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ABSTRACT

With the advent of multi-core processing in personal computing
systems, the demand for concurrent software has increased far be-
yond its original niche. The conventional model of lock-based con-
currency for writing such software is difficult in use, error-prone
and does not always lead to efficient use of the available resources.
In this paper we shall evaluate several alternative models, namely
the Actor Model, the Join-Calculus, Software Transactional Mem-
ory and Runtime Scheduling and compare them to the conventional
one, to determine whether they provide superior means of writing
concurrent software.
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1. INTRODUCTION

Due to the rise of multi-core processors in modern personal com-
puting systems, concurrent programming is no longer a niche
that only programmers of software used on servers or in HPC!-
situations encounter. The methods of writing concurrent programs
have however remained largely the same.

This is in part due to the hardware used and in part due the operat-
ing systems used, that provide programmers with the means to use
said hardware. All modern systems use the concept of interleaving:
independently and possibly concurrently running computations [4].
This allows programmers to make use of the systems resources and
to allow for a reactive system under modern workloads. However,
interleaving by itself is not sufficient to write functional concurrent
software. What is missing is a method to communicate and or-
chestrate several computations when they are to share information
or when they are contending for resources. The machine and the
operating system only provide the most basic of atomic instruc-
tions to allow for these operations, therefore models have been
implemented on top of these instructions to allow for a practical
use of the available resources.

Nowadays most programmers are taught and make use of the
same model for concurrency, namely lock based concurrency, a
model that uses a mutable shared state for communication be-
tween processes, and many are lead to belief that it is the only
one. Difficulties [45] with this now conventional model have led
to a resurgence in research towards alternative models that might
have less of these problems and that may be more efficient in
their use of the available resources. First we shall look at some
of these difficulties to see how alternative models compare to the
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conventional one in Section 2 and at the related work on the sub-
ject in Section 3, followed by the problem statement and research
questions in Section 4 and the research approach in Section 5. The
actual evaluation can be found in Section 6 and the conclusions in
Section 7.

2. BACKGROUND
2.1 Problems of Mutable Shared State Con-

currency
We can identify six generally occurring problems with mutable
shared-state concurrency, which is the most common variant of
concurrency in use.

o Mutual exclusion

For processes in a concurrent program to work correctly
with shared resources, mutual exclusion is required. If this
would not be the case, it would be possible for one process
to read a resource that is still being modified by another
process and for it to cause other unwanted scenario’s. This
results in broken invariants which can lead to unexpected or
unwanted states [4].

e Race conditions

Race conditions occur when the output of a process is de-
pendent on the timing of another process or event. This
causes problems when computations aren’t executed in pro-
per sequence or timing, resulting in an unexpected state.
This leads to extremely difficult debugging, because im-
proper timing might only occur in a small subset of possible
computations [38].

e Deadlock
In a deadlock the program hangs in an invalid state due to
processes waiting on each other, barring progress. Dead-
lock occurs when the so-called Coffman conditions occur
simultaneously [13].

1. Tasks claim exclusive control of the resources they
require (“mutual exclusion” condition).

2. Tasks hold resources already allocated to them while
waiting for additional resources (“wait for” condition).

3. Resources cannot be forcibly removed from the tasks
holding them until the resources are used to comple-
tion (“no preemption” condition).

4. A circular chain of tasks exists, such that each task
holds one or more resources that are being requested
by the next task in the chain (“circular wait” condi-
tion).

e Starvation
Starvation occurs when a process is denied access to a re-
source due to another process continuously taking exclusive
control of said resource. A special case of starvation is a
livelock, in which all processes continue to change state,
but no overall progress is achieved. Starvation is generally
illustrated with the dining philosophers problem [12].



o Nondeterminism
Because of the interleaving of computations of multiple pro-
cesses in a concurrent program, the resulting program ends
up nondeterministic even if the processes being interleaved
are deterministic to begin with. This makes it hard to reason
about the program and it is one of the common causes of
race conditions [31].

e Lack of predictable composability
Individually correct pieces of concurrent software cannot be
guaranteed to produce a correct program when composed.
Additional work is required to make the composition valid,
especially when the composed processes wish to access the
same shared resource.

2.2 The conventional approach

The conventional approach to threading uses two constructs: se-
maphores and monitors, both built on the locks construct provided
by operating systems.

Semaphores [15, 44] are a traditional synchronization primitive
used in lock based concurrency, these days mostly used as building
blocks for higher level solutions or in programming languages that
do not support more complex forms of locking. Most operating
systems provide the semaphore as primitive synchronization mech-
anism. They can be used to solve the problems of mutual exclusion
and race conditions (famously so in dining philosophers [4]), but
are still prone to the other problems mentioned in 2.1.

