get-
context: C library functions used for context control. Providing
a coroutine model based on pthreads may be more portable how-
ever. Pthreads are POSIX threads [2], a standardized API for

Permission to make digital or hard copies of all or part of this work for personal
or classroom use is granted without fee provided that copies are not made or dis-
tributed for profit or commercial advantage and that copies bear this notice and the
full citation on the first page. To copy otherwise, or republish, to post on servers or
to redistribute to lists, requires prior specific permission.
11th Twente Student Conference on IT, Enschede 29th June, 2009
Copyright 2009, University of Twente, Faculty of Electrical Engineering, Mathe-
matics and Computer Science

creating and using threads.

For Windows there seems to be one user-level implementation of
the setcontext/getcontext functions, based on Win32 threads [25].
Because this implementation is thread-based, creating a pthread
coroutine solution should be very attainable. While the concept
of pthread-based coroutines need not necessarily be contained
within CellFS, it will get first attention.

After dealing with background information about the Cell BE ar-
chitecture, CellFS and coroutines in section 2, further relevance
and implications will be discussed in section 3. Section 4 de-
scribes the thesis statement and research goals, followed by the
approach/methodology in part 5. Results can be found in sec-
tion 6. Finally, conclusions and a discussion constitute part 7.

2. BACKGROUND
An article by Gschwind and others [12] provides a good overview
of the Cell BE architecture, and also the open source environ-
ments surrounding it. The Cell Broadband Engine Architecture
consists, in its standard configuration, of a Power Processor Ele-
ment (PPE) and several Synergistic Processing Elements (SPE).
All the SPEs and the PPE are connected by the Element Inter-
connect Bus (EIB). The PPE is a ‘normal’ Power architecture
processor and is the main processor controlling the SPEs. SPEs
are optimized for floating point operations. They contain a Syn-
ergistic Processing Unit (SPU) which uses SIMD operations, and
a Memory Flow Controller (MFC). See figure 1 for an overview.

Figure 1: Cell BE Architecture

The SPU cannot directly communicate with the system memory,
but memory transfers are handled by the MFC which uses Direct
Memory Access to access the system’s memory. This is where
CellFS comes in. Ionkov et al. [15] describe the design and im-
plementation of CellFS: a library that abstracts memory transfers
to and from an individual SPE which would otherwise be done



manually.

As stated in the introduction, CellFS also makes use of corou-
tines. Conway [6] first coined the term in 1963, naming an idea
by him and Joel Erdwinn. Coroutines are autonomous parts of
program code that have no fixed order of execution. They can
suspend and resume at different points in the code. Knuth [17]
sees them as a generalized form of subroutines. This generaliza-
tion is expressed by thinking of coroutines as cooperating equals,
while subroutines have a clear ‘caller’ and ‘callee’ relationship.
The most crucial difference then, is that a subroutine always kicks
off at the first address of its implementation code, while corou-
tines instead continue at the point where the code last yielded.
Yielding implies stopping the current routine prematurely, allow-
ing another coroutine to run instead. Its local environment will be
preserved; upon returning to the first coroutine the program will
continue at this preserved point.

A simple example:

1 /* This is the coroutine. */
void count()

3 {
int i = 0;

5

printf("%d\n", i);
7 i++;

yield();
9 printf("%d\n", i);

i++;
11 yield();

printf("%d\n", i);
13 i++;

}
15

int main(int argc, char* argv[])
17 {

count();
19 count();

count();
21 }

Would produce:

0

1

2

Assuming that count() is a coroutine implementation for C,
yielding would transfer control back to main() while at the same
time saving count()’s stack. When count() is called again, it
will restore the context from the last yield and continue from that
point.

The example above has a somewhat limited use. Because of the
inherent concurrent nature of coroutines, a better and perhaps a
more useful example is the well-known producer-consumer prob-
lem:

1 int queue[10] = {0};

3 void producer()
{

5 for (;;)
{

7 /* While queue not full. */
while(queue[10] != 0)

9 {

produce(queue);
11 }

yield();
13 }

}
15

void consumer()
17 {

for (;;)
19 {

/* While queue not empty. */
21 while(queue[0] != 0)

{
23 consume(queue);

}
25 yield();

}
27 }

Although the earlier explanation of coroutines states that they
have no fixed order of execution and therefore run concurrently,
a specific implementation could allow to transfer back control to
a calling function as in the first listing. Another explanation of
coroutines along with good examples is given by De Moura and
Ierusalimschy [8].

