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ABSTRACT

Programming paradigms that abstract underlying multi-core prop-
erties of computer architectures have existed for several decennia
now; however, for the recently introduction Cell Broadband Ar-
chitecture, well-known for its application in the Playstation 3,
such paradigms had to be adapted to fully utilize all power of
the parallel-focused Cell processor; CellFS is one of the first li-
braries that tries to implement such a paradigm explicitly for Cell
Architecture [INMO7].

Because many Cell development is actually done on x86 hard-
ware, we propose a port of the Cell intrinsics of CellFS to x86
hardware. Subsequently, we evaluate the performance of our port.
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1. INTRODUCTION

Due to the ever-growing demand for more processor power and
the fact that physical limits prevent limitless increase of processor
speeds, computer scientists resort to the application of parallelism
in future computing [Sut05].

STI's recently introduced Cell Broadband Engine (Cell BE or
Cell for short) Architecture heavily embraces the concept of par-
allelism: a Cell processor combines a modest-performance RISC
processor with a minimum of 6 coprocessing elements designed
for efficient multimedia and vector processing [EOO+05]. Due to
these coprocessing capabilities, applications such as folding@home
(or other software that mainly uses floating point operations) or
high resolution multimedia decoding can be executed much faster
on the Cell architecture than on price-comparable alternatives.
[KBL+08]

From a programmer’s point of view, the application of parallelism
in general imposes two different challenges:

o software should be designed in a way tasks (threads) can
be distributed among the available processor elements in a
significant efficient manner, and

o software should take care of synchronizing data between
different threads.

A variety of approaches have been developed that allow a pro-
grammer to define these different tasks in an abstract way while at
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the same providing mechanisms for guarded data exchange where
possible. On the x86 architecture, this has resulted in frame-
works such as pthreads, Cocoa Threading and Java Threading.
The CellFS library implements some of these features on the Cell
architecture [INMO7].

The remainder of this section will give more background infor-
mation on the Cell BE Architecture and the CellFS project. In
section 2, we will outline our research, while section 3 and 4
contain and explain our findings.

1.1 Cell Broadband Engine Architecture

The Cell processor is based around a generic, Power Architecture-
compliant RISC processor (called Power Processor Element or
PPE in Cell terminology) that features 64KB L1 cache, 512 L2
cache and supports simultaneous multithreading. The PPE on it-
self has poor performance when compared to a full fledged mod-
ern x86 processor. Cell’s core feature, however, is the availabil-
ity of multiple Synergistic Processing Elements (SPEs) on a sin-
gle Cell processor. These coprocessors have a relatively simple
SIMD instruction set and are highly optimized for vector calcu-
lations and multimedia processing. The PPE and SPEs are con-
nected via a bus called the Element Interconnect Bus (EIB) that
is also connected to the main memory. Each SPE has 256KB
memory (called local store) and DMA logic for bus I/O.

A graphical overview of the Cell Architecture is shown in figure
1.

1.1.1 SDK

IBM has published a software development kit, called libspe2,
for the Cell BE Architecture. Besides compiler tools that allow
code generation for the SPE ABI, library functions implement 3
relevant mechanisms for communication over the EIB between
the PPE and the SPEs:

o DMA transfers for chunks of data
e Mailboxes for small pieces of data

o SPE signals

Communication using mailboxes is relatively cheap, but data is
limited to 32 bits per message. Mailboxes can operate in both
polling and interrupting mode on the PPE. On SPEs, only polling
mode is supported. To interrupt SPE code, the PPE can write to
signal registers on a SPE.

In practice, mailboxes and signals are used to synchronize pro-
grams running on the different elements, while the DMA feature
is used to actually transfer data from or into the SPE local store.
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Figure 1: Cell BE Architecture

1.1.2  Operating System Support
Almost all operating systems used in non-Playstation-3 Cell hard-
ware are based on the Linux 2.6 kernel, that natively supports the
Cell BA platform. The kernel runs on the PPE, and, through the
libspe?2 library, tasks may be offloaded to the SPEs.

1.2 CellFS

CellFS’ main goal is to provide a generic way of exchanging data
from and to the SPEs on a Cell processor. The native communica-
tion interface is abstracted in a wrapper that exposes POSIX-like
file descriptors. Access to 1/O devices that are not directly acces-
sible on the EIB, such as a network interface or a hard drive,
is provided by implementing a proxy mechanism on the PPE.
This allows for a generic programming approach for program-
ming routines that are to be run on the SPEs, since data does not
have to be preloaded or manually supplied by a program that runs
on the PPE.