Monitors [25] are a more advanced synchronization primitive,
allowing mutual exclusion to methods within the monitor and
waiting and signaling on conditions. This can be used to deter-
mine whether another process is allowed to access a resource, or
whether it must wait until it is signaled, because the resource is
in use by another process. Monitors allow easier reasoning about
concurrency than semaphores, but still have the same problems.

While proven solutions to problems of threading using these tools
exist, they are hard to implement correctly. Changes to the software
engineering process using these tools alone will not be enough to
make their use much more practical [31].

2.3 Alternate approaches
Some of the leading alternate models for concurrent programming
are:

2.3.1 The Actor Model

The Actor Model is a model stemming from Al-research in which
the entire system is represented by so called Actors [3]. It uses
message passing to allow communication between the various
Actors that make up a system. Actors are generally allowed to
do three things on receiving a message :

e Send a finite number of messages to other Actors.
e Create a finite number of new Actors.

o Specify the behavior to be used on the next message.

These actions are all executed concurrently, making the Actor
Model inherently concurrent.

Compared to the conventional model, the Actor Model has the
following qualities:

o Mutual exclusion
Because of the message passing nature of the Actor Model,

there is no mutable shared state, so mutual exclusion is much
easier to handle, by wrapping the shared resource actor in a
so called serializer, which queues messages and limits
access to the shared resource. All access to the resource
must happen via this Actor, so problems are less likely to
occur [3].

® Race conditions
Race conditions are still a likely problem.

e Deadlock
Because the Actor Model is essentially lockless, deadlock
should not occur, although there are scenario’s where similar
problems occur [9, 26].

o Starvation
Starvation is still a likely problem.

o Nondeterminism
The nature of message passing in this way and using ren-
dezvous or Petri Nets [40] minimizes the amount of nonde-
terminism [31].

o Lack of predictable composability
Because there is no shared state Actors generally have less
composability problems, but protocol issues for instance
make it so that composition is not guaranteed to be success-
ful [1].

Added problems are messaging overhead, the lack of inheritance
in Actors and the requirement of unbounded message boxes on
the actors to allow for weak fairness.

The premier implementation of the Actor Model is Erlang [30, 2],
an alternative one is Scala Actors [22, 23].

2.3.2 The Join-Calculus

The Join-Calculus is a model based on the n-Calculus [37], a
Process Calculus designed to formally model distributed systems.
The Join-Calculus approach to concurrency strongly resembles
that of the Actor Model, with the exception that the Join-Calculus
features anonymous processes instead of named Actors and in-
stead of using the name of an Actor as an address to send mes-
sages to, shared named channels or ambients [8] are used. The
Join-Calculus has the same characteristics as seen before with
the Actor Model. 1t is also the case that the Actor Model can be
modeled in the Join-Calculus and vice versa [17, 18].

The premier implementations are the join calculus language [41]
and JoCaml [34], both of the ML-subset of functional languages,
due to the easy mapping between the Join-Calculus and such
languages. Alternatives are Cw [5], boost.join [32] for C++ and
Join Java [28].

2.3.3  Software Transactional Memory

Software Transactional Memory is a model based on transactions,
as also used in database systems. Concurrency is handled by letting
threads run their transactions simultaneously, verifying the result
and comitting if shown that no conflicts have occured. If unsuc-
cessful the transaction is either aborted or retried [43]. Compared
to the conventional model, the Software Transactional Memory
has the following qualities:

o Mutual exclusion
Mutual exclusion is unnecessary due to the commit/abort
system of transactions.

e Race conditions
Transactions eliminate race conditions.



e Deadlock and Starvation
Transactions tend to eliminate unintended deadlocks and
starvation [31, 16].

e Nondeterminism
Transactions are highly nondeterministic, which makes them
useful for intrinsically nondeterministic situations, but less
so for determinate concurrent interactions. [31]

e Lack of predictable composability
Transactions are not composable by nature [31], but can be
made so [24].

This model is a favorite among many scholars, although problems
have been noted [39, 10]. The premier implementation is in GHC
Haskell [24], but due to the relative popularity [16] of Software
Transactional Memory, many implementations exist.

2.3.4  Runtime Scheduling

A model in which a runtime scheduler divides workloads based on
annotations in the sourcecode, added syntax or pragma directives.
Compared to the conventional model, the Runtime Scheduling has
the following qualities:

o Mutual exclusion
Mutual exclusion is handled by defining which parts of the
program are shared resources.