3. RELEVANCE AND IMPLICATIONS
Programming for the Cell processor, or ‘parallel programming’
in general, has a reputation of being hard [22, 1]. This is the main
reason several frameworks exist that may provide more conve-
nient interfaces to the programmer. The IBM redbook1 about
programming the Cell processor lists several frameworks [14],
CellFS being one of them. Frameworks often involve a trade-
off between performance and the level of abstraction. Because a
higher level of abstraction mostly implies more ease of use, per-
formance and simplicity can be seen as conflicting goals.

Apart from simplifying programming on just the Cell BE plat-
form, higher abstractions can also increase the potential to run
programs using these abstractions on other architectures. Be-
cause the programs do not make use of architecture-dependent
code, individual implementations of frameworks can be written
for the different architectures.

Frameworks like CellFS thus provide programming models and
the possibility to compile, run, and test code on different ma-
chines. Programming concepts which are straightforward to use
are relevant to the programmer to save time. Coroutines are part
of the CellFS model but are currently implemented in two dif-
ferent ways: using custom stack management for the Cell pro-
cessor, or by means of the already mentioned setcontext/getcon-
text as used by Mols in his x86 ‘port’. As stated however, the
major drawback of using setcontext/getcontext is that it is not
available in many x86 environments. Implementations and usage
of pthreads are more widespread, so it seems logical to map a
coroutine to a separate thread. These are the main reasons for a
coroutine implementation bases on pthreads.

Using pthreads to implement coroutines may seem a bit redun-
dant. After all, threads and coroutines both allow running two
or more concurrent tasks. The major difference between corou-
tines and threads however, is that threads are preemptive while

1IBM Redbooks are books of a technical nature, developed and
published by IBM’s International Technical Support Organiza-
tion (ITSO).



coroutines explicitly suspend themselves.

One could imagine the concurrent nature of coroutines allows for
parallel execution on different cores. While this is true, CellFS
coroutines run mutually and concurrently, but not in parallel on
a separate SPE. This means that coroutines on one SPE are in-
dependent from the coroutines on another SPE; they cannot ‘see’
each other. The different groups of coroutines of all SPEs will,
however, run in parallel.

4. THESIS STATEMENT
The project has several objectives in view. The first and pri-
mary goal is to make a coroutine implementation that is based
on pthreads. This coroutine mechanism will be part of the CellFS
library and should run on both the x86 and Cell BE architecture.
A comparison of both design and performance is made with the
use of POSIX setcontext/getcontext for coroutines. Other corou-
tine implementations could also be evaluated.

In the end, adding a portable coroutine implementation to CellFS
serves a greater goal. This greater goal consists of compiling and
running code transparently on both the Cell BE and x86 architec-
ture. Optimizing CellFS in other ways should also contribute to
making programs run on x86 as well as Cell BE.

A research question could be formulated as follows:

Is it possible to substitute the setcontext/getcon-
text coroutine support of CellFS with a solution that
makes use of pthreads, and if so, does this result in a
better alternative?

5. APPROACH/METHODOLOGY
5.1 Initial concepts
Using pthreads to realize coroutines requires at least the follow-
ing things:

• Finding a way to transfer control to other coroutines, i.e.
‘bypassing’ the thread scheduler. This can probably be
done by means of a general lock for all coroutines on a
single SPE.

• A lock for each shared critical section/data structure when
the coroutines run concurrently.

• Taking blocking and fairness into account. What happens
if one coroutine blocks on I/O?

• Considering CellFS’ short API and adapting the implemen-
tation to it.

• Take pthread’s own stack size into account.

Comparing a pthreads implementation with the original solution
should be made based on a few criteria: Portability, difficulty
to program, ease of use, correctness, and performance (speed).
Performance is evaluated in section 6 by running benchmarks;
but only for a sample program outside CellFS.

Initial coroutine functionality was designed apart from CellFS.
A paper design and a functional, but separate implementation
were the first to concentrate on the problem and ignore details
required by CellFS. This initial test program is much like the as-
cending/descending example used in section 6. With a separate

lock for every coroutine, execution can be limited to one corou-
tine at a time. Shared code should also be protected by locks but
for now this is left to the user.