An example program that uses the I/O features of CellFS is shown
in figure 2. Relevant functions implemented in the libspu li-
brary are spc_open, spc_close, spc_read, spc_write, spc_seek,
etc., which operate similar to their posix equivalents.

1.2.1 Plan 9 Filesystem Protocol
CellFS encapsulates the Plan 9 Filesystem Protocol (9P for short)
in the CBEA mailbox channels to communicate over the EIB.
9P is a lightweight transaction-based remote filesystem protocol
in which the client issues simple requests to be answered by the
server within a transaction.

The proxy logic on the PPE implements a 9P server, while the
SPEs are all loaded with a simple 9P client library. CellFS’
current root filesystem implementation supports 6 different sub-
filesystems (cited from [INMO7]):

#r File server allowing operation on files existing in ramdisk
on the main memory of the Cell.

#U File server allowing operation on files existing on the UNIX
file system accessible by the PPE. Files served by #U are
mmap()-ed to main memory to increase I/O bandwidth.

#R Similar to #U, but changes to the files are not propagated
to the disk. This is equivalent to a read-only file system,
however it allows the SPEs to communicate data between
each other as the computation progresses.

#include <stdio.h>
#include "libspu.h"

u8 bufl[8192] __attribute__((aligned(128)));

u8 buf2[8192] __attribute__((aligned(128)));

char stackl[Stksize] __attribute__((aligned
(128)));

7 char stack2[Stksize] __attribute__((aligned

(128)));

o v oA W =

9 void readcor(void *a)

0 {
1" int fdin = spc_open("#p/pip", Oread);

13 int n = spc_read(fdin, buf2, sizeof(buf2));
14 buf2[n] = '\0’;

15 spc_log("%d: Got: %s", corid(), buf2);
16}

s void writecor(void xa)

19

{

20 int fdout = spc_create("#p/pip", 0666,
Owrite);

21 sprintf(bufl, "hello world\n");

22

23 for (int i = 0; i < 20; i++) {

24 spc_write(fdout, bufl, strlen(bufl));

25 }

26}

s void cormain(unsigned long long spuid,
unsigned long long argv, unsigned long

long env)
20 {
30 mkcor(readcor, NULL, &stackl, sizeof(stackl
));
31 mkcor(writecor, NULL, &stack2, sizeof(
stack2));
2}

Figure 2: Example SPU code using CellFS - this example cre-
ates two coroutines that communicate over a named pipe.



#p Clients can use this file system to create a named pipe
which can be used to communicate between clients run-
ning on different SPEs.

#1 Log file system used by lightweight library routines replac-
ing printf().

CellFS implements 9P encapsulation in the following manner:

1. When the SPE needs to send a command, it sends a pointer
to the command structure in the local SPE store to the in-
terrupting mailbox on the PPE.

2. The PPE reads the memory structure from the SPE local
store through DMA, and deserializes the command.

3. When a response is ready, it is written back, through DMA,
into the original structure in the SPE local store.

4. When writing is complete, the SPE is notified by a signal
from the PPE.

Furthermore, CellFS implements an optimization in the #U- and
#R-filesystems: when opening a file, it is mapped into main mem-
ory, and instead of reading/writing data through 9P commands, a
pointer structure to the location in main memory is provided to
the SPE, which consequently accesses the file using direct DMA
operations in main memory.

1.2.2  Coroutines

To prevent SPE idle time when waiting on data, CellFS imple-
ments a scheduler in the SPE library that can switch context be-
tween different so-called coroutines; as a result, multiple corou-
tines are mapped on a single SPU.

Coroutines are subtly different from threads in that they can yield
execution only at given points in the program, thereby preventing
many (hard to debug) locking issues that may arise when context
switching occurs arbitrarily. This form of cooperative multitask-
ing is implemented in CellFS, and coroutine context switching
can occur only when operating on the CellFS file handles.

Similar to generic threading libraries, coroutines in CellFS are
created dynamically by supplying an entrypoint function. Ev-
ery coroutine defines its own in-memory stack, thereby allowing
different stack sizes per coroutine. Example code that uses the
CellFS library to create two coroutines with an 8K stack each is
shown in figure 2.