® Race conditions
Race conditions are still a problem.

o Deadlock and Starvation
The runtime scheduler allows for a fair and optimal use of re-
sources and use of runtime information to prevent deadlock
and starvation.

o Nondeterminism
The use of runtime scheduling increases the amount of per-
ceived nondeterminism, unless the heuristics of the sched-
uler are clearly understood.

o Lack of predictable composability
Because it is known which parts are to be used concurrently,
but the actual scheduling happens at runtime, programs us-
ing runtime scheduling can be safely composed.

The use of a runtime scheduler does carry some overhead.

Due to a lacking formal definition of runtime scheduling, wildly
differing implementations of this model exist. Some of the more
popular ones are Cilk [6], Intel®threading building blocks [49]
and OpenMP [20].

Cilk is a language for multithreaded parallel programming, devel-
oped at MIT. It uses new language constructs for the definition
of concurrent sections of code and uses a process called resource
stealing for fair runtime scheduling. Intel® threading building
blocks uses a C++ template library to create constructs such as
parallel_foreach to define tasks that can be scheduled at run-
time. OpenMP uses pragma directives to annotate the code.

3. RELATED WORK

The problems with the conventional lock-based model for con-
currency are well known and often mentioned [31, 4, 38, 13, 12,
29]. Competing models are sometimes compared to the conven-
tional one [31], but benchmarks are seldom done and then only
within the confines of a single model [21, 39] or programming
paradigm [7].

4. PROBLEM STATEMENT

The current conventional lock based approach to multithreading is
difficult in use, error-prone and does not always lead to efficient
concurrent programs. Several alternative models have been pro-
posed, some of which mentioned above, which theoretically should
have less of the general problems of mutable shared state concur-
rency. The question is whether these models can be practically
used and if they actually compare favorably to the conventional
approach.

The goal is thus to perform an empirical analysis of the afore-
mentioned models and to compare them with the conventional
model.

4.1 Research Questions

Following this, the main question to be answered would be:

do different approaches to concurrency compare favourably to the
lock based one?

To quantify the answers to this question, we use the following
subquestions:

1. How difficult are they to use?

2. How fast are they in comparison?

S. RESEARCH APPROACH

To answer the questions raised in the previous section, a testsuite
consisting of known standard problems in concurrency, such as
readersfwriters, producer/consumer, dining philosophers [4] or the
Santa Claus Problem [48] has been implemented using the lock
based model and each of the alternate models.

Because these problems were all thought of with lock-based solu-
tions in mind, the suite could be considered unfair at this point. To
alleviate that concern, each model will also be separately evaluated
on problems defined to showcase its strengths and weaknesses.

Furthermore we shall have a look at how performant each imple-
mentation of a model is and finally attempt to rank them.

6. EVALUATION

In our evaluation of the different models we shall first look at
the difficulty of use of the model, using the general problems of
mutable shared state concurrency mentioned before as a guideline.
Most of the evaluation will be done using the relatively simple
bounded buffer problem, expanding to different examples where
necessary. Secondly we shall compare the relative performance
by taking the standard lock based sample of the bounded buffer
as our baseline and then seeing if the other models are faster or
slower. Because we are comparing vastly differing implementa-
tions, native, virtual machine based and interpreted, only a general
view of performance will be used instead of a broad and strict set
of benchmarks. Lastly we shall give some notes on efficiency.

6.1 The Lock-Based Model in Java

Java will be the baseline language in our comparison as it offers
full and mature support for the lock-based model of concurrency
and does so in a clean and relatively straightforward way.

6.1.1 Usability
o Mutual exclusion
The Java sample program uses Monitors and Conditions
to guarantee mutual exclusion. We use the monitors explic-
itly by using the primitives in java.util.concurrent in-
stead of the more common synchronized blocks, to better
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approximate the classic monitor. The locks and conditions
are instantiated as objects in the standard OOP style, as
shown in listing 1:

Listing 1: Locks & conditions in Java
private final ReentrantLock lock = new

ReentrantLock();

private final Condition notFull = lock.
newCondition();

private final Condition notEmpty = lock.
newCondition();

For mutual exclusion only the ReentrantLock, which is
the actual monitor object is necessary. By taking a lock on
the monitor object, you make sure that only the current pro-
cess will be able to enter the critical section, assuming that
all processes have to go through the lock. Such a protected
critical section, as also used in the bounded buffer program,
is demonstrated in listing 2:

Listing 2: A critical section in Java

lock.lock();
try
{
[..1 //critical section
}
finally {
lock.unlock();
}

We make sure that all processes actually try to acquire the
lock and not sneak around it by putting in the get and put
methods of a separate buffer object. This lets the buffer
decide when to block producers or consumers instead of
those processes themselves.