A solution is also required for the fact that CellFS’ API expects a
custom stack when creating a coroutine.

5.2 Eventual Solution
By using the pthreads library for a coroutine implementation,
there is, conveniently, already an private stack and some other
context per thread. Trying to make something other than a one-
to-one mapping between a single coroutine and a single pthread
would therefore seem illogical.

The first problem that arises is the fact that every pthread has to
be suspended whenever a yield() function call is done by the
user. A way has to be found to either adapt or bypass the standard
pthread scheduler.

The only ‘native’ possibilities to make changes to the scheduling
order is by making use of pthread_attr_setschedpolicy()
and the associated function pthread_attr_setschedparam().
The different alternatives are SCHED OTHER, SCHED RR and
SCHED FIFO for priority scheduling, a round-robin scheduling
and a first in, first out scheduling, respectively. However there is
no option to schedule to another thread at any given time, and as
such to make the library non-preemptive/semi-preemptive.

It becomes clear that it is both an advantage as well as a disad-
vantage to use pthreads. The advantage is having a cheap private
context, but at the cost of sacrificing the possibility to yield a
thread at chosen but arbitrary moment. The only two options that
remain are:

1. Adapting the pthread scheduler itself. This can be rela-
tively tricky because some implementations make use of
system calls and/or interact with the kernel in other ways.
Some userspace implementations, for example the GNU
Portable Threads [10], do provide non-preemptive func-
tions (like pth_yield()). But using these would not be
portable thus defeating the whole purpose of using pthreads
in the first place.

2. Suspending the threads by using all means of pthreads it-
self, like mutexes and condition variables.

Because making changes to the pthreads scheduler seems overly
complex when a solution with mutexes and condition variables
suffices, and is not even portable, only the second option will be
implemented.

The solution is to block a thread with condition variables in order
to guarantee only one thread at a time will be active and executing
code. When coroutines are used by the main program, first a
mutex and an accompanying condition variable will be created.
Making a coroutine comes down to calling pthread_create(),
after which it is immediately locked on the condition variable in
its entry routine.

1 void* coroutine(void* unused)
{

3 pthread_mutex_lock(&cmutex);
while (control != cornr)

5 {
pthread_cond_wait(&sequence , &cmutex);



7 }
pthread_mutex_unlock(&cmutex);

9

...

The global variable control is used to tell which coroutine is
going to be scheduled; cornr represents the number/id of the
current, ‘own’, coroutine. When it is not this coroutine’s turn it
blocks on the condition variable.

Thus, scheduling a new coroutine takes place by assigning a new
value (a new thread number) to the condition control and by
making use of pthread_cond_broadcast() to stop the target
thread from blocking and allowing it to continue.

To incorporate this method within CellFS, work was based off the
setcontext/getcontext implementation: functions were reduced to
stubs, after which they were implemented with pthread-specific
lines. Some code, like the simple round-robin scheduler, could be
reused. All required functionality is put in a single file (cor.c) in
which the following functions are important, and call each other
in the following way (see figure 2 for an overview):

main() is nothing more than the beginning of the program but
should not be seen as a separate coroutine. It will instantly create
a main coroutine by calling mkcor(). This is essentially a wrap-
per around pthread_create(). Subsequently the helper func-
tion mkcor_aux() is called which locks on the condition vari-
able. When this condition gets a signal, control is transferred to
the earlier supplied coroutine method,

Whenever yield() is called by one of the coroutines, sched()
is executed to schedule a next coroutine. sched() chooses the
next one on a round-robin basis and is the function that signal-
s/broadcasts the coroutines blocked on a condition variable.

There is an advantage of pthreads versus setcontext/getcontext
that showed up while implementing. Setcontext/getcontext can
only switch to a function that has integer parameters. Using
pthreads, pointers or in fact every type is allowed, allowing more
flexible code.

Internally, CellFS expects it is given an initial stacksize for a
coroutine. Because every pthread has a default stacksize, this
value can be ignored. But, every pthread library does have a
function to set the stacksize too, so there is no reason not to
use the stacksize information. Even more, the default stacksize
is unspecified and implementation-specific: relying on a default
stacksize would be less portable.