The following functions are provided by the coroutine scheduler:

¢ mkcor(entrypoint_func, argument, stackbase, stacksize)
Prepares a new coroutine. Note that the coroutine is not
immediately started; instead, it may be scheduled the next
time the declaring coroutine is switched out of.

o yield()
Yields current coroutine operation while staying in a ready
state.

e terminate()
Terminates the current coroutine.

e sched()
Yields coroutine operation and switches to other coroutine.
Used by terminate(), yield() and apc_* functions when wait-
ing for a DMA request to be finished.

These functions are implemented using native SPU assembly helper
functions. An SPU element contains 128 general-purpose reg-
isters, of which R80 through R127 are non-volatile and there-
fore saved and restored between context switches. RO is the Link
Register that contains the return address of a function execution,
while R1 contains a stack pointer structure. The following helper
functions are used:

o fakelabel, only used when constructing a coroutine, con-
tains a mechanism to initially point the RO register to a
coroutine’s entrypoint and R1 to the coroutine’s custom
stack

e when switching out of a coroutine, setlabel has function-
ality to save RO, R1 and the non-volatile registers into a
separate memory structure

o getlabel restores data from this memory structure into the
general-purpose registers when switching into a coroutine.

Note that with this mechanism, context switching is implemented
on a function call level, and not on a processor instruction level,
as one might expect.

As seen in the example code, the user application entrypoint is
defined using the cormain() function. The actual main() function,
implemented in the CellFS library, registers a default coroutine
for cormain(). As a result, code inside cormain() can also make
use of coroutine scheduling logic.

1.2.3  Bootloading

CellFS is compatible with any Linux distribution that runs on
Cell’s PowerPC-compatible PPE. It includes a bootloader pro-
gram to load binaries into the respective SPUs using functions of
IBM’s default Cell library. The binaries for the SPUs are sepa-
rately compiled for the SPU instruction set and link against both
IBM’s libspe2.h and CellFS’ libspu.h: the first contains standard-
library implementations for the SPU ABI as well as functional-
ity to access the EIB, while the latter contains the 9P client and
coroutine functionality. Loading the SPE binaries is done by in-
voking the bootloader with the SPE binaries as arguments. After
bootloading is complete, the bootloader launches the 9P server to
run within the default process space on the PPE.

1.2.4 CellFS Layout

CellFS is logically structured into three separate tiers:

o libspfs is a generic 9P server library extended with a cbe-
conn module to communicate over the CBE; for the latter,
it depends on functionality provided by libspe2.

o the cellfs tier compiles into the main cellfs binary, contain-
ing bootcode logic and the different 9P filesystem imple-
mentations; it depends on both libspfs to run the 9P server
and on libspe2 to load code into the SPEs.

e libspu provides functionality for the SPE binaries, and con-
tains the coroutine scheduler and 9P client logic; it depends
on libspe2.h.



2. RESEARCH PROPOSAL

Although the Cell Architecture has promising features, the avail-
ability of Cell hardware is relatively scarce, and many Cell de-
velopment is done on common x86 hardware, for instance using
IBM’s emulator application. Although this will generally suffice,
CellFS’ abstraction layer allows us to research a more native’
solution for applications that use CellFS: an x86 implementation
of the Cell intrinsics of CellFS.

In our research, we investigate different methods for transparently
translating CellFS’ behaviour to x86. We research several models
per feature and determine the most suitable by means of literature
research and performance testing. We conclude by investigating
the limitations of using our implementation for testing Cell appli-
cations.

2.1 Relevance

As Sutter [Sut05] stated, the performance of single core comput-
ing is bound to come to a halt when certain physical thresholds in
processor development are exceeded. Due to the need for alterna-
tives, parallelism is very actively researched in the current field of
computer science and all research in this area can be considered
of general importance to future computing.

Furthermore, current solutions to test Cell software on x86 sys-
tems (depending on the application) run up to 1/20th of its real-
time speed, due to the slow nature of SPU instruction emulation.
Depending of the performance of our proposed port, using CellFS
for Cell application development may significantly ease develop-
ment and behavior testing.

2.2 Scope

In our research, we focus on ’getting the architecture right’, and
limit our implementation to a functional one, which may not be
fully optimized for speed or resource use. Furthermore, our im-
plementation will only target the Linux platform, which, in our
experience, will generally allow for porting to other UNIX com-
pliant operating systems with not too much of an effort. Also, our
implementation will obviously not be able to run CellFS applica-
tions that still make use of some native libspe2 library calls.