Race conditions

The monitor we use to guarantee us mutual exclusion also
prevents two threads from racing, as only one is allowed
into the critical section. If we would remove the protection
from the get-method of our buffer, assuming that it would
still block on an empty buffer, and start two consumers, the
behaviour of our program would become highly nondeter-
ministic due to the racing consumers.

Deadlock

The condition variables allow us to block threads by waiting
on them inside the monitor block. Modifying our program
to deadlock, while using monitors, is as simple as forgetting
a signal. The signal/wait as used in Java in our sample
bounded buffer can be seen in listing 3:

Listing 3: Signaling in Java

//put

while (count == buffer.length) notFull.await();
[..1 // buffer

notEmpty.signal();

//get

while (count == 0) notEmpty.await();

[..1 //unbuffer

notFull.signal();

Starvation

Our sample bounded buffer is free from starvation due to the
bounds on the buffer and the use of only one producer and
consumer thread. Once we up the amounts of consumers
however, there is the possibility of starvation as a random
thread is allowed execution when a condition is signaled in

Java. A solution for this is the use of a fair ReentrantLock
(by instantiating it as such), which will guarantee fairness
by always favouring the longest waiting thread. This will
unfortunately generally result in slower overall throughput.

o Nondeterminism

The timeslicing of the JVM? and the randomness when
awaking threads make this implementation of a bounded
buffer highly nondeterministic. This is not much of a prob-
lem in our sample program, as the bounds on the buffer and
the small serial critical sections make it relatively easy to
reason about. However, it is easy to see how this escalates
in larger programs.

o Lack of predictable composability
In the bounded buffer sample composability is not much
of an issue as both producers and consumers can be added
without issue.

o General remarks
The processes in Java are blocked by calls on the buffer,
instead of blocking themselves as in the erlang sample. The
bounds on the buffer are enforced by blocking threads on
condition variables, not by expensive busy wait loops or
similar constructs.

6.1.2 Performance & Efficiency

In Java the Sun JVM used with our tests uses kernel threads,
generally working best when not too many threads are spawned.
While kernel threads are often said to be slow in creation, the JVM
allows thread creation/destruction in the order of 10* per second,
more than sufficient for most applications.

It is also generally assumed that synchronized methods in java are
especially slow, but in practice this is mostly false [19].

The critical section model of programming is a pessimistic form
of concurrency control, meaning that it will always block, regard-
less of actual contention. This has the tendency to cause slow
performance because only one thread is allowed in a critical sec-
tion. With overly large critical sections or sloppy synchronization,
performance suffers.

6.2 The Actor Model in Erlang

For the Actor Model we shall use Erlang, a concurrent functional
language designed by Erikson.

6.2.1 Usability
o Mutual exclusion
Mutual exclusion in the Erlang sample is handled by having
a buffer process which is responsible for keeping the state
of the buffer by calling itself recursively. The buffer process
handles two asynchronous messages, get and put, which
are serialized and buffered by the Erlang runtime, so that
only one is handled at the time. Listing 4 displays the buffer
process in Erlang:

Listing 4: A buffer process in Erlang
buffer(Contents, Capacity) ->

receive
3 {put, Producer, Item}
when Capacity > 0 ->
5 Producer ! {produce, self()},

buffer(Contents++[Item], Capacity-1);
{get, Consumer}
when Contents =/= [] ->

-
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Consumer ! {consume, self(), hd(Contents)},
buffer(tl(Contents), Capacity+1l)
end.

The buffer process is a recursive function with 2 parame-
ters, Contents, which is the current contents of the buffer
and Capacity, which is the remaining capacity of the buffer.
The receive handles two messages: {put, Producer,
Item} and {get, Consumer}. The first message specifies
an addition to the buffer, with the address of the producer
and the item to be added, guarded by the fact that there
should be room for the item. The second message specifies
removal, with the address of the consumer and a guard stat-
ing that the buffer should not be empty. On a get or a put,
a message is sent to the caller, returning the asked item or
asking for new one and buffer calls itself recursively with
the updated state.

Race conditions

We have mentioned before that that race conditions are still
a likely problem in the Actor Model, but exactly why might
not immediately be apparent in a system that is suppos-
edly without shared state. The problem is that while Er-
lang doesn’t share state in the traditional sense of mutable
variables, it is quite possible to emulate mutable state, for
instance as in our buffer to keep track of the contents. This
manner of keeping state once again allows race conditions,
for instance in the manner of James Iry’s Sock Machine [27].