6. RESULTS
6.1 Speed in Theory
Before any benchmarks are done, one might reason about the
speed of the setcontext/getcontext and pthreads implementations.
For Linux, the GNU libc [11] library is very common and it pro-
vides implementations of setcontext, getcontext . . . , as well as
a pthreads library: Native POSIX Thread Library. With ver-
sion 2.1, makecontext, setcontext, getcontext and swapcontext
are implemented in assembly for the x86 architecture and can be
found in /sysdeps/unix/sysv/linux/i386/. The NPTL library can
be found in /ntpl. While speed tests should be done to be sure,
one can imagine that utilizing the setcontext/getcontext functions
is a more efficient than using pthreads for context switching. A
pthread simply has more overhead and is capable of doing more

than only switching context. However, creating eight threads (the
current CellFS maximum but this could be changed) on a mod-
ern Linux system should be negligible, and would not really be
a disadvantage to setcontext/getcontext. For Windows testing,
the POSIX Threads for Win32 [16] library will be used but the
pthread support in Microsoft Windows Services for UNIX [20]
could be a good alternative.

6.2 Simple Benchmark
To measure the speed differences between the solutions, two pro-
grams which do exactly the same are tested. They consist of
the functions ascending and descending, both running a counter
50,000,000 times. These functions alternate between each other
by means of setcontext/getcontext for the first program:
#include <stdio.h>

2 #include <stdlib.h>
#include <ucontext.h>

4

ucontext_t ascContext , descContext , mainContext;
6 void ascending(void);
void descending(void);

8

int main(int argc, char* argv[])
10 {

int isSwapped;
12 char ascStack[SIGSTKSZ],

char descStack[SIGSTKSZ];
14

getcontext(&ascContext);
16 ascContext.uc_link = &mainContext;

ascContext.uc_stack.ss_sp = ascStack;
18 ascContext.uc_stack.ss_size =

sizeof(ascStack);
20 makecontext(&ascContext ,

(void (*)(void)) ascending , 0);
22

getcontext(&descContext);
24 descContext.uc_link = &mainContext;

descContext.uc_stack.ss_sp = descStack;
26 descContext.uc_stack.ss_size =

sizeof(descStack);
28 makecontext(&descContext ,

(void (*)(void)) descending , 0);
30

isSwapped = 1;
32 getcontext(&mainContext);

isSwapped = 0;
34

printf("Switching from main to ascending\n");
36 if (!isSwapped)

{
38 swapcontext(&mainContext , &ascContext);

}
40 printf("Exiting program\n");

exit(EXIT_SUCCESS);
42 }

44 void ascending(void)
{

46 int i;
for (i = 0; i < 50000000; i++)

48 {
printf("Ascending: counter is ’%d’\n", i);

50 printf("Switching from ascending"
"to descending\n");

52 swapcontext(&ascContext , &descContext);
}

54 }

56 void descending(void)
{



Figure 2: Creation and usage of two worker threads



58 int i;
for (i = 50000000; i > 0; i--)

60 {
printf("Descending: counter is ’%d’\n", i);

62 printf("Switching from descending"
"to ascending\n");

64 swapcontext(&descContext , &ascContext);
}

66 }

time pthread > /dev/null and
time setcontext > /dev/null

Output of the printfs is redirected to /dev/null because it isn’t
particularly interesting. Results of the the elapsed real time be-
tween invocation and termination are displayed in table 1.

Table 1: Program timings
setcontext time (s) pthread time (s)

58.377 469.841

55.791 414.312

56.387 484.965

55.351 508.893

76.688 485.916

61.588 504.488

63.668 463.366

63.685 453.490

56.539 489.556

55.763 482.995

Table 2: Statistical values
setcontext pthread

Avg. (s) 60.3837 475.7822

Var. (s2) 43.50219446 757.12170529

Std. dev. (s) 6.59561934 27.51584462

Std. dev. (%) 10.92284729 5.78328584

The following example does exactly the same as the setcontex-
t/getcontext program but uses pthreads, mutex locks and condi-
tion variables to achieve the same alternation between ascending
and descending. Both programs don’t have error checking etc. to
save some space. The tests ran on system with a dualcore pro-
cessor to potentially make use of parallelism, with Linux x86 64
SMP 2.6.24.5.