3. ARCHITECTURAL DIFFERENCES

3.1 Cell Hardware Characteristics

When researching possibilities to encompass the hardware prop-
erties of the Cell Architecture (figure 1) into a software paradigm
on the Linux operating system, we observe the following:

e Normal PowerPC binaries (such as the 9P server program)
that run as process in the operating system on the PPE,
can, very similarly, be executed in our x86 environment.
We only require that the binary is recompiled for the x86
instruction set, which is relatively trivial. Also, most de-
pendency libraries will be identical in both x86 Linux and
Linux compiled for the Cell Architecture.

e The easiest and most intuitive way to run SPE code in the
normal Linux process space is to recompile the code for
the native x86 architecture and spawn a process for every
SPE. Alternatively, we could use threads instead of pro-
cesses for this separation, yet this resembles the original
Cell processor layout far less, since SPEs are separate en-
tities that share no resources.
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Figure 3: Communication using unix pipes

o In CellFS, data to an SPE always flows through the PPE,
even when data comes from main memory (with the excep-
tion of memory-mapped files, but this optimization can be
removed). To communicate between the 9P server process
and the SPE processes, a two-way communication channel
between every SPE process and the server process therefor
suffices.

o Since there is no problem accessing resources from a pro-
cess running in standard Linux user space, in theory, we
could drop the 9P server process and make a complete im-
plementation for the filesystems in the adapted libspu li-
brary. This, however, will effectively prevent the reuse
of the filesystem implementation code, and we also ex-
pect it to drastically change the coroutine switching be-
havior compared to the Cell Architecture implementation.
Since we are trying to have our port resemble native CellFS
where possible, we prefer to keep the 9P client/server ar-
chitecture intact.

3.2 Porting the EIB

With this in mind, we propose a communication mechanism us-
ing UNIX pipes. The pipe-construction is done in the ported
bootloader binary, that also launches the SPE binaries as child
processes, while, after bootloading is complete, the 9P server
is launched in the parent process. This also nicely follows the
paradigm of the PPE server process regulating the SPE processes.
Furthermore, the 9P server logic is adapted to manage and com-
municate over the pipes instead of over the EIB. Input and output
to an SPE binary will use file descriptor 3 and 4, respectively.
To keep our implementation as simple as possible, we will re-
move the optimization that uses mmap-ed I/O when accessing
files from disc, although, in theory, this could be used similarly
on the x86 architecture.

A visual overview of the communication mechanism is shown in
figure 3.

Alternatively, we considered the possibility of using a network
protocol such as TCP. This has the added advantage, that, theoret-
ically, one could spawn the SPE binaries on different networked
systems; the downside, however, is a larger overhead and a more
complex implementation.
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Figure 4: setjmp operates on a single stack.

3.3 Coroutine mapping

Having decided on how to port the Cell hardware characteris-
tics, we are left with porting the coroutine switching that is im-
plemented in SPU assembly in libspu. We evaluated several ap-
proaches to map coroutines to a x86 environment:

1. Spawn coroutines into individual child processes. This would

allow coroutines to run simultaneously in a very efficient
manner. Problems arise, however, since coroutines actually
depend on not running concurrently. Since child process
scheduling cannot be controlled manually, and locking all
shared resources is not feasible either, there seems no way
to prevent race conditions.

2. Implement context switching in x86-assembly. Theoret-
ically, the aforementioned functions fakelabel, gotolabel
and setlabel could be by adapting to their x86 equivalents.
The adaptation, on the other hand, will not be trivial, since
assembly execution will not be deterministic due to the na-
tive context-switching mechanisms present in Linux.

3. Use the context switching functions setjmp and longjmp.
Although these functions initially may seem to be able to
do effective context switching, they lack functionality to
swap out complete stacks. setjmp can mark the current
stack before a second context starts to run; when the sec-
ond context has finished executing, longjmp can be used
to restore the stack for the first context. This operation is
visualized in figure 4. Although usable in some cases,
this approach will not allow to switch coroutines pseudo-
arbitrarily, as is required for CellFS SPU contexts.

4. Spawn coroutines into individual threads. Execution of one
coroutine at the time can be guaranteed by managing a sin-
gle lock for all the coroutines on an SPE. We suspect than
such an implementation may not be trivial due to locking
requirements in the shared code and the implicit require-
ment of a custom stack per thread.