Deadlock

Our example bounded buffer is free of deadlock as one
would assume with a “lockless” model such as the Actor
Model. However, because Erlang blocks threads waiting for
messages, by blocking when no messages are queued or the
guard on the patterns do not match, it is actually quite easy
to force a deadlock as listing 5 demonstrates:

Listing 5: Deadlock in Erlang

receive
{From, foo} ->
From ! {self(), bar};
end
[..]
receive
{From, bar} ->
From ! {self(), foo};
end

Two processes in a deadlock, each simply waiting on a
message from the other. Waiting on a message has the same
negative effects as waiting on a condition variable in Java,
with or without explicit locking. In our buffer example then,
as an analog to forgetting to signal in Java, it is possible to
deadlock our producer by neglecting to send a message for
production of another unit.

Starvation

Starvation is once again not an issue in our example of one
producer and one consumer, but in the case of many con-
sumers to one producer it becomes an issue of the fairness
of the scheduler in Erlang. Another issue is the use of pat-
tern matching on messages, as the messages higher up in
the matching chain are given precedence (in our example
put is thus given precedence over get), this is not an issue
as we have an upper bound on production which guaran-
tees a turn for the consumer, but in an unbounded system it
would probably be preferable to take the last message and
then match instead of matching over the buffered messages
implicitly giving precedence.

o Nondeterminism

The asynchronous messaging used in our sample program
is highly nondeterministic by nature, this could be mitigated
by using synchronous or rendezvous communications, but
this takes away some of the elegance the solution. Some
of the nondeterminism inherent with asynchronous com-
munications is lessened by the implicit use of serializers in
Erlang, making sure the messages arrive in proper order.

o Lack of predictable composability

Generally Erlang systems appear to be highly composable,
however, protocols used, especially in larger systems, have
to be designed with composability in mind. For instance, a
protocol requiring messages to carry a strictly incrementing
sequence number without gaps can be implemented with a
simple counter when communicating with one thread, but
will fail when another is added.

o General remarks
It is clear that due to the message passing nature of Erlang,
the importance of a proper protocol for your messages can-
not be understated. The issues mentioned before mostly tend
to be protocol issues. These are easily avoided in simple
cases such as our bounded buffer, but with more complex
protocols they tend to be much harder.

Compared to the Java implementation it is interesting to
see that in this case our producer and consumer processes
tend to block themselves instead of being blocked by an
external piece of code. The Erlang code is also very short,
but remains quite readable and the language is quite easily
learned.

6.2.2 Performance & Efficiency

Erlang uses a concurrent runtime supporting SMP3, allocating a
single kernel thread per processing unit by default. The runtime
then schedules the lightweight user threads created with the spawn-
command by mapping them to the kernel threads. User thread
creation in Erlang is extremely fast (in the order of 103 per second)
on a modern PC.

Essentially the Erlang SMP scheduler works by having a global
queue protected by locks which is used by the schedulers spawned
by Erlang to get their units of work, consisting of mostly processes.
This presents somewhat of a bottleneck. Also the memory allocator
locks, which hampers performance as well. Both of these problems
are scheduled to be solved in a future version of Erlang.

As it stands the Erlang runtime scales quite well on 2-4 processing
units, and less on more, with basic performance of the interpreted
Erlang-code being very slow and HiPE-compiled [42] code being
substantially faster, but still not optimal.

6.3 The Join-Calculus in JoCaml

Our Join-Calculus sample bounded buffer will be implemented in
JoCaml, a functional language derived from OCaml with added
Join-Calculus-primitives. Like Erlang it uses message passing
concurrency, only instead of defining endpoints and addressing
those, you define channels for communication, which can either be
synchronous or asynchronous. You then use so called join patterns
on those channels to handle messages.

6.3.1 Usability
o Mutual exclusion
As with Erlang we let a separate process handle the state of
our buffer, requiring messages to go through that process to
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alter that state. As only one message is handled at a time,
mutual exclusion is guaranteed. The buffer as implemented
in JoCaml can be seen in listing 6:

Race conditions

Due to the similarity of the Join-Calculus and the Actor
Model, the same problems with race conditions encountered
in Erlang, are present in JoCaml.

Deadlock

Waiting on messages is a blocking operation in JoCaml, so
deadlock is once again an issue. In JoCaml these blocking
mechanisms on channels are also used to simulate condition
variables, as JoCaml doesn’t support guards on the patterns
selecting messages as Erlang does. Listing 6 shows how this
works and why it has a tendency to produce messy code.