2 #include <stdio.h>
#include <stdlib.h>

4 #include <pthread.h>

6 int main(int argc, char* argv[]);
void* ascending(void*);

8 void* descending(void*);

10 const int ascControl = 0;
const int descControl = 1;

12 int control;

14 pthread_t pAsc, pDesc;
pthread_mutex_t cmutex;

16 pthread_cond_t sequence;

18 int main(int argc, char* argv[])
{

20 int status;
control = -1;

22

pthread_mutex_init(&cmutex, NULL);
24 pthread_cond_init(&sequence , NULL);

26 pthread_create(&pAsc, NULL, ascending ,
NULL);

28 pthread_create(&pDesc, NULL, descending ,
NULL);

30

printf("Main method\n");
32

pthread_mutex_lock(&cmutex);
34 control = ascControl;

pthread_cond_signal(&sequence);
36 pthread_mutex_unlock(&cmutex);

38 pthread_join(pAsc, NULL);
pthread_join(pDesc, NULL);

40

pthread_mutex_destroy(&cmutex);
42 pthread_cond_destroy(&sequence);

pthread_exit(NULL);
44 return 0;

}
46

void* ascending(void* unused)
48 {

int i;
50 for (i = 0; i < 50000000; i++)

{
52 pthread_mutex_lock(&cmutex);

while (control != ascControl)
54 {

pthread_cond_wait(&sequence , &cmutex);
56 }

pthread_mutex_unlock(&cmutex);
58

printf("Ascending: counter is ’%d’\n", i);
60 printf("Switching from ascending"

"to descending\n");
62

pthread_mutex_lock(&cmutex);
64 control = descControl;

pthread_cond_signal(&sequence);
66 pthread_mutex_unlock(&cmutex);

}
68 }

70 void* descending(void* unused)
{

72 int i;
for (i = 50000000; i > 0; i--)



74 {
pthread_mutex_lock(&cmutex);

76 while (control != descControl)
{

78 pthread_cond_wait(&sequence , &cmutex);
}

80 pthread_mutex_unlock(&cmutex);

82 printf("Descending: counter is ’%d’\n", i);
printf("Switching from descending"

84 "to ascending\n");

86 pthread_mutex_lock(&cmutex);
control = ascControl;

88 pthread_cond_signal(&sequence);
pthread_mutex_unlock(&cmutex);

90 }
}

Ideally this test program should be run and timed on several ma-
chines, environments and workloads. The goal of these bench-
marks however, is to get a general impression of the relative speed
of pthreads versus setcontext/getcontext. and to test whether sig-
nificant differences arise. Having very limited and controlled en-
vironments would be more correct but overkill in this case. Doing
10 runs on each machine gave a standard deviation in percentages
of 11% (setcontext/getcontext) and 6% (pthreads). Because the
speeds of running the examples varies some magnitudes this is
sufficient for a general conclusion.

7. CONCLUSION
To answer the question whether a pthread-based coroutine solu-
tion within CellFS-x86 is a better alternative to the current imple-
mentation, the results need to be verified.

First of all, a pthread implementation is indeed possible, as a
working example is realised. Portability of this solution also
appeared to be greater than the setcontext/getcontext solution.
There exist more, and more full-fledged, pthread libraries than
is the case for setcontext/getcontext. Additional difficulties do
not appear because the CellFS API remains unchanged.

As mentioned in the results, pthreads can run routines with ar-
bitrary arguments and return values, while for setcontext/getcon-
text only integers can be used which might be a great drawback.
The fact that pthreads are about eight times slower makes a final
answer somewhat more difficult. Because CellFS for x86 would
mainly be used to test algorithms and sample programs, this slow-
ness is not critical. The final program will eventually be run on
the Cell processor anyway.

Unless you are testing some time-critical applications on an x86-
machine, the pthread solution is indeed a better alternative.

Recommendations for further research consist of the following
points:

• Benchmarks of the implementation with sample programs
for CellFS.

• Evaluations against other, standalone coroutine solutions.
SystemC [4] has one based on pthreads too, but is C++ and
SystemC specific. Several C-based open source coroutine
libraries using other options like setcontext/getcontext or
setjmp: libtask [7], libpcl [19], coro [24], libcoroutine [9]
and libcoro [18].

• Model checking using tools as SPIN [13] or Uppaal [5]
could help to verify the solution.

REFERENCES
[1] Sega saturn. Next Generation Magazine, page 43, February

1995.