5. Use the context switching functions makecontext, setcon-
text and getcontext, available through the ucontext.h kernel
routines. These functions are more advanced than setjmp,

allowing the creation of contexts with their own stack space.
The major downside is that these functions are quite exotic,
and, although specified in the Single UNIX Specification,
not all UNIX-like operating systems may provide them.

Although option 4 is a feasible one, we chose approach 5, as
it will allow a relatively easy, yet complete implementation. In
our implementation, calls to fakelabel, getlabel and setlabel can
be replaced with makecontext, setcontext and getcontext, respec-
tively.

Our proposed communication mechanism does not allow signal-
ing the SPE processes when data is ready. This meansthat our
coroutine scheduling implementation will have no meansof know-
ing when a coroutine should switch back from waitingto ready
state. Although a signaling feature would probably re-sult in a
better resemblance of program execution on Cell hard-ware and
our Linux environment, we expect little performancegain since
reading data through file pointers costs processor time,as opposed
to DMA transfers on the Cell architecture. To makethe libspu
implementation functional without signaling, we au-tomatically
mark a coroutine as ready when no other coroutinesare available.
In the worst case, this will result in the coroutineblocking on read-
ing from the file descriptor.

3.4 Integration in CellFS Layout

We integrate our features into the CellFS repository by adding a
new tier "libspu-x86’ that will contain our x86 implementation of
libspu; furthermore, we update the cellfs tier to be able to build a
cellfs-x86 binary, which is to be used on x86 systems.

A key requirement of our port is that code can be run on x86
systems without requiring source alterations. We therefore adjust
the Makefile framework in the repository to allow building for
both the x86 architecture and Cell BEA from the same source.

4. TESTING

To test our implementation, we have built a simple set of test
scripts. Unfortunately, we do not have any Cell hardware avail-
able, which could have been used to compare performance. We
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#include <stdio.h>
#include "libspu.h"

char stack[10][16384] __attribute__((aligned
(128)));

int fd;

void
corworker(void *a)
{
char buf[128];
int 1 = sprintf(buf, "corworker::%d\n",
corid());
int fd = spc_open("#u/tmp/sout", Owrite);
spc_write(fd, buf, 1);
spc_close(fd);
}

void

cormain(unsigned long long spuid, unsigned
long long argv, unsigned long long env)

{

fd = spc_create("#u/tmp/sout", 0666, Owrite
);
spc_close(fd);
int i;
for (i = 0; i <5; i++) {
mkcor(corworker, i, stack[i], Stksize);

return;

Figure 5: Testing of I/O and coroutine scheduling.
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Figure 6: Result of test script.

expect the performance to be very dependent on type of code that
is to be run on the SPEs: in the case of operations that can effec-
tively use the SPE-specific instruction set, running this code on
x86 hardware will have incomparable performance.

One of our test scripts is shown in figure 5 and the result in figure
6.

5. CONCLUSION

We have presented a port to the x86 architecture of CellFS that
allows the compilation and execution of programs that depend
(solely) on the CellFS communication mechanism to offload ex-
ecution logic to SPE-elements.

For our port, the hardware architecture within a Cell architecture
is mapped to software paradigms available in the Linux operat-
ing system where possible; SPE binaries are launched as separate
child processes with the 9P server process as parent, using unix
pipes for communication. For the coroutine scheduling logic, we
have resorted the the ucontext system library, allowing similar
behavior on the Linux platform as the native SPE-assembly im-
plementation. Following the original Cell hardware architecture
where possible has made the porting process relatively easy, al-
lowing many code to be reused.

5.1 Future work

Our research lacks concrete performance testing. By research-
ing the categorization of different application types, we believe
valuable data concerning our implementation might be attained.
Also, our tests were limited to relatively simple (single processor)
hardware; we suspect testing and tuning an actual CellFS applica-
tion for modern SMT systems might result in more usable results.
We also think different improvements can be made on our imple-
mentation. We suspect the best performance is to be gained by
making a complete reimplementation of libspu that does not de-
pend on a 9P server but accesses local resources directly, although
the disadvantages named in section 3.1 apply and the coroutine
scheduling logic may have to be adjusted significantly. Another
improvement would be to port the mmap()-based filesystem.
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