Listing 6: A buffer process in JoCaml
let create_buffer(capacity) =
def state(x::xs) & get() =
if (length xs) = capacity
then state(xs) & reply x to get
else notfull() & state(xs) & reply x to get
or state(xs) & put(x) & notfull() =
if (length xs) < capacity-1
then notfull() & state(xs@[x]) & reply to
put
else state(xs@[x]) & reply to put
in
spawn state([]) & notfull();
{put = put; get = get;}

1

The asynchronous process notfull is spawned on creation
of the buffer with an empty message, this message is con-
sumed when matched in combination with a message on the
put channel. Because the pattern governing the put is also
joined (with the & operator) to the notfull channel, it will
block when there is no message on either channel. Both put
and get once again put an empty message on the notfull
channel when their action results in a not full buffer. Thus
the channel simulates a condition variable as seen with the
monitor sample, having an empty message for signal and
no message for wait. Meanwhile the state process is used
to keep track of the internal state of the buffer, similarly to
the buffer process in Erlang.

Starvation

JoCaml uses nondeterministic matching on its patterns, so
precedence issues as in Erlang are no problem. Unfortu-
nately this also holds for asynchronous messages. JoCaml
will nondeterministically choose a message from the set of
matching messages on an asynchronous channel, without
serialization, thus losing sequence. This is the main reason
we have used synchronous channels in our sample program,
as asynchronous channels would require implementing an
Erlang-style serializer. The issue of fairness with multiple
consumers remains.

Nondeterminism

In the JoCaml sample we use a combination of synchronous
and asynchronous channels, with the same problems regard-
ing nondeterminism as in Erlang, with the added nondeter-
ministic matching mentioned while discussing starvation.

Lack of predictable composability

Just as with Erlang, protocol issues remain an issue for
composability. If JoCaml processes are to be composed
successfully, it is required to use a protocol governing your
messages that is designed with composability in mind.

o General remarks

JoCaml at this point still handles as a rather quirky and
unfinished language. The runtime has no support for SMP,
so the example given will only use a single core, while we
are looking for multicore solutions. A solution exists in us-
ing multiple instances of the JoCam! runtime and using the
distributed features of the language to make use of multi-
ple cores, but this is not really all that practical, especially
as distributed computing in JoCaml has many issues of its
own [33].

The language is also highly unreadable, with many, seem-
ingly unrelated, overloads of the & -operator, shown in list-
ing 7, and the previously shown clutch required to simulate
condition variables, due to lack of guards on the join pat-
terns.

Listing 7: Use of the ampersand in JoCaml
(xJoin Patternx)
def state(x::xs) & get() = [..]
(*Message Replyx)
[..] then state(xs) & reply x to get
(*Spawning concurrent processesx)
spawn (cstart(); 0) & (pstart(); 0);;

w

w

6.3.2 Performance & Efficiency

While the OCaml basis of JoCaml is rather fast, it is also wholly
singlethreaded, so with regard to speed and efficiency, it won’t be
a practical solution for quite some time.

6.4 Software Transactional Memory in Haskell
The sample program for Software Transactional Memory will be
implemented in GHC Haskell version 6.10.3 [35], a pure func-
tional language with mature support for concurrent transactions.

6.4.1 Usability
o Mutual exclusion

Transactions in Haskell are both atomic and isolated.
Atomicity guarantees that effects of a transaction become
visible only at the end of a transaction block, assuming
the transaction is successful. Isolation guarantees that a
transaction in operation does not notice the effects of other
threads during execution. These allow mutual exclusion to
be guaranteed during the execution of transactions. At the
commit point of the transaction, the mutated values are only
written if the state of the variables has not changed during
the transaction. The transaction for the producer can be seen
in listing 8:

Listing 8: The producer transaction in Haskell

1| atomically
2 ( do {
c <- readTVar count;
4 when (c == cap) retry;
writeTChan buf n;
6 writeTVar count (c+1);
1)

It reads the current amount of items in the buffer from the
transactional variable, retries when it has reached the maxi-
mum capacity and else adds n to the transactional channel
representing the buffer and increased the count by one.

® Race conditions
Since in Haskell STM all mutations of transactional vari-
ables are guaranteed to happen in transactions, race con-
ditions disappear as they would in the pure form of STM.
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Would you however take a language in which side-effects
are not so strictly separated from the rest of the code, espe-
cially one where memory can be modified at will, it is easy
to once again create a situation in which race conditions
may occur.

Deadlock
Haskell STM does not suffer from deadlock as it is lock-free.

Starvation

Haskell STM is not wait-free, thus starvation can still occur,
achieving fairness in Haskell’s implementation of STM even
appears to be more difficult than in competing models, as
seen in Josef Svenningssons Dining Philosophers programs
which exhibit starvation in certain cases [46].

Nondeterminism
Due to the nesting mechanisms, retrying on clashes and the
orElse construct, Haskell STM is highly nondeterministic.