[2] Portable operating system interface (posix). ISO/IEC
9945-1: 2003 (IEEE Std. 1003.1: 2001), Part 1: Base
Definitions, 2001.

[3] IBM full-system simulator for the cell broadband engine
processor: A full-system simulation infrastructure and
tools for the cell broadband engine processor. http:
//www.alphaworks.ibm.com/tech/cellsystemsim

[Last checked: March 25, 2009], November 2005.

[4] IEEE Standard SystemC Language Reference Manual.
IEEE Std 1666-2005, pages 1–423, 2006.

[5] Johan Bengtsson, Kim G. Larsen, Fredrik Larsson, Paul
Pettersson, and Wang Yi. Uppaal — a tool suite for
automatic verification of real–time systems. In Proc. of
Workshop on Verification and Control of Hybrid Systems
III, number 1066 in Lecture Notes in Computer Science,
pages 232–243. Springer–Verlag, October 1995.

[6] Melvin E. Conway. Design of a separable
transition-diagram compiler. Commun. ACM,
6(7):396–408, 1963.

[7] Russ Cox. Libtask: a coroutine library for c and unix.
http://swtch.com/libtask/ [Last checked: March 25,
2009].

[8] Ana L. de Moura and Roberto Ierusalimschy. Revisiting
coroutines. Technical Report 15/04, PUC-Rio, Rio de
Janeiro, RJ, June 2004.

[9] Steve Dekorte. Libcoroutine: a portable coroutine
implementation. http://www.dekorte.com/projects/
opensource/libcoroutine/ [Last checked: March 25,
2009].

[10] Ralf S. Engelschall. Gnu pth - the gnu portable threads.
http://www.gnu.org/software/pth/ [Last checked:
June 15, 2009].

[11] Free Software Foundation. Gnu c library - gnu project -
free software foundation.
http://www.gnu.org/software/libc/ [Last checked:
June 15, 2009].

[12] M. Gschwind, D. Erb, S. Manning, and M. Nutter. An open
source environment for cell broadband engine system
software. Computer, 40(6):37–47, June 2007.

[13] G.J. Holzmann. The model checker spin. Software
Engineering, IEEE Transactions on, 23(5):279–295, May
1997.

[14] IBM Redbooks. Programming the Cell Broadband Engine
Architecture: Examples and Best Practices, chapter 3.1.4,
pages 41–27. Vervante, 2008.

[15] L. Ionkov, A. Nyrhinen, and A. Mirtchovski. Cellfs:
Taking the “dma” out of cell programming, apr 2007.



[16] Ross Johnson. Posix threads (pthreads) for win32.
http://sourceware.org/pthreads-win32/ [Last
checked: June 15, 2009].

[17] Donald E. Knuth. Fundamental Algorithms, volume 1 of
The Art of Computer Programming, section 1.4.2.
Addison-Wesley, Reading, Massachusetts, third edition,
1997.

[18] Marc Lehmann. Libcoro.
http://software.schmorp.de/pkg/libcoro.html

[Last cheched: March 25, 2009].

[19] Davide Libenzi. Portable coroutine library.
http://www.xmailserver.org/libpcl.html [Last
checked: March 25, 2009].

[20] Microsoft TechNet. Pthread support in microsoft windows
services for unix version 3.5. http://technet.
microsoft.com/en-us/library/bb463209.aspx

[Last checked: June 15, 2009].

[21] A.H. Mols. A cellfs implementation for the x86
architecture. http://referaat.cs.utwente.nl/new/
paper.php?paperID=444 [Last checked: March 2,
2009], jun 2008.

[22] David A. Patterson and John L. Hennessy. Computer
Organization and Design: The Hardware/Software
Interface. Morgan Kaufmann, 2 sub edition, August 1997.

[23] Rob Pike, Dave Presotto, Sean Dorward, Bob Flandrena,
Ken Thompson, Howard Trickey, and Phil Winterbottom.
Plan 9 from Bell Labs. j-COMP-SYS, 8(3):221–254,
Summer 1995.

[24] E. Toernig. Coro.
http://www.goron.de/%7Efroese/coro/ [Last
checked: March 25, 2009].

[25] Xdoukas. Unix ucontext t operations on windows
platforms. http://www.codeproject.com/KB/
threads/ucontext.aspx [Last checked: March 25,
2009], May 2007.