Lack of predictable composability

STM transactions in Haskell are fully composable, a simple
example would be the Dining Philosophers by Svennings-
son [46].

General remarks

Side effects are the bane of a practical implementation of
STM, as they generally cannot be reverted e.g. in case of I/O.
Haskell’s typing system with its monadic constructs allows
to solve this in a rather beautiful fashion by making STM
transactions their own type with associated compile time
constraints. Side effects cannot occur in STM transactions
and as STM transactions themselves are side effects as they
modify memory, they can only occur in designated blocks.
Listing 9 illustrates this:

Listing 9: Side effects in Haskell
createBuffer :: Int -> STM Buffer
createBuffer capacity = do
{[STM Actions]}

main :: IO()
main = do
{

b <- atomically(createBuffer 10);
[..]
}

The first line is a type definition stating that createBuffer
takes an Int and returns a Buf fer with an STM side effect,
which must be so as createBuffer does STM-actions. The
function main is defined to return nothing, but with I0 side-
effects. atomically initiates a transaction, allowing only
STM-actions and returns an I0-action, a more permissive
type, describing that side-effects may have occurred.

As most languages do not have a type system as strict as
Haskell, or even allow direct access to memory, STM does
not appear to be a safe solution for the currently popular
languages. Syntactically transactions in Haskell are quite
easy to understand and use, as they essentially mimic the
imperative programming style used in single threaded pro-
gramming in common languages. Unfortunately, it does
tend to stand out a bit against the rest of the more functional
code generally written in Haskell. This is a good thing on
the one hand, as imperative sections are clearly denoted,
but it does allow you to forget that Haskell is foremost a
functional language. One could end up with an overuse of
atomic blocks in the same way that in concurrent java code
some people tend to make all methodes synchronized.

6.4.2 Performance & Efficiency

The GHC-runtime system maps lightweight user thread to kernel
threads, with generally one kernel thread per processing unit. The
state of each user thread, commonly called a Haskell thread, is
kept in a thread state object on the heap. The amount of kernel
threads, called worker threads, is generally equal to the amount of
processing units available, but the threads themselves are not fixed
to a single unit, allowing them to be moved between processing
units.

For each physical processing unit a HEC* is kept, containing the
mapping to a working thread, a run queue of Haskell threads, a
message queue with messages from other HECs and additional
data needed for bookkeeping such as the spark pool.

GHC also features a parallel Garbage Collector since version 6.10,
however this is still a stop-the-world form of garbage collection
and not an independent one, resulting in a massive slowdown when
GC occurs [36].

This results in GHC being a fast compiler with decent scaling in
the current stable version, and good scaling in the currently exper-
imental version 6.11, with optimizations actively being worked
on.

6.5 Runtime Scheduling in C using OpenMP
Our sample bounded buffer for OpenMP is implemented in C, with
#pragma-directives specifying the OpenMP-constructs. We use
the GCC 4.3.3 [47] and the Intel® C++ Compiler Professional
Edition 11 [14] as our compilers.

6.5.1 Usability
o Mutual exclusion
Mutual exclusion in OpenMP is guaranteed by synchro-
nization clauses such as atomic and critical section.
In our sample buffer in listing 10 we specify the critical
sections as such:

Listing 10: Mutual exclusion in OpenMP
#pragma omp parallel shared([..])

#pragma omp sections

#pragma omp section //producer

while(true)

8 {

while (!full)
10 #pragma omp critical (buffer)
12 [..]

}
14 }

}
16 [..]
}

18|}

The sections will be parallellized by the compiler, the criti-
cal section will be used for mutual exclusion and the shared
construct specifies which variables are shared. “(buffer)”
is used to specify a name for the critical section, the pro-
ducer side will use the same name, allowing the compiler
to determine that those critical sections need to be mutually
excluded.

“Haskell Execution Context



® Race conditions
The synchronization pragma’s also help against race condi-
tions, but as they must be added manually and it isn’t always
clear where they should be added, OpenMP does little to
prevent races from occurring. Listing 11 shows how eas-
ily race conditions are created by forgetting a critical
section.

Listing 11: Incorrect sample with race condition
int i=0;
#pragma omp parallel

o o=

4| 14+

}

To get correct behaviour the listing should be modified as
in listing 12:

Listing 12: Correct sample without race conditions
1| int i=0;
#pragma omp parallel
31 {
#pragma omp critical
5 i++;

}

e Deadlock
Deadlock is still a likely occurrence in OpenMP, especially
when using nested critical sections or locks. A sample is
given in listing 13:

Listing 13: Deadlock in OpenMP
#pragma omp parallel
private(i)

{ .
4 int i;
i = omp_get_thread_num();
6 if (i == 0) goto Master;
#pragma omp barrier
8 Master:
#pragma omp single
10 write(x*,*) "done"

}

[

The deadlock here occurs due to the goto-statement al-
lowing threads to arrive at different barriers, thus causing
problems with regard to sequence of taking locks.

o Starvation
OpenMP gives no guarantee of fairness when entering a
critical section, however, it does guarantee forward progress.
While this allows threads to be starved when other threads
get repeated access to the critical section, eventually a thread
will acquire access [11].

e Nondeterminism
As OpenMP builds upon the lock-based model, nondeter-
minism is high. The timeslicing is OS-dependent and be-
cause of the runtime scheduler it is even less clear what will
be run at which time.

e Lack of predictable composability

The annotations combined with the runtime scheduler al-
low for better composition, as OpenMP can determine a
solution for composition at compile and run time, optimiz-
ing cases a programmer could miss. However, as OpenMP
still allows you to take locks in the traditional fashion with
omp_init_lock, omp_set_lock and omp_unset_lock,
it is still easily possible to write code that does not compose
correctly.

o General remarks
The buffer sample used displays radically different behaviour
depending on the compiler used, even deadlocking in certain
instances.

Because there are no condition variables in OpenMP, as
it is more a system for large scale autoparallelization and
as such it has limited work sharing constructs, the current
solution for the bounded buffer used busy waiting instead
of waiting on conditions.

6.5.2 Performance & Efficiency

OpenMP defaults to using kernel threads, with the amount equal
to the physical processing units available. It supports either static
scheduling or runtime scheduling, determined by a compiler flag,
as in certain cases the ability to allow for static scheduling allows
performance benefits.

The performance is mostly dependent on the compiler and library
used, but when using a mature C-compiler such as the Intel® C++
Compiler, it will generally surpass the alternatives listed, especially
in large parallel systems, as OpenMP tends to scale quite well.

In cases of insufficient granularity provided by the #pragma-
directives, manual locking is still an option.

7. CONCLUSIONS

Although there appear to be no drop in replacements for the lock-
based model of concurrency, the alternatives that exist are certainly
viable. While the models themselves tell us something about the
underlying philosophies, the implementations are what really mat-
ters. It seems impossible to linearly rank the different implementa-
tions, as none proved to the strictly better that the others, so we
shall give some general conclusions about each model and when
they can or should be used.

The Actor Model as implemented in Erlang is easy to use and
reason about in simple cases, as asynchronous messaging can
essentially be seen as events happening on processes that should
be handled. In larger programs however, a lot of attention should
be paid to developing robust messaging protocols, as protocol
errors seem to be the most frequently occurring. Performance
wise, Erlang is a somewhat slow language that scales quite well
on smaller SMP systems, but as of yet not on larger clusters.

The Join-Calculus as a model seemed rather promising, but it
suffers in implementation in JoCaml. The lack of guards on join-
patterns, requiring condition variable-like hacks, and the odd syn-
tax do not help usability wise and performance suffers due to lack
of support for SMP and unfinished support for distribution.

Software Transactional Memory in Haskell allows one to program
as writing serial code while writing concurrent code, which allows
for large ease of use, however, serial code does seem somewhat
out of place in a pure functional language. The monadic approach
in Haskell however does raise the question of the viability of im-
plementing STM-like models in currently popular languages, as
they have no direct means to prevent you from causing side-effects
in transactions. Performance wise GHC is fast and getting faster,
however intrinsic problems in Software Transactional Memory,
such as processes starving due to massive retries, do hamper per-
formance.

OpenMP appears to be simple to use, as one only has to annotate
one’s existing code to gain the benefits of parallel execution, how-
ever, the annotations themselves still require complex reasoning
about concurrent situations, essentially giving you all the prob-
lems of the lock-based model. The ability to revert to this model



is both a blessing and a curse, as it allows both highly granular
optimizations and interesting ways to shoot oneself in the foot by
interfering with the OpenMP scheduler. The different implementa-
tions of the library and the different results gained by compiling
with different compilers are an unfortunate side effect. The benefit
in raw performance is there, especially for large systems.

On existing projects entrenchment and maturity will keep the lock
based concurrency the model to use for general applications for
the foreseeable future. Models that build on this, such as Runtime
Scheduling, will be the first step in overcoming this and will almost
always be an improvement.

On newer projects, especially when you are familiar with the
implementation languages, Software Transactional Memory as
implemented in Haskell and the Actor Model as implemented in
Erlang are definitely worth using, as they prevent much of the
problems inherent with the lock based model.
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